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We propose an experimental scheme to implement a second-order nonlocal superposition operation
â†2 + eiφb̂†2 and its variants by way of Hong-Ou-Mandel interference. The second-order coherent
operations enable us to generate a NOON state with high particle number in a heralded fashion and
also can be used to enhance the entanglement properties of continuous variable states. We discuss
the feasibility of our proposed scheme considering realistic experimental conditions such as on-off
photodetectors with nonideal efficiency and imperfect single-photon sources.
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I. INTRODUCTION

The superposition principle in quantum mechanics
plays a crucial role in manifesting physical effects that
go beyond the reach of classical descriptions. A coher-
ent superposition, when realized at the level of quan-
tum operation rather than quantum state, can pro-
vide a useful tool for a number of applications, e.g.,
in quantum information processing. In the regime of
continuous-variables (CVs), the superposition operation
ââ†± â†â was proposed to test the commutation relation
[â, â†] = 1 [1], which was experimentally realized in a
single-photon interferometric setting using thermal lights
[2]. (â†, â: bosonic creation and annihilation operators,
respectively). This idea was extended to a proposal of
implementing an arbitrary polynomial of photon-number
operators using multiple photon subtractions and addi-
tions [3]. Furthermore, the superposition operation at
a more elementary level of first-order field operators,
i.e., tâ + râ†, was studied with possible applications to
quantum-state engineering [4] and entanglement (nonlo-
cality) concentration [5]. In addition to these local coher-
ent operations, some nonlocal coherent operations were

also investigated such as â+ b̂ [6], â2+ b̂2 [7], and â†+ b̂†

[8].

In general, the working principle of realizing a coherent
superposition operation is to erase the which-path infor-
mation relevant to the operation under study. For exam-
ple, to implement the superposition operation tâ + râ†,
one may place a beam splitter before detecting a pho-
ton in order to erase the information on whether the
photon emerges from the path of photon subtraction â
or photon addition â† [4]. In this paper, we propose

a second-order nonlocal operation â†2 + eiφb̂†2, and its
variants, via the effect of Hong-Ou-Mandel (HOM) in-
terferometer [9]. The HOM interference arises when two
indistinguishable photons are each injected into the in-
put modes of a 50:50 beam splitter: the output state
from the beam splitter shows a bunching effect such
that both photons appear together at one of two out-
put modes, which may be attributed to the bosonic na-
ture of photons. The HOM interference can thus be used

for the creation of a NOON state for N = 2 determin-
istically, or the demonstration of purity of a single pho-
ton [10, 11]. Conversely, with the beam splitting being
a reversible unitary operation, if a single photon is de-
tected for each output mode, the input state is inferred
to be 1√

2
(|2, 0〉 − |0, 2〉). When this HOM effect is em-

ployed in conjunction with two non-degenerate paramet-

ric amplifiers (NDPAs), the operation â†2 − b̂†2 can be
implemented on two signal modes by projecting the idler

modes to 1√
2
(|2, 0〉 − |0, 2〉) = 1

2

(

ĉ†2 − d̂†2
)

|0, 0〉, as will
be shown later.

The superposition operation â†2 + eiφb̂†2 can be useful
for a number of applications, and in this paper, we partic-
ularly discuss the generation of a NOON state with high
particle number and the enhancement of entanglement
properties. A NOON state is known to be a valuable
resource for quantum lithography and quantum metrol-
ogy, e.g., beating the shot-noise limit in an optical phase
measurement [12], and also for linear-optical quantum
computing [13]. In Ref. [8], the multiple use of the oper-

ation â† + eiφb̂† was proposed to produce a N00N state,
which is, however, implemented on the condition of the
non-detection events. Usually, the conditioning on non-
detection may significantly suffer from nonideal detector
efficiency, as one cannot know whether the nondetection
is attributed to no photons being present or to a failure of
the detector [14]. To overcome this difficulty, a heralded

scheme implementing the superposition operation â2+ b̂2

was also proposed, which, however, requires a Fock-state
input |N,N〉 of large N that is thereby rather demand-
ing [7, 15]. On the other hand, our scheme makes use
of the vacuum-state inputs |0, 0〉, for which the super-

position operation â†2 + eiφb̂†2 is consecutively applied.
Alternatively, one may first prepare a |2, 0〉 − |0, 2〉 state
by injecting single photons into a 50:50 beam splitter and

then applying â†+eiφb̂† or â†2+eiφb̂†2 in a heralded fash-
ion. The latter alternative scheme is here investigated in
some detail by including experimental imperfections such
as on-off photodetectors with nonideal efficiency and im-
perfect single-photon sources.

This paper is organized as follows. In Sec. II, we
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propose how the second-order local and nonlocal super-
position operations are implemented via the Hong-Ou-
Mandel interference. In Sec. III, we investigate their
applications for the generation of a NOON state with
high particle number and the enhancement of entangle-
ment properties. In Sec. IV, we study in more detail
the experimental feasibility of generating a 4004 state in
terms of the fidelity and the phase-sensitivity of a phase-
measurement, and in Sec. V, our main results are sum-
marized.

II. SECOND-ORDER COHERENT

SUPERPOSITION OPERATION VIA HOM

INTERFERENCE

In this section, we propose an optical method to imple-

ment a coherent superposition operation â†2+eiφb̂†2 in a
heralded fashion via the HOM interference. Our scheme
is depicted in Fig. 1, where the success of the operation
is heralded by the detection of a single photon at both
photodetectors SPD1 and SPD2.
When a two-mode Fock-state input |n〉c|m〉d is injected

into a 50:50 beam splitter, the output state is given by

B̂cd|n〉c|m〉d =
(ĉ† + d̂†)n(−ĉ† + d̂†)m|0〉cd√

2n+mn!m!
. (1)

For the input {n,m} = {1, 0} or {0, 1}, the output is the
single photon entangled state 1√

2
(|1, 0〉 ± |0, 1〉. On the

other hand, for the input {n,m} = {1, 1}, the output is a
NOON state 1√

2
(|2, 0〉 − |0, 2〉). Conversely, as the beam

splitting is a reversible unitary operation, these results
imply that the detection of a single photon at SPD1 and
no photons at SPD2, or vice versa, projects the input

state to 1√
2
(|1, 0〉 ± |0, 1〉) = 1√

2
(ĉ† ± d̂†)|0, 0〉. On the

other hand, the detection of a single photon each at both
detectors SPD1 and SPD2 projects the input state to
1√
2
(|2, 0〉 − |0, 2〉) = 1

2 (ĉ
†2 − d̂†2)|0, 0〉.

When the above two-mode projective measurement is
made on the idler modes from two independent NDPAs,

the superposition operations â†± b̂† and â†2− b̂†2 can be
implemented on the signal modes. This is because the
interaction between the signal mode a(b) and the idler
mode c(d) within the NDPA creates and annihilates pho-
tons in a pair-wise fashion. For example, the detection
of two photons at the idler mode immediately implies
the two-photon creation at the signal mode. Therefore,
the projection on the idler modes is identically mapped
to the projection on the signal modes. It is in a sense
an entanglement swapping by a projective measurement
[16, 17]: The two signal modes initially uncorrelated be-
come entangled by the projection of the idler modes to
an entangled state.
More rigorously, when an arbitrary two-mode state

|ψ〉ab is injected into the signal modes of two NDPAs
with both the idler modes in a vacuum state, the output

state is given by

Ŝac(ξ1)Ŝbd(ξ2)|ψ〉ab|0〉cd,
= exp(−ξ1â†ĉ† + ξ∗1 âĉ) exp(−ξ2b̂†d̂† + ξ∗2 b̂d̂)|ψ〉ab|0〉cd.

(2)

Next, the 50:50 beam splitter with the transformations

ĉ→ 1√
2
(ĉ+ d̂) and d̂→ 1√

2
(−ĉ+ d̂) yields

B̂cdŜac(ξ1)Ŝbd(ξ2)|ψ〉ab|0〉cd,

= e
− â†

√
2
(ĉ†+d̂†)eiφ1 tanh s1e

− b̂†√
2
(−ĉ†+d̂†)eiφ2 tanh s2

e−ââ† ln(cosh s1)e−b̂b̂† ln(cosh s2)|ψ〉ab|0〉cd, (3)

where ξ1 = s1e
φ1 and ξ2 = s2e

φ2 . With the coincident
detection of single photons at SPD1 and SPD2, the state
is projected to

|Ψ〉ab = cd〈11|B̂cdŜac(ξ1)Ŝbd(ξ2)|ψ〉ab|0〉cd
=

1

2
(â†2e2iφ1 tanh2 s1 − b̂†2e2iφ2 tanh2 s2)

e−ââ† ln(cosh s1)e−b̂b̂† ln(cosh s2)|ψ〉ab. (4)

Under the weak-coupling condition s1 ≈ s2 ≪ 1, the out-

put field is approximated to |Ψ〉ab ≈ (â†2 + b̂†2eiφ)|ψ〉ab,
where φ = 2(φ2 − φ1) + π. The phase φ can be con-
trolled by adjusting the phase of pumping fields to the
NDPAs, which determine the coupling constants ξ1 and
ξ2 proportional to the second-order susceptibility of the
nonlinear medium [18].
Obviously, the interferometric effect described above

can be realized only if the optical paths from the two
idler modes to the beam splitter have the same length in
Fig. 1. In a pulsed-mode implementation of our scheme,
the two down converters may be pumped with external
fields repeatedly at the same predetermined times. Then,
the photo detections at SPD1 and SPD2 do not reveal the
information on the origin of the photons, thus realizing

the coherent operation â†2+b̂†2eiφ on the input two-mode
signal.
If desired, one can also change the ratio of the oper-

ations â†2 and b̂†2 in the superposition by inserting ad-
ditional beam splitters between the down converters and
the 50:50 beam splitter, as shown in Fig. 2 (a). By
the coincident detection of single photons at SPD1 and
SPD2, together with the non-detection at the additional
detectors PDs, the output state is now reduced to

cd〈11|ef 〈00|B̂cdB̂ceB̂df Ŝac(ξ1)Ŝbd(ξ2)|ψ〉ab|0〉cdef
=

1

2
(â†2t∗21 e

2iφ1 tanh2 s1 − b̂†2t∗22 e
2iφ2 tanh2 s2)

e−ââ† ln(cosh s1)e−b̂b̂† ln(cosh s2)|ψ〉ab, (5)

where the beam splitter B̂ce (B̂df ) transforms the initial

modes as ĉ→ t1ĉ+ r1ê and ê→ t1ê− r1ĉ (d̂→ t2d̂+ r2f̂

and f̂ → t2f̂ − r2d̂ ). t1(2) and r1(2) denote the transmis-
sivity and reflectivity of the beam splitters, respectively.
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FIG. 1: Optical scheme to implement a coherent superposi-
tion operation â†2 + eiφb̂†2 on an arbitrary two-mode state
|ψ〉ab. BS is a 50:50 beam splitter; SPD1 and SPD2 are single
photon detectors. The successful implementation of the su-
perposition operation is heralded by the coincident detection
of single photons at SPD1 and SPD2.

Under the weak-coupling condition s1 ≈ s2 ≪ 1, the out-

put field is approximated to (â†2+eiφγb̂†2)|ψ〉ab, with the

ratio given by γ =
t∗2
2

t∗2
1

.

The nonlocal superposition operation â†2+eiφγb̂†2 can
also be transformed to a local superposition operation
â2 + γâ†2, as shown in Fig. 2 (b), by replacing one
down converter with a beam splitter of high transmis-
sivity. The output state now reads

bd〈11|ce〈0|B̂bdB̂bcB̂deŜadB̂ab|ψ〉a|0〉bcde
≈ −1

2
[â2(

r∗

t
)2t∗21 + â†2ξ2t∗22 ]|ψ〉a, (6)

where t (r) is the transmissivity (reflectivity) of B̂ab, and

t1(2) is the transmissivity of B̂bc(de). At (
r∗

t )
2 ≈ ξ2 ≪ 1,

the output field is approximated to (â2 + γâ†2)|ψ〉a. For
the case of γ = 1, one can simplify the implementation
of the local operation â2 + â†2 by removing modes c and
e, the two beam splitters at the center, and the addi-
tional detectors PDs in Fig. 2 (b), which recovers a fully
heralded scheme.

III. APPLICATIONS

The second-order coherent superposition operations
can be employed for a number of applications, and we
particularly investigate the generation of NOON states
and the enhancement of entanglement properties for CV
states. First, as shown in Fig. 3, the coherent operation

â†2 + eiφb̂†2, when consecutively applied, can produce a
NOON state with high particle number for even N as

(â†N + b̂†N )|0, 0〉 =
N/2
∏

k=1

(â†2 + eiφk b̂†2)|0, 0〉, (7)

50:50 B.S.
d

b

|0〉e

a

|0〉c

|0〉b
|0〉d

mirror

|ψ〉a

(b)

|ψ〉ab

50:50 B.S.d

c

|0〉e

|0〉fa

b

|0〉d

|0〉c

(a)

FIG. 2: Optical schemes to implement (a) a generalized

nonlocal operation â†2+eiφγb̂†2 with γ =
t∗2
2

t∗2
1

on an arbitrary

two-mode state |ψ〉ab and (b) a local superposition operation
â2 + γâ†2 on an arbitrary single-mode state |ψ〉a. SPD1 and
SPD2 are single-photon detectors, and PD indicates an on-off
detector. Under the condition of non-detection at the PDs,
the coherent operations are successfully implemented with the
coincident single-photon detections at SPD1 and SPD2.

â
†2

+ e
iφ1 b̂

†2 â
†2

+ e
iφ2 b̂

†2 â
†2

+ e
iφN/2 b̂

†2|0〉ab |N0〉 + |0N〉

FIG. 3: Generation of NOON states via a successive applica-
tion of the coherent operation â†2 + eiφb̂†2.

with the choice of φk = 4πk
N . When an even-number

NOON state is prepared, an odd-number NOON state
can also be obtained by applying a coherent photon-

subtraction â + b̂, that is, (â + b̂) (|N, 0〉+ |0, N〉) ∼
|N−1, 0〉+|0, N−1〉. We have previously seen in Ref. [14]
that the high fidelity for an odd N state can be achieved
from the coherent photon-subtraction, even with a very
low detector efficiency used for the heralding, if the ini-
tial even-N NOON state can be generated with high fi-
delity. In the next section, we investigate in more detail
the generation of NOON states considering experimental
imperfections for a realistic application.

Second, the local coherent superposition opera-
tion â2 + γâ†2 can be useful to enhance the en-
tanglement properties of a CV entangled state, e.g.,
two-mode squeezed vacuum state, |STMSS〉AB =√
1− λ2

∑∞
n=0 λ

n|n〉A|n〉B (λ = tanh s). In Fig. 4 (a),
the degree of entanglement, which can be quantified by
the von Neumann entropy of the reduced density opera-
tor for a pure state [19], is compared between the states
obtained with first-order and second-order superposition
operations on the TMSS. It is clearly seen that the en-
tanglement is more improved by the second-order coher-
ent operation than by the first-order coherent operation
tâ + râ† with |t|2 + |r|2 = 1. Moreover, the second-
order operation can significantly improve the Einstein-
Podolsky-Rosen (EPR) correlation characterized by the
condition ∆2(x̂A − x̂B) + ∆2(p̂A + p̂B) < 2, where
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FIG. 4: (a) Entanglement quantified by the von Neumann
entropy and (b) EPR correlation as functions of the squeezing

parameter s for the states: (tâ2 + râ†2)(tb̂2 + rb̂†2)|STMSS〉
(blue solid line), (tâ + râ†)(tb̂ + rb̂†)|STMSS〉 (red dotted),
and |STMSS〉 (black dashed). The value r in each coherent
operation (t2 + r2 = 1) is optimized at each point of s.

0.00 0.05 0.10 0.15 0.20
0.0

0.2

0.4

0.6

0.8

1.0

s

Η

0.9966

0.9801
0.9372

0.8316

(a)

(b)

0.00 0.05 0.10 0.15 0.20

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

s

F

FIG. 5: Fidelity between the ideal NOON state |4, 0〉 − |0, 4〉
and the state ρout [Eq. (8)] obtained by applying â†2 + b̂†2,
using on-off detectors with efficiency η, to a two-photon state
(|20〉−|02〉)/

√
2 (a) as a function of the coupling strength s of

the NDPAs and the detector efficiency η and (b) as a function
of s for η = 0.66.

x̂j = 1√
2
(âj + â†j) and p̂j = 1

i
√
2
(âj − â†j) (j = A,B)

[20]. In particular, the improvement of the EPR correla-
tion is more enhanced by the second-order operation in
the small-squeezing region, 0.08 < s < 0.47, as shown in
Fig. 4 (b), which may thus provide a practical advantage.

IV. EXPERIMENTAL FEASIBILITY

In this section, we consider realistic experimental con-
ditions in implementing our proposed scheme for the su-

perposition operation â†2+eiφb̂†2 and also the generation
of a NOON state. Ideally, the second-order superposition
operation is heralded by the detection of exactly one pho-
ton at both detectors SPD1 and SPD2 in Fig. 1. We here
consider each SPD as an on-off detector with efficiency
η that can only distinguish two events, detection and
non-detection, with no photon-number resolving. It can
be characterized by a two-component positive-operator-
valued-measure (POVM) [21, 22], Π̂0 =

∑

n(1−η)n|n〉〈n|
(no click), and Π̂1 = Î−Π̂0 (click). Suppose that one first
prepares a NOON state |ψ2〉 ≡ 1√

2
(|2〉a|0〉b − |0〉a|2〉b)

deterministically, to which the superposition operation

â†2 + eiφb̂†2 heralded by nonideal on-off detectors is ap-
plied. This yields an output state

ρout =
Trcd{Π̂c

1Π̂
d
1 Û1ρinÛ

†
1}

Trabcd{Π̂c
1Π̂

d
1 Û1ρinÛ

†
1}
, (8)

where ρin ≡ |ψ2〉〈ψ2|ab ⊗ |0〉〈0|cd and Û1 ≡ B̂cdŜacŜbd.
We evaluate the performance of our scheme by investigat-
ing the fidelity F between ρout and the ideal NOON state
|ψ4〉 = 1√

2
(|4〉a|0〉b − |0〉a|4〉b), i.e. F = 〈ψ4|ρout|ψ4〉. In

Fig. 5 (a), we plot the fidelity F as a function of the cou-
pling strength s of the two NDPAs and the on-off detector
efficiency η. We see that a high fidelity is achievable even
with a very low detector efficiency η, which is a usual
practical advantage arising from a heralded scheme. The
fidelity decreases with the coupling strength s because
a larger s makes multi-photon generations within the
NDPAs more substantial and the on-off detectors cannot
distinguish the multi-photons from an exact one-photon.
Nevertheless, the fidelity remains considerably high to
s ∼ 0.2 [23]. In Fig. 5 (b), we plot the fidelity for the
case of η = 0.66, which is the detection efficiency cur-
rently available [24–26]. The fidelity is achieved at least
above 0.86 for the whole range of s < 0.2.
In the above analysis, the initial state was assumed to

be a pure two-photon state |2〉a|0〉b − |0〉a|2〉b, which can
be generated by injecting a perfect single-photon state
into each input-mode of a 50:50 beam-splitter. Now, let
us address the case of imperfect single-photon sources,
denoted by ρs = (1− p)|0〉〈0|+ p|1〉〈1|, which are a mix-
ture of a vacuum state and a single-photon state. When
this imperfect state ρs is injected for each input of a 50:50

beam-splitter and the coherent operation â†2 + eiφb̂†2 is
subsequently applied to the output from the beam split-
ter, we obtain a non-ideal NOON state ρout,r for N = 4,

ρout,r =
Trcd{Π̂c

1Π̂
d
1 Û2ρin,rÛ

†
2}

Trabcd{Π̂c
1Π̂

d
1 Û2ρin,rÛ

†
2}
, (9)

where ρin,r ≡ ρas ⊗ ρbs ⊗ |0〉〈0|cd and Û2 ≡ B̂cdŜacŜbdB̂ab.
We compare ρout,r with the ideal state |ψ4〉 =
1√
2
(|4〉a|0〉b − |0〉a|4〉b) in terms of fidelity. Furthermore,

we also investigate the phase sensitivity ∆ϕ of a phase-
measurement using the output state ρout,r that can be
obtained via a Mach-Zehnder interferometer. The in-
terferometer can be designed to estimate the phase dif-
ference ϕ between two optical paths by measuring the
photon-number parity of an output field [12]. The sen-

sitivity ∆ϕ in this case is given by ∆ϕ = ∆Πb/|∂〈Π̂b〉
∂ϕ |,

where Π̂b = (−1)b̂
†b̂ corresponds to the parity of an out-

put field from the interferometer. In Fig. 6 (a), we show
the phase sensitivity as a function of single-photon source
efficiency p and on-off detector efficiency η at the cou-
pling strength s = 0.05 of the NDPAs. The colored re-
gion represents the phase-sensitivity below the shot-noise
limit using ρout,r, for which the single-photon efficiency
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FIG. 6: (a) Phase sensitivity ∆ϕ of the phase measurement
using the nonideal state ρout,r [Eq.(9)] and (b) fidelity F be-
tween the ideal state (|40〉−|04〉)/

√
2 and ρout,r as functions of

single-photon source efficiency p and on-off detector efficiency
η. (See main texts.) The coupling strength of the NDPAs is
s = 0.05. The colored region represents the condition for (a)
∆ϕ < 0.5 (below shot-noise level) and (b) F ≥ 0.5.

p > 0.68 is required. We note that the value of p = 0.69
was previously reported in the experiment of Ref. [27].
In Fig. 6 (b), we also show the fidelity as a function of
p and η, which can reach the value of, e.g., 0.595 with
p = 0.69. Both the phase-sensitivity ∆ϕ and the fidelity
F are significantly affected by the single-photon efficiency
p, but they are very insensitive to the efficiency η of the
on-off photodetectors.

V. SUMMARY

We have proposed an optical scheme to implement
a second-order nonlocal superposition operation â†2 +

eiφb̂†2 and its variants in a heralded fashion via the HOM
effect. We also investigated the application of these su-
perposition operations to the generation of NOON states
with high particle number and the entanglement concen-
tration of a CV entangled state. Furthermore, we con-
sidered experimental imperfections such as on-off pho-
todetectors with nonideal efficiency and imperfect single-
photon sources to demonstrate the feasibility of our pro-
posed scheme. In view of the experimental capacity re-
ported, e.g., in Refs. [2, 6, 23, 27], our proposal can
provide a potentially useful tool for various quantum in-
formation tasks.

Acknowledgments

S.Y.L. thanks J. Bae for a helpful discussion. This
work is supported by NPRP Grant 08-043-1-011 from the
Qatar National Research Fund. HN also acknowledges
support from a research fellowship from the Alexander
von Humboldt Foundation.

[1] M.S. Kim, H. Jeong, A. Zavatta, V. Parigi, and M.
Bellini, Phys. Rev. Lett. 101, 260401 (2008).

[2] A. Zavatta, V. Parigi, M.S. Kim, H. Jeong, and M.
Bellini, Phys. Rev. Lett. 103, 140406 (2009).

[3] J. Fiurás̆ek, Phys. Rev. A 80, 053822 (2009).
[4] S.-Y. Lee, and H. Nha, Phys. Rev. A 82, 053812 (2010).
[5] S.-Y. Lee, S.-W. Ji, H.-J. Kim, and H. Nha, Phys. Rev.

A 84, 012302 (2011); J. Park, S.-Y. Lee, H.-W. Lee, and
H. Nha, J. Opt. Soc. Am. B 29, 906 (2012).

[6] A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and Ph.
Grangier, Phys. Rev. Lett. 98, 030502 (2007).

[7] P. Kok, H. Lee, and J.P. Dowling, Phys. Rev. A 65,
052104 (2002).

[8] J. Fiurás̆ek, Phys. Rev. A 65, 053818 (2002).
[9] C.K. Hong, Z.Y. Ou, and L. Mandel, Phys. Rev. Lett.

59, 2044 (1987).
[10] C. Santori, D. Fattal, J. Vuc̆ković, G.S. Solomon, and Y.
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