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ABSTRACT

We study properties of supergravity theories with non-compact gaugings, and their

higher-dimensional interpretations via consistent reductions on the inhomogeneous non-

compact hyperboloidal spaces Hp,q. The gauged supergravities are free of ghosts, despite

the non-compactness of the gauge groups. We give a general discussion of the existence of

stationary points in the scalar potentials of such supergravities. These are of interest since

they can be associated with de Sitter vacuum configurations. We give explicit results for

consistent reductions on Hp,q in various examples, derived from analytic continuation of

previously-known consistent sphere reductions. In addition we also consider black hole and

cosmological solutions, for specific examples of non-compact gaugings in D = 4, 5, 7.
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1 Introduction

Over the past few years important progress [1–6] has been made in understanding the

full non-linear structure of certain Kaluza-Klein sphere reductions of string and M-theory,

leading to gauged supergravities with maximal supersymmetry in lower dimensions. These

reductions, also referred to as Pauli reductions [7], are consistent only for specific super-

gravity theories compactified on spheres of specific dimension [5,7]. In particular, they lead

to gauged supergravity theories with anti-de Sitter vacua having a negative cosmological

constant, or to dilatonic vacua corresponding to domain wall solutions with a potential of

the type −|λ| eφ [2].

On the other hand the origin of de-Sitter vacua arising from consistent reductions of

string and M-theory is less well studied. It is known that there exist gauged supergravities

with non-compact gauge groups, which can be obtained from the usual compact gaugings

by means of appropriate analytic continuations. These were extensively studied in [8–

10]. With the more recent advances in understanding the higher-dimensional origins of the

compact gauged supergravities via consistent sphere reductions, it is therefore worthwhile

re-examining the non-compact gaugings, with a view to studying their higher-dimensional

origins from string or M-theory.

The essential features of the geometrical structures involved in the reductions to non-

compact gauged supergravities can be summarised as follows. For the compact gauged

theories, notably inD = 7, 5 and 4 dimensions, one makes reductions ofD = 11 supergravity

on S4, type IIB supergravity on S5 or D = 11 supergravity on S7 respectively. In many

cases, the general structure of the internal Sn metric is

ds2 = T−1
AB dµA dµB , (1.1)

where T−1
AB is a matrix of scalar fields, and µA are coordinates on R

n+1, subject to the

constraint

δAB µA µB = 1 (1.2)

which restricts the µA to lie on the sphere. In each case there exists a ground state where

the lower-dimensional scalar fields vanish, corresponding to TAB = δAB , and the internal

metric becomes that of the round sphere Sn, as

ds2 = δAB dµA dµB . (1.3)

Here, of course, both (1.2) and (1.3) are invariant under SO(n + 1), and thus the internal

manifold in the vacuum state has the SO(n+ 1) isometry of the round sphere Sn.
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In the reduction to the non-compact gauging, the constraint (1.2) is replaced by

ηAB µA µB = 1 , (1.4)

where ηAB = diag(1, 1, . . . , 1,−1,−1, . . . − 1), with p eigenvalues +1, and q = n + 1 − p

eigenvalues −1. However, the “trivial” scalar configuration (which may, or may not, be a

stationary point of the scalar potential) is still given by TAB = δAB . Thus the internal

metric in the trivial-scalar configuration is given by

ds2 = δAB dµA dµB , ηAB µA µB = 1 . (1.5)

The first equation is invariant under SO(p+q) while the second is invariant under SO(p, q),

and so the metric is invariant under the common subgroup, SO(p) × SO(q). The spaces

described by these metrics are hyperboloidal, and are designated by Hp,q [8,10]. Note that

the metrics are always positive definite. When p and q are both non-zero, the space Hp,q is

non-compact, and furthermore it is inhomogeneous (i.e. it is not a coset space). Particular

reductions of supergravity theories on the non-compact hyperboloidal spaces Hp,q yield

theories in lower dimensions that may have vacuum solutions with positive cosmological

constant. The scalar fields TAB play an essential role in these theories, in ensuring that

all the lower-dimensional gauge fields (as well as the scalars themselves) have standard

positive-energy kinetic terms, despite the occurrence of non-compact gauge groups.1

It is worth emphasising the distinction between the nature of the reductions we are

considering here, which involve the inhomogeneous non-compact spacesHp,q, and reductions

involving non-compact spaces that have non-compact isometry groups. In our reductions,

the fiducial metric defined by (1.5) necessarily has a compact isometry group, and this lies

at the heart of why one obtains lower-dimensional theories with no ghost-like gauge fields

associated with “wrong-sign” kinetic terms. The full non-compact SO(p, q) gauge group

is always spontaneously broken in any solution, and in fact the residual unbroken gauge

group is always compact. By contrast, if one performs a reduction on a space with a non-

compact isometry group, such as the homogeneous hyperbolic plane H2 = SL(2,R)/O(2),

there will always be ghost-like gauge fields associated with the non-compact generators of

the isometry group. This is because, in a linearised analysis of small fluctuations around

1There are also reductions of the so-called *-theories [11] on the hyperboloidal spaces with positive definite

metric (see e.g., [12] and references therein) may provide examples of stable de-Sitter vacua of anti-de Sitter

vacua (see, e.g., [13] and references therein). Note however that in these cases the *-theory already suffers

from ghost-fields and the non-linear Kaluza-Klein ansatz for the p-form field strengths involves complex

values.
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the vacuum solution, the Yang-Mills field strengths in the kinetic terms will be contracted

with the indefinite-signature Cartan-Killing metric of the non-compact isometry group.2

If we consider the example of 2-dimensional non-compact spaces, the two contrasting

situations can be illustrated by considering H2,1 and H2, defined by

H2,1 : ds2 = dµ2
1 + dµ2

2 + dµ2
3 , µ2

1 + µ2
2 − µ2

3 = 1 ,

H2 : ds̃2 = dµ2
1 + dµ2

2 − dµ2
3 , µ2

1 + µ2
2 − µ2

3 = 1 . (1.6)

Both of these metrics have positive-definite signature, but H2,1 is inhomogeneous, with the

isometry group O(2), while H2 is homogeneous, with isometry group O(2, 1). The H2,1

metric provides a basis for reducing to give an O(2, 1) gauged ghost-free supergravity with

(at most) a surviving O(2) gauge group in the vacuum. By contrast, the H2 metric could

yield an O(2, 1) gauged theory which would have indefinite-signature kinetic terms for the

gauge fields, and a vacuum with a surviving O(2, 1) gauge group. (The question of whether

one can find consistent reductions, for which the massive Kaluza-Klein towers can be set

to zero, is a more subtle one. However, this is quite distinct from the present question of

whether or not the kinetic terms for the gauge fields have the correct sign for ghost-freedom.)

The purpose of this paper is to analyse possible consistent reductions of string and

M-theory on hyperboloidal spaces Hp,q, and the properties of the vacuum solutions for

the resulting theories in lower dimensions. The analysis is facilitated by the fact that we

can obtain these reductions as analytic continuation of sphere reductions whose consistent

non-linear Kaluza-Klein Ansätze have been extensively studied [1, 3, 4, 6].

Our discussions will focus on the bosonic sectors of the supergravity theories, and so we

will not generally be explicitly addressing the important question of whether the reductions

and truncations we study are also compatible with supersymmetry. However, the general

results on non-compact gaugings in works such as [8,9] show that the necessary supersym-

metric completions of the bosonic sectors do indeed exist, and this provides compelling

evidence to support the idea that our consistent reductions can be extended to include the

fermionic sectors.

The paper is organised as follows. In section 2 we analyse the extrema of the scalar

field potentials that generically arise in theories obtained from a reduction of string and

M-theory on hyperboloidal spaces Hp,q, and for completeness we analyse the extrema of the

2It should be stressed, therefore, that it is the signature of the Cartan-Killing metric of the isometry group,

and not the signature of the metric on the internal space itself, that governs the signs of the gauge-field

kinetic terms.
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potentials arising from reductions on spheres Sp−1. At such extrema one can truncate the

theory to fixed values of the scalar fields. In the case of more that one extremum (as is the

case for compact reductions) one can also address the properties of renormalisation group

flows (in the dual field theories) interpolating between such (non-positive) stationary points

of the scalar potential. Note that potentials arising from hyperboloidal reductions always

turn out to have positive definite extrema, while in the sphere reductions the potentials are

negative at the extrema. In the case of Sp−1 with p ≤ 3 there is only one extremum, while

for p ≥ 4 there is a second extremum with a larger negative value of the potential.

In section 3 we discuss the non-linear Kaluza-Klein Ansätze for Pauli reductions on

both compact (spheres Sp+q−1) and non-compact (hyperboloidal Hp,q) spaces, by employ-

ing a description of scalar fields in terms of the vielbeine on the scalar coset manifold

SL(n,R)/SO(n) (n = p + q). It should be emphasised that although the non-compact re-

ductions are derived from the compact ones by analytic continuation, the internal manifolds

Hp,q are inhomogeneous, even though the original spheres Sp+q+1 are homogeneous spaces.

The explicit example that is described in detail is that of (p, q) = (4, 4), a reduction of 11-

dimensional supergravity on S7 and H4,4. Other consistent examples of sphere reductions

can analogously be discussed in the context of hyperboloidal reductions as well.

In section 4 we focus on the study of de Sitter supergravity in four-dimensions, beginning

with the N = 4 theory, obtained as a Pauli reduction of 11-dimensional supergravity on the

hyperboloidal space H4,4 space. In particular, we employ an analytic continuation to derive

this reduction from the corresponding consistent reduction on S7. In addition, we discuss

a truncation of this theory to N = 2 de Sitter supergravity, which makes contact with a

recent result in the literature [14]. We also consider more general N = 2 theories in four

dimensions, obtaining via analytic continuations examples corresponding to reductions on

H4,4 and H6,2. In section 5, we consider examples of de Sitter type gauged supergravities

in five and seven dimensions.

In section 6, we present examples of charged black hole and cosmological solutions for

specific examples of non-compact gaugings in D = 4, 5, 7. These solutions are related to the

corresponding multi-charged black holes of AdS gauged supergravities. Concluding remarks

are given in section 7.
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2 Extrema of Scalar Potentials

In this section, we shall focus our attention on scalar potentials of the form

V = 2Tij Tij − (Tii)
2 , (2.1)

where Tij is a symmetric matrix of scalar fields. There are several examples in gauged

supergravities where potentials of this type arise from dimensional reductions on spheres.

Commonly, but not always, the scalar matrix is unimodular. To encompass also those

cases where it is not restricted to be unimodular, it is useful to extract the determinant by

defining

Tij = Φ T̃ij , where det(T̃ij) = 1 , (2.2)

and thus we have

V = Φ2 Ṽ , Ṽ ≡ 2T̃ij T̃ij − (T̃ii)
2 , (2.3)

Our study will begin by considering the stationary points of Ṽ . One application of these

results will be for discussing the circumstances under which one can perform a consistent

truncation of the scalar fields in the associated gauged supergravity. In order to be able to

truncate the theory to fixed values of the scalars T̃ij , the necessary condition, dictated by

the equations of motion, is that these fixed values correspond to a stationary point of their

potential.

The scalar matrix T̃ij is conveniently parameterised in terms of a scalar vielbein Π̃A
i,

in terms of which one has

T̃ij = Π̃−1A
i Π̃−1B

j ηAB . (2.4)

We shall consider the situation of scalars associated with a gauging of SO(p, q), for which

we shall have the SO(p, q) invariant metric

ηAB = diag (+1,+1, . . . ,+1,−1,−1, . . . ,−1) , (2.5)

with p plus signs and q minus signs. The vielbein Π̃A
i parameterises the scalar coset

manifold SL(n,R)/SO(n), where n = p+ q. Note that the denominator group SO(p+ q) is

always compact regardless of whether the gauge group SO(p, q) is compact or non-compact.

Thus i, j are SO(p+ q) indices, raised and lowered with δij , while A,B are SO(p, q) indices,

raised and lowered with ηAB .

In order to study the extrema of the potential Ṽ , it is convenient to perform local

transformations to diagonalise the scalar vielbein, implying that we can write

T̃ij = diag (X1,X2, . . . ,Xp,−X1̄,−X2̄, · · · ,−Xq̄) , (2.6)
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where Xa and Xā are all positive, subject to the unimodularity constraint:

p∏

a=1

Xa

q∏

ā=1

Xā = 1 . (2.7)

Note that we must have q = 2r, where r is an integer, in order to have det(T̃ij) = +1 with

positive Xa and Xā.

The potential Ṽ now takes the form:

Ṽ = 2

p∑

a=1

X2
a + 2

q∑

ā=1

X2
ā −

( p∑

a=1

Xa −
q∑

ā=1

Xā

)2
. (2.8)

Without loss of generality we may assume that p ≥ q, since if q exceeded p we could

simply redefine our notion of what is a time-like and what a space-like direction. (The

overall sign of T̃ij plays no role in the analysis.)

The discussion at this stage divides into two cases, depending on whether q = 2r = 0

(the compact case), or q = 2r ≥ 2 (the non-compact case). We shall begin by considering

the non-compact case.

2.1 Non-compact Case

In this subsection we shall consider non-compact cases, where q = 2r ≥ 2.

The extrema of Ṽ can be determined by introducing a Lagrange multiplier to enforce

the constraint (2.7), and defining

S = Ṽ + λ
( p∏

a=1

Xa

q∏

ā=1

Xā − 1
)
. (2.9)

The equations following from requiring S to be stationary under the variations of the Xa

and Xā imply

X2
a − 2σ− Xa +

1
4λ = 0 , a = 1, · · · , p , (2.10)

X2
ā + 2σ− Xā +

1
4λ = 0 , b = 1, · · · , q , (2.11)

where σ− ≡ 1
4 (
∑

aXa −∑āXā).

The solutions for Xa and Xb̄ can in principle each have two values:

Xa = σ− ±
√

σ2
− − 1

4λ , Xā = −σ− ±
√

σ2
− − 1

4λ . (2.12)

However, it follows from (2.10) and (2.11) that

4(Xa +Xā) + λ (X−1
a +X−1

ā ) = 0 (2.13)
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for any a and ā, and so the positivity of the Xa and Xā implies that λ < 0. Consequently,

the positivity of Xa and Xā implies that the plus signs must be chosen for both equations

in (2.12). Thus we must have all Xa equal, Xa ≡ X, and all Xā equal, Xā ≡ X̄, at any

valid stationary point. From Eqs.(2.12) it then follows we shall have

λ = −4X X̄ , (p− 2)X = (q − 2) X̄ . (2.14)

There is therefore a special case in which q = 2 and hence also p = 2; otherwise, it must be

that q = 2r ≥ 4, and p ≥ 3.

For q = 2r ≥ 4, the explicit solution (2.12)), subject to the constraint (2.7), yields the

result:

Xa = X =

(
q − 2

p− 2

) q

p+q

, Xā = X̄ =

(
p− 2

q − 2

) p

p+q

, (2.15)

and the potential at the extremum has a positive value:

Ṽ0 = 2 (p + q)

(
q − 2

p− 2

) q−p

q+p

. (2.16)

Note that the extremum of Ṽ always corresponds to the positive value of the potential.

One can also prove that this extremum is always a saddle point of the potential. Note

that this result is consistent with a general argument that non-compact reductions produce

extrema of the scalar potential that have always tachyonic direction [15]. (See however [16]

where the non-compact gauging produced an example of de Sitter vacuum that is a minimum

of the potential.)

The special case when p = q = 2 leads to X X̄ = 1 and λ = −4 at the stationary

point. The value of X = X̄−1 is undetermined, meaning there is a “flat direction,” and the

potential on this line of stationary points is given by

Ṽ0 = 8 . (2.17)

Cases that arise in supergravities are associated with consistent Pauli reductions on

spheres: S2, S3, S4, S5 or S7 (or their non-compact versions where Sp+q−1 is replaced by

Hp,q ), and thus with

p+ q = 3, 4, 5, 6, 8 . (2.18)

Given our findings above, namely that stationary points for Ṽ arise in the non-compact

cases for q = 2 with p = 2, or q = 2r ≥ 4 with p ≥ 3, we see that stationary points will

arise only for two non-compact gauge groups associated with consistent Pauli reductions

on hyperboloidal spaces, namely SO(2, 2) and SO(4, 4). (Recall that we can always take
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p ≥ q.) These are associated respectively with the replacements of the following spheres by

the corresponding hyperboloidal spaces:

S3 −→ H2,2 , S7 −→ H4,4 . (2.19)

The first of these arises in the consistent Pauli reduction of type I ten-dimensional super-

gravity to give N = 2 gauged supergravity in D = 7; this reduction was first derived, for the

compact choice S3, in [17]. Its non-compact analogue, with the consistent reduction onH2,2,

was recently studied in [18]; the resulting N = 2, SO(2, 2) gauged seven-dimensional super-

gravity was used in order to obtain the Salam-Sezgin [19] N = (1, 0) gauged supergravity

in six dimensions, by means of a further S1 reduction and consistent chiral truncation [18].

The second case in (2.19) arises in the consistent S7 reduction of eleven-dimensional

supergravity [20]. The investigation of the truncations that can be made by reducing instead

on H4,4 and then setting the scalar fields in T̃ij to their fixed values, corresponding to the

extrema of the potential Ṽ , will be studied in section 4 below.

2.2 Compact case

For completeness we shall also analyse the extrema of the potential arising from the compact

cases, such as those arising in the case of consistent sphere reductions. These correspond to

taking q = 0 in the discussion of section 2.1. If a consistent reduction on the sphere Sp−1

exists, it will give rise to a scalar potential with an SO(p) symmetry. Again, we focus on

the case where T̃ij is unimodular. At the extrema of the potential Ṽ will again a truncation

of the the scalar fields T̃ij to the their fixed valued at these extrema.

Stationary points of the potential (2.8) (with q = 0) will be governed by (2.10), where

σ− ≡ 1
4

∑
Xa. It follows from (2.10) that

2(p− 2)
∑

a

Xa = λ
∑

a

X−1
a , (2.20)

and therefore that λ ≥ 0 (since in order to have a non-trivial situation, we must certainly

have p ≥ 2). It then follows that the solutions of (2.10), namely

Xa = σ− ±
√

σ2
− − 1

4λ (2.21)

can be positive for either choice of sign. Thus in principle we can have

Xa = α , 1 ≤ a ≤ m ; Xa = β , m+ 1 ≤ a ≤ m+ n , (2.22)

where α ≡ σ− +
√

σ2
− − 1

4λ, β ≡ σ− −
√

σ2
− − 1

4λ and m+ n = p.
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There are now two possible sets of solutions. The first corresponds to taking all Xa

equal, in which case without loss of generality we may take n = 0 and so Xa = α for all a.

From the unimodularity of T̃ij it then follows that α ≡ 1 and hence we have

Xa = 1 , Ṽ0 = −p (p− 2) . (2.23)

The second possibility, in which unequal values α and β occur for non-vanishing numbers

m and n = p−m of the Xa, implies that

(m− 2)α+ (n− 2)β = 0 , (2.24)

and hence positivity of the Xa’s (i.e. α > 0 and β > 0) implies that the only remaining

solutions of (2.24) are those corresponding tom = 1 (n = p−1 ≥ 3) or n = 1 (m = p−1 ≥ 3).

Choosing, without loss of generality, m = 1, we then find

X1 = α = (p− 3)
p−1
p , Xa = β = (p− 3)

−1
p , 2 ≤ a ≤ p , Ṽ0 = −2p (p− 3)

p−2
p . (2.25)

Note that for p < 4, the only extremum of the potential is the “trivial” one with all

Xa = 1. On the other hand for p ≥ 4, the potential has two extrema with the property

that the “trivial” one has always a less negative cosmological constant. In the context of

the renormalization group flow (associated with the dual field theory) the flows start in

the ultra-violet regime at the trivial minimum and run toward the non-trivial one in the

infra-red regime.

3 Pauli Reductions on Hyperboloidal Spaces Hp,q

In this section, we shall enumerate some examples of supergravities with non-compact gaug-

ings that can be obtained by means of consistent Pauli reductions on the hyperboloidal

spaces Hp,q. These examples are in one-to-one correspondence with already known cases

of supergravities with compact gaugings coming from consistent Pauli sphere reductions.

The hyperboloidal reductions can in fact be obtained by making analytic continuations of

the existing sphere reductions. An equivalent, and rather more elegant approach, is first to

rewrite the sphere-reduction examples in a notation where the passage from the compact

to non-compact internal space is accomplished merely by a replacement of a Euclidean-

signature metric on the gauge group by an indefinite-signature metric. As a consequence,

the non-linear Kaluza-Klein Ansätze, both in the compact and the non-compact cases in-

volve only real values for the p-form field strengths, and positive definite metric in the
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internal space. In addition the resulting lower dimensional theories contain only fields with

positive definite kinetic energy.

A detailed enumeration of theories where a consistent Pauli sphere reduction is known

to exist was given in [5]. These are examples of dimensional reductions on coset spaces,

which in practice are usually spheres. If no fields were truncated out in the dimensional

reduction, the process of dimensional reduction would necessarily be consistent, and one

would end up with infinite towers of massive fields as well as a finite number of massless

fields that included the metric and the gauge bosons of the isometry group of the internal

coset space. Generically, it is inconsistent to set the infinite towers of massive fields to

zero, because non-linear terms built from the massless fields that are retained will act as

sources for the massive fields that one wants to set to zero. By a Pauli reduction we mean

a reduction in which one can, exceptionally, consistently set all the massive fields to zero,

with the set of lower-dimensional fields that are retained including the Yang-Mills gauge

bosons associated with the entire isometry group of the internal coset manifold. Thus for a

Pauli reduction on the sphere Sn, the retained lower-dimensional fields would include the

Yang-Mills gauge fields for the group SO(n+1). The success of a consistent Pauli reduction

depends on remarkable “conspiracies” between properties of the internal coset space and

properties of the theory one is reducing.

The list of consistent Pauli reductions presented in [5] comprised a number of examples

with internal spaces Sn. The fields that are retained in the reduction include the metric,

the gauge bosons Aij
(1) of SO(n+1), and scalars described by a symmetric (n+1)× (n+1)

matrix Tij :

p-form Dilaton Higher-Dim Lower-Dim. Sphere Gauge Group Extra fields

F(2) Yes Any D D − 2 S2 SO(3) None

F(3) Yes Any D D − 3 S3 SO(4) A(2)

F(3) Yes Any D 3 SD−3 SO(D − 2) None

F(4) No 11 7 S4 SO(5) Ai
(3)

F(4) No 11 4 S7 SO(8) φ[ijkℓ]+

F(5) = ∗F(5) No 10 5 S5 SO(6) None

Table 1: Consistent Pauli reductions on Sn, retaining SO(n + 1) gauge fields. The last

column indicates what additional fields, beyond the metric, the gauge fields Aij
(1) and the

scalars Tij , are massless, and must therefore be included, in a consistent truncation. The

Table is taken from [5].

11



The first row in Table 1 corresponds to Pauli reductions of an Einstein-Maxwell-dilaton

system in D dimensions on S2. The second and third rows correspond to Pauli reductions

of the low-energy effective theory of the bosonic string in D dimensions on S3 or SD−3. The

fourth and fifth rows correspond to the Pauli reduction of eleven-dimensional supergravity

on S4 or S7, and the last row corresponds to the Pauli reduction of type IIB supergravity

on S5.

Each of these examples has its own particular features, and one cannot give a “universal”

Pauli-reduction ansatz that encapsulates them all in a single set of formulae. In particular,

the set of additional fields that might need to be retained in order to achieve a consistent

reduction is highly theory-specific. For example, in the S7 reduction of eleven-dimensional

supergravity one must retain an additional massless 35 pseudo-scalar fields, as well as the

35 scalars described by Tij . We shall not attempt, therefore to present general formulae,

nor shall we present the known details in all the above cases. Rather, we shall take one of

the Pauli reductions as an example, in order to show how the previously obtained reduction

formulae can be straightforwardly modified to generalise from the compact case where

the reduction is on Sn to the non-compact case where the reduction is on Hp,q, where

n = p+ q− 1. It should then be clear how the analogous transitions are achieved in all the

other examples.

We shall take for our example the consistent S4 Pauli reduction of eleven-dimensional

supergravity. The complete reduction ansatz was derived in [3]; it was re-expressed in a

form that we shall adopt here in [17]. The reduction ansätze for the eleven-dimensional

metric and 4-form filed strength are given by

dŝ211 = ∆1/3 ds27 +
1

g2
∆−2/3 T−1

AB DµADµB , (3.1)

F̂(4) =
1

4!
ǫA1···A5

[
− 1

g3
U ∆−2µA1DµA2 ∧ · · · ∧DµA5

+
4

g3
∆−2 TA1

B DT i2
C µB µC DµA3 ∧ · · · ∧DµA5 (3.2)

+
6

g2
∆−1FA1A2

(2) ∧DµA3 ∧DµA4 TA5
B µjB

]
− TAB ∗SA

(3) µ
B +

1

g
S(3)A ∧DµA ,

where

U ≡ 2TAC TBD ηCD µA µB −∆TAB ηAB , ∆ ≡ TAB µA µB ,

F(2)A
B ≡ dA(1)A

B + g A(1)A
C ∧A(1)C

B , DµA ≡ dµA + g AA
(1)B µB ,

DTAB ≡ dTAB + g A(1)A
C TCB + g A(1)B

C TAC , µA µB ηAB ≡ 1 , (3.3)
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where the symmetric matrix TAB , which parameterises the scalar coset SL(5,R)/SO(5), is

unimodular.

Aside from a small change of notation, the only difference between the ansatz above

and the one presented in [17] is that in the latter the gauge group was taken to be SO(5),

meaning that ηAB = δAB , whereas here ηAB is allowed to have indefinite signature (p, q),

p+q = 5, corresponding to an SO(p, q) gauging. Note that all A,B, . . . gauge-group indices

are raised and lowered with ηAB.

Substituting the above ansatz into the equations of motion of eleven-dimensional su-

pergravity, one finds that the lower-dimensional fields satisfy the equations of motion of

SO(p, q)-gauged N = 4 supergravity in seven dimensions, which follow from the Lagrangian

L7 = R ∗1l− ∗P ij ∧ P ij − 1
4 T

−1
AC T−1

BD ∗FAB
(2) ∧ FCD

(2) − 1
2TAB ∗SA

(3) ∧ SB
(3)

+
1

2g
SA

(3) ∧DSB
(3) ηAB − 1

8g
ǫAB1···B4

SA
(3) ∧ FB1B2

(2) ∧ FB3B4
(2) +

1

g
Ω(7) − V ∗1l ,(3.4)

where

Pij ≡ Π−1
(i
A (δA

B d+ g A(1)A
B)ΠB

k δj)k (3.5)

and the potential V is given by

V = 1
2g

2
(
2Tij Tij − (Tii)

2
)
. (3.6)

Note that Tij, with SO(5)c indices, and TAB , with SO(p, q)g indices, are given in terms of

the scalar vielbein Πi
A by

Tij = Π−1A
i Π−1B

j ηAB , TAB = Π−1
i
A Π−1

i
B . (3.7)

The form of the Chern-Simons term Ω(7), built from the Yang-Mills fields, can be found

in [17].

The geometry of the “internal” manifold can easily be seen from the above expressions.

From the metric reduction ansatz in (3.1), we see that if we consider the situation where the

scalars and Yang-Mills fields are taken to be trivial, meaning in particular that TAB = δAB

(see (3.7)), we shall have

dŝ211 = ∆1/3 ds27 +
1

g2
∆2/3 δAB dµA dµB , (3.8)

where

∆ = δAB µA µB , (3.9)

and, of course, ηAB µA µB = 1. Thus the internal metric here is positive definite, and its

isometry group is the intersection of SO(p+ q) = SO(5), which leaves the Euclidean metric

δAB invariant, and SO(p, q), which leaves ηAB invariant. This intersection is SO(p)×SO(q).
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We have presented the case of the consistent Pauli reductions of eleven-dimensional to

D = 7 as an explicit example. With appropriate changes, one can straightforwardly discuss

all the other known consistent Pauli reductions.

One generic property of these reduction is the appearance of the scalar field potential,

which has a universal form of the type (2.3).

4 de Sitter-type Supergravities in Four Dimensions

In this section, we shall study explicit examples of four-dimensional non-compact gauged

supergravities, which can be obtained by a process of analytic continuation, and their

associated embeddings in eleven dimensions via consistent reductions.

4.1 N = 4 de Sitter gauged theory

For this construction, we shall begin with the SO(4) gauged N = 4 supergravity in four

dimensions, and then perform an analytic continuation to a de Sitter type supergravity. By

continuing the known consistent S7 reduction from D = 11, we shall show how the de Sitter

supergravity arises as a consistent reduction on H4,4.

To begin, let us consider the bosonic sector of the four-dimensional N = 4 gauged SO(4)

supergravity. In the notation of [4], the bosonic Lagrangian may be written as

L4 = R ∗1l− 1
2∗dφ ∧ dφ− 1

2e
2φ ∗dχ ∧ dχ− V ∗1l

−1
2e

−φ ∗F i
(2) ∧ F i

(2) − 1
2

eφ

1 + χ2 e2φ
∗F̃ i

(2) ∧ F̃ i
(2) , (4.1)

−1
2χF i

(2) ∧ F i
(2) +

1
2

χ e2φ

1 + χ2 e2φ
F̃ i

(2) ∧ F̃ i
(2) ,

where the potential V is

V = −2g2 (4 + 2 cosh φ+ χ2 eφ) , (4.2)

and

F i
(2) = dAi

(1) +
1
2g ǫijk A

j
(1) ∧Ak

(1) , F̃ i
(2) = dÃi

(1) +
1
2g ǫijk Ã

j
(1) ∧ Ãk

(1) . (4.3)

We now perform the following continuations:

g −→ −i g , Ai
(1) −→ iAi

(1) , Ãi
(1) −→ i Ãi

(1) , φ −→ φ+ iπ . (4.4)

After doing this, the Lagrangian (4.1) retains the same form

L4 = R ∗1l− 1
2∗dφ ∧ dφ− 1

2e
2φ ∗dχ ∧ dχ− V ∗1l
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−1
2e

−φ ∗F i
(2) ∧ F i

(2) − 1
2

eφ

1 + χ2 e2φ
∗F̃ i

(2) ∧ F̃ i
(2) , (4.5)

−1
2χF i

(2) ∧ F i
(2) +

1
2

χ e2φ

1 + χ2 e2φ
F̃ i

(2) ∧ F̃ i
(2) ,

except that now the potential V in (4.2) is replaced by

V = 2g2 (4− 2 cosh φ− χ2 eφ) , (4.6)

The SU(2)×SU(2) Yang-Mills fields are still given by the same expressions (4.3). Note that

the kinetic terms for all fields retain their conventional signs, and thus the theory is still

ghost-free. One can see very clearly in this example that it is the presence of the couplings

of the scalar fields in the Yang-Mills kinetic terms that allows their signs to remain the

standard ones despite the continuations A(1) −→ iA(1), owing to the compensating sign

changes induced by the continuation φ −→ φ+ iπ. However, the scalar potential, which in

the original compact form (4.2) had a minimum at (φ = 0, χ = 0) with V0 = −12g2, now

has a minimum at (φ = 0, χ = 0) with V0 = +4g2.

It should be noted that after the analytic continuations the gauge group continues to

be the compact group SO(4) ∼ SU(2)×SU(2). If we had performed an analogous analytic

continuation on the full N = 8 gauged SO(8) supergravity of de Wit and Nicolai [20], we

would have obtained the non-compact gauging with SO(4, 4). This would be subject to a

spontaneous symmetry breaking to its compact SO(4) × SO(4) subgroup, and in fact the

gauge fields that are retained in the truncated N = 4 theory that we are considering here

reside entirely within one of these SO(4) factors, and hence only a compact gauge group is

seen here.

The embedding of this de Sitter-type N = 4 gauged supergravity in D = 11 can be

seen by performing the corresponding analytic continuations in the S7 reduction formulae

obtained in [4]. From the formulae in section 2 of [4], we see that after implementing the

continuations (4.4) on the four-dimensional fields, we should also make the continuation

ξ −→ i ξ on the “azimuthal” coordinate of the description of S7 as a foliation of S3 × S3
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surfaces. This results in the consistent reduction ansatz3

dŝ211 = ∆
2
3 ds24+2g−2 ∆

2
3 dξ2+ 1

2g
−2 ∆

2
3

[ c2

c2 X2 + s2

∑

i

(hi)2+
s2

s2 X̃2 + c2

∑

i

(h̃i)2
]
, (4.7)

where

X ≡ e
1
2φ , X̃ ≡ X−1 q , q2 ≡ 1 + χ2 X4 ,

∆ ≡
[
(c2 X2 + s2)(s2 X̃2 + c2)

] 1
2
, (4.8)

c ≡ cosh ξ , s ≡ sinh ξ ,

hi ≡ σi − g Ai
(1) , h̃i ≡ σ̃i − g Ãi

(1) .

The three quantities σi are left-invariant 1-forms on S3 = SU(2), and the three σ̃i are

left-invariant 1-forms on a second S3. They satisfy

dσi = −1
2ǫijk σj ∧ σk , dσ̃i = −1

2ǫijk σ̃j ∧ σ̃k . (4.9)

The reduction ansatz for F̂(4) given in [4] becomes

F̂(4) = −g
√
2U ǫ(4) −

4s c

g
√
2
X−1 ∗dX ∧ dξ +

√
2s c

g
χX4 ∗dχ ∧ dξ + F̂ ′

(4) + F̂ ′′
(4) , (4.10)

where

U = −X2 c2 + X̃2 s2 + 2 , (4.11)

and F̂ ′
(4) = dÂ′

(3), with

Â′
(3) = f ǫ(3) + f̃ ǫ̃3 , (4.12)

where ǫ(3) =
1
6ǫijk h

i ∧ hj ∧ hk and ǫ̃(3) =
1
6ǫijk h̃

i ∧ h̃j ∧ h̃k. The functions f and f̃ are given

by

f =
1

2
√
2
g−3 c4χX2 (c2 X2 + s2)−1 ,

f̃ =
1

2
√
2
g−3 s4 χX2 (s2 X̃2 + c2)−1 . (4.13)

3Note that when performing the analytic continuation of the expressions in [4], the sign of the entire

eleven-dimensional metric reverses, owing to a sign change of the quantity ∆2 defined there. This must

be compensated by using the “trombone” scaling symmetry of the eleven-dimensional theory, under which

ĝMN −→ λ2 ĝMN , ÂMNP −→ λ3 ÂMNP , ψ̂M −→ λ ψ̂M . This is a symmetry of the D = 11 equations of

motion, corresponding to a homogeneous constant scaling of the action. Specifically, we shall take λ = −i.

As we shall see below, the associated imaginary rescaling of the antisymmetric tensor is precisely what is

needed in order to obtain a real expression after the continuations.
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The terms in F̂ ′′
(4) comprise those involving the SU(2) × SU(2) Yang-Mills field strengths

F i
(2) and F̃ i

(2). These are given by

F̂ ′′
(4) = 1√

2
g−2 X−2 (−s c dξ ∧ hi + 1

4c
2 ǫijk h

j ∧ hk) ∧ (∗F i
(2) − χX2 F i

(2))

+ 1√
2
g−2 X̃−2 (s c dξ ∧ h̃i − 1

4s
2 ǫijk h̃

j ∧ h̃k) ∧ (∗F̃ i
(2) + χX2 F̃ i

(2)) . (4.14)

Note that in obtaining these real expressions for F̂(4), we made use of the overall rescaling

ÂMNP −→ i ÂMNP that we discussed in the previous footnote.

It is instructive to look at the nature of the internal 7-metric in the “ground state” where

φ = χ = 0 = Ai
(1) = Ãi

(1). From (4.7) we see that we shall have dŝ211 = ∆2/3 ds24+2∆−1/3 ds27

with ∆ = cosh 2ξ and

ds27 = cosh(2ξ) dξ2 + 1
4 cosh

2 ξ σ2
i +

1
4 sinh

2 ξ σ̃2
i . (4.15)

This is precisely the standard “undistorted” positive-definite metric on the the hyperboloid

H4,4. This can be seen by expressing the coordinates µi = (µa, µā) on R
8, subject to the

hyperboloidal constraint µa µa − µā µā = 1 as

µa = ua cosh ξ , µā = vā sinh ξ , (4.16)

where ua ua = 1 and vā vā = 1 define two 3-spheres, and substituting into the positive

definite metric ds2 = dµa dµa + dµā dµā on R
8.

The theory that we have obtained here as a consistent reduction is the bosonic sector

of an N = 4 de Sitter-type supergravity. This can be consistently truncated to N = 3, by

setting the two sets of SU(2) gauge fields equal, and at the same time setting φ = χ = 0.

In order to keep a canonical normalisation for the remaining SU(2) Yang-Mills fields, we

should also send Ai
(1) −→ 1√

2
Ai

(1), g −→
√
2 g. Upon doing so, we obtain the bosonic

Lagrangian

L4 = R ∗1l− 1
2∗F i

(2) ∧ F i
(2) − 8g2 ∗1l , (4.17)

where F i
(2) = dAi

(1) + mg ǫijk A
j
(1) ∧ Ak

(1). This bosonic sector of the truncated N = 3 de

Sitter supergravity is precisely the one that was obtained recently in [14], together with

its embedding in eleven-dimensional supergravity. In that work, the embedding of the

theory was derived from scratch. It is interesting that by obtaining the theory as the

N = 3 truncation of the larger N = 4 theory, we can make use of previous results in the

literature [4] in order to establish the reduction procedure from D = 11. However if one

truncates to N = 3 before looking at the embedding in D = 11, the absence of the scalar
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fields precludes one from implementing the analytic continuation in (4.4) that allowed us

to perform a continuation of the N = 4 S7 reduction of [4].

Further truncations to lesser supersymmetry are also possible. One can, for example,

consider a truncation to N = 1, in which one retains just a Maxwell multiplet as well as

the supergravity multiplet. In the bosonic sector, the Lagrangian is obtained from (4.17)

by retaining just a U(1) gauge field, and so one has

L4 = R ∗1l− 1
2∗F(2) ∧ F(2) − 8g2 ∗1l , (4.18)

In fact it is presumably the case that this is the bosonic sector of the axially-gauged N =

1 de Sitter supergravity constructed in [21]. (Since we have not explicitly studied the

fermionic sector here this remains conjectural at this stage, but the existence of the non-

compact gauged N = 8 supergravities discussed in [8, 9], and of the axially-gauged N = 1

supergravity obtained in [21], lend credence to the conjecture.) In particular, this implies

that any solution of four-dimensional Einstein-Maxwell gravity with a positive cosmological

constant can be embedded in the de Sitter supergravity of [21], and hence, via our consistent

reduction, it can be lifted to a solution in eleven-dimensional supergravity. Examples of

such four-dimensional solutions include the cosmological multi back hole solutions of [22].

4.2 N = 2 de Sitter gauged theories

In this section, we shall consider N = 2 de Sitter supergravities obtained by starting with

the four-dimensional N = 2 supergravity with U(1)4 gauging, whose consistent embedding

in D = 11 supergravity was discussed in [1]. For simplicity, we shall follow [1] and omit

the three axionic scalar fields that form part of the supergravity theory. Their inclusion in

the four-dimensional theory itself is straightforward, and we refer the reader to Appendix

B of [1] for a discussion of the details. Including the axions in the consistent reduction from

D = 11 is a more difficult problem, and we shall not attempt to address that here.

With the axions omitted, the bosonic sector of the four-dimensional Lagrangian for the

U(1)4 gauged theory is given by

e−1 L = R− 1
2 (∂~ϕ)

2 − 1
4

4∑

i=1

X−2
i (F i)2 − V , (4.19)

where ~ϕ = (ϕ1, ϕ2, ϕ3), the scalar potential is given by

V = −4g2
∑

i<j

Xi Xj (4.20)

= −8g2 (coshϕ1 + coshϕ2 + coshϕ3) ,

18



and

X1 = e−
1
2 (ϕ1+ϕ2+ϕ3) , X2 = e−

1
2 (ϕ1−ϕ2−ϕ3) ,

X3 = e−
1
2 (−ϕ1+ϕ2−ϕ3) , X4 = e−

1
2 (−ϕ1−ϕ2+ϕ3) . (4.21)

The embedding of the U(1)4 gauged theory in D = 11 supergravity was constructed

in [1]; it involves a consistent Pauli-type reduction on S7, and is given by

dŝ211 = ∆2/3 ds24 + g−2 ∆−1/3
4∑

i=1

X−1
i

(
dµ2

i + µ2
i (dφi + g Ai)2

)
, (4.22)

F̂(4) =
4∑

i=1

(
2g (X2

i µ
2
i −∆Xi) ǫ(4) +

1

2g
X−1

i ∗dXi ∧ d(iµ2
i )i

− 1

2g2
X−2

i d(µ2
i ) ∧ (dφi + g Ai) ∧ ∗F i

)
, (4.23)

where

∆ =

4∑

i=1

Xi µ
2
i ,

4∑

i=1

µ2
i = 1 , (4.24)

ǫ(4) is the volume form in the four-dimensional metric ds24, and ∗ denotes Hodge dualisation

in the four-dimensional metric. Note that the round 7-sphere arises when the scalars are

trivial (Xi = 1), and is described in terms of the four constrained coordinates µi and the

four azimuthal angles φi by

dΩ2
7 =

4∑

i=1

(dµ2
i + µ2

i dφ
2
i ) . (4.25)

We shall now describe two inequivalent analytic continuations, one of which corresponds

to a replacement of S7 byH4,4, and the other to a replacement of S7 by H6,2. The consistent

reductions in these cases, obtained by appropriate analytic continuations of the complete

S7 reduction of de Wit and Nicolai [20], would yield N = 8 supergravities with the non-

compact gaugings SO(4, 4) and SO(6, 2) respectively. In our case, where we start with the

restricted N = 2 gauged theory of supergravity coupled to three vector multiplets, we are

retaining only the U(1)4 gauge field in the Cartan subgroup of SO(8). After the analytic

continuations, in each case we will still have U(1)4 gauge fields; these are in the compact

Cartan subgroups of SO(4, 4) and SO(6, 2) respectively. We shall therefore refer to the two

analytically continued theories as the SO(4, 4) and SO(6, 2) cases respectively, even though

our truncations retain only U(1)4 gauge fields.

In accordance with our general results in section 2, the former theory will have a scalar

potential with a stationary point, whilst the latter will not.
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4.2.1 The SO(4, 4) case

To perform the analytic continuations in this case, we take

ϕ1 −→ ϕ1 + iπ , Ai −→ iAi , g −→ −i g , (4.26)

with ϕ2 and ϕ3 left unchanged. This implies that we shall have

X1 −→ −iX1 , X2 −→ −iX2 , X3 −→ iX3 , X4 −→ iX4 . (4.27)

The Lagrangian (4.19) will therefore retain the identical form, except that now the potential

(4.21) will be replaced by

V = 8g2 (coshϕ2 + coshϕ3 − coshϕ1) . (4.28)

Turning now to the embedding in eleven-dimensional supergravity, we make the corre-

sponding continuations

µ3 −→ −iµ3 , µ4 −→ −iµ4 , (4.29)

while leaving µ1 and µ2 unchanged. This implies that we shall have ∆ −→ −i∆, for which

we may define the cube root so that

∆1/3 −→ i∆1/3 . (4.30)

Finally, we perform a “trombone” rescaling dŝ211 −→ λ2 dŝ211, Â(3) −→ λ3 Â(3) with λ = i.

We therefore arrive at the metric and field-strength reductions

dŝ211 = ∆2/3 ds24 + g−2 ∆−1/3
4∑

i=1

X−1
i

(
dµ2

i + µ2
i (dφi + g Ai)2

)
, (4.31)

F̂(4) =

4∑

i=1

ηi

(
2g (X2

i µ
2
i −∆Xi) ǫ(4) +

1

2g
X−1

i ∗dXi ∧ d(iµ2
i )i

− 1

2g2
X−2

i d(µ2
i ) ∧ (dφi + g Ai) ∧ ∗F i

)
, (4.32)

where

∆ =
4∑

i=1

Xi µ
2
i , µ2

1 + µ2
2 − µ2

3 − µ2
4 = 1 ,

ηi = (1, 1,−1,−1) . (4.33)

Note that if the scalar fields are taken to be trivial (Xi = 1), the internal space has the

positive-definite metric on H4,4 given by

ds27 =

4∑

i=1

(dµ2
i + µ2

i dφ
2
i ) , (4.34)

where the µi coordinates are subject to the constraint given in (4.33).
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4.2.2 The SO(6, 2) case

Our analytic continuation in this case is taken to be

ϕ1 −→ ϕ1 +
iπ

2
, ϕ2 −→ ϕ2 +

iπ

2
, ϕ3 −→ ϕ3 −

iπ

2
,

Ai −→ e−
i
4π Ai g −→ e

i
4π g , (4.35)

which implies

X1 −→ e−
i
4π X1 , X2 −→ e−

i
4π X2 , X3 −→ e−

i
4π X3 , X4 −→ e

3i
4 π X4 . (4.36)

This leaves the form of the Lagrangian (4.19) unchanged except that now the scalar potential

(4.21) is replaced by

V = 8g2 (sinhϕ1 + sinhϕ2 − sinhϕ3) . (4.37)

This has no stationary points, and it is unbounded from above and below.

For the embedding in eleven-dimensional supergravity, we make the corresponding con-

tinuation

µ4 −→ e−
i
2π µ4 , (4.38)

while leaving µ1, µ2 and µ3 unchanged. This means that ∆ defined in (4.24) will be changed

according to ∆ −→ exp(− i
4π)∆, for which we shall have the replacement in the cube root:

∆1/3 −→ e−
3i
4 π ∆1/3 . (4.39)

Finally, we perform a trombone rescaling dŝ211 −→ λ2 dŝ211, Â(3) −→ λ3 Â(3) of the eleven

dimensional fields with λ = exp(− i
4π). This leads to the following expressions for the metric

and field strength reductions:

dŝ211 = ∆2/3 ds24 + g−2 ∆−1/3
4∑

i=1

X−1
i

(
dµ2

i + µ2
i (dφi + g Ai)2

)
, (4.40)

F̂(4) =
4∑

i=1

ηi

(
− 2g (X2

i µ
2
i −∆Xi) ǫ(4) −

1

2g
X−1

i ∗dXi ∧ d(µ2
i )

+
1

2g2
X−2

i d(µ2
i ) ∧ (dφi + g Ai) ∧ ∗F i

)
, (4.41)

where

∆ =
4∑

i=1

Xi µ
2
i , µ2

1 + µ2
2 + µ2

3 − µ2
4 = 1 ,

ηi = (1, 1, 1,−1) . (4.42)
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Note that if the scalar fields are taken to be trivial (Xi = 1), the internal space has the

positive-definite metric on H6,2 given by

ds27 =

4∑

i=1

(dµ2
i + µ2

i dφ
2
i ) , (4.43)

where the µi coordinates are subject to the constraint given in (4.42). Note also that, in

accordance with our discussion of the existence of stationary points in section 2, the scalar

potential given in (4.37) for this H6,2 reduction has no extrema.

5 Non-compact Gauged Supergravities in Higher Dimension

In this section we discuss two further examples associated with non-compact gauged su-

pergravities, in five and seven dimensions. Our starting points are the N = 2 gauged

theories whose consistent reductions from type IIB on S5 and D = 11 supergravity on S4

respectively were discussed in [1]. The five-dimensional theory has U(1)3 gauge fields in

the Cartan subgroup of the SO(6) isometry of S5, while the seven-dimensional theory has

U(1)2 gauge fields in the Cartan subgroup of the SO(5) isometry of S4.

5.1 Five-dimensional N = 2 gauged supergravity

In [1], the consistent Pauli reduction that yields N = 2 gauged supergravity coupled to

two vector multiplets was given. The gauge fields lie in the U(1)3 Cartan subgroup of the

full SO(6) gauge group of the N = 8 theory. The Lagrangian for the bosonic sector of the

N = 2 theory is given by

e−1 L5 = R− 1
2(∂ϕ1)

2 − 1
2(∂ϕ2)

2 − 1
4

∑

i

X−2
i (F i)2 + 1

4ǫ
µνρσλ F 1

µν F
2
ρσ A

3
λ − V , (5.1)

where the scalar potential is given by

V = −4g2
3∑

i=1

X−1
i , (5.2)

and we define

X1 = e
− 1√

6
ϕ1− 1√

2
ϕ2

, X2 = e
− 1√

6
ϕ1+

1√
2
ϕ2

, X3 = e
2√
6
ϕ1

. (5.3)

The embedding in the type IIB ten-dimensional theory involves a consistent Pauli re-

duction on S5, described by [1]

dŝ210 = ∆1/2 ds25 +
1

g2
∆−1/2

3∑

i=1

X−1
i

(
dµ2

i + µ2
i (dφi + g Ai)2

)
,

22



Ĝ(5) =

3∑

i=1

(
2g(X2

i µ
2
i −∆Xi) ǫ(5) −

1

2g
X−1

i ∗dXi ∧ d(µ2
i )

+
1

2g2
X−2

i d(µ2
i ) ∧ (dφi + g Ai

(1)) ∧ ∗F i
(2)

)
, (5.4)

where the self-dual 5-form is given by F̂(5) = Ĝ5 + ∗̂Ĝ5, and

∆ =
3∑

i=1

Xi µ
2
i ,

3∑

i=1

µ2
i = 1 . (5.5)

One can perform an analytic continuation of the full S5 reduction to describe an N = 8

non-compact SO(4, 2) gauged supergravity. In the N = 2 truncation considered here,

the retained U(1)3 gauge fields reside in the Cartan subgroup. The appropriate analytic

continuation is achieved by sending

ϕ1 −→ ϕ1 − 2i√
6
π , Ai −→ e

i
3π Ai , g −→ e−

i
3π g , (5.6)

with ϕ2 unchanged. Under these continuations, we shall have

X1 −→ e
i
3π X1 , X2 −→ e

i
3π X2 , X3 −→ e−

2i
3 π X3 . (5.7)

The Lagrangian (5.1) becomes

e−1 L5 = R− 1
2(∂ϕ1)

2 − 1
2(∂ϕ2)

2 − 1
4

∑

i

X−2
i (F i)2 − 1

4ǫ
µνρσλ F 1

µν F
2
ρσ A

3
λ − V , (5.8)

(i.e. the sign of the Chern-Simons term is reversed) with the scalar potential (5.2) being

replaced by

V = 4g2 (X−1
1 +X−1

2 −X−1
3 ) ,

= 4g2 (2e
1√
6
ϕ1

cosh 1√
2
ϕ2 − e

− 2√
2
ϕ1
) . (5.9)

It is easily seen that indeed, as expected from the discussion in section (2), this potential

has no stationary points. It is unbounded from above and below.

In the description of the embedding in the type IIB theory, we must make corresponding

continuation

µ3 −→ e
i
2π µ3 , (5.10)

leaving µ1 and µ2 unchanged, implying that we shall have

∆ −→ e
i
3π ∆ . (5.11)
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The type IIB theory has a “trombone” symmetry under which we perform the rescalings

dŝ210 −→ λ2 dŝ210, and F̂(5) −→ λ4 F̂(5). If we take λ = exp(− i
12π), the we finally arrive at

the reduction

dŝ210 = ∆1/2 ds25 +
1

g2
∆−1/2

3∑

i=1

X−1
i

(
dµ2

i + µ2
i (dφi + g Ai)2

)
,

Ĝ(5) =
3∑

i=1

ηi

(
2g(X2

i µ
2
i −∆Xi) ǫ(5) −

1

2g
X−1

i ∗dXi ∧ d(µ2
i )

+
1

2g2
X−2

i d(µ2
i ) ∧ (dφi + g Ai

(1)) ∧ ∗F i
(2)

)
, (5.12)

where

∆ =

3∑

i=1

Xi µ
2
i , µ2

1 + µ2
2 − µ2

3 = 1 ,

ηi = (1, 1,−1) . (5.13)

This describes a reduction on the non-compact hyperboloid H4,2, and the supergravity we

have obtained here is the N = 2 truncation of the N = 8 non-compact gauged SO(4, 2)

supergravity in five dimensions.

5.2 Seven-dimensional N = 2 gauged supergravity

The expression for a consistent S4 reduction that yields the U(1)2 gauged N = 2 super-

gravity was given in [1]. The gauge fields lie in the Cartan subgroup of SO(5). The bosonic

Lagrangian is given by

e−1L7 = R− 1
2(∂~ϕ)

2 − 1
4

2∑

i=1

X−2
i (F i

(2))
2 − V , (5.14)

where the scalar potential V is given by

V = −g2
(
4X1X2 + 2X−1

1 X−2
2 + 2X−1

2 X−2
1 + 1

2 − (X1X2)
−4
)
, (5.15)

and

X1 = e
− 1√

2
ϕ1+

1√
10

ϕ2
, X2 = e

1√
2
ϕ1+

1√
10

ϕ2
. (5.16)

The theory is obtained via a consistent Pauli reduction on S4 [1], with

dŝ211 = ∆̃1/3 ds27 + g−2 ∆̃−2/3
(
X−1

0 dµ2
0 +

2∑

i=1

X−1
i (dµ2

i + µ2
i (dφi + g Ai

(1))
2)
)
,(5.17)

∗̂F̂(4) = 2g

2∑

α=0

(
X2

α µ
2
α − ∆̃Xα

)
ǫ(7) + g ∆̃X0 ǫ(7) +

1

2g

2∑

α=0

X−1
α ∗dXα ∧ d(µ2

α)

+
1

2g2

2∑

i=1

X−2
i d(µ2

i ) ∧ (dφi + g Ai
(1)) ∧ ∗F i

(2) , (5.18)
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where the auxiliary variable X0 is defined by X0 ≡ (X1X2)
−2, and we have

∆ =
2∑

α=0

Xα µ
2
α ,

2∑

α=0

µ2
α = 1 . (5.19)

An analytic continuation to a de Sitter like supergravity is given by sending

ϕ1 −→ ϕ1 +
i√
2
π , ϕ2 −→ ϕ2 +

i√
10
π , A1 −→ e

3i
5 π Ai , g −→ e−

3i
5 π g . (5.20)

These imply that we shall have

X0 −→ e−
2i
5 π X0 , X1 −→ e−

2i
5 π X1 , X2 −→ e

3i
5 π X2 . (5.21)

Under this continuation, the Lagrangian is still given by (3.4), except that now the scalar

potential (5.15) is replaced by

V = g2 (4X1 X2 − 2X−1
1 X−2

2 + 2X−2
1 X−1

2 + 1
2(X1 X2)

−2) ,

= g2 (4e
− 3√

10
ϕ2

sinh 1√
2
ϕ1 + 4e

2√
10

ϕ2
+ 1

2e
− 4√

10
ϕ2
) . (5.22)

One can easily see that, as expected, this potential has no stationary points. It is unbounded

from above and below.

The continuation of the embedding in eleven-dimensional supergravity is obtained by

making the corresponding continuation,

µ0 −→ µ0 , µ1 −→ µ1 , µ2 −→ e−
i
2π µ2 . (5.23)

This implies that we will have ∆ −→ exp(−2i
5 π)∆. Using the trombone rescaling symmetry

dŝ211 −→ λ2 dŝ211, ¸∗̂F̂(4) −→ λ6 ∗̂F̂(4), with λ = exp( i
15π), we find that the reduction (5.17),

(5.18) becomes

dŝ211 = ∆1/3 ds27 + g−2 ∆−2/3
(
X−1

0 dµ2
0 +

2∑

i=1

X−1
i (dµ2

i + µ2
i (dφi + g Ai

(1))
2)
)
, (5.24)

∗̂F̂(4) = −2g
2∑

α=0

ηα X
2
α µ

2
α ǫ(7) + g∆(X0 + 2X1 − 2X2) ǫ(7) −

1

2g

2∑

α=0

ηα X
−1
α ∗dXα ∧ d(µ2

α)

− 1

2g2

2∑

i=1

ηi X
−2
i d(µ2

i ) ∧ (dφi + g Ai
(1)) ∧ ∗F i

(2) , (5.25)

where

∆ =

2∑

α=0

Xα µ
2
α , µ2

0 + µ2
1 − µ2

2 = 1 ,

ηα = (1, 1,−1) . (5.26)
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The internal metric lives on the hyperboloidal space H3,2. In a full consistent reduction on

this space, obtained by analytically continuing the consistent S4 reduction [3] that gives the

N = 4 gauged SO(5) theory in seven dimensions, one would obtain the N = 4 non-compact

SO(3, 2) gauged supergravity. Our N = 2 truncation retains just the U(1)2 gauge field in

the Cartan subgroup of SO(3, 2).

6 Black Hole and Cosmological de Sitter Solutions

In this section, we shall derive charged black hole and cosmological solutions for specific

supergravities with non-compact gaugings in D = 4, 5 and 7. In the examples considered,

only the charges residing in the Abelian subgroup of SO(p, 2r) are turned on, yielding

solutions that can all be described within an N = 2 truncation. Specifically the equations

of motion for such multiply-charged solutions can be solved in the case of the N = 2

truncation of these supergravities in D = 4, D = 5 and D = 7. These solutions are related

to the AdS charged black hole solutions of the N = 2 truncations of the respective SO(8),

SO(6) and SO(5) gauged supergravities.

6.1 Three-charge solutions of D = 5, N = 2 gauged SO(2, 4) and SO(4, 2)

supergravities

These solutions are closely related to the AdS black hole solutions of the N = 2 trunca-

tion of five-dimensional SO(6) gauged supergravity, coupled to the three Abelian vector

supermultiplets. The latter solutions were derived in [23], and are of the form

ds25 = −(H1H2H3)
−2/3 f dt2 + (H1H2H3)

1/3 (f−1 dr2 + r2dΩ2
3,k) ,

Xi = H−1
i (H1H2H3)

1/3 , Ai
(1) =

√
k (1−H−1

i ) coth(
√
k βi) dt , (6.1)

where

f = k − µ

r2
+ 4g2 r2 (H1H2H3) , (6.2)

and the harmonic functions Hi are given by

Hi = 1 +
µ sinh2(

√
k βi)

k r2
. (6.3)

Here, k can be 1, 0 or −1, corresponding to the cases where the foliations in the transverse

space have the metric dΩ2
3,k on the unit S3, T 3 or H3, where H3 is the unit hyperbolic

3-space of constant negative curvature. Note that in order to satisfy the Einstein equations

of motion, the constants ci in the harmonic functions Hi = ci +O(1/r2) in [23] were taken
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to be 1. This ensured that the contribution from the scalars Xi to the right-hand side of the

Einstein equations was compatible with the metric contribution in the Einstein equations

(see section 3.2 of [23] for details).

For the N = 2 truncation of the SO(2, 4) and SO(4, 2) supergravities with the potential

of the form (5.2), one can apply the analysis of [23] in a straightforward way. The equations

of motion are solved with the same ansatz (6.1)-(6.2) for the metric, scalars and gauge fields,

except that now the harmonic functions take the form

Hi = ηi +
µ sinh2(

√
k βi)

k r2
, i = 1, 2, 3 , (6.4)

where: ηi = (1, −1, −1) and ηi = (1, 1, −1) for SO(2, 4) and SO(4, 2) supergravities,

respectively. Note that the integration constants ηi are determined by the Einstein equation

Rr
r + 2Rθ

θ = −2V . (See also section 3.2 of [23].) The conditions Hi ≥ 0 ensure that the

metric remains real, and that the scalar fields are in the physical regime Xi ≥ 0. This

requires µ ≥ 0, and it constrains the radial coordinate r to lie only in a restricted range:

µ ≥ 0 , 0 ≤ r2 ≤ min

(
µ sinh2(

√
kβ2)

k
,
µ sinh2(

√
kβ3)

k

)
, (6.5)

or

µ ≥ 0 , 0 ≤ r2 ≤ µ sinh2(
√
kβ3)

k
, (6.6)

for SO(2, 4) or SO(4, 2) gauged supergravity respectively. Note that the horizon(s) are

determined by the zeros of the function f . Their location depends on the values of the

parameters µ, g and βi. (For a related discussion of horizons for AdS charged black holes in

SO(6) gauged supergravity, see section 4.3 of [23].) The solution has a curvature singularity

both on the lower and upper limit of the r coordinate range (6.5) (for SO(2, 4) supergravity)

and (6.6) (for SO(4, 2) supergravity).

The analytic continuation:

t → i t , r → i r , θ → i θ (6.7)

yields a set of solutions with µ ≤ 0, for which the r coordinate is restricted to a range:

µ ≤ 0 , 0 ≤ r2 ≤ min

(
|µ| sinh2(

√
kβ2)

k
,
|µ| sinh2(

√
kβ3)

k

)
, (6.8)

or

µ ≤ 0 , 0 ≤ r2 ≤ |µ| sinh2(
√
kβ3)

k
, (6.9)

for SO(2, 4) or SO(4, 2) gauged supergravity respectively.
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Owing to the analytic continuation performed in(6.7), the solution with k = +1 cor-

responds to a cosmological solution on H3 with a “big crunch” singularity at the upper

boundary of the time coordinate r, and a cosmological horizon at a zero of function f = 0.

On the other hand the analytic continuation of the solution with k = −1 corresponds to

a black hole solution with S3 sections, and a naked singularity on both boundaries of the

radial coordinate r.

While the Ansätze for these solutions bear similarities to the Ansätze for the SO(6) AdS

black hole solutions, the former are highly singular. This can be attributed to the fact that

the potential (5.2) does not have an extremum, and is unbounded from above and below.

The limit µ → 0 and βi → ∞, keeping µ e2βi = 2 qi finite, leads to supersymmetric

solutions. For this class of solution one can perform an analytic continuation g → i g and

formally solve the Killing spinor equations with the new ansatz for the metric:4

ds25 = −(H1H2H3)
−2/3 dt2 + (H1H2H3)

1/3 (dr2 + r2dΩ2
3,k=+1) ,

Xi = H−1
i (H1H2H3)

1/3 , Ai
(1) =

√
k (1−H−1

i ) dt , , (6.10)

with new harmonic functions:

Hi = 2ηig t+
qi
r2

, (6.11)

where ηi = (1, −1, −1) and ηi = (1, 1, −1) are solutions for SO(4, 2) and SO(2, 4) su-

pergravities respectively. (Note that the analytic continuation g → i g changes the overall

sign of the gauged supergravity potential, and thus interchanges the SO(4, 2) and SO(2, 4)

potentials.) This form of solutions allows for multi-centered black hole solutions, i.e.:

Hi = 2ηig t+

N∑

j=1

qij
(~ri − ~r)2

. (6.12)

Again, the positivity of the harmonic functions Hi constrains the allowed range of the t and

r coordinates.

The solution (6.10) can be obtained (see [24]) from the supersymmetric limit (µ → 0,

βi → ∞, µe2βi = 2 qi) of the solution (6.1), by first performing the analytic continuation

g → i g and the coordinate transformation

r = r′
√

2g t′,
dt′

2g t′
= dt+ F (r)dr, F (r) =

−2g r
∏3

i=1 Hi(r)

1− 4g2 r2
∏3

i=1 Hi(r)
, (6.13)

and then dropping the “primes”.

4See Ref. [13,24] for details. These solutions are analogues of four-dimensional charged de-Sitter solutions

first discussed by Kastor and Traschen [22].
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6.2 Four-charge solutions of D = 4, N = 2 gauged SO(4, 4), SO(2, 6) and

SO(6, 2) supergravities

In the N = 2 truncation of four-dimensional SO(4, 4), SO(2, 6) and SO(6, 2) gauged su-

pergravities, one can again find four-charge solutions, whose ansatz is closely related to the

four-charge solutions of SO(8) supergravity [25,26]:

ds24 = (H1H2H3H4)
−1/2(−fdt2) + (H1H2H3H4)

1/2(f−1 dr2 + r2dΩ2
2, k) (6.14)

Xi = H−1
i (H1H2H3H4)

1/4 , Ai
(1) =

√
k (1−H−1

i ) coth(
√
k βi) dt ,

with

f = k − µ

r
+ 4g2r2H1H2H3H4 , (6.15)

and the harmonic functions

Hi = ηi +
µ sinh2(

√
kβi)

kr
, i = 1, · · · , 4 . (6.16)

Here, one takes ηi = (1, 1, −1, −1), ηi = (1, −1, −1, −1) and ηi = (1, 1, 1, −1) for the

SO(4, 4), SO(2, 6) and SO(6, 2) gauged supergravities respectively. The constraints on the

integration constants ηi are again imposed by the Einstein equations.

The conditions Xi ≥ 0 imply positivity of harmonic functions Hi, and they constrain

the parameter and the range of the radial coordinate:

µ > 0 , 0 ≤ r ≤ min

(
µ sinh2(

√
kβ3)

k
,
µ sinh2(

√
kβ4)

k

)
, (6.17)

µ > 0 , 0 ≤ r ≤ min

(
µ sinh2(

√
kβ2)

k
,
µ sinh2(

√
kβ3)

k
,
µ sinh2(

√
kβ4)

k

)
,(6.18)

µ > 0 , 0 ≤ r ≤ µ sinh2(
√
kβ4)

k
, (6.19)

for the SO(4, 4), SO(2, 6) and SO(6, 2) gauged supergravities respectively. These solutions

have naked singularities at both boundaries. Depending on the values of the g, µ and βi

parameters, the solutions can have horizons at zeros of the function f . There is also a

mirror region with µ < 0 and r < 0.

After performing the analytic continuation µ → iµ, r → i r, t → i t and θ → i θ of the

solutions with k = 1, one obtains cosmological solutions on H2 that are analogous to those

in the five-dimensional case; they can have a a “big crunch” singularity at the upper bound

of the time coordinate r, and a cosmological horizon at a zero of the function f , whose

location is determined by the value of the parameters.
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In spite of the fact that the potential has a (tachyonic) extremum, these solutions are

singular, owing to the unbounded nature of the potential.

The limit µ → 0 and βi → ∞, keeping µe2βi = 2 qi finite, leads to the supersymmetric

solutions, in a fashion analogous to the D = 5 case we discussed previously. In the present

case, an analytic continuation g → i g allows for a class of solutions that take the form

(see [13]):

ds25 = −(H1H2H3H4)
−1/2 dt2 + (H1H2H3H4)

1/2 (dr2 + r2dΩ2
3,k=+1) ,

Xi = H−1
i (H1H2H3H4)

1/4 , Ai
(1) =

√
k (1−H−1

i ) dt , (6.20)

with

Hi = 2 ηig t+
qi
r
. (6.21)

Here ηi = (1, 1, −1, −1), ηi = (1, −1, −1, −1) and ηi = (1, 1, 1, −1) for SO(4, 4), SO(6, 2)

and SO(2, 6) gauged supergravities, respectively. (Again the analytic continuation g → i g

changes the overall sign of the gauged supergravity potential and thus interchanges the

SO(6, 2) potential with the SO(2, 6) one.) These solutions also allow for multi-centered

black holes, i.e.

Hi = 2 ηig t+
N∑

j=1

qij
|~ri − ~r| . (6.22)

Again, the positivity of the harmonic functions Hi constrains the allowed range of the t and

r coordinates.

These solutions are different from the four-charge de Sitter solutions of stable de Sitter

vacua, discussed in [13]. The latter can be obtained by the analytic continuation g → ig of

the BPS four-charge black hole solutions in SO(8) gauged supergravity. They correspond

to the four-charge solutions (6.20)-(6.22) with ηi = (1, 1 1, 1) and asymptote at late times

to the stable de Sitter vacuum. When one identifies the four charges qi = q (i = 1, · · · 4)
the scalars become constant (Xi = 1) and the solution becomes the de Sitter Reissner

Nordström black hole of Kastor and Traschen [22] of the (stable) de Sitter vacuum.

In the case of SO(4, 4) gauge supergravity the potential also has a tachyonic de Sitter

extremum. However, the solutions (6.20)-(6.22) with ηi = (1, 1, −1, −1) do not admit a

limit of the charge parameters qi for which the scalars could become constant (Xi = 1), and

thus these solution cannot describe charged de Sitter black hole solutions in this tachyonic

extremum.
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6.3 Two-charge solutions of D = 7, N = 2 gauged SO(1, 4) and SO(3, 2)

supergravities

Our last examples arise in the N = 2 truncation of seven-dimensional SO(1, 4) and SO(3, 2)

supergravities. These solutions are closely related to the AdS black hole solutions of the

N = 2 truncation of seven-dimensional gauged SO(5) supergravity. The solutions here are

of the form

ds27 = −(H1H2)
−4/5 f dt2 + (H1H2)

1/5 (f−1 dr2 + r2dΩ2
5,k) , (6.23)

Xi = H−1
i (H1H2)

1/2 , (i = 1, 2) , X0 = (X1X2)
−2 ,

Ai
(1) =

√
k (1−H−1

i ) coth(
√
k βi) dt , i = 1, 2 , (6.24)

with

f = k − µ

r4
+ 4g2 r2 (H1H2) , (6.25)

and harmonic functions given by

Hi = ηi +
µ sinh2(

√
k βi)

k r4
. (6.26)

Here, ηi = (−1, −1) and ηi = (1, −1) for the SO(1, 4) and SO(3, 2) gauged supergravities

respectively. The positivity of the Xi is ensured by requiring the harmonic functions Hi to

be positive, which is achieved by the restrictions

µ ≥ 0 , 0 ≤ r4 ≤ min

(
µ sinh2(

√
kβ1)

k
,
µ sinh2(

√
kβ2)

k

)
, (6.27)

or

µ ≥ 0 , 0 ≤ r4 ≤ µ sinh2(
√
kβ2)

k
, (6.28)

respectively. The analytic continuation

t → i t , r → i r , θ → i θ (6.29)

yields a cosmological solution with µ ≤ 0, and the time coordinate r is constrained to the

same region as above.

Taking the supersymmetric limit and analytic continuation g → i g, one also obtains

analogous “de Sitter” solutions:

ds27 = −(H1H2)
−4/5 dt2 + (H1H2)

1/5 (dr2 + r2dΩ2
5,k=+1) , (6.30)

Xi = H−1
i (H1H2)

1/2 , Ai
(1) =

√
k (1−H−1

i )βi) dt , i = 1, 2 ,
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with the harmonic functions

Hi = 2 ηig t+
qi
r4

. (6.31)

We conclude this section with a comment about another solution associated with the

N = 2 truncation of seven-dimensional supergravity, with the SO(2, 2) gauging. The do-

main wall solution [27] of the N = 2 supergravity for the SO(4) gauging is given by

ds27 = e2A dxµ dxνηµν + e8A dy2 , e
− 3√

10
φ
= H , (6.32)

with

e−4A =
2g

5(H−1/3)′
, H = e

− 3√
10
φ0

+ q|y| , (6.33)

where a prime denotes a derivative with respect to y. The analytic continuations g → i g

and {t, y, q} → i {t, y, q} turn this into a cosmological solution of the de Sitter gauged

supergravity.

7 Conclusions

An elegant feature of gauged SO(p, q) (q = 2r) supergravity theories is that they can be

obtained from gauged SO(p+ q) supergravity theories by means of straightforward analytic

continuations. The consistent Pauli reductions of M-theory and string theory on spheres

Sp+q−1, yielding gauged SO(p + q) supergravities, have been studied extensively in the

literature. This has allowed us to explore in a straightforward way the corresponding

consistent Pauli reductions on the hyperboloidal spaces Hp,q, thus yielding supergravity

theories with non-compact gauge groups.

We provided a general analysis of the extrema of the unimodular part of the scalar poten-

tial for supergravities with SO(p, q) gaugings. It turns out that only for seven-dimensional

supergravity with an SO(2, 2) gauging, and four-dimensional supergravity with an SO(4, 4)

gauging, does one obtain stable extrema of the unimodular part of the scalar potential. In

the seven-dimensional case the potential still depends on a “volume” scalar, thus yielding

(cosmological) solutions with a running scalar and a positive potential contribution. On

the other hand, the four-dimensional case has an extremum of the scalar potential corre-

sponding to a de Sitter vacuum, which, however, is a saddle point. This result is consistent

with the analysis of the N = 2 gauged supergravity potentials with general non-compact

isometries [15].

Interestingly, we also found that D = 4 gauged SO(4, 4), SO(2, 6) and SO(6, 2) su-

pergravity, D = 5 gauged SO(2, 4) and SO(4, 6) supergravity and D = 7 gauged SO(1, 4)
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and SO(3, 2) supergravity admit Abelian charged black hole (and cosmological) solutions in

their N = 2 truncations, whose structures are closely related to the corresponding gauged

SO(p+q) supergravity black holes. However, the solutions obtained here are highly singular,

in consequence of the unbounded nature of the scalar potentials.
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[18] M. Cvetič, G.W. Gibbons and C.N. Pope, A string and M-theory origin for the Salam-

Sezgin model, Nucl. Phy. B677, 164 (2004), hep-th/0308026.

[19] A. Salam and E. Sezgin, Chiral compactification on Minkowski×S2 of N = 2 Einstein-

Maxwell supergravity in six dimensions, Phys. Lett. B147, 47 (1984).

[20] B. de Wit and H. Nicolai, N = 8 supergravity, Nucl. Phys. B208, 323 (1982).

[21] D.Z. Freedman, Supergravity with axial-gauge invariance, Phys. Rev.D15, 1173 (1977).

[22] D. Kastor and J. Traschen, Particle production and positive energy theorems for charged

black holes in De Sitter, Class. Quant. Grav. 13, 2753 (1996), gr-qc/9311025.
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