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Abstract 

This letter describes a direct measurement of the W boson decay width, r(W), 

using the high-mass tail of the transverse mass spectrum of W+ev decays recorded 

by the CDF experiment. We find r(W) = 2.11 f 0.28(s&t)f O.l6(sys.) GeV, and 

compare this direct measurement with indirect means of obtaining the width. 

PACS numbers: 13.38.+c, 12.15.Ff, 11.80.Dq, 14..50.h- 

The W boson width, T(W), is a fundamental parameter that is well-predicted in 

the Standard Model. The W decays with approximately equal probability to each of * 

three lepton and two quark families kinematically available (with a color factor of 

three on the number of quark families). Hence, its branching ratio into (C,Q) is 

approximately i. The quark decays are enhanced by as(MW)/lr to first order in QCDso 

that the leptonic branching ratio isI 0.1084 f 0.0002, where the 0.0002 reflects the 

uncertainty in the value of as at @=I$,$ . The predicted W width may then be 

predicted by dividing the leptonic partial width r(W+!vJ - (G&)(&f& /6z) by the 

branching ratio. Using MW - 80.14 f 0.27 GeV/cZ,E*] Rosner et al.111 find 

Zi%!I = 2.067 f 0.021 GeV where the uncertainty in the prediction is dominated by 

the uncertainty in M++c 

The W width has been obtained experimentally[31 by an indirect method using 

the ratio R I ~B(p~~W~~/~~~p~j~~~~~. A measurement of R, together with 

a calculatior#] of the ratio of production cross sections o(p~+W)/c~{p~+zo) and the 

LEP measurement&] of r(zo) and Q@-&+t), is used to obtain a measurement of the 

W leptonic branching ratio r(W+&j/r(W). A calculation of r(W+&j is then used to 

obtain the W width. With this method a precision of 85 MeV has been obtained. As 

Rosner et aZ.[l] have noted, however, loops at the W-fermion vertex involving a @ or 
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scalar Higgs @,I61 could alter the effective W-fermion coupling, and hence T(W), but 

not affect the ratio r(W+t’v)/r(W). Thus, a measurement of r(W) from 

T(W+t’v)/T(W) assumes that the W coupling to leptons is given by the Standard 

Model. While in principle such non-standard couplings would also alter the W 

production cross section and thus affect the value of I’(W-+k’v)/r(W) extracted from 

R, a direct measurement of the full width r(W) is desirable so that these radiative 

corrections to r(W) can be observed. 

Direct measurements of T(W) have been reported by the UA1[71 and I~~2181 

Collaborations. Including systematic uncertainties, they obtain the values 

r(w) = 2.8 _‘;1:: f 1.3 GeVand r(W) < 7.0 GeV (9096 CL) respectively. These direct 

measurements result from fits of the W transverse mass distribution for the best 

values of Mw and r(W). The transverse mass is defined as MT P ?/ 2Pj++( 1-cos(A#)), 

where P’T and q are the transverse momenta191 of the electron and neutrino and A# 

is the azimuthal angle between them. The fits were performed over a limited range 

in MTnear the Mwpeak. 

The tail of the transverse mass distribution of the W contains information on 

T(W). Events with MT > MW can arise due to the non-zero W width or due to the 

calorimeter resolution. The resolution, furthermore, degrades for large values of the 

W transverse momentum, Py However, a precise measurement of T(W) from the 

high-mass tail is possibleI be cause the q distribution is sufficiently well-known 

and because far above MW the Breit-Wigner tail dominates over the gaussian 

resolution of the detector. In this analysis the W width is determined from a binned 

log-likelihood fit to the transverse mass distribution in the region MT > 110 GeV/c2, 

where a Monte Carlo study indicates there is good sensitivity to the width and the 
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systematic uncertainties are small. Possible non-gaussian tails to the resolution are 

discussed below. 

This measurement is made with 19.7 f 0.7 pb-1 of data collected by the 

Collider Detector at Fermilab (CDF) during the 1992-1993 run of the Fermilab Tevatron 

Collider. The Tevatron produces pF collisions at 4 = 1.8 TeV. Detailed descriptions of 

the detector can be found elsewhere.[lll Th e portions of the detector relevant to this 

measurement are (i) electromagnetic and hadronic calorimeters covering the 

pseudorapidity[l*] range 1~1 < 4.2 and arranged in a projective tower geometry; (ii) a 

drift chamber (CTC) immersed in a 1.4 T solenoidal magnetic field for tracking 

charged particles in the range 1~1 < 1.4; (iii) a time-projection chamber (VTX) for 

vertex finding; and (iv) two arrays of scintillator hodoscopes located on either side of 

the detector for triggering. 

To select candidate events we require an electron in the central barrel region 

of the detector (I@ < 1.05) with calorimeter transverse energy ET > 30 ~&lo] and 

CTC transverse momentum PT > 13 GeV/c. We require the electron track to be 

isolated in the CTC, requiring Iso < 5 GeV/c, where Iso is defmed as the 

scalar sum of the PT of all tracks except the electron track within a region in q--# 

space of -\, (A#)* + (A@* = 0.25 centered on the electron. The ratio of energy in the 

hadron (Had) and electromagnetic (EM) calorimeter towers of the electron cluster is 

required to satisfy Had/EM < 0.055 + 0.045 x A transverse momentum 

imbalance is required to signal the presence of the neutrino. We require 

ET s 30 GeV, where the missing transverse momentum, or ET, is defined as the 

vector sum of the ET in all calorimeter towers with lql < 3.6. Finally, the pjF 

interaction point, which is distributed by an approximate gaussian of width 

az = 26 cm along the beam direction, is required to satisfy lZind c 60 cm, and the 
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total accidental calorimeter energy not in time with the pj7 collision is required to be 

< 100 GeV. There are 10845 events passing these cuts. Of these, 93 events with second 

isolated, high-@ tracks pointing to electromagnetic clusters are removed from the W 

sample as @ candidates, and 226 events with clusters of tracks in the CTC which point 

at the ET vector in # and at calorimeter cracks in Q are removed as mismeasured QCD 

jet events (“dijets”), leaving 10526 events. 

Several processes can also mimic the W signal. The process W+z~+evvv has a 

signature similar to W+ev decays, but at lower MT The process @+e+e-, where one 

electron is detected and the other is lost because it falls into an uninstrumented 

region of the detector, can produce the signal of an electron and ET, as can QCD dijet 

events where one jet is lost and the other passes our electron selection criteria, We 

use the ENJET Monte Carlo program[l3] and a detector simulation to estimate the 

number of @+e+e’ and W+w decays contaminating the W sample. We find that the 

number of Zo events remaining in the W sample is 50 f 15 events and the 

background from W-av is 150 f 45 events. The WD dijet background is estimated by 

studying a data sample of events with an “electron” + ET in which the “electron” has 

Iso(trk) > 6 GeV/c. These events are presumably mismeasured dijet events. We 

study the efficiency of our dijet removal cuts on this sample and normalize to the 

number (226) of events in the W sample removed using these cuts. We estimate that 

the number of dijets left in the sample is 241 f 40 events. We observe 124 events 

with MT > 110 GeV/c*. We expect that 3.5 f 0.5 events are due to Zo and W-av 

events and that 53 f 8 events are from QCD dijets . 

The W transverse mass spectrum is modeled using a Monte Carlo program that 

generates zeroth order diagrams of W production, qq+W, according to an energy- 

dependent Breit-Wigner distribution:[141 
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a(i) - 6 
Hi - M&J2 + iQ’~M$ ] 

where 6 s IS the (possibly off-shell) eV mass. This form of the cross section includes 

vacuum polarization contributions to the W propagator. We use the MRSIT’ structure 

functions.[lfi] The effects of higher order diagrams for W production are mimicked 

by giving the bosons PT according to a previous measurementfl61 of the Py 

spectrum. The lepton momenta are passed through a simulation of the detector 

response. The same kinematic and geometric cuts as in the data are applied 

A cut of Py < 20 GeV/c is imposed in order to suppress many of the expected 

backgrounds in the fit region (MT > 110 GeV/d) and in order to suppress the 

broader calorimeter resolution which arises at large Pr With this cut, the number 

of W+ev candidates is reduced from 10526 to 9701 and the total background is reduced 

from 441 f 62 events to 224 f 44 events. The background in the fit region is 

reduced to w 1096 of the 58 events observed. Furthermore, Monte Carlo studies 

indicate that the uncertainty in r(W) due to the #shape is reduced from 700 MeV to 

120 MeV. Figure 1 shows the transverse mass distribution of the 9701 candidate 

events after the flT < 20 GeV/c cut, along with the expected background. 

To obtain F(W) a binned log-likelihood fit to the W MT distribution, binned in 

1 Ge V/c2 bins, is performed for MT > 110 GeV/cZ. Monte Carlo templates are 

generated with values of r(W) between 0.667 and 3.667 GeV at 200 MeVintervals. In 

the templates the MT shapes are the sum of W Monte Carlo and of backgrounds, where 

the background is normalized to 224 events and the W Monte Carlo is normalized to 

9701- 224 = 9477 events. The data are fit to each template and a likelihood curve vs. 

r(W) is made. Figure 2 shows the likelihood curve for the data. The most likely value 
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is r(W) = 2.04 f 0.28 GeK The uncertainty is purely statistical and is determined by 

the point where the likelihood decreases by 0.5. 

As a check of the fitting technique, we generate an ensemble of Monte Carlo 

“experiments” of 9477 W events each, add 224 background events, and fit to the Monte 

Carlo templates above. The mean returned value of QJm> = 210 f 0.02 GeVis 

obtained from the ensemble of “experiments,” to be compared to the input value of 

2.07 GeK Furthermore, the r.m.s. = 250 f 17 MeV of the fitted values is consistent 

with the 280 MeVstatistical uncertainty estimated from the data. 

The systematic uncertainties in this determination of the W width are due to 

effects that alter the shape of the transverse mass distribution. They are: the Py 

distribution, the electron resolution, the neutrino resolution, the backgrounds, and 

the electron energy scale. To estimate the uncertainties due to these effects, we allow 

these parameters to vary in our Monte Carlo program and then refit the Monte Carlo 

transverse mass spectrum with the varied input parameters to the original Monte 

Carlo templates. 

The Monte Carlo model of the ET resolution is compared to the ET observed in 

@+e+e- decays, where any ET in the event is due to the energy response of the 

calorimeter and not due to neutrinos. Varying the gaussian width of the ET 

resolution by the amount allowed by the Zo data leads to a 4.9% variation in T(W). 

Possible non-gaussian tails in the calorimeter ET resolution, which have been 

checked using minimum bias data, lead to negligible variations in r(W). The 

calorimeter electron energy scale and resolution are determined using the mass peak 

position and width of i?+e+e’ decays. Allowing the scale and resolution to vary in 



the Monte Carlo leads to 2.0% and 0.6% variations in T(W), respectively. Allowing the 

background to vary within its estimated uncertainty causes 0.8% variations in r(W). 

Distorting the input $ distribution in the Monte Carlo within its uncertainty 

and fitting the Monte Carlo with the distorted q to the nominal templates, we find a 

variation of 696, or 120 MeV, in r(W). A different kind of Py uncertainty arises 

because of the theoretical expectationfl71 that the Py distribution varies 

logarithmically, - aw; ‘+ log( 5 ), with the mass M of the tV pair. We have checked 
T T 

this possible source of bias in two ways: first, we fit a Monte Carlo sample with this 

new PW T distribution to the Monte Carlo templates generated with the nominal 

distribution and observe a shift of 23 MeVin r(W). Second, we have performed the 

entire analysis with a cut of q < 10 GeV/c, observing a shift of 0 MeV. The 

contribution of these shifts, when combined in quadrature with the 120 MeV 

uncertainty from the input W-spectrum, is negligible. 

Finally, we apply a shift to r(W) due to the effect of radiative decays of the W, 

Wevx not accounted for in our Monte Carlo. While most of the radiated 7 ‘s are 

collinear with the electron and, hence, are clustered in with the electron energy, 

some of the photons are radiated at wide angles. These wide angle photons carry 

away some of the W mass, and, hence, shift the MT distribution downward. We have 

used a Monte Carlo programfl81 to estimate that we must shift our value for r(W) up 

by 70 f 28 MeV to correct for radiative decays. 

Assembling the results, the final result for the Wwidth is: 

r(W) 3: 2.11 f0.28(stat.) f O.lG(sys.) GeK 



As a check, we instead fit over the region MT > 120 GeV/cZ, and obtain a value of 

r(W) = 2.15 f 0.34(srat.) f O.O9(sys.) GeV. Here the systematic uncertainty is 

smaller because the cut-off for the fit is farther from the falling edge of the 

resolution. Note that the MT > 110 GeV/cz sample has 58 events and the 

MT > 120 GeV/d sample has 35 events. 

In conclusion, we have reported on a direct measurement of the Wboson decay 

width, r(W) = 2.11 f 0.28( staf.) f O.lG(sys.) GeV, using the tail of the transverse 

mass distribution of W+ev decays in 19.7 ~6-1 of m collisions at & = 1800 Get! 

With the combined data set of 200 pb-1 from both the CDF and Dj$ detectors 

anticipated in the next year, a 100 MeV measurement may be anticipated. This may 

be compared with the expected uncertainty1191 from the LEP-200 experiments of 

200 MeV, which will be obtained after five years of data-taking. With future runs of 

the Fermilab collider, a 30 MeV measurement is possible, which approaches the level 

of the radiative corrections to the width. 
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Figure Captions 

Figure 1: Transverse mass distribution of the 9701 W candidates surviving a cut of 

Py < 20 GeV/c, along with the expectation for the background and the expected W 

shape from the Monte Carlo program. In the Monte Carlo, r(W) = 2.067 GeVwas 

used. 

Figure 2: Results of the log likelihood fit of the data to Monte Carlo templates of 

different W widths. Each point represents a log-likelihood fit performed over the 

range MT > 110 GeV/cZ. The curve is the best fit of the likelihood points to a cubic 

polynomial. The most likely value is at r(W) = 2.04 GeK 
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