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Isotope yields have been analyzed within the framework of a Modified Fisher Model to study
the power law yield distribution of isotopes in the multifragmentation regime. Using the ratio of
the mass dependent symmetry energy coefficient relative to the temperature, asym/T , extracted in
previous work and that of the pairing term, ap/T , extracted from this work, and assuming that both
reflect secondary decay processes, the experimentally observed isotope yields have been corrected
for these effects. For a given I = N - Z value, the corrected yields of isotopes relative to the yield
of 12C show a power law distribution, Y (N,Z)/Y (12C) ∼ A−τ , in the mass range of 1 ≤ A ≤ 30
and the distributions are almost identical for the different reactions studied. The observed power
law distributions change systematically when I of the isotopes changes and the extracted τ value
decreases from 3.9 to 1.0 as I increases from -1 to 3. These observations are well reproduced by a
simple de-excitation model, which the power law distribution of the primary isotopes is determined
to τprim = 2.4±0.2, suggesting that the disassembling system at the time of the fragment formation
is indeed at or very near the critical point.
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In the early 80’s, the Purdue Group demonstrated that
the isotope yields of intermediate mass fragments (IMFs)
produced in high energy proton-nucleus collisions at the
Fermi Lab exhibit a power law distribution with a τ value
of 2.64-2.65 [1–3]. This observation stimulated the stud-
ies of critical phenomena and phase transitions in nuclear
matter. Work through the 90’s to early 2000’s is well
summarized both from the experimental and theoretical
side in Refs. [4, 5]. In the mid 90’s to 2000’s, the Berkeley
Group, applying Fisher’s droplet model concepts to the
experiments performed by the EOS and ISIS collabora-
tions, argued that the disassembling system does indeed
show a critical behavior [6–9]. They extracted a τ value
of 2.2±0.1 from both experiments.

In some recent papers we have revisited the question of
critical behavior in multi-fragmentation reactions result-
ing from violent collisions of heavy nuclei in the Fermi
energy domain[10, 11] and discussed experimental evi-
dence for a nuclear phase transition driven by different
concentrations of neutrons and protons. Different ratios
of the neutron to proton concentrations lead to different
critical points for the phase transition.

One of the complications in multifragmentation orig-
inates from secondary statistical decay process. When
fragments are formed in a disassembling system, they
are generally excited and most de-excite to the ground
state by the time of detection [12–14]. According to
Ref.[14], the average parent of Z=10 fragments produced

in the Xe+Sn reaction at 39 A MeV emits ∼ 5.5 mass
units as ∼ 1.75 charged particles and an additional ∼
4 mass units as neutrons. This secondary decay pro-
cess significantly alters the fragment isotopic distribu-
tion. Studies using statistical decay codes also indicate
that the primary fragment distributions are significantly
modified during the secondary decay process [15, 16].
Most multifragmentation models, statistical or dynam-
ical, take this process into account, but the magnitude
of the change depends on the codes and results can vary
significantly [17]. In the analysis of the Purdue Group,
the secondary decay process was not taken into account
and data for 4 ≤ A ≤ 12 were excluded from the fit in
determining the τ values. In the analysis of the Berkeley
group, since no mass was identified in either of the exper-
iments, the secondary effects were treated empirically. In
their analysis, the mass of each isotope was calculated as
2Z(1 + y(E∗/Bf)), where E* and Bf are the fragment
excitation energy and ground state binding energy and y
is a free parameter. The parameters were determined to
establish the power law between the scaled cluster yield
and the scaled temperature [8].

In order to get direct insight into the nature of the dis-
assembling system at the time of the fragment formation,
it is preferable to determine the secondary effects exper-
imentally in particle-fragment correlations and use that
information to reconstruct the yields of primary isotopes.
However this is not straight forward, since multiple frag-
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ments are generally produced in a reaction and light par-
ticles can be produced even before the formation of the
fragments, and therefore the identification of the parent
for detected light particles observed in coincidence with
a fragment is not trivial [12–14]. Further, neutrons are
particularly difficult as the multiplicity of neutrons from
secondary decay is typically a very small fraction of the
total neutron multiplicity.

In this work we focus on an alternative method in
which the observed isotope distributions are corrected for
known secondary decay effects to extract information on
the properties of the disassembling system at the time of
fragment formation. The role of secondary decay effects
in modifying the original fragment distribution, and in
particular its effect on determination of the critical pa-
rameter τ is elucidated.
The experiment was performed at the K-500 supercon-

ducting cyclotron facility at Texas A&M University. 40
A MeV of 64,70Zn and 64Ni beams were used to irradiate
58,64Ni, 112,124Sn, 197Au and 232Th targets. IMFs were
measured at 20◦ and typically 6-8 isotopes for atomic
numbers, Z, up to Z=18 were clearly identified. The
yields of light charged particles (LCPs) in coincidence
with IMFs were also measured using 16 single crystal
CsI(Tl) detectors. The details of the data analysis and
results can be found in refs. [18, 19]

In Fig.1, the multiplicity distributions of the observed
isotopes are plotted as a function of A for the case of the
64Ni projectile on different targets. The data are plot-
ted from top to bottom as N/Z of the target increases.
The distributions roughly show a power law distribution
up to A = 30. Above A = 30, the multiplicity decreases
sharply for all cases. In the figure the distributions are fit
by a power law distribution, A−τ , in two different ranges
of A, one (solid lines, τa) is obtained with 1 ≤ A ≤ 30
and the other (dotted lines, τb) with 10 ≤ A ≤ 30. In the
latter cases the extracted values are in the range of 2.2
to 2.4, and slowly increase as N/Z of the target increases.
The values are slightly smaller than those extracted by
the Purdue group [1–3] which were extracted from a sim-
ilar range of A. On the other hand when the distributions
are fit in a wider range extended to A=1 , the extracted
τ values becomes smaller (1.6 ≤ τ ≤ 1.9), and decrease
when the target N/Z increases. In both cases the data
fluctuate along the fitted lines for smaller IMFs. A = 4
yields are always higher than the fit lines and A = 8
yields are significantly lower. For other reaction systems,
similar results are observed. These observations suggest
that the secondary decay process plays a significant role
in these distributions. To elucidate the role of the sec-
ondary decay process, the multiplicity deistributions are
examined in detail, using information from the wide va-
riety of isotopes identified in this experiment.

In the previous work of Ref. [18], we extracted the
ratio between the symmetry energy coefficient and the
temperature, asym/T , from the isobaric yield ratios of
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FIG. 1: (Color online) Experimental multiplicity distributions vs
isotope mass, A, for the 64Ni projectile with different targets. Tar-
gets are indicated on the right for each distribution. Each data
point represent summed multiplicity over Z for a give A. Solid lines
are the resuts of power law fits for 1 ≤ A ≤ 30 and dotted lines are
for 10 < A ≤ 30. The extracted τ values are also given as τa and
τb, respectively.

IMFs in a given reaction, based on the Modified Fisher
Model [2, 3]. In another work, Ref. [19], the asym/T
values are evaluated by two other independent methods.
One uses isoscaling parameters determined from the ra-
tio of the isotope yields between two different reactions.
The other employs the variance of the isotope yield dis-
tribution in a single reaction. All results from the three
different methods are in reasonable agreement and in-
dicate that the extracted values of asym/T depend sig-
nificantly on the mass number, A, of the fragment, i.e.,
asym/T gradually increases from 4 ∼ 6 to 12 ∼ 16 as A
increases from 9 to 37. These values depend slightly on
the different methods, but the essential trends are quite
similar. The extracted values can be empirically fit by

aemp
sym/T = 5 + 1.4(A− 9)

2

3 forA ≥ 9

= 5 forA < 9. (1)

In those papers, detailed comparisons to AMD model
simulations [20, 21] incorporating a statistical decay code
Gemini [22] as an afterburner show that the experimen-
tally observed A dependence is very well reproduced. In
contrast the asym/T values extracted from the primary
isotope yield distributions of the AMD calculations, be-
fore cooling with the afterburner, are nearly constant
with asym/T ∼ 4 to 6 (depending on extraction method)
over the mass range of the observed isotopes, indicat-
ing that the experimentally observed A dependence of
the symmetry energy term originates from the secondary
statistical decay of the excited primary fragments.
The Modified Fisher Model of refs. [2, 3] has been used

to study the isotopic distributions of the fragments. In
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FIG. 2: (Color online) (Upper) Y/Y(12C) as a function of A for
even-even isotopes with I = 0. (Middle) Same as the upper, but
for odd-odd isotopes with I=0. (Bottom) The pairing energy term
corrected yields for isotopes with I=0. The lines are the results
fitted by A−τ . The extracted τ values are shown in each figure.

this model, the yield of A nucleons with I=N-Z, Y(A,I)
is given by

Y (A, I) = CA−τexp{[(F (A, I, T, ρ) + µnN + µpZ)/T ]

+Nln(N/A) + Zln(Z/A)}, (2)

where C is a constant. The A−τ term originates from the
entropy of the fragment. µn and µp are the neutron and
proton chemical potentials, respectively. The last two
terms are from the entropy of mixing of neutrons and
protons [23]. F(A,I,T,ρ) is the free energy of the cluster
at temperature T and density ρ.
Since the isotope yields of IMFs have been evalu-

ated for the nucleon-nucleon (NN) source component, the
same component in the light charged particle emission is
also used. This is evaluated in Ref. [18, 19]. In order
to compare the yields for different reaction systems, all
yields are normalized to that of the 12C in a given system.
We study separately the isotope yields for I = 0 and I

6= 0. For the isotopes with I = 0 the symmetry energy
contribution in Eq.(2) becomes zero. Since these isotopes
can be even-even or odd-odd nucleus, the yields of odd-
odd and even-even I = 0 isotopes are plotted separately
as a function of A in the top and middle of Fig.2 for the
13 different reactions studied. In each case the distri-
butions from the different reactions are almost identical.
They show a power law behavior up to A ∼ 30. The
extracted values of τ are τ = 3.3 for even-even and τ

= 2.2 for odd-odd. The difference in slopes might natu-
rally be attributed to pairing effects. While large pairing
effects are expected at low temperatures, because they
are related to shell effects [24], the disassembling system
is initially at a high temperature. Ricciardi et al. have
suggested an explanation for the apparent strong effect
of pairing in such systems [25, 26]. According to their
model simulations, experimentally observed pairing ef-
fects may be attributed to the last chance particle decay
of the excited fragments during cooling. This hypothesis
is also supported by our model simulations presented in
Ref. [18]. We therefore treat the observed pairing effect
as one of the secondary decay effects.
By fitting the yields of even-even and odd-odd isotopes

simultaneously and including the pairing coefficient ap
in the fitting process we obtain τ = 2.9 (bottom panel
of Fig.2) and ap/T = 2.2. Using these parameters, we
have divided the normalized yields by the pairing energy
contribution, exp(δ/T ), in which δ = ap/A

1

2 for even-

even, δ = 0 for even-odd and δ = −ap/A
1

2 for odd-odd
isotopes. The resultant corrected isotope distribution is
shown with a fitted line in the bottom figure for all iso-
topes with I=0.
For the isotopes with I 6= 0, one can write the free

energy as

F (A, I, T, ρ) = F ′(A, I = 0, T, ρ)

−asymI2/A+ δ(N,Z). (3)

The formulation indicates that the pairing term for I=0 is
excluded and added explicitly into Eq.(3). Since the sym-
metry contribution is larger for larger I values, we first ex-
amine the isotopes with I=3, which is the largest I value
for which the yields of a reasonable number of isotope
species have been determined. In this case all isotopes
are even-odd and therefore the pairing term drops out
of Eq.(3). The corrected isotope distributions obtained
from the normalized yields divided by exp(−Eemp

sym/T ) are
plotted as a function of A in Fig.3 for all reactions. Here
Eemp

sym = aemp
symI2/A and aemp

sym is given by Eq.(1). One
can make a few distinct observations. First, there is a
clear even-odd effect. This indicates that the pairing ef-
fects can originate, not only from the last chance particle
decay, but also from the second-to-last particle decay,
the latter in lesser magnitude as discussed in Ref. [18].
In other words, the parents of I=3 isotopes can be I=2
isotopes in the cooling path and the pairing effects are
carried on to the I=3 isotopes.
Another observation is a poor scaling between differ-

ent reactions. Though the distribution does not scale well
in magnitude, it is noted that the shapes of the distribu-
tions are very similar to each other, especially in the mass
range up to A = 25. This suggests slight differences of
the emitting sources in the different reaction systems. In
Eq.(2) for a given isotope, the difference between different
reactions comes through the chemical potential terms,
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(µnN + µpZ)/T . As pointed out in Ref. [27] the exper-
imental results indicate a relation between isotopic scal-
ing parameters, i.e., α ∼ −β for these data. This in turn
implies the relation, (µn + µp) ∼ const. This relation
is also suggested using the Quantum Statisitcal Model
(QSM) calculation in Ref. [16]. Inserting this relation
into Eq.(2), one can get

Y (A, I) ∼ CA−τexp{[(F (A, I, T, ρ) + µnI + cZ)/T ]

+Nln(N/A) + Zln(Z/A)}, (4)

where µn + µp = c. The I dependence of the yield for a
given isotope between different reactions, 1 and 2, comes
through ∆µn = µ1

n − µ2
n. In the following, we take

µn/T = k1I((Z/A)sys − 0.5) + µ0
n/T , in which k1 is a

parameter determined by minimizing the spread of the
data for different I values. µ0

n is the chemical poten-
tial for symmetric (N = Z) systems. By minimizing the
spread in Fig.3 and those corresponding to the other I
values, k1 = −10.3 ± 0.4 is obtained. It is worth not-
ing that the k value extracted from the experiment is
consistent with the calculated slope of µn by the QSM
calculation for different N/Z systems, given in Fig.4 of
Ref. [16]. The QSM calculations also show roughly a lin-
ear dependence of µn or µp on N/Z of the system. From
that figure, one can get kcal = slope/T ∼ (µ1

n(Z/A =
0.5) − µ2

n(Z/A = 0.4)/T/((Z/A)1 − (Z/A)2) ∼ −10 f
or T = 5 and ρ = 0.3ρ0. (In the figure, the values
are given as a function of N/Z.) The calculated slope
depends slightly on the temperature and density of the
emitting source, i.e., at T=5, kcal ∼ −8 for ρ = 0.1ρ0
and kcal ∼ −12 for ρ = 0.5ρ0.
The corrected isotope yields are shown in the left col-

umn of Fig.4 for I = -1 to 3 from the top to the bottom,
including I=0. For all cases the isotope distributions are
characterized by a power law distribution, though the
spread for I=3 is slightly larger and the quality of the
fit decreases. The extracted experimental τ values, τexp,
decrease systematically from 3.9 to 1.0 as the I value in-
creases from -1 to 3 for the corrected isotope yields. In
order to elucidate this observation, a simple de-excitation
model simulation was made. The simulation is based on
the observation of the power law distribution for I=0 iso-
topes in Fig.2. This suggests that the distribution is
dominated by the A−τ term and the A dependence of
F (A, I = 0, T, ρ) + µnN + µpZ term is small in Eq.( 2).
We extend this assumption to I 6= 0 isotopes, i.e., the
primary isotope yields are generated by

Y (A, I) ∼ A−τexp{−aprimsym I2/A/T ]}, (5)

where aprimsym is the symmetry energy coefficient of the pri-
mary fragments. In the equation the symmetry energy
term dependence is kept, although in Fig.4 the symmetry
energy term has been corrected using Eq.(1). This is be-
cause the value I is not conserved during the de-excitation
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FIG. 3: (Color online) Symmetry term corrected yields of I=3
for different reaction systems. Different symbols present different
reactions. Dotted lines are connected between data points for the
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FIG. 4: (Color online) (Left) Corrected experimental isotope dis-
tributions for I = -1 to 3 from top to bottom for all 13 reactions.
The experimental yields are corrected by exp(−(Esym−δ)/T+kI),
where k = k1((Z/A)sys − 0.5). The pairing term correction, δ, is
made only for I=0 and 2. Solid lines are the results by the A−τ fit
for 1 ≤ A ≤ 30. The extracted τ values are given in each figure.
(right) Corrected calculated isotope distributions for τprim = 2.3.
The same corrections as on the left are made. The extracted τ
values are also given in each figure.

process and therefore the symmetry energy term correc-
tions, exp(−Eemp

sym/T ) and exp(−Eprim
sym /T ), are made in-

dependently. For comparison to these results we have
carried out a simple model simulation. In the simula-
tion, we assigned aprimsym /T = 5 from Refs. [18, 19] and
the pairing term is neglected in the primary distribution.
We then assume τprim = 2.3 and generate primary iso-
tope yields for 1 ≤ A ≤ 50 and −2 ≤ I ≤ 5, according
to Eq.(5). For each fragment, an excitation energy, Ex,
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FIG. 5: (Color online) Extracted τ values from the experiment and
the final products of the simulations. The experimental results are
shown by dots and, for simulations, different symbols represent for
those from the simulations with the different τprim values, which
are indicated in the figure.

of 3 A MeV is taken [12, 14]. ( Very similar results are
obtained for 2.5 ≤ Ex ≤ 5.0 A MeV. For Ex ≤ 2.0 the
extracted τ value starts to decrease notably.) The sta-
tistical de-excitation of these fragments is then followed
with the GEMINI code. The intrinsic angular momenta
are set to 0 for all IMFs. The same treatment that was
applied to the experimental yields has been made for the
final product yields obtained with this model. The re-
sultant distributions are plotted in the right side column
of Fig. 4. The extracted τ values, τ2nd, are given in the
figure. The experimental variation of tau values with I
are well reproduced by the assumption that τprim = 2.3
for the primary fragments. Different τprim values rang-
ing from 1.5 to 3.0 for the primary isotope distribution
have also been examined and the results are summarized
in the bottom of Fig. 5. The spread of the experimental
values represent the fact that each point for a given A
consists of 13 data points. The experimental τ values are
in agreement with those from the simulated events with
the primary τ values in 2.0 ≤ τprim ≤ 2.6. To determine
the best values, the ratio of the defference between τexp
and τ2nd to the experimental error is plotted in the top
of the figure. From this figure the best fit value for the
model is obtained with τprim = 2.4± 0.2 for the primary
fragment distribution.
In summary, after correction for secondary decay ef-

fects the yield distributions for isotopes of different I
= N-Z from 13 different reactions in the Fermi energy

domain exhibit power law distributions as a function of
mass number. The extracted τ values show a system-
atic change of the τ value from 3.9 to 1.0 when the I
value of the isotope changes from -1 to 3 and these val-
ues are well reproduced by a simple de-excitation model,
assuming that the isotopic yields of the primary distribu-
tion obey a power law dependence with a symmetry term
contribution. The experimentally extracted τ values for
each I value are in good agreement with those evaluated
from simulations with τprim ∼ 2.3, suggesting that the
emitting source of the primary isotopes produced in these
reactions is at near the critical point.
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