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This paper focuses on studying the state estimation problem of static neural networks with time-varying and distributed delays.
By constructing a suitable Lyapunov functional and employing two integral inequalities, a sufficient condition is obtained under
which the estimation error system is globally asymptotically stable. It can be seen that this condition is dependent on the two kinds
of time delays. To reduce the conservatism of the derived result, Wirtinger inequality is employed to handle a cross term in the
time-derivative of Lyapunov functional. It is further shown that the design of the gain matrix of state estimator is transformed to
finding a feasible solution of a linear matrix inequality, which is efficiently facilitated by available algorithms. A numerical example
is explored to demonstrate the effectiveness of the developed result.

1. Introduction

As a kind of recurrent neural networks [1], static neural
networks have attracted more and more attention from the
communities of artificial intelligence, nonlinear science, and
systems and control during the past few years. Many exciting
applications have been established in various areas includ-
ing combinational optimization, image processing, pattern
recognition, knowledge engineering, and semantic web [2].
As a matter of fact, time delay is frequently encountered in
neural network models and leads to unexpected dynamical
behaviors. For example, the existence of time delay may
make the underlying neural network unstable or even chaotic
(especially when the size of time delay is a bit large). On
the other hand, one of the requirements for successful appli-
cations is closely related to the stability of the constructed
neural network. Consequently, stability analysis of delayed
static neural networks has been extensively discussed and
some interesting stability criteria have been reported in the
open literature (see, e.g., [3–7] and references therein).

With the rapid development of modern industry, the
problems to be tackled are of high nonlinearity. Therefore,
the neural network applied to solve a complex nonlinear

problem often has a great number of neurons. As suggested
in [8], it is very hard or expensive to acquire the complete
information of the states of all neurons in such a relatively
large-scale recurrent neural network, while, in practice, it is
necessary to know these types of information in advance and
thenmake use of them to achieve specific objectives [9, 10]. It
is thus of great significance to investigate the state estimation
problem of delayed static neural networks. Inspired by [11–
13], the authors in [14] proposed an improved delay partition
approach to dealing with the state estimation problem of
static neural networks with time-varying delay. In [15], this
issue was studied for discrete-time static neural networks. A
delay-range-dependent condition was derived in terms of a
linear matrix inequality (LMI). To reduce its conservatism,
some free-weighting matrices [16] were introduced. Other
related results can be found in [17–19].

It should be noted that, in the abovementioned results on
state estimation of delayed static neural networks, only time-
varying delay was taken into account. In fact, distributed
delay, which is distinct from time-varying delay, should be
also considered because parallel pathways with various axon
sizes and lengths frequently occur in neural networks and
the signal transmission between neurons is distributed in
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general [20–22].That is to say, it is very important to study the
effect of distributed delay on state estimation of static neural
networks. This is the motivation of the present study.

In this paper, our attention is concernedwith the problem
of state estimation of delayed static neural networks. Here,
both time-varying and distributed delays are considered. To
the best of our knowledge, it is the first time to introduce
distributed delay in static neural networks.Themathematical
model of this kind of delayed static neural networks is
presented. Then, by constructing an appropriate Lyapunov
functional and employing Jensen and Wirtinger inequal-
ities [23, 24], a sufficient condition, which is dependent
on both the time-varying delay and distributed delay, is
established under which the estimation error system is
globally asymptotically stable. Then, the desired gain matrix
of state estimator is obtained by solving an LMI [25]. An
example is finally given to show the effectiveness of the
developed result. Although some important results on state
estimation of delayed static neural networks were available
in [14, 15, 17–19], the distributed delay has not yet been
taken into consideration. One of the contributions of this
study is to close this gap and present an efficient approach
to handling this issue for delayed static neural networks
with the two kinds of time delays. At the same time, some
recently proposed techniques are employed to derive a delay-
dependent criterion such that the implementation of a proper
state estimator is easily accomplished based on a convex
optimization problem.This is the second contribution of this
study.

Notations. Let R be the set of real numbers, R𝑛 the 𝑛-
dimensional Euclidean space, and R𝑛×𝑚 the set of all 𝑛 ×

𝑚 real matrices. For a real matrix 𝑋, 𝑋 > 0 (𝑋 < 0)
means that 𝑋 is symmetric and positive definite (negative
definite). The superscripts 𝑇 and −1, respectively, stand
for the transpose and inverse of a matrix. 𝐼 is an identity
matrix with appropriate dimension. diag{⋅ ⋅ ⋅ } denotes a block
diagonal matrix.The symmetric block in a symmetric matrix
is denoted by ∗. Matrices, if not explicitly stated, are assumed
to have compatible dimensions.

2. Problem Formulation and Preliminaries

In the hardware implementations of recurrent neural net-
works, time delays are unavoidable owing to the finite speed
of amplifiers and signal transmission between neurons. In
practice, some time delays maybe vary with time. This kind
of delays is named as time-varying delays. On the other
hand, the so-called distributed delay should be also taken
into account since parallel pathways with different axon sizes
are actually found and the signal transmission is distributed
in a neural network. Therefore, it is reasonable to consider
the static neural network with time-varying and distributed
delays which is described by
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where 𝑖 = 1, 2, . . . , 𝑛 with 𝑛 being the number of neurons,
𝑥
𝑖
(𝑡) is the state of the 𝑖th neuron, 𝑎

𝑖
> 0 is a firing rate,𝑓

𝑖
is an

activation function of the 𝑖th neuron, 𝑤𝑖𝑗
0
and 𝑤

𝑖𝑗

1
are delayed

connection weights between neurons 𝑖 and 𝑗, 𝑑(𝑡) and ℎ are,
respectively, time-varying and distributed delays, and 𝐽

𝑖

0
and

𝐽
𝑖

1
are external inputs of neuron 𝑖.

Remark 1. It is clear to see that both time-varying and
distributed delays are taken into account in the static neural
network (1). To the best of our knowledge, this is the
first attempt to introduce distributed delay in static neural
networks. Additionally, it can be found in (1) that only 𝑑(𝑡)

is assumed to vary with time 𝑡 while the distributed delay ℎ

is constant. It should be emphasized that the approach which
will be developed later can be easily extended to deal with the
case that ℎ is also time-varying. Here, just for simplicity, the
distributed delay is supposed to be constant.
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with 𝑘 = 0 or 1. Then, the delayed static neural network (1)
can be rewritten as a compact form

𝑥̇ (𝑡) = − 𝐴𝑥 (𝑡) + 𝑓 (𝑊
0
𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐽
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1
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1
) .

(3)

As discussed in [14], it is difficult or even impossible
to fully know the state information of all neurons in a
delayed static neural network.However, in some applications,
one needs to utilize this information to accomplish desired
objectives. In this situation, it is thus very necessary to present
an efficient algorithm to implement the state estimation of the
underlying static neural network. Then, in place of the “true”
states of neurons, the estimated states can be directly used
in practice. Generally, one is able to measure the output of
a static neural network. As a result, the output measurement
plays a key role when estimating the neurons’ states. Besides
this, the activation function is also fixed in the design process
of a neural network. By taking these into account, the output
measurement of the delayed static neural network (3) is
assumed to be of the form

𝑜 (𝑡) = 𝐵𝑥 (𝑡) + 𝜙 (𝑡, 𝑥 (𝑡)) , (4)
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and a state estimator is constructed as
̇
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(5)

where 𝐵 is a real known matrix with compatible dimension,
𝜙(𝑡, 𝑥(𝑡)) : R × R𝑛 → R𝑚 is a nonlinear disturbance on
the output measurement, and 𝐾, to be determined, is a gain
matrix of the state estimator.

Define the error signal 𝑒(𝑡) to be the difference between
𝑥(𝑡) and 𝑥(𝑡) (i.e., 𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡)). It follows from (3)–(5)
that the error signal 𝑒(𝑡) satisfies
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(7)

Then, (6) can be simplified as

̇𝑒 (𝑡) = − (𝐴 + 𝐾𝐵) 𝑒 (𝑡) + 𝑔 (𝑊
0
𝑒 (𝑡 − 𝑑 (𝑡)))

+ 𝑔(𝑊
1
∫

𝑡

𝑡−ℎ

𝑒 (𝑠) 𝑑𝑠) − 𝐾𝜓 (𝑡, 𝑒 (𝑡)) .

(8)

Throughout this paper, the following three assumptions
are always made.

Assumption 2. For 𝑖 = 1, 2, . . . , 𝑛 and any different 𝑢, V ∈ R,
the activation function 𝑓
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0 ≤ 𝑑 (𝑡) ≤ 𝑑,
̇
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Assumption 4. For any vectors 𝑥, 𝑦 ∈ R𝑛, there are two
real known constant matrices Φ

1
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Remark 5. As mentioned in [21], the scalars ℓ
−

𝑖
and ℓ

+

𝑖
in

Assumption 2 can be positive, zero, or negative. It means
that the monotonicity is no longer required for the activation
function. Therefore, it is more general than the popularly
adopted sigmoid functions such as tanh(𝑥) and (1/2)(|𝑥+1|−

|𝑥 − 1|).

Remark 6. Inequality (11) in Assumption 4 is named as the
sector-bounded condition [26], which has been widely used
in the state estimation theory of delayed neural networks [22,
27].
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Consider the following.

Lemma 7. For any given diagonal matrix Γ > 0, one has the
following inequality:
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Note that𝜓(𝑡, 𝑒(𝑡)) = 𝜙(𝑡, 𝑥(𝑡))−𝜙(𝑡, 𝑥(𝑡)). It immediately
follows from (11) that, for any positive scalar 𝜌,

2𝜌[𝜓 (𝑡, 𝑒 (𝑡)) − Φ
1
𝑒 (𝑡)]
𝑇

[𝜓 (𝑡, 𝑒 (𝑡)) − Φ
2
𝑒 (𝑡)] ≤ 0. (16)

After some manipulations, one can arrive at the following
lemma.

Lemma 8. For any given scalar 𝜌 > 0, 𝜓(𝑡, 𝑒(𝑡)) satisfies

2𝜌𝜓
𝑇

(𝑡, 𝑒 (𝑡)) 𝜓 (𝑡, 𝑒 (𝑡)) − 2𝜌𝜓
𝑇

(𝑡, 𝑒 (𝑡)) Φ
2
𝑒 (𝑡)

− 2𝜌𝑒
𝑇

(𝑡) Φ
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1
𝜓 (𝑡, 𝑒 (𝑡)) + 2𝜌𝑒

𝑇

(𝑡) Φ
𝑇

1
Φ
2
𝑒 (𝑡) ≤ 0.

(17)

Lemma 9. For any real matrices 𝐸 > 0 and 𝐹 > 0, one always
has

−𝐸𝐹
−1

𝐸 ≤ −2𝐸 + 𝐹. (18)

Proof. It can be easily proven by noting (𝐸−𝐹)𝐹
−1

(𝐸−𝐹) ≥ 0.
This completes the proof.

Remark 10. It is known that it is usually difficult to solve a
nonlinear matrix inequality. Lemma 9 will be employed to
transform a nonlinear matrix inequality into an LMI such
that it can be efficiently solved.

Before ending this section, we recall two integral inequal-
ities, which are very essential to the derivation of our main
result.

Lemma 11 (Jensen inequality [23]). For any givenmatrix𝑀 ∈

R𝑛×𝑛 with 𝑀 > 0, scalars 𝑎, 𝑏 ∈ R with 𝑎 < 𝑏, and continuous
function 𝜔 : [𝑎, 𝑏] → R𝑛, then

∫
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𝜔
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(19)

Lemma 12 (Wirtinger inequality [24]). For any given matrix
𝑁 ∈ R𝑛×𝑛 with 𝑁 > 0, scalars 𝑎, 𝑏 ∈ R with 𝑎 < 𝑏, and
continuously differentiable function 𝜔 : [𝑎, 𝑏] → R𝑛, one has

∫

𝑏

𝑎

𝜔̇
𝑇
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𝑇

𝑁(𝜔 (𝑏) − 𝜔 (𝑎))

+

3
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Ω̃
𝑇
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(20)

where
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Remark 13. It is obvious that, for given𝑁 > 0 and Ω̃,

3

𝑏 − 𝑎

Ω̃
𝑇

𝑁Ω̃ ≥ 0. (22)

According to Newton-Leibniz formula, when 𝜔(𝑡) in
Lemma 11 is differentiable, it is known that Wirtinger
inequality is less conservative than Jensen inequality. It is
thus believed [24] that better performance can be achieved
by Wirtinger inequality than by Jensen inequality. In this
study, Lemmas 11 and 12 will be, respectively, employed to
deal with the terms ∫

𝑡

𝑡−𝑑

𝑒
𝑇

(𝑠)𝑅
1
𝑒(𝑠)𝑑𝑠, ∫

𝑡
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𝑒
𝑇
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3
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𝑡

𝑡−𝑑

̇𝑒
𝑇

(𝑠)𝑅
2

̇𝑒(𝑠)𝑑𝑠 in the time-derivative of Lyapunov
functional 𝑉(𝑡).

3. Delay-Dependent State Estimation Criterion

Based on Lemmas 7–12, a design criterion is presented for
the delayed static neural network (3), which depends on both
the time-varying and distributed delays. It is shown that the
design of a suitable gain matrix 𝐾 in (5) is transferred to
finding a feasible solution of an LMI.

Theorem 14. For given scalars 𝑑, 𝜇, and ℎ, the resulting error
system (8) is globally asymptotically stable if there are real
matrices 𝑃 > 0, 𝑄

𝑘
> 0, 𝑅

𝑘
> 0, 𝑋, diagonal matrices

Λ
𝑘
(𝑘 = 1, 2, 3), and a scalar 𝜌 > 0 such that the following

LMI is satisfied:

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Σ
11

0 −2𝑅
2

6

𝑑

𝑅
2

0 Σ
16

𝑃 𝑃 Σ
19

Σ
110

∗ Σ
22

0 0 0 0 Σ
27

0 0 0

∗ ∗ Σ
33

6

𝑑

𝑅
2

0 0 0 0 0 0

∗ ∗ ∗ Σ
44

0 0 0 0 0 0

∗ ∗ ∗ ∗ Σ
55

0 0 Σ
58

0 0

∗ ∗ ∗ ∗ ∗ Σ
66

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Σ
77

0 0 𝑑𝑃

∗ ∗ ∗ ∗ ∗ ∗ ∗ −2Λ
3

0 𝑑𝑃

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −2𝜌𝐼 −𝑑𝑋
𝑇

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −2𝑃 + 𝑅
2

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (23)
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where

Σ
11

= − 𝑃𝐴 − 𝐴
𝑇

𝑃 − 𝑋𝐵 − 𝐵
𝑇

𝑋
𝑇

+ 𝑄
1
+ 𝑄
3
+ 𝑑
2

𝑅
1
− 4𝑅
2
+ ℎ
2

𝑅
3

− 2𝑊
𝑇

0
𝐿
−

Λ
1
𝐿
+

𝑊
0
− 𝜌 (Φ

𝑇

1
Φ
2
+ Φ
𝑇

2
Φ
1
) ,

Σ
16

= 𝑊
𝑇

0
(𝐿
−

+ 𝐿
+

) Λ
1
,

Σ
19

= − 𝑋 + 𝜌Φ
𝑇

1
+ 𝜌Φ
𝑇

2
,

Σ
110

= − 𝑑𝐴
𝑇

𝑃 − 𝑑𝐵
𝑇

𝑋
𝑇

,

Σ
22

= − (1 − 𝜇)𝑄
1
− 2𝑊

𝑇

0
𝐿
−

Λ
2
𝐿
+

𝑊
0
,

Σ
27

= 𝑊
𝑇

0
(𝐿
−

+ 𝐿
+

) Λ
2
,

Σ
33

= − 𝑄
3
− 4𝑅
2
,

Σ
44

= − 𝑅
1
−

12

𝑑
2
𝑅
2
,

Σ
55

= − 𝑅
3
− 2𝑊

𝑇

1
𝐿
−

Λ
3
𝐿
+

𝑊
1
,

Σ
58

= 𝑊
𝑇

1
(𝐿
−

+ 𝐿
+

) Λ
3
,

Σ
66

= 𝑄
2
− 2Λ
1
,

Σ
77

= − (1 − 𝜇)𝑄
2
− 2Λ
2
.

(24)

Moreover, the gain matrix 𝐾 of the state estimator (5) can be
designed as

𝐾 = 𝑃
−1

𝑋. (25)

Proof. By Lemma 9 and (23), one has

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Σ
11

0 −2𝑅
2

6

𝑑

𝑅
2

0 Σ
16

𝑃 𝑃 Σ
19

Σ
110

∗ Σ
22

0 0 0 0 Σ
27

0 0 0

∗ ∗ Σ
33

6

𝑑

𝑅
2

0 0 0 0 0 0

∗ ∗ ∗ Σ
44

0 0 0 0 0 0

∗ ∗ ∗ ∗ Σ
55

0 0 Σ
58

0 0

∗ ∗ ∗ ∗ ∗ Σ
66

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Σ
77

0 0 𝑑𝑃

∗ ∗ ∗ ∗ ∗ ∗ ∗ −2Λ
3

0 𝑑𝑃

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −2𝜌𝐼 −𝑑𝑋
𝑇

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑃𝑅
−1

2
𝑃

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0. (26)

Pre- and postmultiplying (26), respectively, by diag{𝐼, 𝐼, 𝐼, 𝐼,
𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝑅

2
𝑃
−1

} and its transpose and noting 𝐾 = 𝑃
−1

𝑋

yield

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Σ
11

0 −2𝑅
2

6

𝑑

𝑅
2

0 Σ
16

𝑃 𝑃 Σ
19

Σ
110

∗ Σ
22

0 0 0 0 Σ
27

0 0 0

∗ ∗ Σ
33

6

𝑑

𝑅
2

0 0 0 0 0 0

∗ ∗ ∗ Σ
44

0 0 0 0 0 0

∗ ∗ ∗ ∗ Σ
55

0 0 Σ
58

0 0

∗ ∗ ∗ ∗ ∗ Σ
66

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Σ
77

0 0 𝑑𝑅
2

∗ ∗ ∗ ∗ ∗ ∗ ∗ −2Λ
3

0 𝑑𝑅
2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −2𝜌𝐼 −𝑑𝐾
𝑇

𝑅
2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑅
2

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (27)

with
Σ
11

= − 𝑃𝐴 − 𝐴
𝑇

𝑃 − 𝑃𝐾𝐵 − 𝐵
𝑇

𝐾
𝑇

𝑃

+ 𝑄
1
+ 𝑄
3
+ 𝑑
2

𝑅
1
− 4𝑅
2
+ ℎ
2

𝑅
3

− 2𝑊
𝑇

0
𝐿
−

Λ
1
𝐿
+

𝑊
0
− 𝜌 (Φ

𝑇

1
Φ
2
+ Φ
𝑇

2
Φ
1
) ,

Σ
19

= − 𝑃𝐾 + 𝜌Φ
𝑇

1
+ 𝜌Φ
𝑇

2
,

Σ
110

= − 𝑑(𝐴 + 𝐾𝐵)
𝑇

𝑅
2
.

(28)
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According to Schur complement [25], (27) is equivalent to

Σ
1
+ 𝑑
2

Σ
𝑇

2
𝑅
2
Σ
2
< 0, (29)

where

Σ
1
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Σ
11

0 −2𝑅
2

6

𝑑

𝑅
2

0 Σ
16

𝑃 𝑃 Σ
19

∗ Σ
22

0 0 0 0 Σ
27

0 0

∗ ∗ Σ
33

6

𝑑

𝑅
2

0 0 0 0 0

∗ ∗ ∗ Σ
44

0 0 0 0 0

∗ ∗ ∗ ∗ Σ
55

0 0 Σ
58

0

∗ ∗ ∗ ∗ ∗ Σ
66

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Σ
77

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −2Λ
3

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −2𝜌𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Σ
2
= [− (𝐴 + 𝐾𝐵) 0 0 0 0 0 𝐼 𝐼 −𝐾] .

(30)

Construct a Lyapunov functional

𝑉 (𝑡) = 𝑒
𝑇

(𝑡) 𝑃𝑒 (𝑡) + ∫

𝑡

𝑡−𝑑(𝑡)

𝑒
𝑇

(𝑠) 𝑄
1
𝑒 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝑑(𝑡)

𝑔
𝑇

(𝑊
0
𝑒 (𝑠)) 𝑄

2
𝑔 (𝑊
0
𝑒 (𝑠)) 𝑑𝑠

+ ∫

𝑡

𝑡−𝑑

𝑒
𝑇

(𝑠) 𝑄
3
𝑒 (𝑠) 𝑑𝑠

+ 𝑑∫

0

−𝑑

∫

𝑡

𝑡+𝜃

𝑒
𝑇

(𝑠) 𝑅
1
𝑒 (𝑠) 𝑑𝑠𝑑𝜃

+ 𝑑∫

0

−𝑑

∫

𝑡

𝑡+𝜃

̇𝑒
𝑇

(𝑠) 𝑅
2

̇𝑒 (𝑠) 𝑑𝑠𝑑𝜃

+ ℎ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑒
𝑇

(𝑠) 𝑅
3
𝑒 (𝑠) 𝑑𝑠𝑑𝜃.

(31)

By computing the time-derivative of 𝑉(𝑡) along the solutions
of the error system (8), one gets

𝑉̇ (𝑡) = 2𝑒
𝑇

(𝑡) 𝑃 [− (𝐴 + 𝐾𝐵) 𝑒 (𝑡) + 𝑔 (𝑊
0
𝑒 (𝑡 − 𝑑 (𝑡)))

+ 𝑔(𝑊
1
∫

𝑡

𝑡−ℎ

𝑒 (𝑠) 𝑑𝑠) − 𝐾𝜓 (𝑡, 𝑒 (𝑡))]

+ 𝑒
𝑇

(𝑡) 𝑄
1
𝑒 (𝑡) − (1 −

̇
𝑑 (𝑡))

× 𝑒
𝑇

(𝑡 − 𝑑 (𝑡)) 𝑄
1
𝑒 (𝑡 − 𝑑 (𝑡))

+ 𝑔
𝑇

(𝑊
0
𝑒 (𝑡)) 𝑄

2
𝑔 (𝑊
0
𝑒 (𝑡))

− (1 −
̇

𝑑 (𝑡)) 𝑔
𝑇

(𝑊
0
𝑒 (𝑡 − 𝑑 (𝑡)))

× 𝑄
2
𝑔 (𝑊
0
𝑒 (𝑡 − 𝑑 (𝑡))) + 𝑒

𝑇

(𝑡) 𝑄
3
𝑒 (𝑡)

− 𝑒
𝑇

(𝑡 − 𝑑)𝑄
3
𝑒 (𝑡 − 𝑑) + 𝑑

2

𝑒
𝑇

(𝑡) 𝑅
1
𝑒 (𝑡)

− 𝑑∫

𝑡

𝑡−𝑑

𝑒
𝑇

(𝑠) 𝑅
1
𝑒 (𝑠) 𝑑𝑠 + 𝑑

2

̇𝑒
𝑇

(𝑡) 𝑅
2

̇𝑒 (𝑡)

− 𝑑∫

𝑡

𝑡−𝑑

̇𝑒
𝑇

(𝑠) 𝑅
2

̇𝑒 (𝑠) 𝑑𝑠 + ℎ
2

𝑒
𝑇

(𝑡) 𝑅
3
𝑒 (𝑡)

− ℎ∫

𝑡

𝑡−ℎ

𝑒
𝑇

(𝑠) 𝑅
3
𝑒 (𝑠) 𝑑𝑠

≤ 𝑒
𝑇

(𝑡) [−𝑃 (𝐴 + 𝐾𝐵) − (𝐴 + 𝐾𝐵)
𝑇

𝑃 + 𝑄
1

+𝑄
3
+ 𝑑
2

𝑅
1
+ ℎ
2

𝑅
3
] 𝑒 (𝑡)

+ 2𝑒
𝑇

(𝑡) 𝑃𝑔 (𝑊
0
𝑒 (𝑡 − 𝑑 (𝑡)))

+ 2𝑒
𝑇

(𝑡) 𝑃𝑔(𝑊
1
∫

𝑡

𝑡−ℎ

𝑒 (𝑠) 𝑑𝑠)

− 2𝑒
𝑇

(𝑡) 𝑃𝐾𝜓 (𝑡, 𝑒 (𝑡))

− (1 − 𝜇) 𝑒
𝑇

(𝑡 − 𝑑 (𝑡)) 𝑄
1
𝑒 (𝑡 − 𝑑 (𝑡))

+ 𝑔
𝑇

(𝑊
0
𝑒 (𝑡)) 𝑄

2
𝑔 (𝑊
0
𝑒 (𝑡))

− (1 − 𝜇) 𝑔
𝑇

(𝑊
0
𝑒 (𝑡 − 𝑑 (𝑡)))

× 𝑄
2
𝑔 (𝑊
0
𝑒 (𝑡 − 𝑑 (𝑡)))

− 𝑒
𝑇

(𝑡 − 𝑑)𝑄
3
𝑒 (𝑡 − 𝑑)

− 𝑑∫

𝑡

𝑡−𝑑

𝑒
𝑇

(𝑠) 𝑅
1
𝑒 (𝑠) 𝑑𝑠 + 𝑑

2

̇𝑒
𝑇

(𝑡) 𝑅
2

̇𝑒 (𝑡)

− 𝑑∫

𝑡

𝑡−𝑑

̇𝑒
𝑇

(𝑠) 𝑅
2

̇𝑒 (𝑠) 𝑑𝑠 − ℎ∫

𝑡

𝑡−ℎ

𝑒
𝑇

(𝑠) 𝑅
3
𝑒 (𝑠) 𝑑𝑠,

(32)
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where ̇
𝑑(𝑡) ≤ 𝜇 is used to derive the above inequality. By

Lemma 7, for diagonal matricesΛ
1
> 0,Λ

2
> 0, andΛ

3
> 0,

it is not difficult to deduce that

0 ≤ − 2𝑔
𝑇

(𝑊
0
𝑒 (𝑡)) Λ

1
𝑔 (𝑊
0
𝑒 (𝑡))

+ 2𝑔
𝑇

(𝑊
0
𝑒 (𝑡)) Λ

1
(𝐿
−

+ 𝐿
+

)𝑊
0
𝑒 (𝑡)

− 2𝑒
𝑇

(𝑡)𝑊
𝑇

0
𝐿
−

Λ
1
𝐿
+

𝑊
0
𝑒 (𝑡) ,

0 ≤ − 2𝑔
𝑇

(𝑊
0
𝑒 (𝑡 − 𝑑 (𝑡))) Λ

2
𝑔 (𝑊
0
𝑒 (𝑡 − 𝑑 (𝑡)))

+ 2𝑔
𝑇

(𝑊
0
𝑒 (𝑡 − 𝑑 (𝑡))) Λ

2
(𝐿
−

+ 𝐿
+

)𝑊
0
𝑒 (𝑡 − 𝑑 (𝑡))

− 2𝑒
𝑇

(𝑡 − 𝑑 (𝑡))𝑊
𝑇

0
𝐿
−

Λ
2
𝐿
+

𝑊
0
𝑒 (𝑡 − 𝑑 (𝑡)) ,

0 ≤ − 2𝑔
𝑇

(𝑊
1
∫

𝑡

𝑡−ℎ

𝑒 (𝑠) 𝑑𝑠)Λ
3
𝑔(𝑊
1
∫

𝑡

𝑡−ℎ

𝑒 (𝑠) 𝑑𝑠)

+ 2𝑔
𝑇

(𝑊
1
∫

𝑡

𝑡−ℎ

𝑒 (𝑠) 𝑑𝑠)Λ
3
(𝐿
−

+ 𝐿
+

)𝑊
1
∫

𝑡

𝑡−ℎ

𝑒 (𝑠) 𝑑𝑠

− 2(∫

𝑡

𝑡−ℎ

𝑒 (𝑠) 𝑑𝑠)

𝑇

𝑊
𝑇

1
𝐿
−

Λ
3
𝐿
+

𝑊
1
∫

𝑡

𝑡−ℎ

𝑒 (𝑠) 𝑑𝑠.

(33)

By Lemmas 11 and 12, one has

−𝑑∫

𝑡

𝑡−𝑑

𝑒
𝑇

(𝑠) 𝑅
1
𝑒 (𝑠) 𝑑𝑠 ≤ −(∫

𝑡

𝑡−𝑑

𝑒 (𝑠) 𝑑𝑠)

𝑇

𝑅
1
∫

𝑡

𝑡−𝑑

𝑒 (𝑠) 𝑑𝑠,

− ℎ∫

𝑡

𝑡−ℎ

𝑒
𝑇

(𝑠) 𝑅
3
𝑒 (𝑠) 𝑑𝑠 ≤ −(∫

𝑡

𝑡−ℎ

𝑒 (𝑠) 𝑑𝑠)

𝑇

𝑅
3
∫

𝑡

𝑡−ℎ

𝑒 (𝑠) 𝑑𝑠,

− 𝑑∫

𝑡

𝑡−𝑑

̇𝑒
𝑇

(𝑠) 𝑅
2

̇𝑒 (𝑠) 𝑑𝑠

≤ −[𝑒 (𝑡) − 𝑒 (𝑡 − 𝑑)]
𝑇

𝑅
2
[𝑒 (𝑡) − 𝑒 (𝑡 − 𝑑)]

− 3[𝑒 (𝑡) + 𝑒 (𝑡 − 𝑑) −

2

𝑑

∫

𝑡

𝑡−𝑑

𝑒 (𝑠) 𝑑𝑠]

𝑇

× 𝑅
2
[𝑒 (𝑡) + 𝑒 (𝑡 − 𝑑) −

2

𝑑

∫

𝑡

𝑡−𝑑

𝑒 (𝑠) 𝑑𝑠] .

(34)

By combining (17) and (32)–(34) together, one can deduce

𝑉̇ (𝑡) ≤ 𝜉
𝑇

(𝑡) (Σ
1
+ 𝑑
2

Σ
𝑇

2
𝑅
2
Σ
2
) 𝜉 (𝑡) , (35)

where

𝜉 (𝑡) = [𝑒
𝑇

(𝑡) , 𝑒
𝑇

(𝑡 − 𝑑 (𝑡)) , 𝑒
𝑇

(𝑡 − 𝑑) ,

∫

𝑡

𝑡−𝑑

𝑒
𝑇

(𝑠) 𝑑𝑠, ∫

𝑡

𝑡−ℎ

𝑒
𝑇

(𝑠) 𝑑𝑠,

𝑔
𝑇

(𝑊
0
𝑒 (𝑡)) , 𝑔

𝑇

(𝑊
0
𝑒 (𝑡 − 𝑑 (𝑡))) ,

𝑔
𝑇

(𝑊
1
∫

𝑡

𝑡−ℎ

𝑒 (𝑠) 𝑑𝑠) , 𝜓
𝑇

(𝑡, 𝑒 (𝑡))]

𝑇

.

(36)

Then, it immediately follows from (29) that 𝑉̇(𝑡) ≤ 0 for any
𝜉(𝑡). According to the theory of Lyapunov stability, the error
system (8) is globally asymptotically stable. This completes
the proof.

Remark 15. The objective of this study is to propose a delay-
dependent approach to handling the state estimation problem
of static neural networks with time-varying and distributed
delays. In Theorem 14, a design criterion is derived by
means of an LMI. It can be efficiently solved in practice
by resorting to some famous algorithms in [25]. It should
be pointed out that, in order to reduce the conservatism
of Theorem 14, Wirtinger inequality is utilized to deal with
−𝑑∫

𝑡

𝑡−𝑑

̇𝑒
𝑇

(𝑠)𝑅
2

̇𝑒(𝑠)𝑑𝑠 in (32), although it can be also esti-
mated by Jensen inequality.

4. A Numerical Example

Let 𝑥(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡)]
𝑇

∈ R3 and consider
the delayed static neural network (3) with the following
parameters:

𝐴 =
[

[

3.12 0 0

0 4.03 0

0 0 3.66

]

]

,

𝑊
0
=

[

[

0.89 −0.57 −1.04

0.23 −0.73 1.06

0.38 −0.62 0.25

]

]

,

𝑊
1
=

[

[

0.53 −0.42 0.06

0.19 1.23 −0.65

−0.98 −0.12 −0.48

]

]

,

𝐵 = [0.12 0.26 −0.20] ,

𝐿
−

= − 𝐼, 𝐿
+

= 𝐼,

Φ
1
= [−0.24 0 −0.16] ,

Φ
2
= [0.32 0.40 0.28] .

(37)

Let 𝜇 = 0.4 and ℎ = 0.5; by solving the LMI (23) in
Theorem 14 for different𝑑, the gainmatrix𝐾 can be obtained,
which is summarized in Table 1. It is also found that when
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Table 1: The gain matrix 𝐾 obtained byTheorem 14 for different 𝑑.

𝑑 0.2 0.4 0.6 0.8

𝐾
[

[

[

0.2693

0.6091

−0.0085

]

]

]

[

[

[

0.2454

0.5779

−0.0121

]

]

]

[

[

[

0.1259

0.3016

−0.0208

]

]

]

[

[

[

−0.1137

−1.6845

0.3464

]

]

]

Table 2: The gain matrix 𝐾 obtained byTheorem 14 for different ℎ.

ℎ 0.5 0.7 0.9 1.1

𝐾
[

[

[

0.2530

0.5393

−0.0374

]

]

]

[

[

[

0.2716

0.5683

−0.0366

]

]

]

[

[

[

0.3030

0.6482

−0.0543

]

]

]

[

[

[

0.7168

1.9360

−0.3897

]

]

]

𝜇 = 0.4 and ℎ = 0.5, the LMI (23) is feasible for 𝑑 ≤ 0.8246.
If 𝑑 = 0.8246, a feasible solution is

𝑃 =
[

[

146.6448 3.9722 −2.5150

3.9722 93.3610 −4.2199

−2.5150 −4.2199 145.5124

]

]

,

𝑄
1
=

[

[

50.8141 −49.6659 −25.0914

−49.6659 69.2489 −19.4431

−25.0914 −19.4431 107.1149

]

]

,

𝑄
2
=

[

[

58.1954 −0.0037 0.0019

−0.0037 51.6562 0.0015

0.0019 0.0015 67.6662

]

]

,

𝑄
3
=

[

[

0.0252 0.0144 −0.0087

0.0144 0.0101 −0.0048

−0.0087 −0.0048 0.0067

]

]

,

𝑅
1
=

[

[

0.0384 0.0226 −0.0134

0.0226 0.0158 −0.0077

−0.0134 −0.0077 0.0097

]

]

,

𝑅
2
=

[

[

0.0140 0.0091 −0.0052

0.0091 0.0063 −0.0033

−0.0052 −0.0033 0.0027

]

]

,

𝑅
3
=

[

[

322.4256 8.8099 109.8618

8.8099 275.6029 −111.7183

109.8618 −111.7183 123.3310

]

]

,

Λ
1
= diag {29.0999, 25.8300, 33.8342} ,

Λ
2
= diag {14.1150, 13.7273, 23.0786} ,

Λ
3
= diag {126.7130, 75.0838, 127.9443} ,

𝑋 =
[

[

12.6684

−240.9959

52.5417

]

]

,

𝜌 = 543.0757.

(38)

Then, the gain matrix𝐾 can be designed as

𝐾 =
[

[

0.1611

−2.5751

0.2892

]

]

. (39)

Now, let 𝑑 = 0.5 and 𝜇 = 0.6. We change the value of ℎ and
solve the LMI (23).The numerical results are given in Table 2.
For 𝑑 = 0.5 and 𝜇 = 0.6, the allowable maximum value of
ℎ such that the LMI (23) is feasible is 1.1539, and the gain
matrix𝐾 is

𝐾 =
[

[

1.0103

3.1000

−0.8414

]

]

. (40)

5. Conclusion

In this paper, the state estimation problem has been studied
for a class of delayed static neural networks. Both time-
varying and distributed delays have been taken into account.
Based on the Lyapunov stability theory and some integral
inequalities, a delay-dependent design criterion has been
presented by means of an LMI. So the proper gain matrix
can be easily obtained in practice since it is facilitated readily
by mature algorithms. Finally, a numerical example has been
provided to illustrate the effectiveness of the developed result
on the state estimator design of static neural networks with
mixed delays.
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