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Abstrat

We onstrut non-minimal GUT loal models in the F-theory on�guration.

The gauge group on the bulk GS is one rank higher than the GUT gauge group.

The line bundles on the urves are non-trivial to break GS down to the GUT

gauge groups. We demonstrate examples of SU(5) GUT from GS = SU(6) and

GS = SO(10), the �ipped SU(5) from GS = SO(10), and the SO(10) GUT

from GS = SO(12) and GS = E6. We obtain omplete GUT matter spetra and

ouplings, with minimum exoti matter ontents. GUT gauge group breaking

to MSSM is ahievable by instanton on�gurations.
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1 Introdution

String theory is so far the most promising andidate of the uni�ed theory as an

extension of quantum �eld theory and a onsistent quantum theory of gravity. It is

expeted to answer the fundamental questions in physis. Many of these questions

an be explained by the extra dimensions or by the internal manifold from the string

ompati�ation point of view. On the other hand, one of the fundamental issues to

be addressed from partile physis is the uni�ation of gauge ouplings. The natural

solution to this question is the framework of the grand uni�ed theory (GUT). There

are two proedures to realize GUTs in the string theory ompati�ation. The �rst

is the top-down proedure in whih the full ompati�ation is onsistent with the

onditions of global geometry of extra dimensions and then the spetrum is lose to

GUT after breaking some symmetries [1℄. In the bottom-up proedure, this gauge

breaking an be understood in the deoupling limit of gravity [2, 3℄, partiularly in

the framework that D-branes are introdued on the loal regions within the extra

dimensions in type IIB ompati�ation [2, 3, 4℄. In this ase we an neglet the

e�ets from the global geometry. In priniple, the top-down proedure is the more

satisfatory senario theoretially than the bottom-up proedure. However, the later

proedure is more e�ient for model building than the former one.

There is no loal model in type I and heteroti string ompati�ations sine the

matter �elds live in the entire extra dimensions. It is possible to onstrut D-brane

loal and global models in type IIB ompa�ation, however it is di�ult to engineer

the 10 10 5H oupling in a GUT model. This problem an be traed to the non-

realization of the exeptional gauge groups in type IIB. In the perturbative type IIB

theory, an SU(N) and an SO(2N) gauge group an be realized as N D-branes and

N D-branes along O-planes, respetively [5℄. The anti-symmetri representations of

a GUT ome from the intersetion of a stak of D-branes and its image (as well as

the orientifold), and it is not possible in this onstrution to �nd another suh inter-

setion to �nish the Yukawa oupling without introduing exoti matter. Reently

this problem is solved in the type IIB orientifold on�guration with non-perturbative

instantons orretions [6℄ based on [7℄. On the other hand, the exeptional groups are

believed to exist in the non-perturbative regime of type IIB theory. It is well-known

that the strong oupling version of type IIB theory an be realized as F-theory [8℄.

Atually, those gauge groups of ADE-type are naturally enoded in the geometry
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of the F-theory ompati�ation [9, 10℄. Thus F-theory is a natural hoie for loal

GUT model building.

F-theory is a non-perturbative 12-d theory built on the type IIB framework with

an auxiliary two-torus ([8℄, see [11℄ for review). The ordinary string extra dimensions

are regarded as a base B and the two-torus is equivalent to an ellipti urve as a �ber

on this base manifold. The modulus of the ellipti urve is identi�ed as axion-dilaton

in type IIB theory. Due to the SL(2, Z) monodromy of the modulus, F-theory is

essentially non-perturbative in type IIB language. The loations of �ber degeneraies

are de�ned by a odimension-one lous ∆ within B, whih also indiates the loations

of seven-branes. The �ber degeneraies lead to singularities whose nature determines

the worldvolume gauge groups of ADE-type on the seven-branes [9℄. In the strong

version of the loal model, the gravity is deoupled from the gauge theory, so we

an fous on the loal properties by restriting the geometries on the submanifold S,

whih is a omponent of ∆ and is wrapped by seven-branes. In order to ahieve that,

the volume of S is required to be ontratible to zero size

1

, whih is followed from the

ondition that the anti-anonial bundle K−1
S of S is ample. It implies that S is a del

Pezzo surfae [12, 13, 14℄. Given a Kähler surfae S, the maximal supersymmetri

Yang-Mills theory in 8-d admits a unique twist on R3,1 × S whih preserves N = 1

SUSY in R
3,1

[12, 13℄. Matter omes from two soures, one is from the irreduible

subgroups of the bulk gauge group by turning on nontrivial gauge bundles on S, and

the other is from the intersetion of two del Pezzo surfaes along a odimension-two

Riemann surfae Σ, whih is the interseting brane piture in type IIB theory [10℄.

Along this urve Σ the gauge group is enhaned and is able to be broken again by the

nontrivial gauge bundles on it. The Yukawa ouplings an be realized as ouplings

of either two �elds from di�erent urves interseting at a point and a �eld from the

bulk, or three �elds from di�erent urves interseting at the same point, where the

singularity is further enhaned [12, 13℄. The generation numbers of matter on the

bulk and on the urve Σ are then determined by the dimensions of the bundle-valued

ohomology groups on S and Σ, respetively [12, 13℄. One of the advantages of

F-theory is that it naturally explains the uni�ation of the gauge ouplings.

Reently some loal GUT models are built in this F-theory on�guration [12,

13, 15, 16, 17, 18, 19, 20, 21, 22℄, and some progresses in global models [23, 24℄.

1

There are two ways in whih we ould take VS → 0. The �rst one is requiring S to ontrat to

a point, and the seond is requiring S to ontrat to a urve of singularities. See [14℄ for the details.
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Supersymmetry breaking is disussed in [25, 26, 27℄, and the appliation to osmology

is studied in [28℄. From [12, 29℄, the upper bound on the rank of a andidate GUT

group is six. In [12, 15℄, the authors onsider the minimal onstrution by using rank

four gauge group SU(5) to build SU(5) GUT, and show some examples of exoti-free

models. These models do not have the problems that a GUT model may have, suh

as proton deay, doublet-triplet splitting and so on. In this note, we shall onsider

non-minimal onstrutions of the GUT models, namely we onsider rank �ve and six

gauge groups to build loal GUT models in F-theory.

In setion 2 of this paper, we brie�y review F-theory and the onstrution in

[12, 13℄. In setion 3, we shall onsider SU(5), �ipped SU(5) and SO(10) GUT

models from non-minimal gauge groups on S, and we onlude in setion 4. In the

appendies, we ollet some properties of del Pezzo surfaes and resolutions of triplet

intersetions for the Yukawa ouplings.

2 F-Theory GUT Models

The onstrution of loal GUT models in F-theory has been analyzed in [12, 13, 15℄.

In this setion we shall brie�y review the essential ingredient of this onstrution,

where the details an be found in [12, 13, 15℄. Consider F-theory on an elliptially

�bered Calabi-Yau four-fold X with base B. Generially, the �ber degenerates on the

odimension-one reduible lous ∆ within B. In loal F-theory models, we fous on

one omponent S of the lous ∆. S is a odimension one omplex surfae wrapped

by seven-branes and supporting GUT models. The spirit of the bottom-up proedure

leads to the hoie of S being a del Pezzo surfae [12, 13, 15℄. To desribe the

spetrum of a loal model, one has to study the gauge theory of the worldvolume

on the seven-branes. As emphasized in [12, 13℄, one an start from the maximal

supersymmetri gauge theory on R3,1 × C2
and then replae C2

with the Kähler

surfae S. In order to make the low energy gauge theory preserve four superharges,

the maximal supersymmetri gauge theory on R3,1×C2
should be twisted. It is shown

that there exists a unique twist preserving N = 1 supersymmetry in four dimensions

and hiral matter an arise from the bulk S or the urve Σ [12, 13, 15℄.

Let us �rst disuss the spetrum of the bulk �elds on S. The ADE-type singu-
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larity along S is orresponding to the gauge group GS on S from seven-branes, and

a non-trivial vetor bundle over S with a struture group HS leads to the unbroken

gauge group ΓS in four dimensions whih is the ommutant subgroup of HS in GS.

After ompatifying on S, the resulting theory is N = 1 supersymmetri gauge the-

ory with gauge group ΓS oupled to matter. The spetrum of the bulk theory on

S transforms in the adjoint representation of GS. The deomposition of adGS into

representations of ΓS ×HS is

adGS =
⊕

k

ρk ⊗Rk, (2.1)

where ρk and Rk are representations of ΓS and HS, respetively. The matter �elds are

determined by the zero modes of the Dira operator on S. It is shown in [12, 13℄ that

the hiral and anti-hiral spetrum is determined by the bundle-valued ohomology

groups

H0
∂̄(S,R

∨

k )
∨ ⊕H1

∂̄(S,Rk)⊕H2
∂̄(S,R

∨

k )
∨

(2.2)

and

H0
∂̄(S,Rk)⊕H1

∂̄(S,R
∨

k )
∨ ⊕H2

∂̄(S,Rk) (2.3)

respetively, where ∨ stands for the dual bundle and Rk is the vetor bundle on S

whose setions transform in the representation Rk of the struture group HS. Thus,

the net number of the hiral �eld ρk and anti-hiral �eld ρ∗k is given by

Nρk −Nρ∗
k
= χ(S,R∨

k )− χ(S,Rk) = −

∫

S

c1(Rk)c1(S). (2.4)

Moreover, by the vanishing theorem of del Pezzo surfaes [12℄ it shows that when

Rk 6= OS, then H0
∂̄
(S,Rk) = 0 and H2

∂̄
(S,Rk) = 0. Thus the number of generations

and anti-generations an be alulated by

Nρk = −χ(S,Rk) (2.5)

and

Nρ∗
k
= −χ(S,R∨

k ), (2.6)

respetively.

In partiular, when a gauge bundle is a line bundle L with struture group U(1),

aording to Eq. (2.5), the hiral spetrum of ρr is determined by

Nρr = −χ(S, Lr) = −
[

1 +
1

2

(

∫

S

c1(L
r)c1(S) +

∫

S

c1(L
r)2

)

]

, (2.7)
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where r orresponds to the U(1) harges of the representations in the group theory

deomposition. In order to preserve supersymmetry, the line bundle L has to obey

the BPS equation [12, 13℄

JS ∧ c1(L) = 0, (2.8)

where JS is the Kähler form on S and its expression an be found in the Appendix.

Aording to Eq. (2.7), by swithing on the suitable supersymmetri line bundle

whih satis�es the ondition c1(L)c1(S) = 0, the bulk �elds ρr and ρ
−r form a vetor-

like pair or vanish, depending on the value of c1(L)
2
.

Another way to obtain hiral matter is from interseting seven-branes along a

urve, whih is a Riemann surfae. Let S and S ′
be two omponents of the disrimi-

nant lous ∆ with gauge groups GS and GS′
, respetively interseting along a urve

Σ. The gauge group on the urve Σ will be enhaned to GΣ, where GΣ ⊃ GS ×GS′
.

Therefore, hiral matter appears as the bi-fundamental representations in the deom-

position of adGΣ

adGΣ = adGS ⊕ adGS′ ⊕k (Uk ⊗ U ′
k). (2.9)

As mentioned above, the presene ofHS andHS′
will breakGS×GS′

to the ommutant

subgroup when non-trivial gauge bundles on S and S ′
with struture groups HS and

HS′
are turned on. Let Γ = ΓS ×ΓS′

and H = HS ×HS′
, the deomposition of U ⊗U ′

into irreduible representation is

U ⊗ U ′ =
⊕

k
(vk,Vk), (2.10)

where vk and Vk are representations of Γ andH , respetively. The light hiral fermions

in the representation vk are determined by the zero modes of the Dira operator on

Σ. It is shown in [12, 13℄ that the net number of the hiral �eld vk and anti-hiral

�eld v∗k is given by

Nvk −Nv∗
k
= χ(Σ, K

1/2
Σ ⊗ Vk), (2.11)

where Vk is the vetor bundle whose setions transform in the representation Vk of

the struture group H . In partiular, ifHS and HS′
are U(1) gauge groups, the vetor

bundles over S and S ′
redue into line bundles L and L′

, respetively, then the adjoint

representation adGΣ will be deomposed into

adGS ⊕ adGS′ ⊕j (σj , σ
′

j)rj ,r′j , (2.12)

where rj and r′j orrespond to the U(1) harges of the representations in the group

theory deomposition. The bi-fundamental representation (σj , σ
′

j)rj ,r′j are loalized

5



on Σ [10, 12, 13℄. As shown in [12, 13℄, the generation number of the representation

(σj , σ
′

j)rj ,r′j an be alulated by

N(σj ,σ′

j)rj ,r′j
= h0(Σ, K

1/2
Σ ⊗ L

rj
Σ ⊗ L′

r′j
Σ ), (2.13)

where the restritions of line bundles to Σ are denoted by L
rj
Σ ≡ Lrj |Σ and L′

r′j
Σ ≡

L′r′j |Σ, respetively. It follows that the net hirality on Σ is given by

N(σj ,σ′

j)rj ,r′j
−N(σj ,σ′

j)rj ,r′j
= c1(L

rj
Σ ⊗ L′

r′j
Σ ). (2.14)

In addition to the analysis of the spetrum, the pattern of Yukawa ouplings is

also studied [12, 13, 24℄. By the vanishing theorem of del Pezzo surfaes [12, 13℄,

Yukawa ouplings an form in two di�erent ways. In the �rst type, the oupling

omes from the interation between two �elds on the urves and one �eld on the bulk

S. In the seond type, all three �elds are loalized on the urves whih interset at a

point where the gauge group Gp is further enhaned by two ranks. In the paper, we

shall primarily fous on the ouplings of the seond ase.

3 Model Building

In this setion we shall explore SU(5), SO(10) and �ipped SU(5) GUT models by

taking GS as higher rank groups. The SU(5) models from GS = SU(5) and the

SO(10) models from GS = SO(10) have been disussed in [12, 13, 15℄. In these

models, the restrition of line bundles on the bulk to the matter urves are required

to be trivial to maintain the GUT fermion spetrum, while they are nontrivial on

the urves for Higgs �elds to explain the phenomenology of doublet-triplet splitting

when GUT breaks to the Minimum Supersymmetri Standard Model (MSSM). The

urve self-intersetion mehanism makes it possible to explain the rank three quark

and lepton mass matries from the Yukawa ouplings. The bulk line bundle an be

nontrivial on the matter urves, whih is useful in disussing a �ipped SU(5) model

[20℄, and a rih SM Yukawa mass struture [18℄.

We shall mainly fous on the ases that the gauge groups on S have higher ranks

than the GUT gauge groups, so the bulk line bundles will be nontrivial on all the

urves to obtain GUT spetra. There is no GUT adjoint representation on a del Pezzo
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surfae, but it is still possible to break the GUT gauge groups to the Standard Model

(SM) gauge group by introduing non-Abelian instanton on�gurations on the bulk

[15℄. For the maximum degrees of freedom of model building, the del Pezzo surfaes

in the following models are all dP8.

3.1 SU(5) GUT

3.1.1 GS = SU(6)

Consider seven-branes wrapping on a del Pezzo surfae S = dP8 with GS = SU(6).

From Eq. (2.7), the bulk �eld ρr is determined by the bundle-valued Euler harateris-

ti χ(S, Lr) where r is the U(1) harge in the group theory deomposition. Aording

to the property of the Chern lass, cn(L
−r) = (−1)ncn(L

r), where L−r
is the dual

bundle of Lr
. In partiular, when n = 1 we obtain c1(L

−r) = −c1(L
r), and it turns

out that Nρr −Nρ
−r

= −r
∫

c1(L)c1(S). If Nρr 6= 0, it implies that the bulk �elds ρr

and ρ
−r form a vetor-like pair if

c1(L)c1(S) = 0, (3.1)

for example L = OS(

2l
∑

m=1

(−1)m+1Eim), l ≤ 4, where all indies are distint. It is

easy to see that it solves Eq. (3.1) and the BPS equation (2.8) by hoosing suitable

polarization of JS, for example JS = AH −
∑8

i=1Ei, A ≫ 1. If L is a line bundle

satisfying χ(S, Lr) = χ(S, L−r) = 0, then Nρr = Nρ
−r

= 0. In other words, no hiral

�eld lives on the bulk. In this ase, it is not di�ult to �nd that L = OS(Ei −

Ej)
1/r, i 6= j, whih is a well-de�ned frational line bundle

2

due to the fat that

c1(L
r) is a integer lass [12, 13, 15℄.

In this model where GS = SU(6), the possible breaking patterns on the loal

urve by U(1) line bundle from S ′
and by U(1)S line bundle on the bulk are [30℄:

2

It is not the only solution, for example, it ould be L = OS(
∑8

m=1
(−1)m+1Em)1/2r . However,

L = OS(Ei − Ej)
1/r, i 6= j, is the only solution that c1(L

r) ∈ H2(S,Z).
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SU(7) → SU(6)S × U(1) → SU(5)× U(1)× U(1)S

48 → 350 + 10 → 240,0 + 10,0 + 50,6 + 5̄0,−6 + 10,0

+6−7 + 6̄7 +5−7,1 + 1−7,−5 + 5̄7,−1 + 17,5

(3.2)

SO(12) → SU(6)S × U(1) → SU(5)× U(1)× U(1)S

66 → 350 + 10 → 240,0 + 10,0 + 50,6 + 5̄0,−6 + 10,0

+152 + 15−2 +102,2 + 52,−4 + 10−2,−2 + 5̄−2,4

(3.3)

E6 → SU(6)S × U(1) → SU(5)× U(1)× U(1)S

78 → 350 + 10 + 1±2 → 240,0 + 2× 10,0 + 50,6 + 5̄0,−6 + 1±2 ,0

+201 + 20−1 +101,−3 + 101,3 + 10−1 ,−3 + 10−1 ,3

(3.4)

We shall onsider the supersymmetri line bundle L = OS(E1 − E2)
1/6

so that

there is no hiral �eld on the bulk, i.e. N56
= N5̄−6

= 0. Therefore, there is no

Yukawa oupling of ΣΣS type, suh as 10−1,−310−1,−350,6, 102,25̄−2,45̄0,−6 and their

omplex onjugates. The �rst U(1) harge of eah representation is from S ′
and the

seond is from the bulk. Sine the bulk line bundle is not trivial in our disussion,

the U(1)S harges should be onserved in eah Yukawa oupling.

Now let us turn to the hiral spetra from the urves. The same representation

an ome from alternate breaking patterns giving varied harges. The di�erene from

the ases in [12, 15℄ is that the restrition of bulk �uxes to the matter urves are

nontrivial here. Therefore we have to hoose proper representations from the urves

that interset at a double enhaned point forming the orresponding Yukawa oupling.

One possible hoie of suh SU(5) model from GS = SU(6) in terms of the matter

representations on the urves is:

W ⊃ 102,2102,252,−4 + 102,25̄7,−15̄7,−1 + · · · . (3.5)

The orresponding Yukawa oupling patterns on the double enhaned points of 10 10 5

and 10 5̄ 5̄ an be found in Eq. (B.8) and Eq. (B.4), respetively.

In what follows, we engineer the minimal spetrum by introduing suitable super-

symmetri line bundles. Let L and L′
be the line bundles over S and S ′

respetively,

and onsider Σ to be a urve of genus zero. Let LΣ = OΣ(aΣ) and L′

Σ = OΣ(bΣ)

be the line bundles restrited to the urve Σ. The parameters aΣ and bΣ from the

line bundles L and L′
need to be �xed by the onstraints from the matter spetrum,

8



and there ould be more than two onditions from these onstraints resulting in the

existene of exoti matter.

Aording to [24℄, it is not neessary to use the self-interseting mehanism in

[12, 15℄ to obtain the odimension three Yukawa oupling 10 10 5H , and one an

instead simply engineer two interseting urves supporting 102,2 and 52,−4 to get a

rank one oupling. We will follow the latter to onstrut the Yukawa oupling.

The three generations are from the urve Σ1
M with the enhaned group GΣ1

M
=

SO(12). Let the line bundles on this urve be LΣ1

M
= OΣ1

M
(a1M) and L′

Σ1

M

= OΣ1

M
(b1M ).

It is required to obtain the desired �eld ontent that

h0(Σ1
M , K

1/2

Σ1

M

⊗OΣ1

M
(2a1M)⊗OΣ1

M
(2b1M)) = 3,

h0(Σ1
M , K

1/2

Σ1

M

⊗OΣ1

M
(−2a1M)⊗OΣ1

M
(−2b1M)) = 0,

h0(Σ1
M , K

1/2

Σ1

M

⊗OΣ1

M
(−4a1M)⊗OΣ1

M
(2b1M)) = 0,

h0(Σ1
M , K

1/2

Σ1

M

⊗OΣ1

M
(4a1M)⊗OΣ1

M
(−2b1M )) = 0.

It is easy to �nd that the unique solution is a1M = 1
2
and b1M = 1, so there exist

3× 102,2

loalized on the urve Σ1
M .

Let the matter multiple 5̄ be from the urve Σ2
M . We hoose this urve to be

genus zero with the enhaned group GΣ2

M
= SU(7) and the line bundles on Σ2

M to be

LΣ2

M
= OΣ1

M
(a2M) and L′

Σ2

M

= OΣ1

M
(b2M). In this ase, we obtain the unique solution

a2M = −1
2
and b2M = 5

14
. The resulting �eld ontent is

3× 5̄7,−1.

Let the up-type Higgs multiplet be from the urve Σ1
H . Then we hoose it also

a genus zero urve with the enhaned group GΣ1

H
= SO(12) and the line bundles on

Σ1
H as LΣ1

H
= OΣ1

H
(a1H) and L′

Σ1

H

= OΣ1

H
(b1H). The unique solution is a1H = −1

6
and

b1H = 1
6
, so the �eld ontent is

1× 52,−4.

Similarly, for the down-type Higgs multiplet on Σ2
H , we again take it as a genus

zero urve with the enhaned group GΣ2

H
= SU(7) and the line bundles on Σ2

H are

9



LΣ2

H
= OΣ2

H
(a2H) and L′

Σ2

H

= OΣ2

H
(b2H). In this ase, we obtain the unique solution

a2H = −1
6
and b2H = 5

42
and the �eld ontent is

1× 5̄7,−1.

After determining the line bundles, we look for the suitable urves to support

these bundles. In our onstrution we require all urves e�etive and genus zero. Of

ourse it is possible to hoose the urves with higher genus, suh as a genus one urve

with non-e�etive divisors. However, there will exist vetor-like Higgs �elds on these

urves, whih may result in the problem of rapid proton deay [15℄. Therefore, we

only onsider urves of genus zero and separate up-type and down-type Higgs �elds

on di�erent urves.

We summarize the spetrum and the homology lasses of the urves of this model

in Table 1.

Multiplet Curve Class gΣ LΣ L′

Σ

3× 102,2 Σ1
M 4H + 2E2 − E1 0 OΣ1

M
(1)1/2 OΣ1

M
(1)

3× 5̄7,−1 Σ2
M 5H + 3E1 − E6 0 OΣ2

M
(−1)1/2 OΣ2

M
(1)5/14

1× 52,−4 Σ1
H 3H + E1 − E3 0 OΣ1

H
(−1)1/6 OΣ1

H
(1)1/6

1× 5̄7,−1 Σ2
H H − E2 − E3 0 OΣ2

H
(−1)1/6 OΣ2

H
(1)5/42

Table 1: An SU(5) GUT model from GS = SU(6), where L = OS(E1 −E2)
1/6

.

3.1.2 GS = SO(10)

Consider a GS = SO(10) model with nontrivial line bundles on all the urves, so

SO(10) is broken down to SU(5) × U(1)S on the bulk. Like the previous ase, we

hoose a supersymmetri line bundle L = OS(E1 − E2)
1/4

on S suh that the hiral

matter �elds on the bulk vanish, i.e. N104
= N

10−4
= 0. The Yukawa ouplings of

ΣΣS type suh as 100,45̄2,−25̄−2,−2 and 100,410−3,−153,−3 and their omplex onjugates

are vanishing. We shall only onsider the Yukawa ouplings of ΣΣΣ type where hiral

�elds are from loal urves Σ s in the following example.
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The breaking hains and matter ontent from the enhaned adjoints of the urves

are

SO(12) → SO(10)S × U(1) → SU(5)× U(1)× U(1)S

66 → 450 + 10 → 240,0 + 10,0 + 100,4 + 100,−4 + 10,0

+102 + 10−2 +52,2 + 5̄2,−2 + 5̄−2,−2 + 5−2,2

(3.6)

E6 → SO(10)S × U(1) → SU(5)× U(1)× U(1)S

78 → 450 + 10 → 240,0 + 10,0 + 100,4 + 100,−4 + 10,0

+16−3 + 163 +(10−3,−1 + 5̄−3,3 + 1−3,−5 + c.c.)

(3.7)

Let us turn to the spetrum from the urves. Again, sine the bulk line bundle

is nontrivial in our disussion, the U(1)S harges of the �elds loalized on the urves

should be onserved in eah Yukawa oupling. The superpotential is:

W ⊃ 10−3,−110−3,−15−2,2 + 10−3,−15̄−3,35̄2,−2 + · · · . (3.8)

The orresponding Yukawa oupling patterns on the double enhaned points of 10 10 5

and 10 5̄ 5̄ an be found in Eq. (B.5) and Eq. (B.2), respetively.

To obtain the spetrum, �rst we hoose the genus zero urve Σ1
M with GΣ1

M
= E6

and let LΣ1

M
= OΣ1

M
(d1M) and L′

Σ1

M

= OΣ1

M
(e1M). In order to get the desired �eld

ontent, it is required that

h0(Σ1
M , K

1/2

Σ1

M

⊗OΣ1

M
(−d1M)⊗OΣ1

M
(−3e1M )) = 3,

h0(Σ1
M , K

1/2

Σ1

M

⊗OΣ1

M
(d1M)⊗OΣ1

M
(3e1M)) = 0,

h0(Σ1
M , K

1/2

Σ1

M

⊗OΣ1

M
(3d1M)⊗OΣ1

M
(−3e1M)) = 0,

h0(Σ1
M , K

1/2

Σ1

M

⊗OΣ1

M
(−3d1M)⊗OΣ1

M
(3e1M)) = 0,

h0(Σ1
M , K

1/2

Σ1

M

⊗OΣ1

M
(−5d1M)⊗OΣ1

M
(−3e1M)) = 0,

h0(Σ1
M , K

1/2

Σ1

M

⊗OΣ1

M
(5d1M)⊗OΣ1

M
(3e1M)) = 0.

It is easy to see no solution satis�es all onditions, whih means that there exists

exoti matter. We hoose d1M = −3
4
and e1M = −3

4
, then the �eld ontent inludes

exoti singlets:

3× 10−3,−1, 6× 1−3,−5.
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For Σ2
M , we take it as a genus zero urve with GΣ = E6 and let the line bundles

be LΣ2

M
= OΣ2

M
(d2M) and L′

Σ2

M

= OΣ2

M
(e2M). Again, no solution satis�es all the

onditions, whih means that there exists exoti matter. We hoose d2M = 3
4
and

e2M = −1
4
so then the �eld ontent is

3× 5−3,3, 3× 13,5.

We hoose Σ1
H to be a genus zero urve with GΣ1

H
= SO(12) and let the line

bundles be LΣ1

H
= OΣ1

H
(d1H) and L′

Σ1

H

= OΣ1

H
(e1H). The unique solution is d1H = 1

4

and e1H = −1
4
. The resulting �eld ontent is

1× 5−2,2.

We hoose Σ2
H to be a genus zero urve with GΣ2

H
= SO(12) and let the line

bundles be LΣ2

H
= OΣ2

H
(d2H) and L′

Σ2

H

= OΣ2

H
(e2H). The solution is d2H = −1

4
and

e2H = 1
4
, thus the resulting �eld ontent is

1× 5̄2,−2.

We summarize the result in Table 2.

Multiplet Curve Class gΣ LΣ L′

Σ

3× 10−3,−1 Σ1
M 4H + 2E1 − E2 0 OΣ1

M
(−1)3/4 OΣ1

M
(−1)3/4

3× 5̄−3,3 Σ2
M 5H + 3E2 − E5 0 OΣ2

M
(1)3/4 OΣ2

M
(−1)1/4

1× 5−2,2 Σ1
H 3H + E3 − E1 0 OΣ1

h
(1)1/4 OΣ1

h
(−1)1/4

1× 5̄2,−2 Σ2
H H − E2 −E3 0 OΣ2

h
(−1)1/4 OΣ2

h
(1)1/4

Table 2: An SU(5) GUT model from GS = SO(10), where L = OS(E1 − E2)
1/4

.

In the �rst example with GS = SU(6), the �ux is nontrivial in order to break the

bulk gauge group into the desired SU(5) gauge group. We hoose the ase that all

matter �elds ome from the urves without exoti �elds. We avoid the possibilities

of up-type and down-type Higgs �elds oming from the bulk or from the same urve

that will ause rapid proton deay by the indued quarti terms in the superpotential.

The U(1)S harges are onsistent in the fermion mass Yukawa ouplings.
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In the seond example with GS = SO(10), the �ux is nontrivial as well in order to

break the bulk gauge group into the desired SU(5) gauge group. All matter �elds are

from the urves without exoti �elds on the bulk. The U(1)S harges are onsistent

in the Yukawa ouplings and it explains that an SU(5) GUT is desended from the

SO(10) uni�ed gauge group.

3.1.3 Split gauge bundle

The Standard Model (SM) gauge group is two ranks lower than GS, therefore in

priniple, if we want to break GS to SU(3)×SU(2)×U(1)Y it is possible to introdue

an instanton on�guration to break GS [15℄. This instanton an be a SU(2) or

U(1)×U(1) gauge group. In the models disussed above, the U(1)S is a substruture

of U(1) × U(1), and the additional U(1)S̃ an be utilized on the bulk to break the

SU(5) GUT to SM. U(1)Y whih an be the linear ombination of these U(1)s. In

this ase, the U(1)S̃ harges are onsistent with the U(1)Y harges. There is also a

possibility to solve the doublet-triblet problem from ontrolling the Higgs multiplets

by this U(1)S̃ gauge group. In what follows we demonstrate an example that how

this Abelian gauge bundle breaks the SU(5) GUT group on the bulk.

Consider V to be a split vetor bundle of rank two over S. Write V = L1 ⊕ L2,

where Li, i = 1, 2 are nontrivial line bundles. In order to solve the BPS equation (2.8),

the line bundles are required to be supersymmetri, in other words, JS ∧ c1(L1) =

JS ∧ c1(L2) = 0. To be more onrete, let V = OS(Ei −Ej)⊕OS(Ej −Ei)
1/6, i 6= j,

it is easy to hek that it solves BPS equation. In this ase, the struture group is

U(1)S̃ × U(1)S. Therefore, by swithing on the gauge bundle V , GS = SU(6) an be

broken into SU(3)× SU(2)× U(1)S̃ × U(1)S. The breaking pattern is as follows

SU(6) → SU(3)× SU(2)× U(1)S̃ × U(1)S

35 → (8, 1)0,0 + (1, 3)0,0 + (3, 2)−5,0 + (3̄, 2)5,0 + (1, 1)0,0

+(1, 1)0,0 + (1, 2)3,6 + (3, 1)−2,6 + (1, 2̄)−3,−6 + (3̄, 1)2,−6

(3.9)

It turns out that in this ase, all �elds on the bulk form vetor-like pairs. The

spetrum on the bulk is then given by











N(3,2)−5,0
= N(3̄,2)5,0 = 24

N(1,2)3,6 = N(1,2̄)−3,−6
= 3

N(3̄,1)2,−6
= N(3,1)−2,6

= 8

(3.10)
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Of ourse this is not the only hoie for the split gauge bundle of rank two over S.

The detailed on�guration and the spetrum of the hiral �elds from urves will be

presented elsewhere [36℄.

The self-intersetion mehanism of the 10 urve in the 10 10 5 oupling is not

the only way to obtain higher rank Yukawa mass matries. It has been shown in [18℄

that a generalization of the onditions on the U(1)B−L �ux with the hiral fermions

from two di�erent urves an take the work. With the introdution of this additional

U(1), the generation numbers of MSSM �elds in the 10 and 5 representations of

SU(5) an be ontrolled to ahieve a riher struture of the fermion mass matries.

3.2 Flipped SU(5) GUT

In a �ipped SU(5) × U(1)X [31, 32, 33℄ uni�ed model, the eletri harge generator

is only partially embedded in SU(5). In other words, the photon is shared between

SU(5) and U(1)X . The SM fermions plus the right-handed neutrino states reside

within the representations 5̄, 10, and 1 of SU(5), whih are olletively equivalent to

a spinor 16 of SO(10). The quark and lepton assignments are �ipped by uc
L ↔ dcL

and µc
L ↔ ecL relative to a onventional SU(5) GUT embedding. Sine 10 ontains

a neutral omponent νc
L, we an spontaneously break the GUT gauge symmetry by

using a pair of 10H and 10H of superheavy Higgs where the neutral omponents

reeive a large VEV. The spontaneous breaking of eletroweak gauge symmetry is

generated by the Higgs doublets embedded in the Higgs pentaplet 5h. It then has a

natural solution to the doublet-triplet splitting problem through the trilinear oupling

of the Higgs �elds 10H10H5h. The generi superpotential W is

W ⊃ 10 10 5h+10 5̄ 5̄h+ 5̄ 1 5h+10 10H1φ+10H10H5h+10H10H 5̄h+ · · · . (3.11)

3.2.1 GS = SU(6)

Sine the �ipped SU(5) model has a similar fermion spetrum as the SU(5) model,

and there are limited options for the matter from the urves, we may make the

SU(5) × U(1)X model from GS = SU(6) based on the setup of the previous setion

(3.1.1) with additional �elds suh as the singlet 1M and the GUT Higgs 10H , 10H .
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One possible hoie for the Yukawa ouplings is:

W ⊃ 102,2102,252,−4 + 102,25̄7,−15̄7,−1 + 5̄7,−152,−417,5 + · · · . (3.12)

The onstrution is similar to the SU(5) model from GS = SU(6) in the previous

setion, and we need the additional matter singlet and the superheavy Higgs pairs.

We hoose Σ3
M to be a genus zero urve with GΣ3

M
= SU(7) and let the line bundles

be LΣ3

M
= OΣ3

M
(ã3M) and L′

Σ3

M

= OΣ3

M
(b̃3M ). The unique solution is ã3M = 1

2
and

b̃3M = 1
14

and the resulting �eld ontent is

3× 17,5.

We hoose Σ1
H to be a genus zero urve withGΣ1

H
= SO(12). Let LΣ1

H
= OΣ1

H
(ã1H)

and L′

Σ1

H

= OΣ1

H
(b̃1H), the unique solution is ã1H = 1

6
and b̃1H = 1

3
and the resulting

�eld ontent is

1× 102,2.

Similarly, for Σ2
H , we make it genus zero. The resulting �eld ontent is

1× 10−2,−2.

We summarize the pinhed model in Table 3.

From the spetrum the matter �elds 10 and 5̄ are from the urves that have

di�erent enhaned gauge groups, whih implies they are not uni�ed in the same

representation of a higher rank gauge group, suh as the 15 of SU(6). Furthermore,

we are not able to obtain the orresponding U(1)X harges of the matter after rotating

the two harges of eah representation. These imply that a �ipped SU(5) gauge group

is not naturally embedded in SU(6). The approah to build an SU(5)× U(1)X from

GS = SU(6) is not a suess.

3.2.2 GS = SO(10)

In this setion we shall build the �ipped SU(5) model from the bulk GS = SO(10).

Again, we ahieve this by extending the spetrum of the SU(5) model onstruted

from GS = SO(10) in setion (3.1.2). The U(1)S harges of the �elds on the urves

15



Multiplet Curve Class gΣ LΣ L′

Σ

3× 102,2 Σ1
M 4H + 2E2 − E1 0 OΣ1

M
(1)1/2 OΣ1

M
(1)

3× 5̄7,−1 Σ2
M 5H + 3E1 − E6 0 OΣ2

M
(−1)1/2 OΣ2

M
(1)5/14

3× 17,5 Σ3
M 6H + 3E2 − 3E3 − 2E5 0 OΣ3

M
(1)1/2 OΣ3

M
(1)1/14

1× 102,2 Σ1
H 2H −E1 − E3 − E5 0 OΣ1

H
(1)1/6 OΣ1

H
(1)1/3

1× 10−2,−2 Σ2
H 2H −E2 − E3 − E5 0 OΣ2

H
(−1)1/6 OΣ2

H
(−1)1/3

1× 52,−4 Σ3
h 3H + E1 − E3 0 OΣ3

h
(−1)1/6 OΣ3

h
(1)1/6

1× 5̄7,−1 Σ4
h H − E2 − E3 0 OΣ4

h
(−1)1/6 OΣ4

h
(1)5/42

Table 3: An SU(5)× U(1)X model from GS = SU(6), where L = OS(E1 −E2)
1/6

.

should be onserved in the Yukawa ouplings due to the nontrivial bulk �ux. The

Yukawa ouplngs in the superpotential are

W ⊃ 10−3,−110−3,−15−2,2 + 10−3,−15̄−3,35̄2,−2 + 5̄−3,35−2,21−3,−5 + · · · . (3.13)

The matter singlet has 6 opies and is from the same urve ΣE6
as the 10M . The

additional GUT Higgs multiplets 10H and 10H an be engineered by the following

alulation.

10H has the same harge as the 10M does, so we also hoose the enhaned gauge

group of urve Σ1
H to be GΣ1

H
= E6. Let LΣ1

H
= OΣ1

H
(f 1

H) and L′

Σ1

H

= OΣ1

H
(g1H). In

order to obtain the desired �eld ontent, it is required that

h0(Σ1
H , K

1/2

Σ1

H

⊗OΣ1

H
(−f 1

H)⊗OΣ1

H
(−3g1H)) = 1,

h0(Σ1
H , K

1/2

Σ1

H

⊗OΣ1

H
(f 1

H)⊗OΣ1

H
(3g1H)) = 0,

h0(Σ1
H , K

1/2

Σ1

H

⊗OΣ1

H
(3f 1

H)⊗OΣ1

H
(−3g1H)) = 0,

h0(Σ1
H , K

1/2

Σ1

H

⊗OΣ1

H
(−3f 1

H)⊗OΣ1

H
(3g1H)) = 0,

h0(Σ1
H , K

1/2

Σ1

H

⊗OΣ1

H
(−5f 1

H)⊗OΣ1

H
(−3g1H)) = 0,

h0(Σ1
H , K

1/2

Σ1

H

⊗OΣ1

H
(5f 1

H)⊗OΣ1

H
(3g1H)) = 0.

16



It is easy to see no solution satis�es all the onditions, whih means there exists

exoti matter. We hoose f 1
H = −1

4
and g1H = −1

4
and the �eld ontent is

1× 10−3,−1, 2× 1−3,−5.

Similarly, we take Σ2
H as a genus zero urve with GΣ2

H
= E6 and let the line bundles be

LΣ2

H
= OΣ2

H
(f 2

H) and L′

Σ2

H

= OΣ2

H
(g2H). Following the same proess, we �nd that there

is no solution for all the onditions. So we set f 2
H = 1

4
and g2H = 1

4
for a minimum

ontent. The resulting �eld ontent is

1× 103,1, 2× 13,5

We summarize the result in Table 4.

Multiplet Curve Class gΣ LΣ L′

Σ

3× 10−3,−1 Σ1
M 4H + 2E1 − E2 0 OΣ1

M
(−1)3/4 OΣ1

M
(−1)3/4

3× 5̄−3,3 Σ2
M 5H + 3E2 − E5 0 OΣ2

M
(1)3/4 OΣ2

M
(−1)1/4

3× 1−3,−5 Σ1
M 6H + 3E1 − 3E4 − 2E5 0 OΣ1

M
(−1)3/4 OΣ1

M
(−1)3/4

1× 10−3,−1 Σ1
H 2H −E2 − E4 −E5 0 OΣ1

H
(−1)1/4 OΣ1

H
(−1)1/4

1× 103,1 Σ2
H 2H −E1 − E4 −E5 0 OΣ2

H
(1)1/4 OΣ2

H
(1)1/4

1× 5−2,2 Σ3
h H − E1 −E5 0 OΣ3

h
(1)1/4 OΣ3

h
(−1)1/4

1× 5̄2,−2 Σ4
h H − E2 −E5 0 OΣ4

h
(−1)1/4 OΣ4

h
(1)1/4

Table 4: An SU(5)× U(1)X model from GS = SO(10), where L = OS(E1 − E2)
1/4

The U(1)S harges in the spetrum are onsistent with the U(1)X harges, whih

is natural sine SU(5) × U(1)X is embedded in SO(10). However, to make U(1)X

massless we have to rotate the U(1) gauge groups to satisfy the onstraints from

the Green-Shwarz mehanism in a global piture. In addition, we are not able to

avoid a few opies of exoti singlets. This model inludes all the terms of the generi

superpotential W of SU(5)× U(1)X stated in Eq. (3.11).

From the �rst ase, we �nd the generi struture of GS = SU(6) annot produe

a �ipped SU(5) model due to the inonsistent harges of the fermion and Higgs �elds.
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It is di�ult to onstrut a �ipped SU(5) model unless we are able to turn on a line

bundle to break GΣ to an SO(10) gauge group.

In the seond ase, the SU(5) × U(1)X model from SO(10) is similar to the

onstrutions in [15℄ and [20℄. In our model, the urves in the spetrum have alternate

lasses. The nontrivial bulk �uxes on the urves are turned on so we an study the

substruture of 16 from SO(10). 5̄ and 10 are not on the same urve, while 10 still

forms a 10 10 5 oupling but 5̄ gets rid of the oupling 5̄ 5̄ 5h. The U(1)S harges are

onsistent with the U(1)X harges. This implies the bulk SO(10) is orresponding to

the SO(10) GUT whih is the higher uni�ation of the �ipped SU(5).

Again the self-interseting geometry an be introdued to obtain a rank three

Yukawa mass struture, and we an also onstrut a �ipped SU(5) model by splitting

hiral fermions on two di�erent matter urves [18℄.

3.3 SO(10) GUT

In this setion we shall disuss the SO(10) GUT from the breaking of a higher rank

bulk gauge group. There are two possible hoies, GS = SO(12) and GS = E6.

3.3.1 GS = SO(12)

Consider seven-branes wrapping on S where GS = SO(12). There exist the following

breaking patterns from the enhaned adjoints of the urves:

SO(14) → SO(12)S × U(1) → SO(10)× U(1)× U(1)S

91 → 660 + 10 → 450,0 + 10,0 + 100,2 + 100,−2 + 10,0

+122 + 12−2 +(102,0 + 12,2 + 12,−2 + c.c.)

(3.14)

E7 → SO(12)S × U(1) → SO(10)× U(1)× U(1)S

133 → 660 + 10 + 1±2 → 450,0 + 2× 10,0 + 100,2 + 100,−2 + 1±2 ,0

+32′1 + 32
′
−1 +161,−1 + 161,1 + 16−1 ,−1 + 16−1 ,1

(3.15)

To obtain a 16 16 10 oupling, the 10 an only be from the bulk due to the

onservation of the U(1)S harges, and it implies that the oupling is a ΣΣS-type

instead of a ΣΣΣ-type. From the above breaking patterns, the possible hoies are
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161,−1161,−1100,2, 16−1,−116−1,−1100,2, and 161,−116−1,−1100,2, and we take the �rst

as an example whose superpotential is:

W ⊃ 161,−1161,−1100,2 + · · · (3.16)

The orresponding Yukawa oupling pattern on the double enhaned point an be

found in Eq. (B.11).

We hoose a genus zero urve Σ1
M with GΣ1

M
= E7 and let LΣ1

M
= OΣ1

M
(h1

M) and

L′

Σ1

M

= OΣ1

M
(k1

M). In order to get the desired �eld ontent, it is required that

h0(Σ1
M , K

1/2

Σ1

M

⊗OΣ1

M
(−h1

M )OΣ1

M
(k1

M)) = 3,

h0(Σ1
M , K

1/2

Σ1

M

⊗OΣ1

M
(h1

M)OΣ1

M
(−k1

M)) = 0,

h0(Σ1
M , K

1/2

Σ1

M

⊗OΣ1

M
(−h1

M)⊗OΣ1

M
(−k1

M)) = 0,

h0(Σ1
M , K

1/2

Σ1

M

⊗OΣ1

M
(h1

M)⊗OΣ1

M
(k1

M)) = 0.

The unique solution is h1
M = −3

2
and k1

M = 3
2
, so the resulting �eld ontent is

3× 161,−1.

The Higgs multiplet 100,2 is from the bulk. By Eq. (2.7), we obtain

N102
= 1, N

10−2
= 0

where L = OS(E1−E2−E3)
1/2

has been used. Note that in this ase, we hange the

polarization to be JS = AH − 2E1 −
∑8

i=2Ei so that BPS equation (2.8) still holds.

The spetrum is shown in Table 5.

Multiplet Curve Class gΣ LΣ L′

Σ

3× 161,−1 Σ1
M 3H + E1 −E2 − E3 0 OΣ1

M
(−1)3/2 OΣ1

M
(1)3/2

Table 5: An SO(10) GUT model from GS = SO(12), where L = OS(E1−E2−E3)
1/2

and Higgs 10 is from the bulk.
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3.3.2 GS = E6

In the ase of GS = E6, E6 is broken into SO(10) × U(1)S by nontrivial �uxes on

the bulk. In order to avoid hiral matter on the bulk, we hoose a supersymmetri

line bundle L = OS(E1 − E2)
1/3

over S. By doing so, all hiral matter on the

bulk disappears, i.e. N160,−3
= N

160,3
= 0, whih means that all the hiral �elds are

loalized on the urves. The possible breaking hain and the matter ontent from the

enhaned adjoint of the urve is

E7 →E6 × U(1) →SO(10)× U(1)× U(1)S

133→ 780 + 10 → 450,0 + 10,0 + 10,0 + 160,−3 + 160,3

+272 + 27−2 +(162,1 + 102,−2 + 12,4 + c.c.)

(3.17)

From the breaking pattern we �nd the Yukawa oupling in the superpotential is

ΣΣΣ-type instead of ΣΣS-type:

W ⊃ 162,1162,1102,−2 + · · · . (3.18)

The orresponding Yukawa oupling pattern on the double enhaned point an be

found in Eq. (B.10).

Consider Σ1
M a pinhed urve of genus zero with GΣ1

M
= E7 and let LΣ1

M
=

OΣ1

M
(h̃1

M) and L′

Σ1

M

= OΣ1

M
(k̃1

M). In order to get the desired �eld ontent, it is

required that

h0(Σ1
M , K

1/2

Σ1

M

⊗OΣ1

M
(h̃1

M)⊗OΣ1

M
(2k̃1

M)) = 3,

h0(Σ1
M , K

1/2

Σ1

M

⊗OΣ1

M
(−h̃1

M )⊗OΣ1

M
(−2k̃1

M)) = 0,

h0(Σ1
M , K

1/2

Σ1

M

⊗OΣ1

M
(−2h̃1

M)⊗OΣ1

M
(2k̃1

M)) = 0,

h0(Σ1
M , K

1/2

Σ1

M

⊗OΣ1

M
(2h̃1

M)⊗OΣ1

M
(2k̃1

M)) = 0,

h0(Σ1
M , K

1/2

Σ1

M

⊗OΣ1

M
(4h̃1

M)⊗OΣ1

M
(2k̃1

M)) = 0,

h0(Σ1
M , K

1/2

Σ1

M

⊗OΣ1

M
(−4h̃1

M)⊗OΣ1

M
(−2k̃1

M)) = 0.

Sine there is no solution for all the onditions, it implies there exists exoti matter.

We hoose h̃1
M = 1 and k̃1

M = 1, so the resulting �eld ontent is

3× 162,1, 6× 12,4.
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We hoose Σ1
H to be a genus zero urve with GΣ1

H
= E7. Let the line bundles on

Σ1
H be LΣ1

H
= OΣ1

H
(h̃1

H) and L′

Σ1

H

= OΣ1

H
(k̃1

H). Again, there is no solution for all the

onditions. We then hoose h̃1
H = −1

3
and k̃1

H = 1
6
, so the resulting �eld ontent is

1× 102,−2, 1× 1−2,−4.

We summarize the result in Table 6.

Multiplet Curve Class gΣ LΣ L′

Σ

3× 162,1 Σ1
M 4H + 2E2 − E1 0 OΣ1

M
(1) OΣ1

M
(1)

1× 102,−2 Σ1
H H − E2 −E3 0 OΣ2

H
(−1)1/3 OΣ1

H
(1)1/6

Table 6: An SO(10) GUT model from GS = E6, where L = OS(E1 − E2)
1/3

In these models, the �uxes are nontrivial on all the urves in order to break the

gauge group into SO(10). In the �rst example, the �elds ome from both the bulk

and the urve, while in the seond the �elds are from the urves.

To solve the doublet-triblet problem, we may onsider the Dimopoulos-Wilzek

mehanism [34℄. There are several hoies of Higgs �elds to break the SO(10) gauge

group, but they are absent in these models. For example, we do not have 210, 210,

and 126 + 126 to break the gauge group to the SU(5) GUT or MSSM-like model

[35℄. However, the on�gurations of the non-Abelian instanton broken into a produt

of U(1)s may take the work [15℄. The possible breaking pattern is

SO(10)× U(1)Sa
→ SU(5)× U(1)Sb

× U(1)Sa
→ SU(3)× SU(2)× U(1)3S,

or SO(10)× U(1)Sa
→ SU(2)× SU(2)× SU(4)× U(1)Sa

→ SU(2)× SU(2)× SU(3)× U(1)2S. (3.19)

4 Conlusion

In this paper we onstrut examples of SU(5), SU(5) × U(1)X , and SO(10) GUT

loal models from GS whih is one rank higher than these GUT gauge groups in the

F-theory on�guration. The bulk �ux is nontrivial on all the urves to break GS down

to the GUT gauge group. We an study the the uni�ation of the GUT gauge groups
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to higher rank gauge groups in string theory. There is no GUT adjoint representation

on a del Pezzo surfae, but it is still possible to break the GUT gauge groups to the

SM gauge group by introduing Abelian instanton on�gurations on the bulk [15℄.

We demonstrate how to obtain a model of SU(5) Georgi-Glashow from GS =

SU(6). In this model we are able to obtain three opies of quarks and leptons in

the 10 and 5̄ representations and one opy of the Higgs �elds 5H and 5̄H . Due to

the U(1)S harge struture when breaking SU(6) to SU(5), the up-type Higgs and

down-type Higgs are not harge onjugates. To obtain the µ term a mixture state for

the up-type Higgs from two urves may be onsidered and further studied. In these

models SU(5) desends from an SU(6) uni�ation. In the example of SU(5) from

GS = SO(10), the U(1)S harges are onsistent in eah term of superpotential, and

we an see it is natural to embed SU(5) into SO(10). In our examples the matter

10 is either from a urve or two independent urves from whih it is possible to use

the left-right mehanism to generate rank three mass matries elegantly as shown in

[18℄. In these SU(5) models we an avoid rapid proton deay by separating the up

and down type Higgs from vetor-like pairs, and the generi doublet-triplet splitting

problem may be ontrolled when GUT breaks down to MSSM by the additional U(1)

from the instanton.

We also try to onstrut a �ipped SU(5) model from GS = SU(6) and GS =

SO(10). However we are not able to �nd a onsistent set of U(1)X harges for the

matter ontent in the model with GS = SU(6). This implies it is not natural to embed

an SU(5)×U(1)X GUT into an SU(6) gauge group. In the example of GS = SO(10)

the fermion spetrum is similar to what we obtained in the ase of SU(5) Georgi-

Glashow, with an additional pair of 10H and 10H Higgs �elds. The U(1)S harges are

onsistent with the U(1)X harges whih implies SO(10) is a more natural uni�ation

from SU(5) × U(1)X . For a massless U(1)X one may have to refer to the global

piture. The model onstrution is similar to that studied in [20℄, but 5̄ fermion is

from a di�erent urve from 10. One advantage of the model is that we an avoid the

5̄ 5̄ 5 oupling in the superpotential.

In addition, we demonstrate how to obtain models of an SO(10) GUT from

GS = SO(12) and GS = E6. In the ase of GS = SO(12), the 10H �eld is from the

bulk so the matter Yukawa oupling is a ΣΣS type, while in the GS = E6 ase, all the

matter �elds are from bi-fundamental representations. There is no SO(10) adjoint
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Φ45 for a oupling suh as Φ45 16H 16H , however one may onsider introduing the

instanton on�guration to break the GUT gauge symmetry.

The singularity types on the �bers are orresponding to the gauge groups on the

seven-branes in F-theory. The introdution of �uxes an be regarded as resolutions

of the singularities, and then we are able to analyze the �uxes via Cartan subalgebra

[10℄. There then arises an interesting question that whether the enhaned gauge

group on the urve breaks to a gauge group di�erent from the original bulk gauge

group when the line bundle is turned on. It may result in interesting gauge group

on�gurations on the urves.

F-theory has aptured attention reently for its non-perturbative on�guration

and elegant way of onstruting the matter spetrum of a loal model. The next

step is probably to �nd out the global onstraints for building realisti models. Other

topis, like supersymmtry breaking, non-abelian gauge �uxes for gauge group breaking

to MSSM, and expliit examples of del Pezzo surfaes for GUT models are interesting

and worthy of study in the future.
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Appendix

A Del Pezzo Surfaes

In this setion we shall brie�y review the geometri properties of del Pezzo surfaes.

Del Pezzo surfae dPk, k ≤ 8 is de�ned by blowing up k generi points of P2
or

P
1×P

1
. The divisors on dPk an be generated by H and Ei, where H is a hyperplane

divisor, and Ei is an exeptional divisor from blowing-up and is isomorphi to P1
.

The interseting numbers are

H ·H = 1, Ei · Ej = −δij , H ·Ei = 0.

The anonial divisor on dPk is given by

KdPk
= −c1(dPk) = −3H +

k
∑

i=1

Ei. (A.1)

The genus of the urve C within dPk an be alulated by the the formula

C · (KdPk
+ C) = 2g − 2.

For a large volume limit, given a line bundle L on dPk and

c1(L) =

k
∑

i=1

aiEi, (A.2)

where aiaj < 0 for some i 6= j, there exits a parametri family of Kähler lasses JdPk

over dPk onstruted as [12℄

JdPk
= AH −

k
∑

i=1

biEi, (A.3)

where

∑

k akbk = 0 and A ≫ bi > 0. By the onstrution, it is easy to see that the

line bundle L solves the BPS equation JdPk
∧ c1(L) = 0.
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B Resolutions of the Triplet Intersetions

B.1 SU(5) GUT Model

For SU(5) GUT model, we onsider GS and Gp to be of rank �ve and seven, respe-

tively. In general, we have Gp = SU(8), SO(14) or E7. Here we only onsider the

group theory deompositions of ADE type. It is straightforward to get the following

resolutions [30℄:

Gp = SU(8) :

SU(8)→SU(7)× U(1)→SU(6)S × U(1)2 →SU(5)× U(1)2 × U(1)S

63 → 480 + 10 → 350,0 + 10,0 + 10,0 → 240,0,0 + 3× 10,0,0 + 50,0,6 + 5̄0,0,−6

+60,−7 + 6̄0,7 +(50,−7,1 + 10,−7,−5 + c.c.)

+78 + 7̄−8 +(68,−1 + 18,6 + c.c.) +(58,−1,1 + 18,−1,−5 + 18,6,0 + c.c.)

(B.1)

Gp = SO(14) :

SO(14)→SO(12)× U(1)→SO(10) × U(1)2 →SU(5) × U(1)2 × U(1)S

91 → 660 + 10 → 450,0 + 10,0 + 10,0 → 240,0,0 + 3× 10,0,0 + 100,0,4 + 100,0,−4

+100,2 + 100,−2 +(50,2,2 + 5̄0,2,−2 + c.c.)

+122 + 12−2 +(102,0 + 12,2 + 12,−2 +(52,0,2 + 5̄2,0,−2 + 12,2,0 + 12,−2,0

+ c.c.) + c.c.)

(B.2)

SO(14)→SO(12)× U(1)→SU(6) × U(1)2 →SU(5) × U(1)2 × U(1)S

91 → 660 + 10 → 350,0 + 10,0 + 10,0 → 240,0,0 + 3× 10,0,0 + 50,0,6 + 5̄0,0,−6

+150,2 + 150,−2 +(100,2,2 + 50,2,−4 + c.c.)

+122 + 12−2 +(62,1 + 6̄2,−1 + c.c.) +(52,1,1 + 12,1,−5 + 5̄2,−1,−1 + 12,−1,5 + c.c.)

(B.3)
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SO(14)→SU(7)× U(1)→SU(6)× U(1)2 →SU(5)× U(1)2 × U(1)S

91 → 480 + 10 → 350,0 + 10,0 + 10,0 → 240,0,0 + 3× 10,0,0 + 50,0,6 + 5̄0,0,−6

+60,−7 + 6̄0,7 +(50,−7,1 + 10,−7,−5 + c.c.)

+214 + 21−4 +(154,−2 + 64,5 + c.c.) +(104,−2,2 + 54,−2,−4 + 54,5,1 + 14,5,−5 + c.c.)

(B.4)

Gp = E7 :

E7→E6 × U(1) →SO(10) × U(1)2 →SU(5)× U(1)2 × U(1)S

133→ 780 + 10 → 450,0 + 2× 10,0 → 240,0,0 + 3× 10,0,0 + 100,0,4 + 100,0,−4

+160,−3 + 160,3 +(100,−3,−1 + 5̄0,−3,3 + 10,−3,−5 + c.c.)

+272 + 27−2 +(162,1 + 102,−2 + 12,4 +(102,1,−1 + 5̄2,1,3 + 12,1,−5

+ c.c.) + 52,−2,2 + 5̄2,−2,−2 + 12,4,0 + c.c.)

(B.5)

E7 →E6 × U(1) →SU(6)× U(1)2 →SU(5)× U(1)2 × U(1)S

133→ 780 + 10 → 350,0 + 2× 100 + 10 ,±2→ 240,0,0 + 3× 10,0,0 + 10 ,±2 ,0 + 50,0,6 + 5̄0,0,−6

+200,1 + 20 0 ,−1 +100,1,−3 + 100,1,3 + 100 ,−1 ,−3 + 10 0 ,−1 ,3

+272 + 27−2 +(152,0 + 6̄2,1 + 6̄2 ,−1 +(102,0,2 + 52,0,−4 + 5̄2,1,−1 + 12,1,5

+ c.c.) + 5̄2 ,−1 ,−1 + 12 ,−1 ,5 + c.c.)

(B.6)

E7 →SO(12)× U(1) →SO(10) × U(1)2 →SU(5) × U(1)2 × U(1)S

133→ 660 + 10 + 1±2→ 450,0 + 2× 10,0 + 1±2 ,0→ 240,0,0 + 3× 10,0,0 + 1±2 ,0 ,0 + (100,0,4 + c.c)

+100,2 + 100,−2 +(50,2,2 + 5̄0,2,−2 + c.c.)

+32′1 +161,−1 + 161,1 +101,−1,−1 + 5̄1,−1,3 + 11,−1,−5

+101,1,1 + 51,1,−3 + 11,1,5

+32
′
−1 +16−1 ,−1 + 16−1 ,1 +10−1 ,−1 ,−1 + 5̄−1 ,−1 ,3 + 1−1 ,−1 ,−5

+10−1 ,1 ,1 + 5−1 ,1 ,−3 + 1−1 ,1 ,5

(B.7)
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E7 →SO(12)× U(1) →SU(6)× U(1)2 →SU(5)× U(1)2 × U(1)S

133→ 660 + 10 + 1±2→ 350,0 + 2× 100 + 1±2 ,0 → 240,0,0 + 3× 10,0,0 + 1±2 ,0 ,0 + (50,0,6 + c.c.)

+150,2 + 150,−2 +(100,2,2 + 50,2,−4 + c.c.)

+32′1 +151,−1 + 151,1 + 11,±3 +101,−1,2 + 51,−1,−4 + 101,1,−2 + 5̄1,1,4 + 11,±3,0

+32
′
−1 +15−1 ,−1 + 15−1 ,1 + 1−1 ,±3 +10−1 ,−1 ,2 + 5−1 ,−1 ,−4 + 10−1 ,1 ,−2 + 5̄−1 ,1 ,4

+1−1 ,±3 ,0

(B.8)

B.1.1 GS = SU(6)

For GS = SU(6), we have the following enhanement patterns

SU(6) → SU(7) → SU(8)

with Gp = SU(8),

SU(6) → SO(12) → SO(14)

with Gp = SO(14),

SU(6) → E6 → E7

with Gp = E7, and

SU(6) → SO(12) → E7

with Gp = E7.

In this ase, we only get the oupling 5 5̄ 1 atGp = SU(8), and fromGp = SO(14)

we are able to obtain ouplings 10 5̄ 5̄ and 5 5̄ 1. In addition, we also get the most

important one, 10 10 5, from Gp = E7.

B.1.2 GS = SO(10)

For GS = SO(10), we have following enhanement patterns

SO(10) → SO(12) → SO(14)

with Gp = SO(14),

SO(10) → E6 → E7
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with Gp = E7, and

SO(10) → SO(12) → E7

with Gp = E7

In this ase, we have the ouplings 10 5̄ 5̄ and 5 5̄ 1 from Gp = SO(14), and we

an also obtain the most important one, 10 10 5, from Gp = E7. Note that we are

not able to get Gp = SU(8) whih gives rise to the oupling 5 5̄ 1. Fortunately, this

oupling an found in Gp = SO(14) or Gp = E7 instead.

B.2 SO(10) GUT Model

For SO(10) GUT model, we onsider GS and Gp to be of rank six and eight, respe-

tively. Here we only onsider the ase of Gp = SO(16) and E8. It is straightforward

to get the following resolutions:

Gp = SO(16) :

SO(16)→SO(14)× U(1)→SO(12) × U(1)2 →SO(10) × U(1)2 × U(1)S

120 → 910 + 10 → 660,0 + 10,0 + 10,0 → 450,0,0 + 3× 10,0,0 + 100,0,2 + 100,0,−2

+120,2 + 120,−2 +(100,2,0 + 10,2,2 + 10,2,−2 + c.c.)

+142 + 14−2 +(122,0 + 12,2 + 12,−2 +(102,0,0 + 12,0,2 + 12,0,−2

+ c.c.) + 12,2,0 + 12,−2,0 + c.c.)

(B.9)

Gp = E8 :

E8 →E7 × U(1)→E6 × U(1)2 →SO(10) × U(1)2 × U(1)S

248→ 1330 + 10→ 780,0 + 2× 10,0 → 450,0,0 + 3× 10,0,0 + 160,0,−3 + 160,0,3

+1±2 +270,2 + 270,−2 + 1±2 ,0 +(160,2,1 + 100,2,−2 + 10,2,4 + c.c.) + 1±2 ,0 ,0

+561 +271,−1 + 271,1 + 11,±3 +161,−1,1 + 101,−1,−2 + 11,−1,4

+161,1,−1 + 101,1,2 + 11,1,−4 + 11,±3,0

+56−1 +27−1 ,−1 + 27−1 ,1 + 1−1 ,±3 +16−1 ,−1 ,1 + 10−1 ,−1 ,−2 + 1−1 ,−1 ,4

+16−1 ,1 ,−1 + 10−1 ,1 ,2 + 1−1 ,1 ,−4 + 1−1 ,±3 ,0

(B.10)
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E8 →E7 × U(1)→SO(12) × U(1)2 →SO(10)× U(1)2 × U(1)S

248→ 1330 + 10→ 6600 + 2× 100 + 10 ,±2 → 450,0,0 + 3× 10,0,0 + (100,0,2 + c.c.) + 10 ,±2 ,0

+1±2 +32′0,1 + 32
′
0 ,−1 + 1±2 ,0 +160,1,−1 + 160,1,1 + 160 ,−1 ,−1 + 16 0 ,−1 ,1 + 1±2 ,0 ,0

+561 +321,0 + 121,1 + 12 1 ,−1 +161,0,1 + 161,0,−1 + 101,1,0 + 11,1,±2

+10 1 ,−1 ,0 + 11 ,−1 ,±2

+56−1 +32−1,0 + 12−1,1 + 12−1 ,−1 +16−1,0,1 + 16−1,0,−1 + 10−1,1,0 + 1−1,1,±2

+10−1 ,−1 ,0 + 1−1 ,−1 ,±2

(B.11)

B.2.1 GS = SO(12)

For GS = SO(12), we have following enhanement patterns

SO(12) → SO(14) → SO(16)

with Gp = SO(16), and

SO(12) → E7 → E8

with Gp = E8.

In this ase, at Gp = SO(16), we have ouplings 1010 1 and 10 10 1, and at

Gp = E8, we an obtain 16 16 10.

B.2.2 GS = E6

For GS = E6, we have the following enhanement pattern

E6 → E7 → E8

with Gp = E8.

In this ase, the only Gp we get is E8, whih gives rise to the ouplings 16 16 10.
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