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We explore the use of mean field models to approximate microscopic nuclear equations of state
derived from chiral effective field theory across the densities and temperatures relevant for simu-
lating astrophysical phenomena such as core-collapse supernovae and binary neutron star mergers.
We consider both relativistic mean field theory with scalar and vector meson exchange as well as
energy density functionals based on Skyrme phenomenology and compare to thermodynamic equa-
tions of state derived from chiral two- and three-nucleon forces in many-body perturbation theory.
Quantum Monte Carlo simulations of symmetric nuclear matter and pure neutron matter are used
to determine the density regimes in which perturbation theory with chiral nuclear forces is valid.
Within the theoretical uncertainties associated with the many-body methods, we find that select
mean field models describe well microscopic nuclear thermodynamics. As an additional consistency
requirement, we study as well the single-particle properties of nucleons in a hot/dense environment,
which affect e.g., charged-current weak reactions in neutron-rich matter. The identified mean field
models can be used across a larger range of densities and temperatures in astrophysical simulations
than more computationally expensive microscopic models.

I. INTRODUCTION

Astrophysical phenomena such as core collapse su-
pernovae and binary neutron star mergers, including
the possible accompanying gravitational wave produc-
tion and heavy-element nucleosynthesis in the matter
outflow, are sensitive to the thermodynamics of isospin-
asymmetric nuclear matter across many orders of mag-
nitude in the nuclear density. In contrast to the hot am-
bient conditions characterizing these astrophysical envi-
ronments, the structure and evolution of neutron stars
are largely governed by the properties of cold and dense
neutron-rich matter. Efforts are underway to combine
astrophysical observations of neutron star properties [1–
5], terrestrial laboratory experiments of finite nuclei and
hot/compressed nuclear matter [6, 7], and microscopic
many-body theory [8–13] to construct a more complete
picture of the nuclear equation of state (EOS) across the
range of conditions probed in supernovae and neutron
star merger simulations.

Traditionally mean field models, based on either
Skyrme phenomenology [14] or relativistic mean field
(RMF) theory [15, 16], have been the method of choice
for constructing nuclear equations of state for numeri-
cal astrophysics simulations. The energy scales probed
are much below the regime where a perturbative treat-
ment based on QCD, the fundamental theory of strong
interactions, is feasible. Non-perturbative lattice QCD
simulations may in principle overcome such difficulty,
but at present multi-nucleon simulations are beyond the
reach of modern supercomputers, although extracting a
nucleon-nucleon interaction from lattice data is a topic
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of intense current research (see e.g., [17–20]). An alter-
native is to construct a low-energy theory of strongly
interacting matter, chiral effective field theory [21–24],
which has already had many successes in the description
of nuclear structure and reactions of light and medium-
mass nuclei [25–35], as well as nucleonic matter at zero
temperature [11, 36–44]. In recent years nuclear ther-
modynamics [45–49] from chiral effective field theory has
been successful at describing the homogeneous phases of
symmetric and asymmetric matter (including the equi-
librium mixed liquid-gas phase) up to densities ρ ' 2ρ0,
where ρ0 = 0.16 fm−3 is the saturation density of nuclear
matter, and temperatures up to T ' 25 MeV. However,
the construction of an equation of state for direct use in
astrophysical simulations is still in progress, since the de-
scription of nuclear matter at larger densities and tem-
peratures is currently outside the scope of many-body
perturbation theory with coarse-resolution chiral nuclear
potentials. Here phenomenological mean field models can
be used to extend the description, provided they match
onto the low-energy theory.

In this work we analyze both Skyrme and RMF mod-
els for consistency with chiral nuclear thermodynamics.
That is, we explore what conditions are required for mean
field models [50–52] fit to the zero-temperature equation
of state to be also consistent with the finite-temperature
equation of state and transport properties of nuclear mat-
ter. In particular we will show that it is possible to
find both (i) non-relativistic (i.e., Skyrme-type) as well
as (ii) relativistic mean field models (RMF) that pro-
duce a thermodynamic equation of state for both pure
neutron matter (PNM) and symmetric nuclear matter
(SNM) compatible with many-body perturbation theory
(MBPT) calculations employing chiral two- and three-
nucleon interactions. Such models are also compatible
with recent experimental constraints on nuclear matter
properties [7], and their use in astrophysical simulations
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may therefore serve as an accurate substitute for the more
computationally demanding microscopic chiral equations
of state.

The manuscript is organized as follows. In section
II we compare MBPT calculations at both second- and
third-order to non-perturbative quantum Monte Carlo
calculations at zero temperature to assess uncertainties
coming from neglected correlations in the perturbative
treatment. This analysis is used in Section III to iden-
tify mean-field models for the zero-temperature equation
of state compatible with results obtained from a coarse-
resolution (Λ = 414 MeV) chiral interaction at next-to-
next-to-next-to-leading order (N3LO) [53]. We then an-
alyze the consistency of mean field models with chiral
nuclear thermodynamics in section III B as well as nu-
clear single-particle properties in Section III C that affect
charged-current weak reactions in proto-neutron stars.
We end with a summary and conclusions.

II. AB INITIO UNCERTAINTY ESTIMATES ON
MICROSCOPIC EOS MODELS

In the present section we analyze the theoretical uncer-
tainties from many-body perturbation theory in comput-
ing the ground state energy of symmetric nuclear matter
and neutron matter. As a nonperturbative benchmark
we employ quantum Monte Carlo techniques. The goal is
to identify the nuclear force models and density regimes
where microscopic many-body calculations can impose
the strictest constraints on phenomenological mean field
models. One may already anticipate that interactions
with low-momentum regulators would perform qualita-
tively better in this regard, especially in neutron matter,
however our goal here is to have a quantitative under-
standing of these errors for a relevant set of potentials.

A. Method

The quantum Monte Carlo calculations presented here
are based on the recently developed configuration inter-
action Monte Carlo (CIMC) method [11, 54, 55]. Pro-
jection QMC methods like CIMC are based on filtering
out an eigenstate |Ψ0〉 of the Hamiltonian H by repeated
application of the propagator P = e−∆τ(H−ET ) on an
initial state |ΨI〉:

|Ψ0〉 = lim
Nτ→∞

PNτ |ΨI〉. (1)

Here, Nτ is the number of imaginary time steps, ET is an
energy shift used to keep the norm of the wave function
approximately constant, and ∆τ is a finite step in ‘imag-
inary’ time: ∆τ = i∆t. The state |Ψ0〉 is the eigenstate
with the lowest eigenvalue within the subset of states
having non-zero overlaps with |ΨI〉. The application of
the propagator is carried out stochastically.

The main difference between the CIMC method and
traditional continuum projection Monte Carlo methods
is that in the CIMC method this stochastic projection is
performed in Fock space (i.e., the basis is provided by the
Slater determinants that can be constructed from a finite
set of single particle (sp) basis states), as opposed to in
coordinate space. As a result, non-local Hamiltonians do
not pose any technical problems. In this work, we use
the sp basis given by eigenstates of momentum and the z
components of spin and isospin. A finite sp basis is cho-
sen by imposing a “basis cutoff” kmax and convergence
is checked by performing a sequence of calculations with
increasingly larger values of the cutoff. This same sp ba-
sis is then employed to perform many-body perturbation
theory calculations at both 2nd and 3rd order (see e.g.,
Ref. [56]).

In order for a stochastic sampling to be feasible, the
matrix elements of the propagator, P, need to be posi-
tive semi-definite. For nucleons interacting with realistic
interactions this condition is never fulfilled due to the
presence of repulsive contributions, giving rise to the so-
called sign problem. In CIMC we circumvent this by
using a coupled-cluster double (CCD) wavefunction to
restrict the random walk in a subsector of the full many-
body Hilbert space where the positivity of the propaga-
tor is guaranteed (for details see Appendix VI A and Ref.
[55]). This introduces a systematic bias in the calcula-
tion (see Appendix VI A for an attempt to estimate its
effects), but nevertheless the final energy eigenvalue EFN0

is guaranteed to be an upper bound of the true ground
state energy E0.

The formalism is fully compatible with the use of a
three-body interaction in the hamiltonian (eg. in the
same way as these are dealt with in CC-theory [43]),
however in order to have more control on the fixed-node
procedure the explicit inclusion of triplet correlations in
the coupled cluster wavefunction has to be accounted
for. Presently this poses strong limitations on the size
of the sp basis that can be handled, making it difficult
to reach convergence with respect to kmax. An alterna-
tive approach based on cancellation techniques (see e.g.,
Ref. [57–59]), which may allow one to neglect explicit
three-body correlations, is currently being explored.

B. Results

In this study of the convergence of MBPT we will use
four different chiral NN interactions: the NNLOopt from
Ekström et al. [60], the two low-momentum cutoff inter-
actions from Coraggio et al. [53] at N3LO with cutoffs of
414 MeV and 450 MeV and finally a version of the N3LO
interaction with a 500 MeV cutoff from Entem and Mach-
leidt [22, 24] where the N3LO contact terms have been
refitted using the same regulator for all partial waves.

Calculations at constant density are performed by first
choosing the number of particles in the system N and the
target density ρ. The size L of the box is then given by
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FIG. 1. (color online) Energy per particle of pure neutron
matter as a function of density from different chiral inter-
actions at NNLO and N3LO. Results at second-order (PT2)
and third-order (PT3) in perturbation theory are shown to-
gether with those from configuration interaction Monte Carlo
(CIMC) and auxiliary field diffusion Monte Carlo [39]. The
inset shows the results at second-order in MBPT for the
N3LO 414 interaction with and without three-nucleon forces.

L = (N/ρ)1/3. In the present simulations the number
of particles is fixed at the closed shell N = 14, and all
of the results are converged with respect to the single-
particle momentum cutoff kmax, and we find that values
of kmax slightly higher than the cutoff Λ in the regulating
function of the chiral potentials is needed for convergence
(this is in good agreement with the findings in Ref. [11]).
We have carefully examined the dependence on the sys-
tem size and found that N = 14 provides reliable esti-
mates at the low densities we are interested in, a more
detailed discussion is provided in Appendix VI B. Fur-
thermore, all the perturbative calculations are performed
by including corrections to the nucleon self-energy at the
Hartree-Fock level, in other words by performing normal
ordering with respect to the Hartree-Fock state (for addi-
tional details see e.g., Ref. [56]). More detailed compar-
isons to results obtained using a free-particle spectrum
can be found in Appendix VI C.

1. Pure Neutron Matter EOS

We first concentrate on the equation of state of pure
neutron matter, shown in Fig. 1, for both perturbative
methods and the nonperturbative CIMC method employ-
ing chiral two-body forces. The first qualitative obser-
vation that can be made is that the NNLO result lies
consistently outside the N3LO band obtained by cutoff
variation. However, as noted in Refs. [10, 61, 62] this
variation may not be a reliable estimate of the spread in
predictions at a given order in the chiral expansion. From
the inset in Fig. 1 we observe that three-body interactions
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FIG. 2. (color online) Relative differences in energies obtained
at different orders in perturbation theory with respect to the
corresponding CIMC result for pure neutron matter. Nota-
tion same as in Fig. 1.

are needed for a quantitative study for densities ρ & 0.06
fm−3. In the present section we focus on NN forces only,
and consequently this is the highest density where we
may draw rigorous conclusions.

Evaluating the convergence of the perturbative calcula-
tions in Fig. 1, we see that in PNM the third-order contri-
butions are generally sufficient to bring the MBPT results
very close to those from the non-perturbative CIMC, in-
dicating a good convergence pattern for MBPT for all
four interactions considered, regardless of the regulariza-
tion cutoff. To estimate the errors corresponding to the
perturbative convergence, we consider in Fig. 2 the rela-
tive difference between the CIMC results and the energies
obtained at different orders in perturbation theory. We
observe that the interactions split into two groups with
N3LO 414 and 450 deviating from CIMC by ≈ 2− 3% at
second order and the NNLOopt and N3LO 500 interac-
tions that have deviations of 6− 8%. For all interactions
the third-order calculations are compatible with CIMC
for all densities apart from NNLOopt, which at the high-
est densities has a small deviation of ≈ 1− 2%.

One can study the effect of the bias coming from the
fixed-node procedure by adding to the wavefunction a
non-zero overlap with all states in the Hilbert space
(triplet and higher order irreducible correlations) and
checking the differences in the final estimate for the en-
ergy. In the case of PNM and for all four interactions
this procedure gives results compatible with the energies
obtained by employing the CCD wavefunction, which in-
dicates that this source of systematic error is under con-
trol (a more detailed study of this systematic error is
presented in Appendix VI A).

Before concluding this section we comment on the low
density regime of neutron matter, which due to the large
neutron-neutron scattering length (ann ∼ −19 fm) is very
close to that of a non-perturbative unitary fermi gas.
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From the results in Fig. 2 we may draw the (wrong) con-
clusion that at low densities ( ρ . 0.02 fm−3 ) the pertur-
bative calculations converge faster, with the second-order
results at ρ ≈ 0.02 fm−3 almost compatible with CIMC.
This is however an artifact coming from the fact that
the second-order predictions change from too attractive
at high density to too repulsive at low ones, that is, the
relative difference with CIMC changes sign at low densi-
ties (as is evident from Fig. 2). This is then in agreement
with the expectation that at sufficiently low densities the
convergence of MBPT breaks down.

2. Symmetric Nuclear Matter (SNM)

We now focus on the results for symmetric nuclear
matter, shown in Fig. 3, that have been computed using
A = 28 nucleons. In contrast to the neutron matter equa-
tion of state in the last section, here the various chiral
two-nucleon forces give rise to larger variations. As a re-
sult the energy per particle from the NNLO interaction is
now contained in the N3LO band, which is mostly due to
the N3LO 500 results that are consistently less attractive
than the rest for intermediate to high densities. Reaching
low densities with this high-cutoff interaction is computa-
tionally more demanding, and since we already observed
a lack of convergence in the simpler case of neutron mat-
ter, we will discuss in the following only the remaining
three interactions. Another interesting feature apparent
from the data (and compatible with earlier findings by
Coraggio et al. [53]) is that at intermediate to high den-
sities the third-order perturbative correction is negligible.
To better understand this behavior we plot in Fig. 4 the
ratio between third- and second-order perturbative cor-
rections in both neutron and symmetric nuclear matter.
We see that the third-order correction slowly changes sign
around the empirical saturation density, giving an artifi-
cially small correction to the energy per particle.

If we were to evaluate the perturbativeness of the cal-
culation by only comparing the magnitudes of the con-
tributions at different orders in perturbation theory (see
e.g., Fig. 4), we might draw the counterintuitive (and
wrong) conclusion that the convergence pattern in SNM
is much better than in PNM. That this is not the case
can be understood by noticing that if the third-order
calculation is already converged then the CCD wave-
function used in the fixed node procedure would be the
exact ground state, but if that were the case then the
third-order perturbative results and the ones predicted
by CIMC should be on top of each other, which is not
the case.

Another way to see this is to exploit the freedom in
CIMC to tune the guiding wavefunction by truncating
contributions beyond a given number of particle-hole ex-
citations. The second-order energies contain information
about 2p-2h excitations above the Hartree-Fock ground
state, so any important effects coming from higher or-
ders cannot be recovered in this low truncation of the
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FIG. 3. (color online) Same as in Fig. 1, except for symmetric
nuclear matter. The NNLOopt results now are contained in
the N3LO bands.
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MBPT expansion. We tested the NNLOopt interaction
at ρ = 0.08 fm−3 in both PNM and SNM and found
that in the first case in order to recover the full CIMC
results we have to allow up to 6p-6h contributions in the
guiding wavefunction (with the 4p-4h truncation lying
just outside the error bands) while for the latter case
up to 12p-12h states are needed to reproduce the non-
truncated CIMC result. Similar observations hold for
the N3LO 414 interaction that is used in subsequent sec-
tions of the paper, with 4h-4p being converged in PNM
and 10p-10h for SNM. This observation is again in strong
favor for enhanced non-perturbative features in the sym-
metric nuclear matter case, even for an interaction with
a low-momentum cutoff.

We conclude that it may be misleading to evaluate the
convergence of second-order calculations using only the
magnitude of the next order as guidance (or equivalently
using Padé extrapolations), especially in regimes where
the third-order contributions are changing sign and are
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FIG. 5. (color online) Relative deviations of energies obtained
at different orders in perturbation theory with respect to the
corresponding CIMC result for symmetric nuclear matter.
The gray band is a qualitative estimate of the uncertainties
in the fixed-node approximation (see text for the details).

thus artificially small. Without the fourth-order results
it is then difficult to judge convergence within MBPT
itself and comparison with non-perturbative methods are
important.

In Fig. 5 we plot the difference between the second- and
third-order perturbative results for the symmetric matter
equation of state and that obtained from CIMC. Recall
that the main systematic error in the Monte Carlo calcu-
lations, the fixed-node error, is thought to be much more
severe in this system especially at low densities due to the
appearance of bound states that are extremely difficult
to capture explicitly in the coupled-cluster ansatz for the
guiding wavefunction. One of the appealing properties of
the CIMC method however is that it is guaranteed to give
an upper bound to the energy. As was mentioned above,
by looking at the relative variations in Fig. 5 we can get
the impression that second-order calculations provide as
good (or better) estimates of the energy than those ob-
tained at third order in the density range 0.04 − 0.10
fm−3. This is a well known feature of asymptotic expan-
sions (see e.g., Ref. [63]) like the one employed in MBPT
(which does not involve any small parameter), where one
finds in fact that the smallest error achievable (without
employing resummations) is obtained by truncating the
series at an optimal order N∗ which may indeed be very
small. However, given the present large uncertainties, no
conclusive statement can be made.

A more rigorous statement can be made instead for
lower densities ρ < 0.04 fm−3 by using the upper bound
nature of CIMC energies: in the low density regime the
errors introduced by stopping the perturbative expan-
sion at second order are larger than ≈ 20%. One should
be cautious about any statement on properties of nu-
clear matter in this regime, such as the spinodal instabil-
ity region, coming from second-order MBPT. In order to

have more control in that region, comparisons to higher-
order results are therefore needed before a better under-
standing of non-perturbative physics is achieved. In the
intermediate-density regime, both second and third-order
calculations of the ground state energy are very similar
to each other and on average 7− 10% more bound than
CIMC results. Due to the lack of control on the fixed-
node errors, this would be the most reliable error band we
can attribute to perturbation theory, but due to its qual-
itative nature it will not be used to discriminate among
the various mean field models in subsequent sections. We
note however that this estimate is consistent with the
findings of Hagen et al. [43] in which the NNLOopt inter-
action resulted in a difference between CCD and MBPT
at second order of ≈ 12% at ρ = 0.06 fm−3 to ≈ 8%
around saturation density.

III. EOS FROM MEAN FIELD MODELS

In the previous section we found that the two coarse-
resolution chiral interactions at N3LO with cutoffs Λ =
414 and 450 MeV have good perturbative properties in
PNM and SNM, with average errors on the order of
∆E/E ≈ 2 − 3% for the former and ∆E/E ≈ 8 − 10%
for the latter in the vicinity of nuclear matter saturation
density. In addition, as shown in fig. 1, for densities up to
0.05−0.06 fm−3, the contribution to the energy per par-
ticle from 3N forces is negligible and the error estimates
from our analysis can be used quantitatively to select
mean field models that are consistent with second-order
MBPT calculations at low densities. In the following we
will adopt the most perturbative N3LO 414 interaction
including both NN and 3N forces.

In astrophysical simulations of core-collapse super-
novae and neutron star mergers, equations of state based
on mean field models have been used for more than three
decades. They provide a practical way of describing the
physical properties of dense matter while being compu-
tationally inexpensive, thus allowing for the fast genera-
tion of data needed for simulations. Among these models
those derived from Skyrme interactions are widely used
for the description of both nuclei and infinite matter, with
a prominent example being that of Lattimer and Swesty
[14].

The general expression for the energy density func-
tional of homogeneous matter is given by

E =
∑
q=n,p

1

2Mq
τq +

1

4
t0

[
(2 + x0)ρ2

− (1 + 2x0)
∑
q=n,p

ρ2
q

]
+

1

8

[
aτρ+ 2b

∑
q=n,p

ρqτq

]
+

1

24
t3ρ

α
[
(2 + x3)ρ2 − (1 + 2x3)

∑
q=n,p

ρ2
q

]
, (2)

where ρ is the density and τ is the kinetic energy den-
sity. Skyrme interactions represent a low-momentum ex-
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pansion of an effective two-body NN interaction and are
usually constrained by the properties of finite nuclei close
to the valley of stability. The predictive power of Skyrme
models however is difficult to assess away from the region
in parameter space where it has been fitted. The as-
trophysical environments mentioned above span a wide
range of densities, from a rarefied gas to dense matter
possibly 2-5 times that of normal nuclei, and neutrons
represent the vast majority of the nuclear composition.
Moreover, these environments are characterized by high
temperatures that can reach up to T = 50 MeV [64]. The
reliability of effective Skyrme interactions to accurately
cover this range of parameter space based on fits to ter-
restrial nuclei is an open question.

A first consistency check can be carried out using
experimentally extracted constraints for nuclear matter
properties. In Ref. [7] Dutra et al. have benchmarked
a set of 240 Skyrme parametrizations against a set of
11 infinite matter constraints. Only 16 parametrizations
were shown to meet all of these constraints. Due to the
wide range of conditions encountered in supernovae sim-
ulations, a careful calibration of the models also in con-
ditions that are difficult to achieve in terrestrial exper-
iments is therefore important. Recent developments in
both many-body techniques and nuclear forces allow the
equation of state of PNM to be relatively well constrained
at low densities. Using these results, together with prop-
erties of double-magic nuclei [65], Brown and Schwenk
[50] have refitted from the consistent models in Ref. [7]
a selected smaller set of six “best fit” Skyrme models:
SKT1, SKT2, SKT3, SKa25s20, Ska35s20, Sv-sym32. In
Ref. [50] two slightly different parameter sets for these
interactions have been obtained by requiring a particu-
lar value for the effective mass (m∗/m = 0.9 or 1.0) in
neutron matter at the density ρ = 0.10 fm−3.

In this work we will consider all of these final 12
parametrizations. For mean field Skyrme models, the-
oretical uncertainties can be estimated through a careful
extraction of the correlation matrix for the parameters
entering the functionals [66–68]. In recent years impor-
tant efforts have been devoted by the UNEDF collab-
oration to construct Skyrme parametrizations with re-
liable error quantifications; for this reason we have also
considered the parametrizations UNEDF0 [69], UNEDF1
[70] and UNEDF2 [71]. For the other parametrizations
there are no publicly available parameter correlations
that can be used to study uncertainties and propagation
of systematic errors. It is important to realize however
that detailed error extrapolations in complicated simula-
tions (like those for core–collapse supernovae) poses ma-
jor technical challanges and therefore parametrizations
whose central values are already close to the expected
ones are to be preferred. In this work, we therefore
focus on constraining mean field models from the low-
density microscopic equation of state and study their
properties at saturation density as described by Table
I assuming negligible errors in the parameters. However,
we would like to stress the need for a detailed study of

parametric uncertainties, which is outside the scope of
this study. Such analysis would be greatly facilitated if
new parametrizations would be published together with
their parameter’s covariance matrix informations.

Recent astrophysical simulations also employ relativis-
tic mean field models of the nuclear equation of state.
The general expression for the energy density functional
in terms of nucleon Ψ, scalar φ, vector Vµ, and vector
isovector bµ fields is given by

E =
∑
s,t

∫
d3k

(2π)3

√
k2 + (Mt − gSφ0)2(fs,t + fs,t)

+
1

2
m2
sφ

2
0 +

κ

3!
(gSφ0)3 +

λ

4!
(gSφ0)4 +

ζ

8
(gV V0)4

+
1

2
m2
V V

2
0 +

1

2
m2
bb

2
0 + 3ΛV (gV V0)2(gbb0)2. (3)

where, (fs,t, fs,t) are the spin and isospin dependent
fermi distribution functions for the nucleon and anti-
nucleon respectively. And, (φ0, b0, V0) are the ground
state expectation values of the auxiliary fields. The ex-
pectation value φ0 is obtained by solving(

mS

gS

)2

(gSφ0) +
κ

2
(gSφ0)2 +

λ

6
(gSφ0)3 (4)

=
∑
s,t

∫
d3k

(2π)3

Mt − gSφ0√
k2 + (Mt − gSφ0)2

(fs,t + fs,t),

and the vector ground state expectation values are ob-
tained by solving a pair of coupled equations:

ρp + ρn =

(
mV

gV

)2

(gV V0) + 2ΛV (gbb0)2(gV V0)

+
ζ

6
(gV V0)3

ρp − ρn =

(
mb

gb

)2

(gbb0) + 2ΛV (gV V0)2(gbb0). (5)

For a detailed description of the main features and how
they match to supernovae and neutron star observations
see Ref. [72]. The RMF models we focus on in this paper
are the most commonly used in astrophysical calcula-
tions: FSUgold [73], IUFSU [74], TM1 [75], TMA [76],
DD2 [77], SFHx [78], SFHo[78]. Similar to the work on
Skyrme models, in Ref. [79] a full analysis of 263 differ-
ent RMF parametrizations have been carried out with
the same set of 11 infinite matter constraints, and only
the Z271v5 and Z271v6 [80] parametrizations were found
to meet the criteria. Hence, we also include them in our
analysis.
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A. Zero Temperature

As the purpose of this work is to gradually select
among the many available mean field models those that
can be used to understand the thermodynamic evolution
of a binary merger or core collapse supernova and are
consistent with our current knowledge of baryonic mat-
ter, we proceed as follows:

In figures 6 and 7 we select among relativistic and
skyrme models respectively based on our findings from
previous sections by comparing to the chiral N3LO 414
interaction with NN and 3NF forces. We have compared
our constraints with [50] and have found that our values
are well within the bands in that work. For the remain-
ing models, we employ constraints from Dutra et al. [7],
and since the refitted Skyrme parametrizations selected
in Ref. [50] are essentially new parametrizations, they
need to be tested for validity.

We observe in Fig. 6 that phenomenological mod-
els have wide variations, even down to very low den-
sities, in contrast to the microscopic predictions shown
in Fig. 1. This model dependence can be traced to
the weak correlation between the low-density neutron
matter equation of state and the observables used to
constrain the phenomenological models. Among the
relativistic models only Z271v6 agrees with the uncer-
tainty bands from microscopic calculations and there-
fore is the only parametrization considered any further
in this analysis. We notice however that both the DD2
and SFHx parametrizations are very close to fulfilling the
low-density constraints, and therefore we will test them
against the set of constraints from Dutra et al. [7] in the
following. For the non-relativistic models all the UN-
EDF parametrizations fail the low density constraints.
We note however that it should be possible to include
low density neutron matter calculations as done in Ref.
[50] to achieve a better agreement. Although the low-
density regime is not important for some neutron star
properties, for instance the mass-radius relation, it is es-
sential for analyzing electron neutrino transport during
core-collapse supernovae.

In Fig. 7 we show the chiral equation of state and low-
density uncertainty estimates together with the vari-
ous Skyrme models that satisfy also the infinite matter
constraints. The uncertainty band for neutron matter
at ρ = 0.02 fm−3 excludes parametrizations SKT1-1.0,
SKT2-1.0, SKT3-1.0, Ska35s20-1.0, Sv-sym32-1.0. How-
ever, the Ska35s20-1.0 Skyrme interaction just misses the
low-density constraint, and we choose to consider it in
further analyses as the best representative of the models
with m∗/m = 1.0.

In the high-density regime the differences between
mean field models and the chiral equation of state in-
crease. For instance, at saturation density the variations
in Skyrme parametrizations are between 5% and 10%
more repulsive than the perturbative prediction, while
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FIG. 6. (color online) Energy per particle for neutron matter
at T = 0, where the red bars show the constraints derived in
the previous sections. In the inset we show a close-up of the
low-density (ρ ' 0.02 fm−3) regime.
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FIG. 7. (color online) Equation of state for pure neutron
matter. The insets show the uncertainty bands from neglected
correlations in the perturbative treatment from Section II.

RMF models can differ by up to 40%. At these den-
sities and beyond, theoretical error bands on the per-
turbative calculation increase due to the approximate
treatment of three-body forces in the two-body normal-
ordering approximation [81–84] at second-order in per-
turbation theory, whose uncertainties have not been eval-
uated in the present work (but see Ref. [85] for an
initial study). We therefore do not place strong con-
straints on the mean field models from chiral effective
field theory beyond low densities. We note however that
given the results obtained at low densities a 5% error
is to be expected and we can therefore assume that
the parametrizations SKT1-0.9, SKT2-0.9, SKT3-0.9,
Ska35s20-0.9 and Ska35s20-1.0 are in very good agree-
ment with the results obtained from chiral interactions.

For the symmetric nuclear matter equations of state
shown in Fig. 8 the predictions of different models are
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Name compatible Km (MeV) K ′ (MeV) J (MeV) L (MeV) Kτ,v (MeV) S(ρ/2)/J 3PPNM/Lρ0

Ska25s20 - 0.9 - 220 413 32.1 50.9 -345 0.66 1.0
Ska35s20 - 0.9 + 240 378 32.2 53.6 -374 0.65 1.0

SKT1 - 0.9 + 238 382 32.6 55.3 -378 0.65 1.0
SKT2 - 0.9 + 240 385 33.1 58.0 -385 0.64 1.0
SKT3 - 0.9 + 237 382 32.0 52.6 -370 0.65 1.0

Sv-sym32 - 0.9 - 234 384 31.5 49.5 -360 0.66 1.0

Ska25s20 - 1.0 - 220 415 32.0 46.4 -355 0.67 1.0
Ska35s20 - 1.0 + 240 379 32.2 50.6 -385 0.66 1.0

SKT1 - 1.0 + 237 384 32.5 51.5 -386 0.66 1.0
SKT2 - 1.0 + 236 387 32.3 50.4 -381 0.66 1.0
SKT3 - 1.0 + 237 385 33.0 48.9 -377 0.66 1.0

Sv-sym32 - 1.0 + 237 375 32.0 47.7 -387 0.66 1.1

DD2 - 243 -169 31.7 55.0 -461.7 0.66 1.0
SFHx - 239 457 28.7 23.2 – – 1.0

Z271v5 + 270 734 34.0 73.9 -389 0.57 1.0
Z271v6 + 270 734 33.8 70.9 -388 0.57 1.0

N3LO414 + 3NF + 223 270 32.5 53.8 -424 0.70 1.0

Range of constraint 190-270 200-1200 30-35 40-76 -760 to -372 0.57-0.86 0.9-1.1

TABLE I. Constraints on the properties of infinite nuclear matter from Dutra et al. [7, 79]. See text for definitions and details.
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FIG. 8. (color online) Same as Fig. 7 but for symmetric nu-
clear matter. We allow a 5% tolerance at nuclear matter
saturation density shown by the grey box.

very similar, reflecting the fact that the parametriza-
tions have been predominantly fitted to properties of in-
finite matter around and below the saturation density.
As discussed in Section II, in this case we do not have
a tight constraint on the perturbation theory uncertain-
ties, and considering an average error of ∆E/E ≈ 10%,
all parametrizations in Fig. 8 are compatible with the
perturbative results. As a further check we compare
the predictions for the saturation point and find that
all parametrizations are able to reproduce the empirical
result within the 5% box shown in Fig. 8. We therefore
cannot use the T = 0 SNM equation of state to further

eliminate mean field models.

In Table I we summarize the numerical infinite matter
constraints from Ref. [7]. In particular, the observables
listed are the symmetric matter incompressibility

Km = 9
∂P

∂ρ

∣∣∣∣
ρ0

(6)

at saturation density, where P = ρ2 ∂(E/N)
∂ρ is the pres-

sure; the derivative of the incompressibility with respect
to density (the so-called skewness parameter)

K ′ = −27ρ3
0

∂3(E/N)

∂ρ3

∣∣∣∣
ρ0

; (7)

the symmetry energy

J = S(ρ0) =
∂(E/N)

∂δ2
np

∣∣∣∣
ρ0

, (8)

where δnp =
ρn−ρp
ρn+ρp

is the isospin asymmetry; the sym-

metry energy slope

L = 3ρ0
∂S

∂ρ

∣∣∣∣
ρ0

; (9)

the isospin incompressibility

Kτ,v = Ksym − L
(

6 +
K ′

Km

)
, (10)
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where Ksym = 9ρ2
0
∂2S
∂ρ2

∣∣∣
ρ0

; the ratio between the sym-

metry energy at half saturation density and its value at
ρ0; and finally the quantity 3PPNM/Lρ0, where PPNM is
the pressure in PNM at saturation density. In addition,
there are four “band constraints” on the symmetric nu-
clear matter and pure neutron matter equations of state
in specific density regimes below and above nuclear sat-
uration:

1. PSNM for 1.2 < ρ
ρ0
< 2.2

2. PSNM for 2 < ρ
ρ0
< 4.6

3. PPNM for 2 < ρ
ρ0
< 4.6

4. (E/N)PNM for 0.014 < ρ
ρ0
< 0.106.

First we note that the two RMF parametrizations that
were close to reproduce low–density neutron matter con-
straints, DD2 and SFHx, do not satusfy the constraints.
In particular DD2 has a skewness parameter K ′ with
the wrong sign (K ′ = −168.7 MeV) while SFHx has
too low a value for the slope L of the symmetry energy
(L = 23.18 MeV). Furthermore, as can be seen from Ta-
ble I, some of the new parametrizations are inconsistent
with the empirical constraints in Ref. [7]. Specifically,
Ska25s20-0.9, Ska25s20-1.0 and Sv-sym32-0.9 fail to meet
the constraint for isospin incompressibility.

We note that the discrepancies between our results for
the symmetry energy and the ones reported in Table I
from Ref. [50] are due to different definitions. In our case
we follow Ref. [7] and start with the generic expression at

arbitrary isospin asymmetry δnp =
ρn−ρp
ρ = 1− 2yp and

define S as the second derivative of the energy per parti-
cle with respect to yp, as shown previously, while in Ref.
[50] S is obtained as the difference between the PNM and
the SNM equations of state at a given density. For mi-
croscopic approaches (like MBPT) these two definitions
of S give very similar values (see e.g., [86, 87]).

As mentioned above the chiral 414 MeV interaction is
used at second order in many-body perturbation theory
with two- and three-body forces. Results using the po-
tential with a cutoff of 450 MeV are very close to those
from the N3LO 414 potential. We see that in all cases the
microscopic calculations of the equation of state with this
potential are consistent with the empirical infinite mat-
ter constraints considered in Ref. [7]. We note that all
models considered meet the band constraints.

B. Finite Temperature

In this section we focus on the nuclear thermodynamic
equation of state of homogeneous matter from the mean
field models that were found in the last section to be
compatible with the zero-temperature equation of state
from low-momentum chiral nuclear forces and analyze
the conditions necessary for consistency at finite temper-
ature. We therefore focus on only the parametrizations

SKT1-0.9, SKT2-0.9, SKT3-0.9, Ska35s20-1.0, Ska35s20-
0.9 and Z271v6. Since there are no nonpertubative mi-
croscopic calculations available, we cannot assign un-
certainty bands at specific densities as in the zero-
temperature analysis. However, one would not expect
the many-body perturbation expansion to change dra-
matically by including finite-temperature effects, and
therefore we use the chiral interaction N3LO414 together
with 3NF forces to be a qualitative guiding tool for low-
density thermodynamical properties. The aim is to iden-
tify mean field models that quantitatively reproduce chi-
ral nuclear thermodynamics at low to moderate densi-
ties and temperatures. The coefficients for the refitted
Skyrme parametrizations that meet our selection criteria
so far are given in Table II.

The mean field models we are considering are fitted to
nuclei and infinite matter at T = 0 and contain no em-
pirical input at finite temperature. The nucleon effective
mass however controls the density of states and therefore
aspects of thermal excitations. We anticipate that the
single-particle properties of nucleons in mean field mod-
els will control whether the associated thermodynamic
equations of state will be consistent with those from per-
turbative chiral interactions. We choose low- and high-
temperature representative values T = 5, 25 MeV.

The formalism employed in this section is self-
consistent Hartree-Fock theory which treats the density
matrix as effectively of one-body type. The problem of
treating interactions properly is cast into an energy den-
sity functional for which a corresponding local density is
found by minimization of the energy. The Skyrme and
RMF models fall into this category. In the thermody-
namic limit an ensemble equivalence is guaranteed, and
the canonical or grand-canonical potential can be min-
imized. As we opt to have temperature T and density
ρ as external fixed parameters, we work in the canoni-
cal ensemble. The set of self-consistent equations to be
satisfied at Hartree-Fock level is given by Eqs. (11) and
(12) below. For a given momentum-dependent nucleon
single-particle spectrum εs,t(k), where s and t are the
spin and isospin quantum numbers, the energy density
and entropy density can be calculated from

fs,t(k) =

[
1 + e

(
εs,t(k)−µ

)
/T

]−1

, (11)

ρ =
∑
s,t

∫
d3k

(2π)3
fs,t(k),

τ =
∑
s,t

∫
d3k

(2π)3
k2fs,t(k),

S/V = −
∑
s,t

∫
d3k

(2π)3

[
fs,t ln fs,t + (1− fs,t) ln(1− fs,t)

]
,

where a sum over all discrete quantum numbers is per-
formed (spin and isospin). The chemical potential can be
found by inverting the expression for the density. From
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Name α a (MeV fm5) b (MeV fm5) t0 (MeV fm3) x0 t3 (MeV fm3(1+α)) x3

Ska35-0.9 0.35 -172.485 172.087 -1767.71 0.282732 12899.2 0.413266
SKT1-0.9 1/3 -112.324 142.467 -1810.72 0.28223 12863.0 0.392585
SKT2-0.9 1/3 -113.857 143.999 -1807.87 0.267778 12802.4 0.366144
SKT3-0.9 1/3 -124.432 148.492 -1812.16 0.288584 12906.6 0.416129
Ska35-1.0 0.35 -2.41114 -0.507978 -1767.92 0.247025 12910.2 0.220377

TABLE II. Parameters for the refitted Skyrme interactions of Ref. [50].

0 0.05 0.1 0.15 0.2 0.25

ρ [fm
-3

]

-60

-50

-40

-30

-20

-10

0

10

20

30

40

F
/N

 [
M

e
V

]

SKT1 - 0.9
SKT2 - 0.9
SKT3 - 0.9
Ska35s20 - 0.9
Ska35s20 - 1.0
Z271v6
N3LO 414 + 3NF

Pure Neutron Matter

T = 5 MeV

T = 25 MeV

FIG. 9. (color online) Free energy per nucleon in pure neutron
matter at temperatures T = 5, 25 MeV for the 414 MeV chiral
nuclear potential and mean field models.

the energy density functional, an effective mass and mean
field shift can be extracted:

M∗t =
1

2

(
δE
δτt

)−1

Ut =
δE
δρt

,

(12)

which gives a single-particle spectrum of the form

εt(k) = k2/2M∗t + Ut. (13)

In Figs. 9 and 10 we plot the free energy per particle
of neutron matter and isospin-symmetric nuclear matter
for the microscopic and mean field models under consid-
eration. We employ the Matsubara finite-temperature
formalism up to second order in perturbation theory to
compute the free energy per particle from the chiral two-
and three-body potentials. Additional details can be
found in Refs. [48, 49]. At T = 5 MeV the PNM free
energy is similar to that at zero temperature, where the
mean field equations of state are consistently less attrac-
tive than that from chiral low-momentum interactions.
However, at T = 25 MeV the Skyrme mean field models
exhibit larger variations in the free energy. In particular
smaller values of the effective mass result in a larger ki-
netic energy contribution and a small entropy term, both

of which reduce the attraction at high temperatures. In
symmetric nuclear matter at low temperatures there is
consistency between all mean field models considered and
the chiral equation of state. At the largest temperature
considered (T = 25 MeV) the Skyrme models remain in
good agreement with each other, owing to the very sim-
ilar values of the effective masses, but deviate by about
5 MeV from the chiral effective field theory prediction.
This pattern is different than that in the neutron matter
equation of state, and it suggests that the average effec-
tive nucleon mass in symmetric nuclear matter is smaller
than that in the Skyrme mean field models.

To explain the difference more carefully, we study the
single-particle spectrum. The relativistic and nonrela-
tivistic models treat this quantity (as well as the chem-
ical potential) differently. We first compare the non-
relativistic reduction of the single-particle spectrum in
RMF models to that in the Skyrme models:

etSkyrme(k) =εt(k)− µt =
k2

2M∗t
+ Ut − µNR

t

≡ k2

2M∗t
+ U∗t ,

etRMF(k) =εt(k)− µt =

√
k2 +M∗t

2 + Ut − µR
t

≈ k2

2M∗t
+M∗t + U − µR

t

≡ k2

2M∗t
+ U∗t .

(14)

At the HF level the low-energy spectrum can be accu-
rately modeled by an effective mass and mean field shift,
both density dependent. We show in Figs. 11 and 12
the effective mass and mean field shifts in neutron mat-
ter and symmetric nuclear matter for the models under
consideration. In the case of SNM, the lower value of
the effective mass corresponds to a higher value of the
energy per baryon for Skyrme interactions, which results
from a larger kinetic energy contribution to the free en-
ergy. Since the mean field shifts for the different Skyrme
interactions with M∗/M = 0.9 in PNM at ρ = 0.1 fm−3

are nearly identical, the kinetic contribution dominates
the difference while the interaction contribution depends
mostly on the density.

In contrast, RMF models predict smaller effective
masses and larger (negative) effective mean field shifts.
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FIG. 10. (color online) Same as Fig. 9 except for symmetric
nuclear matter.
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FIG. 11. (color online) Neutron mean field shift and effective
mass in pure neutron matter. Note that all “Sk...0.9” Skyrme
interactions have nearly identical effective masses.

In the case of Z271v6 these effects balance in SNM,
with the effective mass becoming more important only
at higher densities (higher values of F/N). However, for
PNM, Z271v6 has a very small effective mass which leads
the kinetic energy to dominate over interactions as can
be seen by higher values of F/N for the whole density
range depicted in fig. 9. Despite the effective mass and
energy shifts being very different between these two mod-
els, the free energies predicted are relatively similar. To
understand the physical relevance of these two parame-
ters, we have to study physical ‘observables’ which are
specifically susceptible to them. In the next section we
focus on neutrino response and thermodynamic evolu-
tion, both sensitive to the single-particle spectrum, to
differentiate Skyrme and RMF models.
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FIG. 12. (color online) Same as in Fig. 11 except for symmet-
ric nuclear matter.

C. Effect of Single-Particle Properties

Nuclear thermodynamics is governed by the free energy
per nucleon as a function of the density and temperature.
Related quantities such as pressure, entropy and chemi-
cal potential are given in terms of the free energy through
standard thermodynamic relations. Dynamical phenom-
ena in nuclear matter at finite temperature are strongly
related to the single-particle properties of nucleons, and
as shown in the last section the effective mass and mean
field shift can be quite different between two models that
nevertheless have similar equations of state. Thus, to ex-
plore a different set of consistency requirements between
mean field models and microscopic nuclear dynamics we
employ an analysis of the neutrino response and isen-
tropic curves for core-collapse supernovae. We focus on
Ska35s20-0.9, Ska35s20-1.0, and Z271v6, which are the
“best fit” parametrizations from nonrelativistic and rel-
ativistic mean field models to chiral equations of state at
finite temperature.

1. Neutrino Response

Charged-current weak reactions are primarily responsi-
ble for setting the electron neutrino opacity in the warm
(T = 5 − 8 MeV) and dilute (ρ = 0.001 − 0.01ρ0) re-
gion of last scattering (the neutrinosphere) for neutrinos
diffusing from the core of a newly born proto-neutron
star [88–90]. Owing to the nondegenerate conditions, the
fermi distribution functions for neutrons and protons are
strongly smeared in the vicinity of the chemical potential.
The proton and neutron energy shifts are primarily re-
sponsible for modifications to neutrino and anti-neutrino
mean free paths, but the momentum dependence of the
single-particle potential can also be relevant for low-
density moderate-temperature conditions. The inverse
mean free path of νe from the reaction νe + n → e− + p
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FIG. 13. (color online) Charged-current rates at β equilib-
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follows from Fermi’s golden rule and is given by

λ−1
νe =

2

(2π)5

∫
d3pn d

3pe d
3pp Wfi (15)

× δ(4)(pνe + pn − pe − pp)fn(1− fe)(1− fp),

where f is the fermi distribution function and Wfi is the
transition probability. Both depend on the single-particle
spectrum, and due to the energy-momentum conserving
delta function, the phase space is also highly impacted
by M∗ and U∗.

We consider β-equilibrated matter at the density ρ =
0.02 fm−3 and temperature T = 8 MeV. We show in Table
III the proton and neutron effective masses and energy
shifts for the mean field models considered as well as for
the chiral n3lo414 potential at Hartree-Fock level and the
pseudo-potential which resums iterated ladder diagrams
(without Pauli blocking) to all orders in perturbation
theory and which is defined in terms of nucleon-nucleon
scattering phase shifts (see Ref. [91] for additional de-
tails). The effective mass and mean field shift for the
chiral interactions come from a global fit of the single-
particle spectrum from k = 0 to k = 2kf . Note that
for the temperature and density considered here, the two
Skryme parametrizations Ska35s20-0.9 and Ska35s20-1.0
give nearly identical single-particle properties.

Given the paramount importance of charged-current
absorption rates in determining the decoupling regions,
and thus the energy spectra of νe and νe, we plot in
Fig. 13 the opacity from two mean field equations of
state. We observe that for electron neutrino absorp-
tion all mean field models are consistent with the lower
bound provided by the chiral Hartree-Fock approxima-
tion and the upper bound set by the pseudo-potential.
The Skyrme Ska35s20-0.9 mean field prediction is in good
agreement with the pseudo-potential results, given that
both models predict large values of ∆U = Un − Up.
Since the chiral EFT calculation is only at the self-

Model Yp M∗n/Mn M∗p /Mp −Un −Up ∆U
HF Pseudo-potential 4.9% 0.65 0.42 22 55 33

HF Pseudo-potential (mod) 3.8% 0.78 0.57 18 42 23
HF N3LO414 2.2% 0.95 0.89 8 16 8
RMF: Z271v6 2.8% 0.96 0.96 9 22 13

Skyrme: Ska35s20-0.9 3.3% 0.98 1.0 9 26 17

TABLE III. The Hartree-Fock (HF) effective masses M∗ and
energy shifts U (in units of MeV) for protons and neutrons
in beta equilibrium at nB = 0.02 fm−3 and temperature T =
8 MeV. The difference in proton and neutron mean-field shifts
is given by ∆U = Un−Up, and the proton fraction is denoted
by Yp.

consistent Hartree-Fock level, considerable attraction in
the iterated tensor force channel is missing, and results
much closer to those from the pseudo-potential are ex-
pected when second-order perturbative contributions are
included. We plan to study these effects more carefully in
future work. To completely determine the neutrino opac-
ity, neutral current reactions are needed. Particularly for
the case of νe in the lower regions of the power spectrum,
brehmsstrahlung absorption rates dominate [91–93].

2. Supernova Isentropic Curves

During the core collapse of a massive star, the entropy
per baryon changes from about 1 kB to 2-3 kB , and the
adiabatic (isentropic) approximation can be used to de-
scribe the thermodynamic evolution during such a short
time scale. The temperature versus density at constant
entropy then provides a prediction of the temperature
of the core in the initial and final stages. Since neutri-
nos are primarily emitted from the high-density region
by neutral- and charged-current reactions, the tempera-
ture of the core plays an important role in determining
their spectra [94]. At low temperatures both the density
of states and entropy are expected to be proportional to
the nucleon effective mass M∗

N(0) =
∑
t

M∗t kf t
π2

,

S/V =
∑
t

M∗t kf t
3

T. (16)

For the same entropy per baryon, a smaller effective mass
at a given density therefore translates to a higher tem-
perature.

In Fig. 14 we depict the Skyrme, RMF and chiral
isentropic lines for pure neutron matter and isospin-
symmetric matter for densities up to 4ρ0. We use the
exact expression for entropy from Eq. 12 in this plot. For
low-density neutron matter (ρ < ρ0/2), the Ska35s20-
1.0 Skyrme interaction gives results that are consistent
with the n3lo414 chiral potential, which from Fermi liq-
uid theory [95] predicts an effective mass M∗/M ∼ 1.
Beyond nuclear matter saturation density, the differences
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FIG. 14. (color online) Temperature versus density isentropic
lines for PNM and SNM.

between the temperature of neutron matter at S/N = 1
can vary by up to 8 MeV for the chiral and mean field
theory equations of state, while for S/N = 2 all models
are nearly consistent. In the case of symmetric nuclear
matter the two Skyrme parametrizations considered have
very similar effective masses (see Fig. 12) and therefore
the isentropic curves are nearly identical. At the highest
temperatures (T & 20 MeV) there are large variations in
the predicted densities. In the microscopic calculation
with the chiral n3lo414 potential, one may interpret this
as a significant reduction of the effective mass at finite
temperature due to a damping of collective modes [96],
which normally lead to an enhanced effective mass. In
general for temperatures less than T = 10 MeV the chiral
isentropic curves are in good agreement with those from
the Ska35s20-1.0 Skyrme interaction.

IV. NEUTRON STAR MASS-RADIUS
RELATIONSHIP

An important feature of the ‘strong’ physics of neutron
stars is the interdependence of mass and radius, which
is uniquely determined by the EoS and the self-gravity
of these compact objects. A relatively stiff EoS at high
densities is required to generate a maximal mass of 2M�,
which is currently the highest mass of an observed neu-
tron star [5]. However, chiral interactions have a momen-
tum cutoff that is comparable to the fermi momentum at
about 2ρ0 in neutron matter, and central densities in neu-
tron stars can reach values of 5ρ0 or higher. The mean
field models considered in the present work can therefore
be used to probe the very high density regime inaccessi-
ble to chiral effective field theory with coarse-resolution
potentials. In our analysis we choose to use the chiral
interaction up to the limit of its validity without model-
dependent extensions. RMF models by construction re-
main causal, but Skyrme models can become superlu-
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FIG. 15. (color online) Neutron star mass as a function of
radius. The mass-radius observational constraint comes from
Ref. [98] and the maximum neutron star mass comes from
Refs. [4, 5]. We use the BPS crust EoS [99] at low densities.
The solid dots indicate the transition region to the constant
speed of sound equation of state.

minal at very large densities. In the present analysis,
however, we find no evidence for this behavior.

In Fig. 15 we plot the neutron star mass vs. radius in
the absence of protons and light leptons at T = 0 from
the mean field models consistent with the chiral n3lo414
equation of state at low to moderate densities. Recently,
in Ref. [97] a similar analysis has been performed for rel-
ativistic mean field models consistent with the infinite
matter constraints considered in Section III. Given the
low values of the proton fraction found for β-equilibrated
matter, this approximation is expected to be very good.
We show also in Fig. 15 the current observational con-
straints on the mass and radius [98]. For each mean field
model, we plot the mass vs. radius relationship both with
and without the inclusion of the PBS crust equation of
state [99].

Skyrme models employed in our work are softer at
lower densities and stiffer at higher densities, compared
to the relativistic mean field model Z271v6. This results
in generally smaller radii at a given mass for the Skyrme
interactions and a larger maximum mass. For neutron
star masses greater than about 1.3M�, all equations of
state give mass-radius relations consistent with the em-
pirical constraints from Ref. [98]. The inclusion of a crust
increases the radius by about 0.5 km for a 1.4 M� neu-
tron star and for the most massive neutron stars has a
relatively small impact. This is, perhaps, a first indi-
cation that the crust equation of state used should be
consistent with the underlying microphysics model given
its impact in the size of typical neutron stars (of mass 1.4
M�). This and other implications of the crust EoS are
current subject of investigation to be published in future
works.

We see that none of the models employed reaches the
maximal mass value of 2 solar masses, indicating that the



14

phenomenological interactions must be supplemented by
a stiffer EoS at high densities. We identify the density
above which the equation of state must be modified by
employing the constant speed of sound parametrization
[100] at the superluminal boundary. As a representative
example, the Ska35s20.09 Skyrme interaction can gener-
ate a 2 solar-mass neutron star if the equation of state
beyond ρ = 4.5ρ0 is taken to be that of a liquid with
constant speed of sound equal to the speed of light. The
presence of the crust has only a very small effect, increas-
ing the transition density to ρ = 4.6ρ0.

However, for the high densities required for 2 solar
mass neutron stars there are no other constraitns on the
properties of bayonic matter and our criteria is valid only
for low desnities. Thus, we would only like to emphasize
that is feasible to reach the mass limit by modifications of
the high density regime, but the proper study of matter
in this range is beyond the scope of this work.

V. CONCLUSION

We have studied the use of mean field models to re-
produce zero- and finite-temperature nuclear equations
of state derived from microscopic many-body theory with
realistic chiral two- and three-body forces. Comparing to
quantum Monte Carlo simulations employing two-body
forces alone, we find that the zero-temperature neutron
matter equation of state is well converged in perturba-
tion theory up to half saturation density, with uncertain-
ties on the order of a few percent. From this density
regime we select mean field models consistent with the
predictions from chiral effective field theory as well as the
available empirical infinite matter constraints. We then
explore consistency with chiral nuclear thermodynamics
and find that the free energy as a function of the tem-
perature for mean field models are strongly correlated
with the nucleon effective mass, with smaller values giv-
ing rise to larger kinetic energy contributions and smaller
entropy contributions to the free energy.

In addition we studied the effects of the single-particle
dispersion relation on select astrophysical phenomena,
such as neutrino absorption in the proto-neutron star
neutrinosphere and the adiabatic evolution of core col-
lapse. While the single-particle energy shift is most rel-
evant for determining the charged-current weak reaction
rates, the nucleon effective mass largely governs the isen-
tropic temperature-density relation. For the latter quan-
tity, significant variations are observed in the neutron
matter low-entropy regime. At the largest densities con-
sidered (ρ ∼ 1.6ρ0), the temperature can vary by up to
50% for matter with an entropy per baryon of S/N = 1.

Finally, the mean field models consistent with the low-
density chiral n3lo414 equation of state were used to
explore the high-density regime relevant for cold neu-
tron star matter where chiral effective field theory is ex-
pected to break down. While the mass-radius curves are
consistent with present observational constraints around

M ∼ 1.5M�, all maximum neutron star masses lie below
M ∼ 2M� and the constant speed of sound parametriza-
tion was used to complete the mean field models in the
high-density regime above ρ = 4.5ρ0.

The present work lays the foundation for future efforts
to construct consistent equations of state and neutrino
response functions that are compatible with chiral effec-
tive field theory for use in numerical simulations of core-
collapse supernovae and binary neutron star mergers.
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VI. APPENDIX

A. Sign Problem

As explained in Section II A the main systematic bias
in the CIMC calculations come from imposing a fixed-
node approximation in order to deal with the sign prob-
lem. In this section we discuss additional details and es-
timate the impact of this approximation. First we recall
that within the fixed-node approach one defines a fam-
ily of sign-problem-free hamiltonians Hγ (see e.g., Ref.
[101]). If we introduce the sign function

s(m,n) = sign

(
〈ΦG|m〉
〈n|ΦG〉

〈m|H|n〉
)
, (17)

where ΦG is the wavefunction used for the fixed node
procedure, we can define the off diagonal matrix elements
(n 6= m) of the sign-problem-free Hamiltonian Hγ as:

〈m|Hγ |n〉 =

{
−γ 〈ΦG|m〉〈n|ΦG〉 〈m|H|n〉 s(m,n) > 0
〈ΦG|m〉
〈n|ΦG〉 〈m|H|n〉 otherwise

, (18)

while the diagonal elements are:

〈n|Hγ |n〉 = 〈n|H|n〉+ (1 + γ)
∑
n6=m

s(m,n)>0

〈ΦG|m〉
〈n|ΦG〉

〈m|H|n〉

(19)
It can be easily seen that for γ = −1 the original Hamil-
tonian is recovered. Furthermore if we label with Eγ

http://arxiv.org/abs/de-sc/0008489
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FIG. 16. (color online) Finite-size errors in the energy per
particle as a function of the number of particles per spin-
isospin species. The results shown are for a free gas as well as
for Hartree-Fock calculations with the NNLOopt interaction
at the two densities ρ = ρ0 and 0.5ρ0.

the lowest eigenvalue of a given Hγ one can prove that
any linear extrapolation from two values Eγ1 and Eγ2 at
γ1, γ2 ≥ 0 to Eγ1,γ2−1 provides an upper bound on the true
ground state energy E−1.

In the calculations presented here this procedure has
been adopted by performing linear extrapolations using
values at γ = 0 and γ = 1. The variation between
the eigenvalues at different γ, including the extrapolated
value at γ = −1 can be used as lower bounds on the
missing energy contribution coming from the fixed-node
approximation. We find that this spread in the case of
PNM is within the estimated error bars coming from sta-
tistical uncertainties and are usually less than 20 keV per
particle. In the case of SNM, however, the values at dif-
ferent gamma are outside the statistical error bars for
densities below 0.1 − 0.14 fm−3 but still of the order of
100 keV per particle even at the lowest densities.

This lower bound on the fixed-node error would be
a good estimate provided there are no relevant contri-
butions beyond the linear one in the γ extrapolation, a
condition that cannot be checked in practice. In order
to have another quantitative estimate of the systematic
bias introduced by using the fixed-node approximation,
we can check the sensitivity to changes in the underlying
guiding wavefunction. This is analogous to the error esti-
mates in MBPT obtained by changing the single-particle
spectrum. The guiding wavefunction used in our calcula-
tions comes from the coupled-cluster double approxima-
tion with amplitudes obtained from second-order MBPT
(see Ref. [55] for additional details) which clearly has
zero overlap with states composed of an odd number of
particle-hole excitations. In order to check the sensitivity
to this choice we can set a lower bound on the overlaps of
this wavefunction to any state in the Hilbert space gener-
ated by the single-particle space we have chosen. In this
way we are including effectively a crude ansatz for triple
and higher cluster excitations in this wavefunction that
we will call CCD∗.

The effect of using this as a guiding wavefunction in
the case of PNM in the density range explored in this
work is just to raise the statistical error on the ground
state energy and no difference can be seen outside the

error bars, which suggests that the CCD∗ wavefunction
provides a worse nodal constraint (higher statistical er-
ror) but the bias introduced by neglecting triples and
higher correlations is smaller or comparable to the sta-
tistical errors in the calculation. This is also compatible
with the estimates from coupled-cluster calculations us-
ing perturbative triples [43]. In the case of SNM the effect
of using the CCD∗ wavefunction is much stronger: the
statistical error is comparable to the one obtained using
the bare CCD wavefunction but now the extrapolated
eigenvalue E−1 shows considerably less binding, and this
effect is stronger as the density is lowered (indicating that
the origin is probably the appearance of clustering in the
system). For instance, in the case of the N3LO 414 inter-
action we find changes of about 1 MeV at ρ = 0.02 fm−3

and about 0.5 MeV at ρ = 0.08 fm−3. Since both wave-
functions provide upper bounds on the energy, estimates
are always obtained with the CCD guiding wavefunction,
but we can use the CCD∗ results to obtain a qualitative
error band. This is the procedure we employ to produce
the grey band in Fig. 5.

B. Finite Size Effects

The quantum Monte Carlo calculations presented in
Section II have been carried out using finite systems con-
taining a fixed number of particles N . In order to reach
the thermodynamic limit this number has to be taken as
large as possible for a given density; however due to the
strong dependence (N2 for CIMC and PT2 and N3 for
part of PT3) of the computational time on the number of
particles, all the results presented so far employed Ns = 7
for each spin/isospin species. Here we show that this is
sufficient for the low densities considered in Section II.

In order to avoid degenerate ground states we choose
Ns such that all states up to a Fermi momentum kF have
been filled, and in our cubic lattice this restricts the al-
lowed particle numbers to take on the values shown on
the x-axis in Fig. 16. Among these closed-shell config-
urations the ones that preserve the cubic symmetry of
the underling lattice (corresponding to Ns = 7, 33, . . . )
have smaller deviations from the Ns → ∞ limit as can
be seen from Fig. 16 and are usually selected so as to
minimize finite size effects. It is remarkable that for a
small system with Ns = 7 both the free-particle energy
and the interacting Hartree-Fock energies are converged
to the thermodynamic limit at the ≈ 1 − 2% level, sim-
ilar to the Ns = 33 system usually employed in similar
calculations.

In the left panel of Fig. 17 we plot the energy per par-
ticle in PNM for two systems composed of either N = 14
or N = 66 neutrons interacting through the NNLOopt

interaction obtained both with CIMC and with different
orders of MBPT. The differences are very small for all
calculations apart from second-order perturbation theory
(PT2), which for N = 66 shows a stronger density depen-
dence above ρ ≈ 0.10 fm−3. The situation is similar with
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FIG. 17. (color online) (panel (a)): energy per particle in PNM computed with N = 14 and 66 neutrons from CIMC and
MBPT using the NNLOopt chiral two-nucleon potential. (panel (b)): differences between the results from CIMC and MBPT
at second and third order using N = 14 and 66.

the other interactions used throughout this work. Since
our main focus is to explore the convergence of MBPT
calculations we plot in the right panel of Fig. 17 the rela-
tive difference between CIMC and both PT2 and PT3 for
the case of N = 14 particles (black and red dots respec-
tively) and N = 66 particles (green and blue dots). We
see that the conclusions on the expected convergence er-
rors are consistent for densities ρ . 0.10 fm−3, a density
at which three-body interactions are already important.
We therefore conclude that our Ns = 7 particle systems
are large enough for our purposes in the density region
where two-body interactions are the dominant contribu-
tion.

C. Effects of the Single Particle Spectrum

For all calculations presented the Hartree-Fock spec-
trum has been used in the single particle propagators (see
e.g., Ref. [56] for details). We find that this choice yields
a considerable improvement in the convergence pattern
of the perturbative calculations. As can be seen from

the results in Table IV for instance, the errors at second
order are approximately twice as large using a free spec-
trum as the ones employing self-energy corrections at the
Hartree-Fock level. For nuclear matter this factor can be
even larger, and it does not seem connected to the pertur-
bativeness of the interaction as can be deduced from the
increased difference in going from the harder NNLOopt

to the softer N3LO 414 potential.
We conclude by pointing out that using the difference

in energies obtained by varying the single-particle disper-
sion relation gives a qualitative understanding of the con-
vergence of the perturbative calculations, with N3LO 414
variations being smaller than the NNLOopt ones and with
a substantial increase in going from PNM to SNM. It has
to be noted however that these variations cannot be used
to give a quantitative estimate of the errors in the many-
body calculation, which is evident from the SNM results
where ∆(PT2free-PT2hf ) overestimates the error by a
factor of ≈ 2 − 3. This is however not conclusive since
in SNM the CIMC calculation is not fully under control.
In PNM where the difference with CIMC is a more re-
liable check of convergence, the errors are consistently
underestimated by employing ∆(PT2free-PT2hf ).
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