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Abstract

We describe the couplings of six-dimensional supergravity, which contain a self-dual
tensor multiplet, to n

T
anti-self-dual tensor matter multiplets, n

V
vector multiplets

and n
H

hypermultiplets. The scalar fields of the tensor multiplets form a coset
SO(nT , 1)/SO(nT ), while the scalars in the hypermultiplets form quaternionic Kähler
symmetric spaces, the generic example being Sp(nH , 1)/Sp(nH )⊗Sp(1). The gauging
of the compact subgroup Sp(nH) × Sp(1) is also described. These results generalize
previous ones in the literature on matter couplings of N = 1 supergravity in six
dimensions.
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1. Introduction

Supersymmetric field theories in six dimensions (6D) are of considerable interest for
various reasons. Those which admit chiral supersymmetry, namely the (1, 0) and (2, 0) su-
persymmetric cases, are especially interesting, because when anomaly free, they may hint at
significant properties of various compactifications of a unifying theory in higher dimensions,
such as M-theory.

While fairly general couplings of (1, 0) supergravity to matter were described sometime
ago by the authors [1], recent investigations of M-theory compactifications have unsurfaced
interesting generalizations of those couplings. For example, an anomaly free model that
contained nine anti-self-dual tensor multiplets, eight vector multiplets and twenty hypermul-
tiplets was found in [2] from M-theory on (K3 × S1)/Z2. A low energy field theory for this
model does not exist in the literature at present. In this paper, we shall close this gap and
provide the most general couplings to date of the (1, 0) supergravity in 6D.

As is well-known, when the numbers of self-dual and anti-self-dual tensor multiplets are
different, a manifestly Lorentz invariant lagrangian formulation no longer exists. This is
because the non-paired self-dual or anti-self-dual components do not admit the usual kinetic
term as the square of the third-rank antisymmetric tensor field strength. In the case of a
single tensor matter multiplet coupling to the (1, 0) supergravity, a lagrangian formulation
does exist, because of the paring between the self-dual field strength of supergravity multiplet
and the anti-self-dual field strength of the matter tensor multiplet.

The (1, 0) supergravity will be alternatively referred to as N = 1 supergravity. The
first model of N = 1 supergravity coupled to a single tensor multiplet was given in [3].
A more complicated system of N = 1 supergravity coupled to a single tensor multiplet,
Yang-Mills vector multiplets, and hyper multiplets forming a quaternionic Kähler manifolds
was accomplished in terms of lagrangian formulation in ref. [1]. (The model was called
N = 2 supergravity in [1], according to an alternative convention for counting the number
of supersymmetries.) The gauging of the scalar manifold isometries, as well as the Sp(1)
automorphism group was also given in [1].

In a work by Romans [4], the multiple tensor multiplets were coupled to supergrav-
ity with no lagrangian formulation. It was found that the tensor multiplets form a coset
SO(n

T
, 1)/SO(n

T
) in order for the couplings to supergravity to be consistent. Afterwards

it was found by Sagnotti [5] that vector multiplets can be further introduced to this system.
In this case, an interesting Yang-Mills gauge anomaly structure emerges already at the level
of classical field equations. This anomaly, and its relation to a supercurrent anomaly has
been discussed in [6].

Globally supersymmetric limits of the models mentioned above turn out to be rather
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subtle. For example, the sigma model describing the hypermultiplets is based on a hyper-
Kähler manifold, rather than the quaternionic Kähler manifold that arises in coupling to
supergravity. The coupling of a anti-self-dual tensor multiplet to Yang-Mills was worked out
in [7] by direct construction rather than a rigid supersymmetry limit of the supergravity plus
tensor multiplet system. Such a limiting procedure is not known yet. Further peculiarities
arise in the tensor multiplet plus Yang-Mills system, for the description of which, we refer
the reader to [7].

In this paper, we derive all the field equations N = 1 supergravity coupled to n
T

tensor
multiplets, n

H
copies of hypermultiplets and n

V
copies of vector multiplets. The n

T
scalars

of the tensor multiplet parametrize the coset SO(n
T
, 1)/SO(n

T
), and the 4n

H
scalars of the

hypermultiplets parametrize the coset Sp(n
H
, 1)/Sp(n

H
)⊗ Sp(1). The choice of the latter

coset is due to notational simplicity. Our formulae can straightforwardly be adapted to more
general quaternionic symmetric spaces. In this paper, we also gauge the Sp(n

H
) subgroup

of the hyperscalar manifold isometry group Sp(n
H
, 1) and the automorphism group Sp(1).

The supersymmetry transformations provided here reduce to the full transformation rules of
the single tensor multiplet case, and in that sense we expect our result to be exact. However,
the fermionic field equations are given up to terms cubic in fermions, and bosonic field
equations up to fermionic bilinears. In the interesting case of (anti) self-duality equations,
the coefficients of the fermionic bilinears are determined as well.

An interesting feature that emerges in the coupling of Yang-Mills to multi-tensor multi-
plets is that the gauge kinetic term vanishes for certain expectation value of the scalar fields
[5]. Here we also find the correlated singularities in the full supersymmetry transformation
of the gravitino and the gaugino. It was proposed in [8] that these singularities signal a
phase transition, and in [9, 10] this was attributed to tensionless strings. The couplings
of the hypermatter constructed here do not exhibit singularities, provided that the group
Sp(n

H
)×Sp(1) is not gauged. The gauging of this group, however, gives rise to singularities

in a number of hypermatter couplings at the point in the moduli space where the previously
known gauge coupling singularities occur.

This paper is organized as follows. In the next section, we describe the geometrical aspects
of the scalar manifolds SO(n

T
, 1)/SO(n

T
), and Sp(n

H
, 1)/Sp(n

H
)⊗ Sp(1), and set up the

notation. In section 3, we give our results for all the field equations with supersymmetry
transformation rules, with their derivations based on mutual consistency. In the same section,
we also present the gauging of Sp(n

H
) × Sp(1). The gauging of SO(n

T
) does not seem

to be possible for reasons that will be explained in section 3. In section 4, the case of
n
T
= 1, namely a single tensor multiplet coupled to supergravity, which admits a lagrangian

formulation is presented. Concluding remarks are given in section 5. The Appendix is
devoted to useful notations and conventions crucial for our computations.
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2. Preliminaries

We first fix the field contents of our total system. It consists of four kinds multiplets: the
multiplet of N = 1 supergravity (eµ

m, ψµ
A), n

T
copies of anti-self-dual tensor multiplets

plus one self-dual tensor multiplet denoted collectively as (Bµν
I , χAi, ϕα), n

V
copies of

Yang-Mills vector multiplets (Aµ, λ
A), and n

H
copies of hypermultiplets (φα, ψa). We

use the world indices µ, ν, ··· = 0, 1, ···, 5 and tangent space indices m, n, ··· = (0), (1), ···, (5).
The indices A, B, ··· = 1, 2 label the fundamental representation of the automorphism group
Sp(1). The scalar fields ϕα

(α = 1, ···, n
T
) parametrize the coset SO(n

T
, 1)/SO(n

T
). The

indices I, J, ··· = 0, 1, ···, n
T

label the fundamental representation of SO(n
T
, 1), and the

indices i, j, ··· = (1) , ···, (n
T
) label the fundamental representation of SO(n

T
). The hyper-

scalars φα
(α = 1, ···, 4n

H
) parametrize the coset Sp(n

H
, 1)/Sp(n

H
)⊗ Sp(1), and the indices

a, b, ··· = 1, ···, 2n
H

label the fundamental representation of Sp(n
H
).

The Yang-Mills multiplet fields are in the adjoint representation of a product group
G = G1 × G2 × G3 × · · · × Gp. Some of these factors can be identified with any compact
subgroups of the isometry groups SO(n

T
, 1) and Sp(n

H
, 1). In this paper we will consider

the case when G1 = Sp(n
H
) and G2 = Sp(1).

In describing the couplings of the tensor multiplet, it is useful to introduce the coset
representatives LI and LI

i, which together form an (n
T
+ 1) × (n

T
+ 1) matrix which

obeys the properties of an SO(n
T
, 1) group element [11]. Denoting the components of the

inverse matrix by LI and Li
I , they obey the relations

LIL
I = 1 , Li

ILI = 0 , LI
iLI = 0 . (1)

The SO(n
T
, 1) invariant constant metric

η
IJ

≡ −LILJ + LI
iLJi , (2)

can be used to raise and lower the SO(n
T
, 1) vector indices: η

IJ
LJ = −LI , ηIJLi

J = LIi.
Another useful tensor GIJ is defined by

GIJ ≡ LILJ + LI
iLJi , (3)

with the important distinction with the sign in the first term compared with (2). In contrast
to the latter, GIJ is not a constant tensor, but it depends on the coordinates ϕα.

Composite SO(n
T
) connection Aα

ij , and coset vielbeins Vα
i can be defined by

∂αLI
i = −Aα

i
j LI

j + Vα
i LI . (4)
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Thus we have the useful relations DαLI = ∂αLI = LI
iVα i , DαLI

i = LIVα
i, where Dα =

∂α + Aα which yields the commutator

⌊⌈Dα, Dβ ⌋⌉LI
i =

(
Vα

jVβ
i − Vβ

jVα
i
)
LIj . (5)

The overall constant in the r.h.s., which is the square of the inverse radius of the hyperboloid
SO(n

T
, 1)/SO(n

T
), is fixed to be +1 by the Hχ -terms in the closure of two supersymmetries

on Bµν
I . Furthermore, the curvature tensor can be read off from (5), which shows that the

manifold has a constant negative curvature.
The case n

T
= 1 is special in the sense that the original coset SO(n

T
, 1)/SO(n

T
) is

reduced to a semi-simple group manifold SO(1, 1) with the non-positive definite metric.
Moreover, since there is a pair of a self-dual and an anti-self-dual tensor multiplets forming a
total field strength free of (anti)self-dual condition, we can construct an invariant lagrangian.
We will discuss this particular case in section 4.

As for the coset Sp(n
H
, 1)/Sp(n

H
)⊗ Sp(1), many of its properties have been exhibited

in [1]. It is useful to recall that given a representative L of this coset, the Maurer-Cartan
form decomposes as

L−1∂αL = Aα
abTab + Aα

ABTAB + Vα
aATaA , (6)

where Tab and TAB are generators of Sp(n
H
) and Sp(1), TaA are the coset generators,

Aα
ab and Aα

AB are the Sp(n
H
) and Sp(1) composite connections, and Vα

aA are the
coset vielbeins. It is convenient to define a triplet of complex structures Jαβ

AB as 1

Jαβ
AB =

(
Vαa

AVβ
aB + Vαa

BVβ
aA

)
, (7)

which obey the Sp(1) algebra. The Sp(1) curvature Fαβ is related to the complex
structures as

Fαβ = 2Jαβ . (8)

For completeness, we also record the relations obeyed by the vielbeins:

g
αβ
VaA

αVbB
β = ǫabǫAB

, VaA
αV aBβ + α↔β = gαβδA

B , (9)

VaA
αV bAβ + α↔β =

1

n
H

gαβδa
b , (10)

where ǫab and ǫAB are the invariant tensors of Sp(n
H
) and Sp(1), respectively.

1A correction to a misprint in [1]: The r.h.s. of eq. (2.7) should be multiplied with −2.
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Let us next consider the local Sp(n
H
)× Sp(1) gauge transformations

δφα = ξαabΛ
ab(x) + ξαABΛ

AB(x) , (11)

where ξα
ab and ξα

AB are Killing vectors in general, but for the case at hand they take the
simple form T abφα and TABφα, respectively. The covariant derivative of the hyperscalars
are defined as

Dµφ
α = ∂µφ

α − gAµ
abξαab − g′Aµ

ABξαAB , (12)

where g and g′ are the gauge coupling constants for Sp(n
H
) and Sp(1), respectively.

The coupling of scalar field modifies the covariant derivatives of the fermionic fields in
such a way that the following replacements have to be made

gAµ
ab → gAµ

ab + (Dµφ
α)Aα

ab (except in Dµλ) ,

g′Aµ
AB → g′Aµ

AB + (Dµφ
α)Aα

AB . (13)

The reason for the exception made for the covariant derivative of λ is a technical one, and
it is explained in [1]. One consequence of the above replacements is that the occurrence of
Yang-Mills field strength dependence terms in the following commutator

⌊⌈Dµ,Dν ⌋⌉ǫA = 1
4
Rµν

mnγmnǫ
A + (Dµφ

α)(Dνφ
β) Fαβ

ABǫ
B
− trzFµν C

ABǫ
B
, (14)

where the triplet of functions CAB lie in the Sp(n
H
)× Sp(1) algebra, and is given by

CAB = gAα
ABξαcd Tcd + g′

(
Aα

ABξαCD TCD − TAB
)
. (15)

This function arises in the field equations as well as the supersymmetry transformation rules,
as we shall see in the next section. As discussed in detail in [1], this function satisfies

DµC
AB = (Dµφ

α)
(
DαC

AB
)
, (16)

and one can derive [1]
DαC

AB = 2Jαβ
ABξβ , (17)

where
ξα ≡ gAα

ABξαcd Tcd + g′Aα
ABξαCD TCD . (18)

One of the peculiar features of the vector couplings to the tensor multiplet is the necessity
of a constant matrix CIz, where the index z distinguishes the various factor groups in the
total Yang-Mills gauge group, while I = 1, 2, ···, n

T
is for the local coordinate index for the
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coset SO(n
T
, 1)/SO(n

T
) [5]. The constant coefficients CIz have been related to certain

S-matrix elements in the conformal field theory an open superstring [5]. It is convenient to
define the following quantities which arise frequently in our calculations and results:

Cz ≡ CIzLI , C iz ≡ CIzLI
i , (19)

Hµνρ ≡ Hµνρ
ILI , Hµνρ

i ≡ Hµνρ
ILI

i . (20)

3. The Field Equations and Supersymmetry Transformations

Our strategy is to start with a general ansätze for the supersymmetry transformations
and field equations with unknown coefficients. We then determine all the coefficients by the
closure of supersymmetry transformations, modulo filed equations when necessary, and the
requirement for the field equations to transform into each other. Although we will give the
bosonic field equations up to fermionic bilinears and fermionic field equations up to cubic in
fermion terms, it turns out that we can still fix the full transformation rules, as well as the full
(anti)self-duality equations. We shall first give the results, and then explain the derivations.
Several formulae that are useful in these derivations are provided in the Appendix.

The fermionic field equations are 2

γµνρDνψρ
A + 1

2
Hµνργνψρ

A − 1
2
γνγµχAiVα

i∂νϕ
α − 2γνγµψaVα

aADνφ
α

+ 1
2
Cz trz

(
γρσγµλAFρσ

)
+ 1

4
Hµνρ

iγνρχ
Ai − trz

(
γµCABλB

)
= 0 , (21)

γµDµχ
Ai − 1

24
γµνρχAiHµνρ − 1

2
C iz trz

(
γµνλAFµν

)
+ 1

4
Hµνρiγµνψρ

A (22)

− 1
2
γµγνψµVα

i∂νϕ
α − C−1

z C iz trz
(
CABλB

)
= 0 , (23)

γµDµψ
a + 1

24
γµνρψaHµνρ − γµγνψµAVα

aADνφ
α − 2λA ξ

α Vα
aA = 0 , (24)

CzγµDµλA + 1
4
C izγµνχAiFµν +

1
24
C izγµνρλAHµνρi +

1
2
C izγµλAVαi∂µϕ

α

+ 1
4
γµγνρψµAFνρ +

1
2
CABγ

µψµ
B − 1

2
C−1

z C izCABχi
B − 2ψaVaA

α ξα = 0 , (25)

2A correction to a misprint in [1]: The gaugino field equation in eq. (4.3) should have the additional

term:
√
2e−ϕ/

√
2ψaVαaAξ̃

αÎ , in notation of [1].
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where Tz are the generators of the algebra in the adjoint representation of the gauge group
labelled by z and the summation over z is always understood. All the terms which involve
the gravitino field ψµ

A result from supercovariantizations.
The bosonic field equations, up to fermionic bilinears, are

H+
µνρ = 0 , (26)

H−
µνρ

i = 0 , (27)

Rµν = 1
4
GIJHµρσ

IHν
ρσ J + gαβ∂µϕ

α∂νϕ
β + 4g

αβ
(Dµφ

α)
(
Dνφ

β
)

+2Cz trz
(
Fµ

ρFνρ − 1
8
gµνFρσ

2
)
+ 1

4
gµνC

−1
z trz

(
CABCAB

)
, (28)

e−1Dµ (eg
µν∂νϕ

α) + Γβγ
α∂µϕ

β∂µϕγ − 1
2
Vi

αC iz trzFµνF
µν

− 1
6
Vi

αH i
µνρH

µνρ − Vi
αC−2

z C iz trz
(
CABCAB

)
= 0 , (29)

e−1Dµ (eg
µνDνφ

α) + Γβγ
α

(
Dµφ

β
)
(Dµφγ)− C−1

z Jα
βAB trz

(
CABξβ

)
= 0 , (30)

Dν (eC
zF µν) + 1

2
e
(
CzHµρσ

− + C izHµρσ
+ i

)
Fρσ − 2eξαDµφ

α = 0 . (31)

From experience with the n
T
= 1 case, we expect that all the higher order fermion terms,

except those which involve only matter fermions, can be determined by supercovariantization
of the field strengths and covariant derivatives. In the interesting case of (anti) self-duality
equations (26) and (27), we can actually determine them exactly. We find

Ĥ+
µνρ = 1

4

(
χiγµνρχi

)
+ 1

2

(
ψaγµνρψa

)
, (32)

Ĥ−
µνρ

i = − 1
2
C iz trz

(
λγµνρλ

)
, (33)

where the (anti) self-dual field strengths are defined as the suitable projections of the super-
covariantized field strength

Ĥµνρ
I ≡ 3∂⌊⌈µBνρ ⌋⌉

I + 3CIz trz
(
F⌊⌈µνAρ ⌋⌉ − 1

3
⌊⌈A⌊⌈µ, Aν ⌋⌉Aρ ⌋⌉

)

+3
(
ψ⌊⌈µγνψρ ⌋⌉

)
LI − 3

(
ψ⌊⌈µγνρ ⌋⌉χ

i
)
Li

I . (34)

The gauge coupling constant is suppressed in the definition of the Chern-Simons form, for
simplicity in notation. Despite the fact that the field equations given above are up to
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higher order fermionic terms, interestingly enough one can determine the full supersymmetry
transformation rules. Using the the previous works [1, 4, 5] as a guideline, we find the
following generalized result:

δeµ
m = (ǫγmψµ) , (35)

δψµ = Dµ(ω̂)ǫ+
1
48
γρστγµǫĤρστ − (δφα)(Aαψµ)

− 1
16
γµχ

i(ǫχi)− 3
16
γνχ

i(ǫγµνχi) +
1
32
γµνρχ

i(ǫγνρχi)

− 9
8
Cz trz [λ(ǫγµλ) ] +

1
8
Cz trz [ γµνλ(ǫγ

νλ) ]

− 1
16
Cz trz [ γρσλ(ǫγµ

ρσλ) ] + 1
16
γνρǫ (ψaγµνρψa) , (36)

δBµν
I = 2CIz trz

(
A⌊⌈µδAν ⌋⌉

)
− 2

(
ǫγ⌊⌈µψν ⌋⌉

)
LI +

(
ǫγµνχ

i
)
Li

I , (37)

δϕα = (ǫχi) Vi
α , (38)

δχi = 1
2
γµǫD̂µϕ

αVα
i − 1

24
γµνρǫĤµνρ

i − (δφα)(Aαχ
i)− (δϕα)Aα

ijχj

+ 1
2
C iz trz [ γ

µλ (ǫγµλ) ] , (39)

δAµ = (ǫγµλ) , (40)

δλA = − 1
4
γµνǫ

A
F̂µν − (δφα)(AαλA)− C−1

z C iz
(
χi(AλB)

)
ǫB − 1

2
C−1

z CABǫ
B , (41)

δφα = VaA
α
(
ǫAψa

)
, (42)

δψa = γµǫ
A
D̂µφ

α Vα
aA − (δφα)(Aαψ)

a . (43)

Here all the hatted field strengths and covariant derivatives are supercovariantizations of the
non-hatted ones. Recalling that supercovariantization is achieved by replacing the parameter
ǫA in the supersymmetry transformation by (−ψµ

A), in addition to (34), one finds

F̂µν ≡ Fµν − 2
(
ψ⌊⌈µγν ⌋⌉λ

)
, (44)

D̂µϕ
α ≡ ∂µϕ

α − Vi
α
(
ψµχ

i
)

,

D̂µφ
α ≡ Dµφ

α − VaA
α
(
ψµ

Aψa
)

, (45)
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The supercovariant derivative occurring in (36) is defined by

Dµ(ω̂)ǫ
A ≡

[
∂µε

AB + 1
4
ω̂µ

rsγrsε
AB + g′Aµ

AB + (Dµφ
α)Aα

AB
]
ǫB , (46)

where the supercovariantized spin connection is given by

ω̂mrs =
1
2
(Ĉmrs − Ĉmsr + Ĉsrm) , (47)

and Ĉ is supercovariantized Ricci’s rotation coefficient:

Ĉµνm ≡ ∂µeνm − ∂νeµm − (ψ̄µγmψν) . (48)

Note that the gravitational constant has always been suppressed. It can easily be rein-
troduced by assigning mass dimension 1 to bosons, 3/2 to fermions and −1/2 to ǫ.
Since the supersymmetry transformations determined here reduce to the full supersymme-
try transformations given in [1] for the n

T
= 1 case, we conjecture that they are the full

supersymmetry transformations for all n
T
.

The supersymmetry transformation rules presented above form a closed algebra with
the composite parameters lmn for the Lorentz transformation, ǫ3 for the supersymmetry
transformation, and ξµ for the general coordinate transformation given by

⌊⌈ δ(ǫ1), δ(ǫ2) ⌋⌉eµm = ξν∂νeµm + (∂µξ
ν)eνm + (ǫ3γmψµ) + lm

neµn ,

ξµ ≡ (ǫ2γ
µǫ1) ,

ǫA3 ≡ −ξµψµ +
[
VbB

α(ǫB2 ψ
b)(Aαǫ1)

A − (1↔2)

]
,

lmn ≡ ξµω̂µmn +
[

1
24

(
ǫ2γ⌊⌈mγ

ρστγn ⌋⌉ǫ1
)
H−

ρστ
ILI − 1

8
ξµ

(
ψaγµmnψa

)

− 1
4

(
ǫ2γmnχ

i
)
(ǫ1χi)− 1

8

(
ǫ2γ⌊⌈m

ρχi
) (
ǫ1γn ⌋⌉ρχi

)

−Cz trz
(
ǫ2γ⌊⌈mλ

) (
ǫ1γn ⌋⌉λ

) ]
− (1↔2) . (49)

We now outline the steps we have followed to derive the equations of motion and super-
symmetry transformations.

(1) We first parametrize the transformation rules and the (anti) self-duality equations,
as dictated by the symmetries of the theory, the existing partial results for the multi-tensor
multiplet couplings [4], and the full results for the n

T
= 1 case [1]. At first, we assume that

all matter fields are inert under the local Yang-Mills gauge transformations, as well as the
local Sp(1) gauge transformations. It is convenient to perform the gauging process, after
the ungauged results are obtained.
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Note that factors of C−1
z occur in a number of places in the equations of motion and

the transformations rules. While these factors may seem unusual, it is easy to understand
their origin, which has to do with the fact that we have parametrized the field equations
for the gauge fermion and the Yang-Mills field (excluding the hypermatter contributions
which are presented here) in such a way that they agree with those of ref. [5]. For example,
once the Cz factor is introduced in (25), it is clear that the closure of the supersymmetry
transformations (41) must include the C−1C iχ

i
λ -term in order to produce the C iλH -term

in the χi -field equation, upon the variation of χi. In comparing this term with the n
T
=

1 case [1], it is useful to note the identity (88) provided in the Appendix.
(2) Next, we require the closure of the supersymmetry transformations on the bosons.

Normally, closure on the bosons does not require any field equations. However, as it has been
known for some time [12], in the case of self-duality conditions which serve as equations of
motion, the closure of supersymmetry algebra on the bosons does require the (anti) self-
duality equations. Completing the closure calculation on the bosons, we are able to fix all
the supersymmetry transformations, including the (fermion)2 -terms, as well as the (anti)
self-duality equations (32) and (33). In this context, (90) given in the Appendix is useful in
establishing the closure on eµ

m and Bµν .
(3) Next, we obtain the gravitino equation by supersymmetric variation of (32), and the

χ -field equation by supersymmetry variation of (33).
(4) Varying the gravitino equation under supersymmetry, we obtain the Einstein equation

(28). In doing so, (82) given in the Appendix is useful in handling the H2 -terms. Note the
occurrence of the trace gµνF

2 -term in (28), which is absent in the case of n
T
= 1, due to

the use of dilaton equation of motion. Since, here we have multi dilatons, the trace term can
no longer be absorbed into the the dilaton equation of motion.

(5) Varying the χ -field equation (23), we obtain the field equation (29) for the generalized
dilatons ϕα [5].

(6) Next, we obtain the hyperino field equation (24), by the requirement of the closure
of two supersymmetries acting on the hyperino ψa. Varying this equation under supersym-
metry, we obtain the field equation (30) for the hyperscalars φα.

(7) Finally the gaugino field equation (25) is also obtained by the closure of two super-
symmetries on the gaugino λ. The variation of this equation under supersymmetry in turn
yields the Yang-Mills field equation (31).

(8) Having determined the ungauged matter couplings and supersymmetry transforma-
tion rules, we now turn on the gauge coupling constants g, g′, thereby gauging the group
Sp(n

H
)× Sp(1). To do this, we follow the following steps:

(a) We gauge covariantize the relevant derivatives in the supersymmetry transformation
rules, as well as the field equations, according to the rules described in section 2.
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(b) Next, we find that the closure calculation will require the introduction of only one
new term to the transformation rules, namely the CAB -dependent term in the gaugino
transformation rule (41). This can be seen by examining the closure of supersymmetry on
the gravitino, and by varying the new gauge coupling dependent terms in Dµǫ. Furthermore,
we learn that we need to add the CAB -dependent term in the gravitino field equation.

(c) Having determined the fact that the gaugino transformation rule is modified by the
CAB -dependent term that is proportional to the gauge coupling constant, we then examine
systematically the effect of this new variation in all the closure calculations on the fermions.
Thus we determine all the new, gauge coupling constant dependent modifications of the
fermionic field equations, as given in [1].

(d) Finally, we vary the new terms in the fermionic equations of motion under the full
transformation rules (old and new), as well as the old terms in the fermionic equations
of motion under the new, gauge coupling constant dependent gaugino transformation rule,
thereby obtaining all the modifications, up to the fermionic bilinear terms in the bosonic
field equations of motion.

An important observation to be made here is that the gauging of the SO(n
T
, 1) or any of

its subgroups does not work, because it is not known how, and it may as well be impossible,
to write down a gauge covariant field strength for antisymmetric tensor fields.

4. Invariant Lagrangian for the Case of n
T
= 1

When the number of self-dual tensor multiplets differs from that of anti-self-dual tensor
multiplets, the system lacks invariant lagrangian, because we can not write down the ki-
netic term for purely (anti) self-dual third-rank tensor. However, we do have an invariant
lagrangian for the case of n

T
= 1 as in refs. [1, 4]. Since this particular case is also of

another importance with the geometry SO(1, 1) with no isotropy group, we give the details
of the system.

First of all, the coset space is now reduced to a semi-simple group SO(1, 1), and the
coset representatives LI

i and LI can be parametrized as

(
L0 L0

(1)

L1 L1
(1)

)
=

(
cosh θ sinh θ
sinh θ cosh θ

)
,

(
L0 L1

L(1)
0 L(1)

1

)
=

(
cosh θ − sinh θ
− sinh θ cosh θ

)
(50)

for a rescaled field θ ≡ ϕ1/
√
2. Accordingly, we have

η11 = +1 , η00 = −1 , η10 = 0 , (51)

V1
(1)∂µϕ

1 = LI∂µLI
(1) = ∂µθ . (52)

11



Following ref. [4], we define

aµν ≡ 1
2

(
Bµν

0 − Bµν
1
)

, bµν ≡ 1
2

(
Bµν

0 +Bµν
1
)

,

Bµν
0 = bµν + aµν , Bµν

1 = bµν − aµν . (53)

We define the field strengths of aµν and bµν as

fµνρ ≡ 3∂⌊⌈µaνρ ⌋⌉ + 3ṽ z trz
(
F⌊⌈µνAν ⌋⌉ − 2

3
A⌊⌈µAνAρ ⌋⌉

)
,

gµνρ ≡ 3∂⌊⌈µbνρ ⌋⌉ + 3vz trz
(
F⌊⌈µνAν ⌋⌉ − 2

3
A⌊⌈µAνAρ ⌋⌉

)
, (54)

where two constants vz and ṽ z are defined by

vz ≡ 1
2

(
C0z + C1z

)
, ṽ z ≡ 1

2

(
C0z − C1z

)
. (55)

Accordingly we have C(1)z = vzeθ − ṽ ze−θ, and

Cz = vzeθ + ṽ ze−θ . (56)

After some manipulations, we get

Hµνρ ≡ Hµνρ
ILI = e−θfµνρ + e+θgµνρ = 2e+θg−µνρ ,

Hµνρ
(1) ≡ Hµνρ

ILI
(1) = e+θgµνρ − e−θfµνρ = 2e+θg+µνρ . (57)

Due to the (anti)self-dualities of Bµν
I , we have fµνρ = −e2θ g̃µνρ, f̃ µνρ = −e2θgµνρ, where

g̃mnr ≡ (1/6)ǫmnrstugstu and idem for f̃ mnr.
We can obtain the field equations of this system from our general case, substituting above

relations. The gravitino, dilatino, gaugino, and hyperino field equations thus obtained are

γµνρDνψρ
A + 1

12
eθγ⌊⌈µγ

ρστγν ⌋⌉ψ
νAgρστ − 1

2
γνγµχ

A∂νθ − 2Vα
aAγνγµψaDνφ

α

+ 1
2
Czγρσγµ trz

(
λAFρσ

)
− 1

12
eθγρστγµχ

Agρστ − trz
(
CABγµλB

)
= 0 , (58)

γµ
(
Dµχ− 1

2
γνψµ∂νθ +

1
12
eθγρστψµgρστ

)
− C−1

z

(
vzeθ − ṽ ze−θ

)
trz

(
CABλB

)

− 1
12
eθγρστχ gρστ − 1

2
(vzeθ − ṽ ze−θ) trz (γ

ρσλFρσ) = 0 , (59)

Czγµ
(
DµλA + 1

4
γρσψµAFρσ

)
+ 1

4
γρσχA(v

zeθ − ṽ ze−θ)Fρσ
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+ 1
2
(vzeθ − ṽ ze−θ)γµλA∂µθ +

1
12

(vzeθ − ṽ ze−θ)eθγρστλAgρστ

+ 1
2
CABγ

µψµ
B − 1

2
C−1

z

(
vzeθ − ṽ ze−θ

)
CABχ

B − 2ψaVaA
αξα = 0 , (60)

γµ
(
Dµψ

a − Vα
aAγνψµADνφ

α
)
+ 1

12
γρστψaeθgρστ − 2λAξ

αVα
aA = 0 , (61)

where χ ≡ χ(1), and we recall that Cz = vzeθ + ṽ ze−θ.
In a similar fashion, we can get all the bosonic field equations as

1
4

(
Rµν − 1

2
gµνR

)
− 1

12
e2θ

(
3gµρσgνρσ − 1

2
gµνg

2
ρστ

)
− 1

4
(∂µθ)(∂νθ) +

1
8
gµν(∂ρθ)

2

− gαβ(∂µφ
α)(∂νφ

β) + 1
2
gµνgγδg

ρσ(∂ρφ
γ)(∂σφ

δ) + 1
8
gµνC

−1
z trz

(
CABCAB

)

− 1
4
Cz trz

[
2Fµ

ρFνρ − 1
2
gµν(Fρσ)

2
]
= 0 ,

1
2
e−1∂µ (eg

µν∂νθ)− 1
4
(vzeθ − ṽ ze−θ)F 2

µν − 1
6
e2θg2ρστ

− 1
4
C−2

z

(
vzeθ − ṽ ze−θ

)
trz

(
CABCAB

)
= 0 , (62)

1
2
Dν ( eC

zF µν ) + 1
2
e
(
vze2θgµρσFρσ − ṽ z g̃µρσFρσ

)
− eξαDµφ

α = 0 , (63)

e−1∂µ (eg
µν∂νφ

α) + gµνΓβγ
α(∂µφ

β)(∂νφ
γ)− C−1

z Jα
βAB trz

(
CABξβ

)
= 0 . (64)

Now our antisymmetric tensor field equation is to be of the second order as a combination
of the self-dual and anti-self-dual parts of gµνρ: To be more specific, we add the (anti)self-
duality conditions H−

µνρ
ILI

(1) + · · · = 0 and H+
µνρ

ILI + · · · = 0 in (32) and (33), to get

e2θgµνρ = −f̃ µνρ + · · ·. We next take its divergence to get

1
2
Dµ

(
ee2θgµνρ

)
= − 1

8
ṽ zǫνρµστω trz(FµσFτω) . (65)

Similarly the supersymmetry transformation rule is also derived as

δeµ
m = +(ǭγmψµ) ,

δψµ = +Dµ(ω̂, Aα)ǫ+
1
24
eθγρστγµǫgρστ − (δφα)(Aαψµ)

− 1
16
γµχ(ǫχ)− 3

16
γνχ(ǫγµνχ) +

1
32
γµνρχ(ǫγ

νρχ) + 1
16
γνρǫ(ψaγµνρψa)

− 1
16
Cz trz [ 18λ(ǫγµλ)− 2γµνλ(ǫγ

νλ) + γρσλ(ǫγµ
ρσλ) ] ,
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δbµν = +2vz trz
(
A⌊⌈µδAν ⌋⌉

)
− e−θ(ǫγ⌊⌈µψν ⌋⌉) +

1
2
e−θ(ǭγµνχ) , δθ = +(ǫχ) ,

δχ = + 1
2
γµǫ∂µθ − (δφα)(Aαχ)− 1

12
eθγµνρǫgµνρ +

1
2

(
vzeθ − ṽ ze−θ

)
trz [ γ

µλ(ǫγµλ) ] ,

δAµ = +(ǫγµλ) ,

δλA = − 1
4
γµνǫAFµν − (δφα)(AαλA)− C−1

z

(
vzeθ − ṽ ze−θ

) (
χ(AλB)

)
ǫB − 1

2
C−1

z CABǫ
B ,

δφα = +VaA
α(ǫAψa) ,

δψa = +Vα
aAγµǫAD̂µφ

α − (δφα)(Aαψ)
a . (66)

Note that in the absence of gauging, the function CAB vanishes and singular behaviour in
the couplings arises in the energy-momentum tensor for the Yang-Mills field in (26) and in the
Yang-Mills equation (28). Furthermore, the λ2ǫ terms in the supersymmetry variation of the
gravitino vanish and the χλǫ terms in the supersymmetry variation of the gaugino diverge,
at the critical point where Cz = vzeθ+ ṽ ze−θ vanishes. When the gauging of Sp(n

H
)×Sp(1)

is switched on, the divergent C−1
z factors arise in χ, λ, Einstein, dilaton and hypermatter

field equations, and the supersymmetry variation of the gaugino picks up another singular
contribution.

When ṽ z = 0, this result agrees with ref. [4] as far as the supergravity and Yang-
Mills multiplets are concerned, and also with ref. [1] with hypermultiplets. When vz = 0,
this result coincides with the system in ref. [14]. In the important cases of vz = 0 and
ṽ z = 0, this is reduced to the usual exponential factors. It is worthwhile to mention that
the χλ -terms in the λ -transformation rules have apparently different coefficients compared
with [1], via (88). This is attributed to the fact that our gaugino λ -field is rescaled by an
exponential function of the dilaton θ.

As will be discussed in the next section, since the conservation of the Yang-Mills current
is satisfied only for η

IJ
CIzCJz′ = 0, the invariant lagrangian exists only for the two cases

vz = 0 or ṽ z = 0 for our n
T
= 1 system. If we formally try to integrate the field equations

for other cases of vz ṽ z′ 6= 0, we encounter gauge non-invariant terms in the lagrangian, that
invalidate supersymmetry. This is because commutators of two supersymmetries will result
in a gauge transformation. Another explicit way to see this is to take the variation of the
b∧F ∧F term in the lagrangian under supersymmetry. This produces gauge non-invariant
terms proportional to vzṽ z′ which can not be cancelled. Note also that this feature for the
case vzṽ z′ 6= 0 at the classical level does not necessarily mean the system is inconsistent,
as will be discussed in the next section.
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In the case of ṽ z = 0, the invariant lagrangian by integrating the field equations is:

e−1Lṽ=0
n=1 = + 1

4
R(ω)− 1

12
e2θg2ρστ − 1

4
(∂µθ)

2 − 1
2

(
ψµγ

µνρDνψρ

)
− 1

2
(χγµDµχ)

− 1
4
vzeθ trz(Fµν)

2 − vzeθ trz
(
λγµDµλ

)

−g
αβ
gµν(∂µφ

α)(∂νφ
β)−

(
ψaγµDµψa

)
+ 1

2
vzeθ trz(χγ

µνλFµν)

+ 1
2

(
ψµγ

νγµχ
)
∂νθ + 2

(
ψµAγ

νγµψa

)
Vα

aA∂νφ
α

− 1
2
vzeθ trz

(
ψµγ

ρσγµλFρσ

)

− 1
24
eθgµνρ

[ (
ψλγ⌊⌈λγ

µνργτ ⌋⌉ψ
τ
)
− 2

(
ψ̄λγ

µνργλχ
)

+2
(
ψaγµνρψa

)
− (χγµνρχ) + 2vzeθ trz

(
λγµνρλ

) ]

− 1
4
v−1
z e−θ trz

(
CABCAB

)

−4 trz
(
ψaλAVα

aAξα
)
+ 1

2
trz

(
ψµ

AγµλBCAB

)
− trz

(
χAλBC

AB
)

. (67)

This lagrangian with the transformation rule (66) with ṽ z = 0 coincides with the system
in refs. [4, 1] with the Chern-Simon modification in the bµν -transformation and its field
strength. In 10D, this corresponds to the system in ref. [16].

In the case vz = 0, the invariant lagrangian is

e−1Lv=0
n=1 = + 1

4
R(ω)− 1

12
e2θg2ρστ − 1

4
(∂µθ)

2 − 1
2

(
ψµγ

µνρDνψρ

)
− 1

2
(χγµDµχ)

− 1
4
ṽ ze−θ trz(Fµν)

2 − ṽ ze−θ trz
(
λγµDµλ

)

−g
αβ
gµν(∂µφ

α)(∂νφ
β)−

(
ψaγµDµψa

)
− 1

2
ṽ ze−θ trz(χγ

µνλFµν)

+ 1
2

(
ψµγ

νγµχ
)
∂νθ + 2

(
ψµAγ

νγµψa

)
Vα

aA∂νφ
α

− 1
2
ṽ ze−θ trz

(
ψµγ

ρσγµλFρσ

)
+ 1

8
ṽ ze−1ǫµνρστωbµν trz(FρσFτω)

− 1
24
eθgµνρ

[ (
ψλγ⌊⌈λγ

µνργτ ⌋⌉ψ
τ
)
− 2

(
ψ̄λγ

µνργλχ
)

+2
(
ψaγµνρψa

)
− (χγµνρχ)− 2ṽ ze−θ trz

(
λγµνρλ

) ]

− 1
4
ṽ−1
z e−θ trz

(
CABCAB

)

−4 trz
(
ψaλAVα

aAξα
)
+ 1

2
trz

(
ψµ

AγµλBCAB

)
+ trz

(
χAλBC

AB
)

. (68)

This lagrangian and the transformation with vz = 0 correspond to the system in refs. [14, 4]
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with the explicit b∧F∧F -term in the lagrangian with no modification in the bµν -transformation
rule or its field strength. In 10D, this corresponds to the dual formulation [17].

5. Discussion

In this paper we have constructed the field equations of the combined system of the N =
1 supergravity multiplet, n

T
copies of anti-self-dual tensor multiplets with anti-self-dual

tensor multiplet, forming the coset space SO(n
T
, 1)/SO(n

T
), Yang-Mills multiplets, and

hypermultiplets forming the coset Sp(n
H
, 1)/Sp(n

H
)⊗Sp(1). Furthermore we have gauged

the group Sp(n
H
) × Sp(1). These are the most general couplings of the six dimensional

supergravity plus matter system to date. The resulting system exhibits some interesting
features which we now comment on.

We have already commented on the singular behaviour of the couplings at a special point
in moduli space, and the occurrence of new divergent couplings at the same point which
proportional to the gauged Sp(n

H
)× Sp(1) coupling constants. Another important feature,

which was observed in [6], and which continues to hold in the more general system presented
here, is the anomalous behaviour of the gauge couplings. Namely, writing the Yang-Mills
equation (31) as

Dν (eC
zF µν) = eJµ , (69)

we find that
Dµ(eJ

µ) = 1
16
ǫµνρστλη

IJ
CIzCJz′Fµν trz′ (FρσFτλ) . (70)

Perhaps not too surprisingly, the hypermatter contributions to this anomaly equation have
all canceled. Setting

η
IJ
CIzCJz′ = 0 , (71)

eliminates the anomalous divergence. This corresponds to the familiar n
T
= 1 case [1] for

which a covariant action can be written down. Interestingly, there are two possibilities that
have been treated simultaneously here. In notation of section 4, these correspond to the
cases of vz = 0 or ṽ z = 0. As discussed in section 4, the case of ṽ z = 0 is the familiar one
constructed by the authors a long tome ago [1], and its ten dimensional analog is well-known
[15, 16]. The case of vz = 0 corresponds to the dual formulation, constructed also long ago
[14], and its ten dimensional analog is the dual formulation of Chamseddine [17].

It should be emphasized that neither the elimination of the anomalous divergence (70)
ensure anomaly freedom, nor does its nonvanishing mean that the theory is anomalous. The
property of anomaly freedom solely depends on the choice of matter multiplets, and as is
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well-known, there are many available anomaly free sets of such multiplets, some of which
will be discussed below.

Considering the case of n
T
> 1, eq. (69) represents the Bose non-symmetric covariant

gauge anomaly, as observed in [6]. Its Bose symmetric covariant version, as well as the asso-
ciated local supersymmetry anomaly can be determined by considerations of Wess-Zumino
anomaly consistency conditions [6]. Although a covariant action can not be written down for
n
T
> 1, both the gauge as well as supersymmetry anomalies can nonetheless be associated

with the gauge and supersymmetry variation, respectively, of the Green-Schwarz type term
[6]

LGS = − 1
8
ǫµνρστλ

(
η
IJ
Bµν

ICJz
)
trz (FρσFτλ)− 1

2
ǫµνρστλη

IJ
CIzCJz′ωz

µνρω
z′

στλ , (72)

where ωz
µνρ is the Yang-Mills Chern-Simons form.

The results of [6] and our generalization which includes the hypermatter reveal therefore,
a surprising situation in which an anomalous system of supermultiplets can be supersym-
metrized, with the caveat that the integrability conditions for the equations of motion reflect
the anomalies. The fact that this is possible at all may be due to the manifest gauge covari-
ant nature of the field equations and supersymmetry transformation rules. Attempting to
supersymmetrize a gauge non-invariant action, on the other hand, would run immediately
into trouble with supersymmetrization.

The anomalies of the full system discussed here are to be cancelled by the quantum one-
loop effects, so that the total effective action is gauge invariant and supersymmetric, provided
that the right set of matter multiplets are included. The anomalies may cancel precisely, or
Green-Schwarz cancellation mechanism may have to be employed for the cancellation [18].
The same mechanism works in the dual formulation as was shown in [19, 20, 14]. In the case
of n

T
= 1, a generalized version of the Green-Schwarz mechanism was found by Sagnotti

[5] which involves the use of multi-tensor fields simultaneously. We conclude by mentioning
some of the anomaly free matter contents for the n

T
= 1 and n

T
> 1 cases.

For n
T
= 1 without gauging, a large number of anomaly free matter contents can be

obtained by compactifying the well-known anomaly free ten dimensional supergravity-Yang-
Mills systems that arise in string theory [21]. All of these models have a gauge group of rank
≤ 20, and they arise from a perturbative treatment of string compactification. Witten [22]
has discovered a new mechanism by which a nonperturbative symmetry enhancement occurs,
and a new class of anomaly-free models, not realized in perturbative string theory, emerge
in 6D. These can have rank greater than 20. Schwarz [23] has constructed new anomaly-free
models in 6D, some of which may potentially arise in a similar nonperturbative scheme.

As for the gauged case with n
T
= 1, an anomaly free model was found in [24], where

the gauge group is E6 × E7 × U(1). The U(1) factor is a subgroup of the automorphism
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group, and the hyper-fermions belong to the 912 dimensional representation of E7. The
origin of this model still remains mysterious, and it would be very interesting to determine
if it can be explained by a new kind of nonperturbative mechanism in M-theory.

In general, the necessary but not sufficient condition for the anomaly cancellation is [24]

n
H
− n

V
+ 29n

T
= 273 . (73)

As mentioned in the introduction, an example of an anomaly free model with n
T
= 9 has

been found in [2] by considering a suitable M-theory compactification, and it has n
V

=
8, n

H
= 20. The matter couplings of six dimensional supergravity constructed here provides

the field theoretic description of this model.
Finally, we mention an example of an anomaly free matter content with n

T
> 1 found

sometime ago in [25]. It has:

n
T
= 17 , n

H
= 28 , n

V
= 248 . (74)

The vector fields fit into the adjoint representation of E8, and we can take the hyperscalar
manifold to be E8/(E7 × Sp(1)), in which case the hyperfermions transform in 56 dimen-
sional representation of E7. As far as we know, this model, which has a rather simple field
content, has not found an M-theory explanation so far, and it would be interesting to see if
there is one.
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Appendix: Notations, Conventions and Lemmas

Our metric is (ηmn) = diag. (−,+,+,+,+,+), while the Clifford algebra is generated
by {γm, γn} = 2ηmn. Note that this signature differs from the one in [1]. The definition
of the Ricci tensor is the same as in [1], however, namely: Rµ

a = Rµν
ab eb

ν . We define
γ7 ≡ γ(0) (1) ··· (5), ǫ

012345 = +1, such that (γ7)
2 = +1. More generally we have

γr1···rn =
(−1)⌊⌈n/2 ⌋⌉

(6−n)! ǫr1···rns1···s6−nγs1···s6−n
γ7 . (75)

The basic gamma-matrix relations such as γmγ
rstγm = 0 stays the same as in ref. [1], as

well as the conventions for the Sp(1) indices, e.g.,

χA
i = ǫABχ

Bi
, χ

Ai
= χB

iǫBA
,

(
ǫ
AB

)
=

(
ǫAB

)
=

(
0 1
−1 0

)
, (76)

χA
i = ǫABχ

Bi
T , χ

Ai
= (χA

i)
†γ0 , (77)

(
χA

iγ
m1···mnλB

)
= (−1)n+1

(
λBγmn···m1χA

i

)
. (78)

For inner products of Sp(1) (or Sp(n
H
)) symplectic spinors [13], the contractions with

ǫ
AB

(or ǫab) are always understood, e.g., (χiγ
rsλ) =

(
χA

iγ
rsλA

)
as in [1], e.g.,

(
χ

i
γr1···rnλ

)
= (−1)n

(
λγr1···rnχ

i

)
. (79)

Exactly as in ref. [1], for given four symplectic Majorana-Weyl spinors ψ1, · · · , ψ4, where
the labels 1, ···, 4 denote all the possible indices they may carry, including Sp(1), Sp(n

H
) or

SO(n
T
) indices, the Fierz arrangement formula is

(
ψ1ψ2

) (
ψ3ψ4

)
= − 1

8
(1 + c2c4)

[ (
ψ1ψ4

) (
ψ3ψ2

)
− 1

2

(
ψ1γ

rsψ4

) (
ψ3γrsψ2

) ]

− 1
8
(1− c2c4)

[ (
ψ1γ

rψ4

) (
ψ3γrψ2

)
− 1

12

(
ψ1γ

rstψ4

) (
ψ3γrstψ2

) ]
(80)

where γ7(ψ2, ψ4) = (c2ψ2, c4ψ4).
One of the most frequently used relationships related to the (anti)self-dual tensors is

SµνρSµνρ ≡ AµνρAµνρ ≡ 0, where the third-rank tensors S and A are respectively self-dual
and anti-self-dual tensors: (1/6)ǫmnr

stuSstu = +Smnr, (1/6)ǫmnr
stuAstu = −Amnr. For the

tensor Hµνρ
I we use the symbols H+

ρστ
I (or H−

ρστ
I) to distinguish their dual (or anti-

self-dual) components. The important duality properties of the gamma-matrices multiplied
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by fermions are summarized as follows. For fermions with the positive chirality such as
ψµ

A, λAr or ǫA, or for fermions with negative chiralities such as χAi, ψa, we have

1
6
ǫmnr

stu (γstuψµ) ≡ − (γmnrψµ) , 1
6
ǫmnr

stu (γstuψ
a) ≡ + (γmnrψ

a) , (81)

In other words, the combination γrstψµ behaves as an anti-self-dual tensor, while γrstψa be-
haves as a self-dual tensor, as far as the indices ⌊⌈ rst ⌋⌉ are concerned. It also follows that
γρστλH−

ρστ
I ≡ 0 or γρστχH+

ρστ
I ≡ 0.

In the remainder of this appendix, we shall list a number of lemmas that are useful in
the derivation of field equations and supersymmetry transformation rules.

(1) For H2 -term computation in gravitational equation the following lemma is useful:

H+
⌊⌈µν

τiH+
ρ ⌋⌉στi ≡ 0 . (82)

This can be verified by using the duality property of H , and simple manipulations involving
the Schouten identity, which in the present case means that an antisymmetrization of seven
world indices vanishes identically.

(2) For χH -terms in the derivations of χ -field equation out of anti-self-duality condition,
the following lemma is useful:

(
ǫγσ⌊⌈µ|χ

i
)
H−

|νρ ⌋⌉σ ≡ − 1
3

(
ǭχi

)
H−

µνρ . (83)

This can be proven by the vanishing of (ǫγµνργ
στωχi)H−

στω = 0 with the γ -algebra for the
l.h.s.

(3) In calculating the divergence of the Yang-Mills field equation, it is useful to note that

DµC
z = ∂µC

z = (∂µϕ
α)Vα

iCz
i , DµC

zi = (∂µϕ
α)Vα

iCz . (84)

(4) For the gravitino field equation out of self-duality condition, we use the lemma

(ǫγσγµνργ
τωχi)H

+
στω

i = − 1
3
(ǫγστωγµνρχi)H

+
στω

i − 16 (ǫχi)H
+
µνρ

i , (85)

confirmed by γ -algebra as well as the self-duality of H+.
(5) The λ2 and χ2 -terms in the supersymmetry transformation of the gravitino can be

rearranged as

δψµ|λ2 = −CIzLI

(
3
4
ǫ
B
λµ

BA + 1
4
γµ

νǫ
B
λν

BA + 1
16
γστ ǫAλµστ

)
, (86)

δψµ|χ2 = − 3
8
ǫ
B
χµ

BA + 1
8
γµ

νǫ
B
χν

BA , (87)
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where λµ
AB = trz

(
λAγµλ

B
)
, λρστ ≡ trz

(
λγρστλ

)
, χµ

AB ≡
(
χAγµχ

B
)
, χρστ ≡ (χγρστχ).

(6) The λχ -term in δλ (41) can be rewritten by using the identity

(
χi(AλB)

)
ǫB = 1

4
λA (ǫχi) +

1
8
γρσλA (ǫγρσχi) +

1
2
ǫA

(
λχi

)
, (88)

obtained by Fierz rearrangement.
(7) In order to fix the λ2 -terms in the supersymmetry transformation of the gravitino,

we arrange the ψaλ2 -terms in the commutator on ψa, which needs the lemma
(
ǫA2 γµνρǫ1B

)
λρBA = −4 trz

(
ǫ⌊⌈ 1|γµλ

) (
λγνǫ|2 ⌋⌉

)
+ 1

2
ξρλµνρ ,

trz
(
ǫ⌊⌈ 2|γ

mn
ρλ

) (
ǫ|1 ⌋⌉γρλ

)
= − 1

2
ξρλρ

mn + 2 trz
(
ǫ⌊⌈ 2|γ

⌊⌈mλ
) (
ǫ|1 ⌋⌉γ

n ⌋⌉λ
)

, (89)

where ξµ ≡ (ǫ2γ
µǫ1).

(8) The following non-trivial lemmas are useful for the closure checks on eµ
m or Bµν :

trz
(
ǫ1γρσ⌊⌈µλ

) (
ǫ2γν ⌋⌉

ρσλ
)
− (1↔2) ≡ 0 ,

(
ǫ1γ

µνρσχ(i
) (
ǫ2γρσχ

j)
)
− (1↔2) ≡ 0 ,

(ǫ2γ
ρǫ1) trz

(
λγµνρλ

)
≡ trz [ 2 (ǫ2γµλ) (ǫ1γνλ)− (ǫ2γµνρλ) (ǫ1γ

ρλ) ]− (1↔2) . (90)

These are easily confirmed by appropriate Fierz arrangements as well as the duality properties
we already know.

(9) It is useful to note the following relation for the closure check on λ:

(
ǫ
(A
1 γστρǫ

B)
2

)
γµνστλBH

−
µνρ ≡ 0 ,

(
ǫ
(A
1 γ

µρσǫ
B)
2

)
γµ

νλBH
−
νρσ ≡ 0 , (91)

which can be proven by the relationship
(
ǫ
(A
1 γρστ ǫ

B)
2

)
⌊⌈ γρστ , γµνω ⌋⌉±λH−

µνω ≡ 0, etc.

due to the anti-self-duality of the combination
(
ǫA1 γρστ ǫ

B
2

)
as well as the anti-self-duality

of H− I .
(10) In the arrangement of λχ2 -terms in the commutator on λ, the following lemma for

super-variation is useful:

δ
(
C−1

z C iz
)
= C−2

z

(
ǫχj

) (
δijC2

z − C izCjz
)

. (92)
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