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Abstract. An abstract framework for constructing stable decompositions of the spaces
corresponding to general symmetric positive definite problems into “local” subspaces and
a global “coarse” space is developed. Particular applications of this abstract framework
include practically important problems in porous media applications such as: the scalar
elliptic (pressure) equation and the stream function formulation of its mixed form, Stokes’
and Brinkman’s equations. The constant in the corresponding abstract energy estimate
is shown to be robust with respect to mesh parameters as well as the contrast, which is
defined as the ratio of high and low values of the conductivity (or permeability). The
derived stable decomposition allows to construct additive overlapping Schwarz iterative
methods with condition numbers uniformly bounded with respect to the contrast and
mesh parameters. The coarse spaces are obtained by patching together the eigenfunctions
corresponding to the smallest eigenvalues of certain local problems. A detailed analysis
of the abstract setting is provided. The proposed decomposition builds on a method of
Efendiev and Galvis [Multiscale Model. Simul., 8 (2010), pp. 1461–1483] developed for
second order scalar elliptic problems with high contrast. Applications to the finite element
discretizations of the second order elliptic problem in Galerkin and mixed formulation,
the Stokes equations, and Brinkman’s problem are presented. A number of numerical
experiments for these problems in two spatial dimensions are provided.

1. Introduction

Symmetric positive definite operators appear in the modeling of a variety of problems
from environmental and engineering sciences, e.g. heat conduction in industrial (com-
pound) media or fluid flow in natural subsurfaces. Two main challenges arising in the
numerical solution of these problems are (1) the problem size due to spatial scales and (2)
high-contrast due to large variations in the physical problem parameters. The latter e.g.
concerns disparities in the thermal conductivities of the constituents of compound media
or in the permeability field of porous media. These variations frequently range over several
orders of magnitude leading to high condition numbers of the corresponding discrete sys-
tems. Besides variations in physical parameters, the discretization parameters (e.g. mesh
size) also lead to large condition numbers of the respective discrete systems.

Since in general high condition numbers entail poor performances of iterative solvers
such as conjugate gradients (CG), the design of preconditioners addressing the size of the
problem and the magnitude in variations of the problem parameters has received lots of
attention in the numerical analysis community. The commonly used approaches include
domain decomposition methods (cf. e.g. [20, 27, 28]) and multilevel/multigrid algorithms
(cf. e.g. [3, 16, 30]). For certain classes of problems, including the scalar elliptic case, these
methods are successful in making the condition number of the preconditioned system
independent of the size of the problem. However, the design of preconditioners that are
robust with respect to variations in physical parameters is more challenging.
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Improvements in the standard domain decomposition methods for the scalar elliptic
equation, −∇ · (κ(x)∇φ) = f , with a highly variable conductivity κ(x) were made in
the case of special arrangements of the highly conductive regions with respect to the
coarse cells. The construction of preconditioners for these problems has been extensively
studied in the last three decades (see e.g. [7, 14, 19, 20, 28]). In the context of domain
decomposition methods, one can consider overlapping and nonoverlapping methods. It was
shown that nonoverlapping domain decomposition methods converge independently of the
contrast (e.g. [18, 21] and [28, Sections 6.4.4 and 10.2.4]) when conductivity variations
within coarse regions are bounded. The condition number bound for the preconditioned
linear system using a two level overlapping domain decomposition method scales with the
contrast, defined as

max
x∈Ω

κ(x)/min
x∈Ω

κ(x) (1.1)

where Ω is the domain. The overall condition number estimate also involves the ratio H/δ,
where H is the coarse-mesh size and δ is the size of the overlap region. The estimate with
respect to the ratio H/δ can be improved with the help of the small overlap trick (e.g.
[14, 28]). In this paper we focus on improving the contrast-dependent portion (given by
(1.1)) of the condition number. A generous overlap will be used in our methods.

Classical arguments to estimate the preconditioned condition number of a two level
overlapping domain decomposition method use weighted Poincaré inequalities of the form∫

ω
κ|∇ξ|2(ψ − Iω0 ψ)2 dx ≤ C

∫
ω
κ|∇ψ|2 dx, (1.2)

where ω is a local subdomain in the global domain Ω, ξ is a partition of unity function sub-
ordinate to ω, and ψ ∈ H1(ω). The operator Iω0 ψ is a local representation of the function
ψ in the coarse space. The constant C above appears in the final bound for the condition
number of the operator. Many of the classical arguments that analyze overlapping domain

decomposition methods for high contrast problems assume that maxx∈ω κ(x)
minx∈ω κ(x) is bounded.

When only |∇ξ|2 is bounded, inequality (1.2) can be obtained from a weighted Poincaré
inequality whose constant is independent of the contrast. This weighted Poincaré inequal-
ity is not always valid, so a number of works were successful in addressing the question
of when it holds. In [26], it was proven that the weighted Poincaré inequality holds for
quasi-monotonic coefficients. The author obtains robust preconditioners for the case of
quasi-monotonic coefficients. We note that recently, the concept of quasi-monotonic co-
efficient has been generalized in [22, 23] where the authors analyze nonoverlapping FETI
methods. Other approaches use special partitions of unity such that the “pointwise en-
ergy“ κ(x)|∇ξ|2 in (1.2) is bounded. In [14, 29], the analysis in [28] has been extended
to obtain explicit bounds involving the quantity κ(x)|∇ξ|2. It has been shown that if the
coarse space basis functions are constructed properly, then κ(x)|∇ξ|2 remains bounded for
all basis and partition of unity functions used, and then, the classical Poincaré inequal-
ity can be applied in the analysis. In particular, two main sets of coarse basis functions
have been used: (1) multiscale finite element functions with various boundary conditions
(see [8, 14, 17]) and (2) energy minimizing or trace minimizing functions (see [29, 33]
and references therein). Thus, robust overlapping domain decomposition methods can be
constructed for the case when the high-conductivity regions are isolated islands. These
methods use one coarse basis function per coarse node.

Recently, new coarse basis functions have been proposed in [10, 11]. The construction
of these coarse basis functions uses local generalized eigenvalue problems. The resulting
methods can handle a general class of heterogeneous coefficients with high contrast. A
main step in this construction is to identify those initial multiscale basis functions that
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are used to compute a weight function for the eigenvalue problem. These initial multiscale
basis functions are designed to capture the effects that can be localized within coarse
blocks. They are further complemented using generalized eigenfunctions that account
for features of the solution that cannot be localized. The idea of using local and global
eigenvectors to construct coarse spaces within two-level and multi-level techniques has
been used before (e.g. [6, 25]). However, these authors did not study the convergence with
respect to physical parameters, such as high contrast and physical parameter variation, and
did not use generalized eigenvalue problems to achieve small dimensional coarse spaces.

In many applications, the discretization technique is chosen so that it preserves the
essential physical properties. For example, mixed finite element methods are often used
in flow equations to obtain locally mass conservative velocity fields. In a number of flow
applications, high-conductivity regions need to be represented with flow equations, such
as Navier-Stokes’ or Stokes’ equations due to high porosity. Such complex systems can be
described by Brinkman’s equations that may require a special stable discretization. The
method proposed in [10, 11] cannot be easily applied to vector problems and more com-
plicated discretization methods. More precisely, it requires a proper eigenvalue problem
for each particular differential equation.

In this paper, we extend the framework proposed in [10, 11] to general symmetric
bilinear forms. The resulting analysis can be applied to a wide variety of differential
equations that are important in practice. A key in designing robust preconditioners is
a stable decomposition of the global function space into local and coarse subspaces (see
[28]). This is the main focus of our paper. We develop an abstract framework that allows
deriving a generalized eigenvalue problem for the construction of the coarse spaces and
stable decompositions. In particular, some explicit bounds are obtained for the stability
constant of this decomposition. In the scalar elliptic case, the analysis presented here leads
to generalized eigenvalue problems that differ from those studied in [10, 11].

We consider the application of this abstract framework to Darcy’s equation as well as to
Brinkman’s equations. Brinkman’s equations can be viewed as a generalization of Darcy’s
equation that allows both Darcy and Stokes regions in the flow. Because Darcy’s equation
is obtained under the assumption of slow flow, Brinkman’s equation is inherently high-
contrast. It combines high flow described by Stokes’ equations and slow flow described
by Darcy’s equation. In fact, the use of high conductivities in Darcy’s equation may be
associated to free flow or high porosity regions that are often described by Brinkman’s
equations (see [5]). The proposed general framework can be applied to the construction
of robust coarse spaces for Brinkman’s equations. These coarse spaces are constructed by
passing to the stream function formulation.

In the paper at hand, we also discuss some coarse space dimension reduction techniques
within our abstract framework. The dimension reduction is achieved by choosing initial
multiscale basis functions that capture as much subgrid information as possible. We discuss
how the choice of various initial multiscale basis functions affects the condition number of
the preconditioned system.

To test the developed theory we consider several numerical examples. In our first set
of numerical examples, we study elliptic equations with highly variable coefficients. We
use both piecewise bilinear and multiscale basis functions as an initial coarse space. In
the latter choice, they capture the effects of isolated high-conductivity regions. Our nu-
merical results show that in both cases one obtains robust preconditioners. The use of
multiscale basis functions as an initial coarse space allows substantial dimension reduction
for problems with many small isolated inclusions. Both Galerkin and mixed formulations
are studied in this paper. The next set of numerical results are on Brinkman’s equa-
tions. These equations are discretized using H(div)-conforming Discontinuous Galerkin
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Figure 2.1. Triangulation TH .

methods. The numerical results show that the number of iterations is independent of the
contrast. In our final numerical example, we consider a complex geometry with highly-
variable coefficients without apparent separation of high and low conductivity regions.
The numerical results show that using multiscale initial basis functions, one can obtain
robust preconditioners with small coarse dimensional spaces.

The paper is organized as follows. In Section 2, problem setting and notation are intro-
duced. In Section 3, the abstract analysis of the stable decomposition is presented. Sec-
tion 4 is dedicated to applications of the abstract framework to the Galerkin and mixed
formulation of Darcy’s equation, Stokes’ equations, and Brinkman’s equations. In Sec-
tion 5, we discuss the dimension reduction of the coarse space. Representative numerical
results are presented in Section 6.

2. Problem Setting and Notation

Let Ω ⊂ Rn be a bounded polyhedral domain, and let TH be a quasiuniform quadrilateral
(n = 2) or hexahedral (n = 3) triangulation of Ω with mesh-parameter H. Let X =
{xj}nx

j=1 be the set of nodes of TH , and for each xj ∈ X we set

Ωj := interior

(⋃
{T |T ∈ TH , xj ∈ T}

)
,

i.e., Ωj is the union of all cells surrounding xj (see Figure 2.1).
For a suitable separable Hilbert space V0 = V0(Ω) of functions defined on Ω and for any

subdomain ω ⊂ Ω we set V (ω) := {φ|ω |φ ∈ V0} and we consider a family of symmetric
positive semi-definite bounded bilinear forms

aω (·, ·) : (V (ω), V (ω))→ R.
For the case ω = Ω we drop the subindex, i.e., a (·, ·) = aΩ (·, ·) and we additionally
assume that a (·, ·) is positive definite. For ease of notation we write aω (φ, ψ) instead of
aω (φ|ω, ψ|ω) for any φ, ψ ∈ V0. Furthermore, we assume that for any φ ∈ V0 and any

family of pairwisely disjoint subdomains {ωj}nω
j=1 with

nω⋃
j=1

ωj = Ω

a (φ, φ) =

nω∑
j=1

aωj (φ, φ) . (2.1)

Now, the goal is to construct a “coarse” subspace VH = VH(Ω) of V0 with the following
property: for any φ ∈ V0 there is a representation

φ =

nx∑
j=0

φj with φ0 ∈ VH , and φj ∈ V0(Ωj) for j = 1, . . . , nx (2.2a)
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such that
nx∑
j=0

a (φj , φj) ≤ Ca (φ, φ) , (2.2b)

where V0(Ωj) ⊂ V (Ωj) is a subspace such that aΩj (·, ·) : (V0(Ωj),V0(Ωj))→ R is positive
definite. Note that aΩj (·, ·) : (V (Ωj),V (Ωj)) → R is in general only positive semi-
definite.

By e.g. [28, Section 2.3] we know that the additive Schwarz preconditioner corresponding
to (2.2a) yields a condition number that only depends on the constant C in (2.2b) and the
maximal number of overlaps of the subdomains Ωj , j = 1, . . . , nx. Thus, we would like to
“control” the constant C and keep the dimension of VH “as small as possible”.

For the construction of VH we need more notation. Let {ξj}nx
j=1 : Ω → [0, 1] be a

partition of unity subordinate to {Ωj}nx
j=1 such that supp(ξj) = Ωj and for any φ ∈ V0

we have ξjφ ∈ V0, (ξjφ)|Ωj ∈ V0(Ωj), j = 1, . . . , nx. Using this notation we may for any
i, j = 1, . . . , nx define the following symmetric bilinear form:

mΩj (·, ·) : (V (Ωj),V (Ωj)) → R

mΩj (φ, ψ) :=
∑
i∈Ij

aΩj (ξjξiφ, ξjξiψ) (2.3)

where Ij := {i = 1, . . . , nx |Ωi ∩ Ωj 6= ∅}. Let nI := max
j=1,...,nx

#Ij denote the maximal

number of overlaps of the Ωj ’s. To ease the notation, as we did for the bilinear form
a (·, ·), we write mΩj (φ, ψ) instead of mΩj

(
φ|Ωj , ψ|Ωj

)
for any φ, ψ ∈ V0.

Due to our assumptions on {ξj}nx
j=1 we have that (2.3) is well-defined. Also note, that

since supp(ξj) = Ωj we have ξjφ|Ωj ≡ 0 ⇔ φ|Ωj ≡ 0, which implies that mΩj (·, ·) :
(V (Ωj),V (Ωj))→ R is positive definite.

Now for j = 1, . . . , nx we consider the generalized eigenvalue problems: Find (λji , ϕ
j
i ) ∈

(R, V (Ωj)) such that

aΩj

(
ψ, ϕji

)
= λjimΩj

(
ψ, ϕji

)
, ∀ψ ∈ V (Ωj). (2.4)

Without loss of generality we assume that the eigenvalues are ordered, i.e., 0 ≤ λj1 ≤ λ
j
2 ≤

. . . ≤ λji ≤ λ
j
i+1 ≤ . . ..

It is easy to see that any two eigenfunctions corresponding to two distinct eigenvalues are
aΩj (·, ·)- and mΩj (·, ·)-orthogonal. By orthogonalizing the eigenfunctions corresponding
to the same eigenvalues we can thus, without loss of generality, assume that all computed
eigenfunctions are pairwisely aΩj (·, ·)- and mΩj (·, ·)-orthogonal. Now, every function in
V (Ωj) has an expansion with respect to the eigenfunctions of (2.4). This is the reason
why the generalized eigenproblem is posed with respect to V (Ωj) as opposed to V0(Ωj).

For φ ∈ V0 let φj0 be the mΩj (·, ·)-orthogonal projection of φ|Ωj onto the first Lj
eigenfunctions of (2.4), where Lj ∈ N0 is some non-negative integer, i.e.,

mΩj

(
φ− φj0, ϕ

j
i

)
= 0, ∀ i = 1, . . . , Lj . (2.5)

If Lj = 0, we set φj0 ≡ 0. We assume that for any j = 1, . . . , nx and a sufficiently small

“threshold“ τ−1
λ > 0 we may choose Lj such that λjLj+1 ≥ τ−1

λ . Since any function in

V (Ωj) has an expansion with respect to the eigenfunctions of (2.4) we can now choose
αi ∈ R so that

φ|Ωj − φ
j
0 =

∑
i>Lj

αiϕ
j
i .
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Then we observe that

mΩj

(
φ− φj0, φ− φ

j
0

)
= mΩj

∑
i>Lj

αiϕ
j
i ,
∑
i>Lj

αiϕ
j
i


=

∑
i>Lj

mΩj

(
αiϕ

j
i , αiϕ

j
i

)
(by orthogonality)

=
∑
i>Lj

1

λji
aΩj

(
αiϕ

j
i , αiϕ

j
i

)
(by (2.4))

≤ 1

λjLj+1

∑
i>Lj

aΩj

(
αiϕ

j
i , αiϕ

j
i

)
≤ τλ aΩj

(
φ− φj0, φ− φ

j
0

)
≤ τλ aΩj (φ, φ) .

(2.6)

3. Coarse Spaces yielding Robust Stable Decompositions

With these preliminaries we are now able to define a decomposition described in (2.2):
First, we specify the coarse space by

VH := span{ξjϕji | j = 1, . . . , nx and i = 1, . . . , Lj}. (3.1)

Then, for any φ ∈ V let

φ0 :=

nx∑
j=1

ξjφ
j
0 ∈ VH , (3.2a)

where φj0 is chosen according to (2.5). For j = 1, . . . , nx define

φj := (ξj(φ− φ0))|Ωj ∈ V0(Ωj) so that φ =

nx∑
j=0

φj . (3.2b)

Before analyzing this decomposition we summarize all assumptions using the notation
above:

(A1) aω (·, ·) : (V (ω),V (ω))→ R is symmetric positive semi-definite for any subdomain
ω ⊂ Ω, and a (·, ·) = aΩ (·, ·) is positive definite.

(A2) For any φ ∈ V0 and any pairwisely disjoint family of subdomains {ωj}nω
j=1 with

nω⋃
j=1

ωj = Ω we have a (φ, φ) =

nω∑
j=1

aωj (φ, φ). (This implies that a (φ, φ) ≤

nx∑
j=1

aΩj (φ, φ), since aω (·, ·) is semi-definite.)

(A3) aΩj (·, ·) : (V0(Ωj),V0(Ωj))→ R is positive definite for all 1 ≤ j ≤ nx.
(A4) {ξj}nx

j=1 : Ω→ [0, 1] is a family of functions such that

(a)

nx∑
j=1

ξj ≡ 1 on Ω;

(b) supp(ξj) = Ωj for j = 1, . . . , nx;
(c) For φ ∈ V0 we have ξjφ ∈ V0 and (ξjφ)|Ωj ∈ V0(Ωj) for j = 1, . . . , nx.

(A5) For a sufficiently small threshold τ−1
λ we may choose Lj such that λjLj+1 ≥ τ

−1
λ for

all j = 1, . . . , nx.
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As noted above, these assumptions imply in particular, that for any 1 ≤ j ≤ nx, the
bilinear form mΩj (·, ·) : (V (Ωj),V (Ωj))→ R is positive definite.

The following lemma establishes the required energy bound for the local contributions
in decomposition (2.2):

Lemma 3.1. Assume (A1)–(A5) hold. Then, for φ ∈ V0 we have
nx∑
j=1

a (φj , φj) ≤ C τλ a (φ, φ) , (3.3)

where C only depends on nI (the maximal number of overlaps of the subdomains {Ωj}nx
j=1).

Proof. Observe that
nx∑
j=1

a (φj , φj) =

nx∑
j=1

aΩj (ξj(φ− φ0), ξj(φ− φ0)) (by (3.2b))

=

nx∑
j=1

aΩj

(
ξj

nx∑
i=1

ξi(φ− φi0), ξj

nx∑
i=1

ξi(φ− φi0)

)
(by (3.2a))

=

nx∑
j=1

aΩj

ξj∑
i∈Ij

ξi(φ− φi0), ξj
∑
i∈Ij

ξi(φ− φi0)


≤ nI

nx∑
j=1

∑
i∈Ij

aΩj

(
ξjξi(φ− φi0), ξjξi(φ− φi0)

)
︸ ︷︷ ︸

=:E1

,

where in the last step we have used Schwarz’ inequality together with #Ij ≤ nI . Note,
that we furthermore have

E1 =

nx∑
j=1

∑
i∈Ij

aΩi

(
ξjξi(φ− φi0), ξjξi(φ− φi0)

)
=

nx∑
i=1

∑
j∈Ii

aΩi

(
ξjξi(φ− φi0), ξjξi(φ− φi0)

)
=

nx∑
i=1

mΩi

(
φ− φi0, φ− φi0

)
(by (2.3)).

Thus, we obtain
nx∑
j=1

a (φj , φj) ≤ nI

nx∑
j=1

mΩj

(
φ− φj0, φ− φ

j
0

)
≤ nI τλ

nx∑
j=1

aΩj (φ, φ) (by (2.6))

≤ n2
I τλ a (φ, φ) ,

(3.4)

where the last inequality holds due to (A2) and the fact that any point in Ω simultaneously
lies in at most nI subdomains Ωj , j = 1, . . . , nx. �

Remark 3.2. Note, that by the proof of Lemma 3.1 we in particular have

nx∑
j=1

aΩj

ξj∑
i∈Ij

ξi(φ− φi0), ξj
∑
i∈Ij

ξi(φ− φi0)

 ≤ n2
I τλ a (φ, φ) .
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Now, we proceed with the necessary energy estimate for the coarse component φ0 of the
decomposition (3.2a).

Lemma 3.3. Let (A1)–(A5) hold. Then, for φ0 defined by (3.2a) we have that

a (φ0, φ0) ≤ (2 + C τλ) a (φ, φ) , (3.5)

where, as above, C only depends on nI .

Proof. First, we note that

a (φ0, φ0) = a

(
nx∑
i=1

ξiφ
i
0,

nx∑
i=1

ξiφ
i
0

)
(by (3.2a))

= a

(
nx∑
i=1

ξi(φ
i
0 − φ) + φ,

nx∑
i=1

ξi(φ
i
0 − φ) + φ

)
(by (A4))

≤ 2 a

(
nx∑
i=1

ξi(φ
i
0 − φ),

nx∑
i=1

ξi(φ
i
0 − φ)

)
︸ ︷︷ ︸

=:E2

+2a (φ, φ) ,

(3.6)

where we have used Schwarz’ inequality. Now, observe that

E2 ≤
nx∑
j=1

aΩj

∑
i∈Ij

ξi(φ
i
0 − φ),

∑
i∈Ij

ξi(φ
i
0 − φ)

 (by (A2))

=

nx∑
j=1

aΩj

(1− ξj + ξj)
∑
i∈Ij

ξi(φ
i
0 − φ), (1− ξj + ξj)

∑
i∈Ij

ξi(φ
i
0 − φ)


≤ 2

nx∑
j=1

aΩj

(1− ξj)
∑
i∈Ij

ξi(φ
i
0 − φ), (1− ξj)

∑
i∈Ij

ξi(φ
i
0 − φ)


︸ ︷︷ ︸

=:E3

+2

nx∑
j=1

aΩj

ξj∑
i∈Ij

ξi(φ
i
0 − φ), ξj

∑
i∈Ij

ξi(φ
i
0 − φ)


≤ 2E3 + 2n2

I τλ a (φ, φ) , (by Remark 3.2)
(3.7)

where we have again used Schwarz’ inequality. Note, that

E3 =

nx∑
j=1

aΩj

 ∑
l∈Ij\{j}

ξl
∑
i∈Ij

ξi(φ
i
0 − φ),

∑
l∈Ij\{j}

ξl
∑
i∈Ij

ξi(φ
i
0 − φ)

 (by (A4))

≤ nI

nx∑
j=1

∑
l∈Ij\{j}

aΩj

ξl∑
i∈Ij

ξi(φ
i
0 − φ), ξl

∑
i∈Ij

ξi(φ
i
0 − φ)

 (by Schwarz’ inequality).

Since

aΩj

ξl∑
i∈Ij

ξi(φ
i
0 − φ), ξl

∑
i∈Ij

ξi(φ
i
0 − φ)

 = aΩl

ξl ∑
i∈Ij∩Il

ξi(φ
i
0 − φ), ξl

∑
i∈Ij∩Il

ξi(φ
i
0 − φ)


≤ aΩl

ξl∑
i∈Il

ξi(φ
i
0 − φ), ξl

∑
i∈Il

ξi(φ
i
0 − φ)

 ,
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we thus have

E3 ≤ nI

nx∑
j=1

∑
l∈Ij\{j}

aΩl

ξl∑
i∈Il

ξi(φ
i
0 − φ), ξl

∑
i∈Il

ξi(φ
i
0 − φ)


= nI

nx∑
l=1

∑
j∈Il\{l}

aΩl

ξl∑
i∈Il

ξi(φ
i
0 − φ), ξl

∑
i∈Il

ξi(φ
i
0 − φ)


≤ n2

I

nx∑
l=1

aΩl

ξl∑
i∈Il

ξi(φ
i
0 − φ), ξl

∑
i∈Il

ξi(φ
i
0 − φ)

 (#(Il\{l}) ≤ nI)

≤ n4
I τλ a (φ, φ) (by Remark 3.2).

(3.8)
Combining (3.6), (3.7), and (3.8) we obtain

a (φ0, φ0) ≤
(
2 + 4(n4

I + n2
I)τλ

)
a (φ, φ) .

�

Combining Lemmas 3.1 and 3.3 we have the following:

Theorem 3.4. Assume (A1)–(A5) hold. Then, the decomposition defined in (3.2) satisfies

nx∑
j=0

a (φj , φj) ≤ (2 + C τλ)a (φ, φ) , (3.9)

where C only depends on nI .

4. Applications

To apply the theory developed in Sections 2 and 3 to some particular problem we need
to verify assumptions (A1)–(A5). Once this is established, we can conclude that the
condition number of the corresponding additive Schwarz preconditioned system has an
upper bound which depends only on nI and τλ. Thus, if we can show the validity of (A5)
with τλ chosen independently of certain problem parameters and mesh parameter H, the
condition number will also be bounded independently of these problem parameters and
the mesh parameter.

In addition to verifying assumptions (A1)–(A5) we also have to make sure that the
number of “small” eigenvalues in (2.4), i.e., those below the threshold τ−1

λ , is a small in

order for our method to be practically beneficial. Note, that the choice of τ−1
λ > 0 and thus

the number of small eigenvalues is not unique. Nevertheless, for a certain choice of τ−1
λ

and a given problem we may still aim to establish that the number of eigenvalues below
the chosen threshold is uniformly bounded with respect to changes in specific problem
parameters. In this case the additive Schwarz preconditioner corresponding to the stable
decomposition (3.2) has a coarse space whose dimension is uniformly bounded with respect
to these parameters.

4.1. The Scalar Elliptic Case – Galerkin Formulation. As a first application of the
abstract framework developed above, we consider the scalar elliptic equation

−∇ · (κ∇φ) = f, x ∈ Ω, and φ = 0, x ∈ ∂Ω, (4.1)

where κ ∈ L∞(Ω) is a positive function, which may have large variation, φ ∈ H1
0 (Ω),

and f ∈ L2(Ω). Note that we can always reduce to the case of homogeneous boundary
conditions by introducing an appropriate right hand side.
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Ωj

Ωs
j,i

Ωp
j

Ωs
j

Figure 4.1. Subdomain with connected components of Ωs
j . In the present

configuration Lj = 7.

With V0 := H1
0 (Ω), the variational formulation corresponding to (4.1) is: Find φ ∈ V0

such that for all ψ ∈ V0

aSE (φ, ψ) :=

∫
Ω
κ(x)∇φ · ∇ψ dx =

∫
Ω
fψ dx.

Let V0(Ωj) := H1
0 (Ωj) ⊂ V0|Ωj for any j = 1, . . . , nx. Choosing {ξj}nx

j=1 the Lagrange finite
element functions of degree one corresponding to TH , we readily see that for the scalar
elliptic case, i.e., when setting a (·, ·) = aSE (·, ·), assumptions (A1)–(A4) are satisfied.

Let us for now assume that κ assumes only two values. More precisely,

κ(x) =

{
κmin in Ωs

κmax in Ωp,
with Ω

s ∪ Ω
p

= Ω and κmax � κmin > 0.

Without loss of generality, we may take κmin = 1. Now we wish to establish the existence
of τ−1

λ such that the number of eigenvalues below this threshold is independent of the
contrast κmax/κmin, which is the problem parameter of interest in this situation.

By the well-known min-max principle [24], we know that the i-th eigenvalue of (2.4) is
given by

λji = min
Vi(Ωj)

max
ψ∈Vi(Ωj)

aSEΩj
(ψ, ψ)

mSE
Ωj

(ψ, ψ)
, (4.2)

where Vi(Ωj) is any i-dimensional subspace of V (Ωj). (Here mSE
Ωj

(·, ·) is defined according

to (2.3) with a (·, ·) replaced by aSE (·, ·).)
We denote Ωs

j := Ωs∩Ωj and Ωp
j := Ωp∩Ωj . Now, for each i = 1, . . . , Lj let Ωs

j,i denote
the i-th connected component of Ωs

j , where Lj denotes the total number of connected

components of Ωs
j . If Ωs

j = ∅, we set Ωs
j,1 = Ωj and Lj = 1.

Now, we define the following subspace of V (Ωj):

V c
SE(Ωj) :=

{
φ ∈ V (Ωj) |

∫
Ωs

j,i

φdx = 0 , for i = 1, . . . , Lj

}
. (4.3)

It is straightforward to see that any Lj+1-dimensional subspace of V (Ωj) has a non-trivial
intersection with V c

SE(Ωj). Thus, by (4.2) there exists a non-zero φ ∈ V c
SE(Ωj) such that

λjLj+1 ≥
aSEΩj

(φ, φ)

mSE
Ωj

(φ, φ)
. (4.4)
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Using the definitions of aSEΩj
(·, ·) and mSE

Ωj
(·, ·) we note that

mSE
Ωj

(φ, φ) =
∑
i∈Ij

aSEΩj
(ξjξiφ, ξjξiφ)

=
∑
i∈Ij

∫
Ωj

κ|∇(ξjξiφ)|2 dx

≤ 2
∑
i∈Ij

∫
Ωj

(
κ|(∇(ξjξi)φ|2 + |ξjξi∇φ|2

)
dx

≤ C
∑
i∈Ij

∫
Ωj

κ
((
H−1φ

)2
+ |∇φ|2

)
dx

≤ CnI

(
H−2

∫
Ωj

κφ2 dx + aSEΩj
(φ, φ)

)
,

(4.5)

where C only depends on the choice of the partition of unity. Furthermore, we observe
that ∫

Ωj

κφ2 dx =

∫
Ωp

j

φ2 dx + κmax

Lj∑
i=1

∫
Ωs

j,i

φ2 dx

≤ CH2

∫
Ωp

j

|∇φ|2 dx + κmax

Lj∑
i=1

∫
Ωs

j,i

|∇φ|2 dx


= CH2

∫
Ωj

κ|∇φ|2 dx,

where we have used Poincaré’s inequality, which is possible since φ ∈ V c
SE(Ωj). Here, C is

a constant which only depends on the geometries of Ωp
j and Ωs

j,i, i = 1, . . . , Lj . Thus, we
obtain

mSE
Ωj

(φ, φ) ≤ CaSEΩj
(φ, φ) ,

which together with (4.4) yields a uniform (with respect to κmax/κmin and H) lower bound

for λjLj+1. Thus, we have verified assumption (A5) with τλ independent of κmax/κmin and

H. In particular we see that for a suitably chosen τλ the number of generalized eigen-
values below τ−1

λ and satisfying (2.4) is bounded from above by the number of connected
components in Ωs

j , i.e., Lj .

4.2. The Scalar Elliptic Case – Mixed Formulation. In this Subsection we consider
the mixed formulation of the scalar elliptic equation, also known as Darcy’s equations, in
2 spatial dimensions, i.e., n = 2, modeling flow in porous media

∇p+ µκ−1u = f in Ω,

∇ · u = 0 in Ω,

u · n = 0 on ∂Ω.

(4.6)

Here, p ∈ L2
0(Ω) := L2(Ω)/R denotes the pressure, u ∈ H(div; Ω) := {v ∈ (L2(Ω))2 | ∇ ·

v ∈ L2(Ω)} is the velocity, f ∈ (L2(Ω))2 is a forcing term, and n denotes the unit
outer normal vector to ∂Ω. The viscosity µ is a positive constant, and κ ∈ L∞(Ω) is a
positive function. With H0(div; Ω) := {v ∈ H(div; Ω) |v · n = 0 on ∂Ω} the variational
formulation of Darcy’s problem is given by: Find (u, p) ∈ (H0(div; Ω), L2

0(Ω)) such that
for all (v, q) ∈ (H0(div; Ω), L2

0(Ω)) we have∫
Ω
µκ−1u · v dx−

∫
Ω
p∇ · v dx−

∫
Ω
q∇ · u dx =

∫
Ω
f · v dx. (4.7)
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It is well-known (see e.g. [4, Chapter 12, p. 300]) that problem (4.7) is equivalent to the
following problem: find u in the subspace H0(div0; Ω) := {v ∈ H0(div; Ω) | ∇ · v ≡ 0}
such that ∫

Ω
µκ−1u · v dx =

∫
Ω
f · v dx ∀v ∈ H0(div0; Ω)

Let us additionally assume that Ω is simply connected. Then, we have (see e.g. [12])

that there exists exactly one φ ∈ H1
0 (Ω) such that ∇×φ = u, where ∇×φ :=

[
∂φ
∂x2

, − ∂φ
∂x1

]
.

This leads to the variational form of Darcy’s problem in stream function formulation: Find
φ ∈ V0 := H1

0 (Ω) such that for all ψ ∈ V0 we have

aD (φ, ψ) :=

∫
Ω
µκ−1∇×φ · ∇×ψ dx =

∫
Ω
f · (∇×ψ) dx. (4.8)

Note that aD (φ, ψ) =

∫
Ω
µκ−1∇φ · ∇ψ dx. Thus, for V0(Ωj) and ξj as chosen in Subsec-

tion 4.1 for j = 1, . . . , nx we can readily verify assumptions (A1)–(A4). Let us assume
that, as above, κ only assumes two values. Then, we can perform exactly the same ar-
gument as in Subsection 4.1 (with κ replaced by µκ−1) to establish the validity of (A5).
This in turn establishes the robustness (with respect to κmax/κmin and H) of the stable
decomposition (3.2) corresponding to the stream function formulation with its bilinear
form aD (·, ·). Thus, we may robustly precondition (4.8), namely, solve for φ and recover
u = ∇×φ from (4.7).

An equivalent approach, that we use in Section 6 to compute a solution of (4.7), is
somewhat different and outlined in the following Remark.

Remark 4.1. Instead of solving the stream function formulation for φ and then recovering
u = ∇×φ, one may equivalently use the coarse space corresponding to (4.8) to construct
a coarse space corresponding to (4.7) by applying ∇×to the coarse stream basis functions.
This then yields an equivalent robust additive Schwarz preconditioner for (4.7) (for details
see [20, Section 10.4.2]).

4.3. Stokes’ Equation. As for the mixed form of the elliptic equation we assume that
Ω ⊂ R2 is simply connected. Then we consider Stokes’ equations modeling slow viscous
flows 

−µ∆u +∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω,

where p ∈ L2
0(Ω), u ∈ (H1

0 (Ω))2, f ∈ (L2(Ω))2, and µ ∈ R+. The variational formulation
of the Stokes problem is: Find (u, p) ∈ ((H1

0 (Ω))2, L2
0(Ω)) such that for all (v, q) ∈

((H1
0 (Ω))2, L2

0(Ω)) we have∫
Ω
µ∇u : ∇v dx−

∫
Ω
p∇ · v dx−

∫
Ω
q∇ · u dx =

∫
Ω
f · v dx, (4.9)

where ∇u : ∇v :=

2∑
i,j=1

∂ui
∂xj

∂vi
∂xj

denotes the usual Frobenius product.

Analogously to Section 4.2 we can formulate an equivalent problem for stream functions:

Find φ ∈ V0 :=
{
ψ ∈ H2(Ω) ∩H1

0 (Ω) | ∂ψ∂n |∂Ω = 0
}

such that for all φ ∈ V0

aS (φ, ψ) :=

∫
Ω
µ∇(∇×φ) : ∇(∇×ψ) dx =

∫
Ω
f · ∇×ψ dx. (4.10)
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For a sufficiently regular partition of unity {ξj}nx
j=1 and spaces V0(Ωj), j = 1, . . . , nx,

defined as V0(Ωj) :=
{
ψ ∈ H2(Ωj) ∩H1

0 (Ωj) | ∂ψ∂n |∂Ωj
= 0
}

, we can readily verify (A1)–

(A4). For the verification of (A5), we define for j = 1, . . . , nx

V c
S (Ωj) :=

{
φ ∈ V (Ωj) |

∫
Ωj

φ = 0,

∫
Ωj

∇φdx = 0

}
.

As above, it is straightforward to see that any 4-dimensional subspace has a non-empty
intersection with V c

S (Ωj). Thus, by again using the min-max principle we see that there
exists a φ ∈ V c

S (Ωj) such that

λj4 ≥
aSΩj

(φ, φ)

mS
Ωj

(φ, φ)
. (4.11)

Using the definitions of aSΩj
(·, ·) and mS

Ωj
(·, ·) (see (2.3) with a (·, ·) replaced by aS (·, ·))

we note that

mS
Ωj

(φ, φ) =
∑
i∈Ij

aSΩj
(ξjξiφ, ξjξiφ)

=
∑
i∈Ij

∫
Ωj

µH(ξjξiφ) : H(ξjξiφ) dx

=
∑
i∈Ij

∫
Ωj

µ ‖φH(ξiξj) + ξiξjH(φ) +∇(ξiξj)⊗∇φ+∇φ⊗∇(ξiξj)‖2F dx

≤ CnI

∫
Ωj

µ(φ2H−4 +H(φ) : H(φ) +H−2(∇φ)2) dx,

where C only depends on the particular choice of the partition of unity. Here H(φ) :=[
∂2φ

∂xi∂xj

]
i,j=1, 2

denotes the Hessian of φ, ⊗ the tensor product, and ‖·‖F denotes the

Frobenius norm associated with the Frobenius product defined above. Since φ ∈ V c
S (Ωj)

we may apply Poincaré’s inequality to φ and its first derivatives. Thus, we obtain

mS
Ωj

(φ, φ) ≤ CnI
∫

Ωj

µH(φ) : H(φ) dx = CaSΩj
(φ, φ) , (4.12)

where C only depends on the partition of unity and the shape of Ωj but is independent

of H. Combining (4.12) with (4.11) we obtain λj4 ≥ C with C independent of H. This
verifies (A5) and thus establishes that the decomposition (3.2) and the corresponding
additive Schwarz preconditioner are robust with respect to H. As outlined in Remark 4.1
we can also obtain a robust additive Schwarz preconditioner for (4.9).

4.4. Brinkman’s Equation. As for Darcy’s and Stokes’ problem, we assume that Ω ⊂ R2

is simply connected. Brinkman’s problem modeling flows in highly porous media is given
by (cf. [5]) 

−µ∆u +∇p+ µκ−1u = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω,

(4.13)

where p, u, f , and µ are chosen as in the Stokes’ case and κ as in the Darcy case. The
variational formulation of the Brinkman problem is: Find (u, p) ∈ ((H1

0 (Ω))2, L2
0(Ω)) such
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that for all (v, q) ∈ ((H1
0 (Ω))2, L2

0(Ω)) we have∫
Ω
µ∇u : ∇v dx +

∫
Ω
µκ−1u · v dx−

∫
Ω
p∇ · v dx−

∫
Ω
q∇ · u dx =

∫
Ω
f · v dx. (4.14)

Again, we adopt the setting of stream functions. For V0 as in section (4.3), the vari-
ational stream function formulation reads: Find φ ∈ V0 such that for all ψ ∈ V0 we
have

aB (φ, ψ) :=

∫
Ω
µ
(
∇(∇×φ) : ∇(∇×ψ) + κ−1∇×φ · ∇×ψ

)
dx =

∫
Ω
f · ∇×ψ dx. (4.15)

With ξj and V0(Ωj) as in section 4.3 for j = 1, . . . , nx we readily verify (A1)–(A4).
Note that

aB (φ, ψ) = aS (φ, ψ) + aD (φ, ψ) and mB (φ, ψ) = mS (φ, ψ) +mD (φ, ψ) ,

where mB (·, ·) is defined according to (2.3) with a (·, ·) replaced by aB (·, ·).
Since for any ψ ∈ V (Ωj), j = 1, . . . , nx, we have mS

Ωj
(ψ, ψ) , mD

Ωj
(ψ, ψ) > 0 and

aSΩj
(ψ, ψ) , aDΩj

(ψ, ψ) ≥ 0 we have

aBΩj
(ψ, ψ)

mB
Ωj

(ψ, ψ)
=

aSΩj
(ψ, ψ) + aDΩj

(ψ, ψ)

mS
Ωj

(ψ, ψ) +mD
Ωj

(ψ, ψ)
≥ min

{
aSΩj

(ψ, ψ)

mS
Ωj

(ψ, ψ)
,
aDΩj

(ψ, ψ)

mD
Ωj

(ψ, ψ)

}
. (4.16)

This is an immediate consequence of the following inequality, valid for β1, β2 ≥ 0 and
β3, β4 > 0

β1 + β2

β3 + β4
=

β1

β3β4
+

β2

β3β4

1

β4
+

1

β3

≥


β2

β4
, if

β1

β3
≥ β2

β4
β1

β3
, if

β2

β4
≥ β1

β3

 ≥ min

{
β1

β3
,
β2

β4

}
.

Combining (4.16) with the results from Subsections 4.2 and 4.3 we obtain

λjmax{Lj+1, 4} ≥ C,

where C is independent of H and κmax/κmin, and where Lj is chosen as in Subsection 4.2.
This verifies (A5) and thus establishes that the decomposition introduced by (3.2) and
the corresponding additive Schwarz preconditioner are robust with respect to H and
κmax/κmin. As for the Darcy and the Stokes case, we can also obtain an equivalent robust
additive Schwarz preconditioner for (4.14) (see Remark 4.1).

5. Reducing the Dimension of the Coarse Space

In the exposition above, no assumptions except (A4) and (implicitly) (A5) were made
about the choice of the partition of unity {ξj}nx

j=1. In this section, we investigate possi-

bilities of making a particular choice of the partition of unity denoted by {ξ̃j}nx
j=1 that

results in a reduction of the dimension of the coarse space VH . The idea is that by re-

placing {ξj}nx
j=1 with {ξ̃j}nx

j=1 one can avoid the asymptotically small eigenvalues for those
connected components of Ωs which do not touch the boundary of any coarse cell T ∈ TH .
For this, we again assume the scalar elliptic setting as in Section 4.1.

Let {ξj}nx
j=1 be a standard partition of unity as above. For each j = 1, . . . , nx and each

T ⊂ Ωj , let ξ̃j |T be a solution of

−∇ · (κ∇ξ̃j) = 0, in T, ξ̃j = ξj , on ∂T.
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Ωp
j

Ωs
j

Ω̃j

Ωj

Ωs
j,k, k = 1, . . . , L̃j

Ωs
j,k, k = L̃j + 1, . . . , Lj

Figure 5.1. Subdomain with connected components of Ωs
j . The black

connected components are those touching an edge interior to Ωj . The grey

connected components are the remaining ones. In this configuration L̃j = 4
and Lj = 7.

The corresponding variational formulation reads: Find ξ̃j |T ∈ H1
0 (T ) + ξj such that for all

ψ ∈ H1
0 (T ) we have

aSET

(
ξ̃j , ψ

)
= 0, ∀ψ ∈ H1

0 (T ). (5.1)

We set ξ̃j ≡ 0 in Ω\Ωj and check whether with {ξ̃j}nx
j=1 instead of {ξj}nx

j=1 (A4) and (A5)
are satisfied.

As in Subsection 4.1 let Ωs
j,k, k = 1, . . . , Lj be the k-th connected component of Ωs

j .

Without loss of generality we may assume a numbering such that Ωs
j,k for k = 1, . . . , L̃j(≤

Lj) is a connected component for which Ω
s
j,k ∩ (∂T\∂Ωj) 6= ∅ for some T ⊂ Ωj . Note, that

in general L̃j ≤ Lj and that Lj − L̃j is precisely the number of connected components of

Ωs
j which do not touch an edge of T ⊂ Ωj interior to Ωj , i.e., for i = L̃j + 1, . . . , Lj we

have that Ω
s
j,i ∩ (∂T\∂Ωj) = ∅. We also define Ω̃j := Ωj\(

Lj⋃
k=L̃j+1

Ω
s
j,k). These notations

are illustrated in Figure 5.1.
To proceed we make the following assumption:

(Ã) For ξ̃j defined as above, we have∥∥∥∇ξ̃j∥∥∥
L∞(Ωj)

≤ CH−1 and
∥∥∥κmax∇ξ̃j

∥∥∥
L∞(Ωj\Ω̃j)

≤ CH−1, j = 1, . . . , nx,

where C is independent of κmax/κmin and H.

Note that by [9, Lemma 3.1]
∥∥∥∇ξ̃j∥∥∥2

L2(Ωj)
≤ CHn−2 and that by essentially the same

argument as in [14, Theorem 4.3 and 4.5] we have that
∥∥∥κmax∇ξ̃j

∥∥∥2

L2(Ωj\Ω̃j)
≤ CHn−2,

where as above n denotes the spatial dimension. To the best of our knowledge, obtaining

rigorous L∞-estimates as stated in (Ã) is still an open problem and beyond the scope
of this paper. Nevertheless, we consider reducing the verification of (A4) and (A5) to

establishing (Ã) a significant improvement.

It is easy to see that

nx∑
j=1

ξ̃j ≡ 1 and that supp(ξ̃j) = Ωj for any j = 1, . . . , nx. Thus, to

establish the validity of (A4) it remains to verify that ξ̃jψ ∈ V0 = H1
0 (Ω) and (ξ̃jψ)|Ωj ∈

V0(Ωj) for all ψ ∈ V0. For this we restrict to the case of two spatial dimensions, i.e., n = 2:
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Note that for some ε > 0 we have that ξ̃j ∈ H1+ε(Ωj) (cf. [15]). Thus, by [1, Theorem

7.57] we know that ξ̃j ∈ L∞(Ωj). Using this and (Ã) we see that∥∥∥∇(ξ̃jψ)
∥∥∥
L2(Ωj)

≤
∥∥∥ξ̃j∇ψ∥∥∥

L2(Ωj)
+
∥∥∥ψ∇ξ̃j∥∥∥

L2(Ωj)

≤ C
(
‖∇ψ‖L2(Ωj) +H−1 ‖ψ‖L2(Ωj)

)
<∞.

It is furthermore easy to see that supp(ξ̃jψ) ⊂ Ωj , which establishes (A4).
Similarly to section 4.1 we now define

Ṽ c
SE(Ωj) :=

{
φ ∈ V (Ωj) |

∫
Ωs

j,k

φdx = 0 , for k = 1, . . . , L̃j

}
, (5.2)

and by the min-max principle we know that there exists a φ ∈ Ṽ c
SE(Ωj) such that

λ̃j
L̃j+1

≥
aSEΩj

(φ, φ)

m̃SE
Ωj

(φ, φ)
, (5.3)

where m̃SE
Ωj

(·, ·) is defined as mSE
Ωj

(·, ·) with {ξj}nx
j=1 replaced by {ξ̃j}nx

j=1.

In order to obtain a uniform (with respect to κmax/κmin and H) lower bound for λ̃j
L̃j+1

and thus establish (A5), we need to verify that

m̃SE
Ωj

(φ, φ) ≤ CaSEΩj
(φ, φ) , (5.4)

with C independent of κmax/κmin and H.
Revisiting estimate (4.5), we obtain

m̃SE
Ωj

(φ, φ) ≤ 2
∑
i∈Ij

∫
Ωj

κ|∇(ξ̃j ξ̃i)φ|2 dx + 2aSEΩj
(φ, φ) .

Thus, it suffices to bound for any i ∈ Ij∫
Ωj

κ|∇(ξ̃j ξ̃i)φ|2 dx =

∫
Ω̃j

κ|∇(ξ̃j ξ̃i)φ|2 dx︸ ︷︷ ︸
=:E4

+

∫
Ωj\Ω̃j

κ|∇(ξ̃j ξ̃i)φ|2 dx︸ ︷︷ ︸
=:E5

by aSEΩj
(φ, φ). To avoid unnecessary technicalities, we make the simplifying assumption

that each connected component of Ω̃j contains at least one Ωs
j,k with k = 1, . . . , L̃j . If

this assumption is violated, one simply needs to introduce additional conditions in (5.2)

ensuring that the average of functions is zero over each connected component of Ω̃j that

does not contain any Ωs
j,k with k = 1, . . . , L̃j .

Assuming (Ã), we can find the required estimate of E4 as follows: Proceeding as in
Subsection 4.1 we see

E4 ≤ C H−2

∫
Ω̃j

κφ2 dx ≤ C
∫

Ω̃j

κ|∇φ|2 dx ≤ C aSEΩj
(φ, φ) ,

where we have used Poincaré’s inequality, which is possible since φ ∈ Ṽ c
SE(Ωj). Due to (Ã),

C can be chosen independently of κmax/κmin and H, but it may depend on the geometry

of Ω̃j .
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For an estimate of E5 note that by (Ã)

E5 ≤ 2κmax

∫
Ωj\Ω̃j

(
|∇ξ̃j |2 + |∇ξ̃i|2

)
φ2 dx

≤ CH2

∫
Ωj\Ω̃j

φ2 dx ≤ C
∫

Ωj

|∇φ|2 dx ≤ CaSEΩj
(φ, φ) ,

where we have used Poincaré’s inequality. This establishes (5.4), which yields the validity
of (A5).

In analogy to (3.1) we define the coarse space, called further multiscale spectral coarse

space, that is constructed using {ξ̃j}nx
j=1 instead of {ξj}nx

j=1 by

ṼH := span{ξ̃jϕ̃ji | j = 1, . . . , nx and i = 1, . . . , L̃j}, (5.5)

where ϕ̃ji are given by (2.4) with mΩj (·, ·) replaced by m̃SE
Ωj

(·, ·).

Remark 5.1. We note that for any subdomain Ωj with Ωj ∩ ∂Ω = ∅, we have that (0,1Ωj )
is an eigenpair of the generalized eigenvalue problem posed on Ωj , where 1Ωj denotes

the constant 1-function on Ωj . Thus, all multiscale partition of unity functions ξ̃j corre-

sponding to subdomains Ωj with Ωj ∩ ∂Ω = ∅ are basis functions of our coarse space ṼH .
This observation allows the interpretation of our method as a procedure that enriches a
multiscale coarse space (given by the span of the multiscale partition of unity functions)
by features that cannot be represented locally. These features are incorporated by those
eigenfunctions corresponding to non-zero (but small) eigenvalues.

6. Numerical Results

6.1. General setting. In this section, we investigate the performance of the overlapping
Schwarz domain decomposition method with coarse spaces discussed above when applied to
some specific problems described in Section 4. We have implemented this preconditioner in
C++ using the finite element library deal.ii (cf. [2]). Our goal is to experimentally establish
the robustness of additive Schwarz preconditioners with respect to contrast κmax/κmin.
The comparison is made using some coarse spaces known in the literature and the coarse
spaces introduced in this paper. Namely, we consider the following coarse spaces.

(1) Standard coarse space, denoted by V st
H := span{ξj | ξj |∂Ωj

≡ 0 for j = 1, . . . , nx},
of standard partition of unity functions corresponding to interior coarse mesh
nodes, which were introduced above (also, e.g [28]);

(2) Multiscale coarse space, denoted by V ms
H := span{ξ̃j | ξ̃j |∂Ωj

≡ 0 for j =
1, . . . , nx}, of functions that over each Ωj are solutions of problem (5.1) and cor-
respond to interior coarse mesh nodes (cf. [14]);

(3) Spectral coarse space, defined in (3.1) as VH := span{ξjϕji | j = 1, . . . , nx and i =
1, . . . , Lj}

(4) Multiscale spectral coarse space, defined in (5.5) (used only in the scalar elliptic
case, see Section 5).

In all numerical examples (unless stated otherwise), the threshold for taking into account
eigenpairs for the construction of the coarse space is chosen to be 0.5, i.e., 1/τλ = 0.5.
Note that in the finite dimensional case (A5) is satisfied for any choice of the threshold
1/τλ. However, in practice one is generally interested in choosing 1/τλ not too large to
avoid an unnecessarily large dimension of the coarse space.

We consider Geometries 1− 4 (see Figures 6.1 and 6.2), where for Geometries 1− 3 κ is
equal to κmin and κmax in the white and black regions, respectively, and for Geometry 4
κ is given as shown in the logarithmic plot of Figure 6.2(b).
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Figure 6.1. Two sample geometries: Geometry 1 (left) and Geometry 2
(right); the regions of low (white) and high (black) values of the coefficients.
The mesh indicates the coarse triangulation.

The geometries shown in Figure 6.1 differ by the number of connected subregions with
high permeability. The goal for these two different distributions of the high contrast is to
(1) test the robustness of the developed preconditioners with respect to the contrast and
(2) show the benefits of the multiscale coarse space in the case of a large number of not
connected, isolated, inclusions with high conductivity.

In the abstract setting we replace the spaces V , V0, and VH by their finite element
counterparts. For this, we use the fine grid which is obtained from the coarse grid by
subdividing the coarse grid elements into a number of finer elements. For Geometry 1
and 2, we make an initial 8× 8 mesh and introduce in each rectangular element an 8× 8
fine mesh, denoted by Th. Then, the spaces V0, V0(Ωj) and V (Ωj) are finite element
spaces corresponding to this mesh for a specific finite element, which needs to be chosen
appropriately for the problem under investigation, e.g., Lagrange finite elements for the
scalar elliptic problem in Galerkin formulation. In order not to overburden the notations,
we have omitted the dependence of the spaces upon the fine-grid mesh size hoping that
this will not lead to a confusion.

Unfortunately, such choice of the spaces does not satisfy assumption (A4), since gener-
ally the product ξjv of a standard partition of unity function and a finite element function
does not belong to the finite element space V . There are two ways to overcome this
problem: (1) to project ξjv back to the finite element space using the form a(·, ·) or (2)
to use the finite element interpolant of ξjv in the finite element space. The projection
is a local operation, but involves inverting some local stiffness matrices and could be un-
necessarily expensive. The interpolation option, which was used in our computations, is
straightforward to implement, but is not covered immediately by the abstract setting de-
veloped above. However, a perturbation analysis could show that this is a viable practical
approach whose rigorous study is a subject of our future research.

6.2. Numerical Experiments for Geometry 1. In this subsection we use the standard
coarse space V st

H and the spectral coarse space VH , defined in (3.1).

6.2.1. Scalar Elliptic Problem – Galerkin Formulation (see Section 4.1). Here, the finite
element space is the space of Lagrange finite elements of degree 1. The right hand side f
in (4.1) is chosen to compensate for the boundary condition of linear temperature drop in
x-direction, i.e., φ(x) = 1−x1 on ∂Ω. The dimension of the fine-grid space is 4225. In the
PCG method we iterate to achieve a relative reduction of the preconditioned residual of
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1e−6. In Tables 6.1 and 6.2 we present the results of two kinds of numerical experiments on
the problem described in Subsection 4.1 for Geometry 1 with contrast κmax/κmin increasing
from 1e2 to 1e6. As partition of unity {ξj}nx

j=1, we use Lagrange finite element functions
of degree 1 corresponding to the coarse mesh TH .

In Table 6.1 we compare the number of PCG-iterations and the condition numbers for
two preconditioners based on the standard coarse space V st

H (consisting only of the coarse

Lagrange finite element functions) and the spectral coarse spaces ṼH generated by our
method, respectively. The standard coarse space has fixed dimension 49. The method
performs well for low contrasts, but the condition number of the preconditioned systems
as well as the number of iterations grow with increasing contrast. The spectral coarse
space keeps the condition number independent of the contrast, which is in agreement with
our theory.

It seems that the results in the number of iterations for the space V st
H in the last row

in Table 6.1 deviates from the general trend. We note that for all cases we run the
PCG-method with the same stopping criterion, i.e., reduction of the initial preconditioned
residual by a factor of 1e− 6. However, in this case the condition number of the precondi-
tioned system is 1.77e5. Therefore, after reducing the initial preconditioned residual by a
factor of 1e−6 we may still be far away from the solution. Apparently, for larger condition
numbers we may need many more iterations to compute the solution accurately.

Standard coarse space V st
H Spectral coarse space VH

κmax/κmin # iter. dim V st
H cond. num. # iter. dim. VH cond. num.

1e2 29 49 2.29e1 25 76 15.59

1e3 50 49 1.88e2 21 145 11.51

1e4 55 49 1.79e3 18 162 6.20

1e5 67 49 1.78e4 18 162 6.18

1e6 66 49 1.77e5 19 162 6.19

Table 6.1. Elliptic Problem of Second Order: Numerical results for stan-
dard and spectral coarse spaces

In Table 6.2 we show the number of PCG-iterations and condition numbers for two
preconditioners based on spectral coarse spaces. In columns 2 − 4 we report the results
for a coarse space of fixed dimension 162 and the threshold for which this is achieved. In
columns 5 − 7 we present the results for a fixed threshold 1/τλ = 0.5. We note that the
difference in the performance is only for values of the contrast below 1e4.

6.2.2. Scalar Elliptic Problem – Mixed Formulation (see Section 4.2). Here, the finite
element space is the Raviart-Thomas space of degree 0 (RT0) for the velocity and piecewise
constants for the pressure on the same rectangular fine mesh as above. The right hand side
f in (4.6) is chosen to compensate for the boundary condition of unit flow in x-direction,
i.e., u ·n = e1 ·n on ∂Ω, where e1 is the first Cartesian unit vector. The (divergence free)
coarse velocity space is constructed as outlined in Remark 4.1. We first construct a basis of
the spectral coarse space corresponding to the stream function space. The corresponding
coarse velocity space is then given by the span of the curl of these basis functions. Note,
that the stream function space corresponding to RT0 is given by the space of Lagrange
polynomials of degree 1 (see [13, Section 4.4]).
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Spectral coarse space of dim VH = 162 Spectral coarse space, 1/τλ = 0.5

κmax/κmin # iter. cond. 1/τλ # iter cond. dim VH

1e2 18 7.45 1.39 25 15.6 76

1e3 17 5.99 0.92 21 11.5 145

1e4 18 6.20 0.50 18 6.20 162

1e5 18 6.18 0.50 18 6.18 162

1e6 19 6.19 0.50 19 6.19 162

Table 6.2. Elliptic Problem of Second Order: Numerical results for spec-
tral coarse spaces VH of fixed dimension and fixed threshold 1/τλ = 0.5.

Standard coarse space V st
H Spectral coarse space VH

κmax/κmin # iter. dim V st
H cond. num. # iter. dim VH cond. num.

1e2 32 49 2.87e1 23 86 13.87

1e3 50 49 2.26e2 24 129 18.38

1e4 63 49 2.19e3 17 162 6.57

1e5 80 49 2.18e4 18 162 6.65

1e6 87 49 2.13e5 19 162 6.68

Table 6.3. Scalar elliptic equation in mixed formulation: numerical re-
sults for Standard coarse space V st

H and spectral coarse spaces VH obtained
for a fixed threshold 1/τλ = 0.5.

As partition of unity {ξj}nx
j=1 we could simply use the bilinear Lagrange basis functions

corresponding to the coarse mesh TH . Nevertheless, for consistency with the Brinkman
case (see Section 6.2.3), where we have higher regularity requirements, we choose the ξj ’s
to be piecewise polynomials of degree 3, such that all first derivatives and the lowest mixed
derivatives are continuous and ξj(xi) = δi,j for i, j = 1, . . . , nx.

In Table 6.3 we present the numerical results for this problem and Geometry 1 (see
Figure 6.1). The dimension of the fine space is 12416. In columns 2 − 4 we report the
number of iterations, the size of the standard coarse space, and the condition number of
the preconditioned system. Here, the standard coarse (velocity) space is given by the span
of the curl of the partition of unity functions corresponding to interior coarse mesh nodes.
Columns 5−7 contain the number of iterations, the dimension of the coarse space, as well
as the condition number of the preconditioned system. It is clear that for the standard
coarse space of dimension 49 the condition number grows with increasing the contrast
and so does the number of iterations. However, when the coarse space includes all coarse
eigenfunctions below the threshold 1/τλ = 0.5, the preconditioner shows convergence rates
and condition numbers independent of the contrast.

6.2.3. Brinkman Problem (see Section 4.4). Next, we present the numerical experiments
for the Brinkman problem (4.13), where the right hand side f is chosen to compensate for
the boundary condition of unit flow in x-direction, i.e., u = e1 on ∂Ω. The viscosity µ is
chosen to be 0.01 and κ varies depending on the contrast (see Table 6.4).
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Standard coarse space V st
H spectral coarse space VH

κmax/κmin # iter. dim. V st
H cond. num. # iter. dim. VH cond. num.

1e2 27 49 2.13e1 25 60 14.69

1e3 39 49 4.22e2 28 75 21.73

1e4 70 49 2.25e3 29 106 21.83

1e5 91 49 1.51e4 24 153 13.08

1e6 113 49 1.24e5 22 164 13.82

Table 6.4. Numerical results for Brinkman’s equation using standard
coarse space V st

H and spectral coarse spaces VH .

We discretize this problem with an H(div)-conforming Discontinuous Galerkin dis-
cretization (cf. [31, 32]) using Raviart-Thomas finite elements of degree 1 (RT1). We
again employ a 64×64 fine grid. It is well-known (see [13, Section 4.4]) that in two spatial
dimensions the stream function space corresponding to the RT1 space is given by Lagrange
biquadratic finite elements. For a generalization to three spatial dimensions one has to
utilize Nédélec elements of appropriate degree. As above, we use an 8 × 8 coarse mesh.
We choose {ξj}nx

j=1 as described in Section 6.2.2, which satisfies all regularity constraints.
In Table 6.4 we give the number of iterations, the dimension of the coarse space in

the additive Schwarz preconditioner, as well as the estimated condition number of the
preconditioned system. The dimension of the fine space is 49408. As for the scalar elliptic
case in mixed formulation, the coarse (divergence free) velocity space is constructed as
outlined in Remark 4.1. In columns 2 − 5 we present the results for the case of the
standard coarse space of dimension 49, which as in Section 6.2.2 is given by the span of
the curl of the partition of unity functions corresponding to interior coarse mesh nodes.

We observe, that the increase in the contrast leads to an increase in the condition
number and subsequently to an increase of the number of iterations. Further, in columns
5− 7 we report the number of iterations, the dimension of the coarse space in the additive
Schwarz preconditioner, as well as the estimated condition number of the preconditioned
system for the spectral coarse space obtained by a fixed threshold 1/τλ = 0.5. For the
Brinkman problem the performance of the preconditioner is also robust. We should note
however, that Brinkman’s equation is much more difficult to solve due to the fact that the
overall system of linear equations is a saddle point problem.

6.3. Numerical experiments for Geometry 2 in Figure 6.1. These numerical ex-
periments are aimed to compare the performance of the iterative method applied to the
second order elliptic problem in Galerkin formulation (see Section 4.1) for a permeability
given in Geometry 2 (see Figure 6.1). The goal here is to demonstrate the coarse space
dimension reduction when using multiscale partition of unity functions instead of standard
ones. The dimension of the fine-grid space is 4225.

In Table 6.5 we present the results when the preconditioner is based on the spectral

coarse space VH (columns 2− 4), the multiscale spectral coarse space ṼH (columns 5− 7),
and the multiscale coarse space V ms

H (columns 8 − 10). Comparing the data for the

spaces VH and ṼH shows that the number of PCG-iterations and the estimated condition
number of the preconditioned system are robust with respect to the contrast κmax/κmin.
We can also observe that when using the spectral coarse space VH the dimension of the



22 Y. EFENDIEV, J. GALVIS, R. LAZAROV, AND J. WILLEMS

VH ṼH V ms
H

κmax
κmin

# iter. dim VH cond. # # iter. dim ṼH cond. # # iter dim V ms
H cond #

1e2 22 163 12.15 21 44 10.81 19 49 8.70

1e3 18 612 8.42 20 60 9.86 35 49 5.97e1

1e4 15 838 4.92 22 60 10.90 44 49 5.63e2

1e5 16 838 4.92 22 60 11.01 53 49 5.59e3

1e6 17 838 4.92 22 60 11.01 66 49 5.59e4

Table 6.5. Scalar elliptic – Galerkin formulation: results for spectral

coarse space VH , multiscale spectral coarse space ṼH , and multiscale coarse
space V ms

H .

coarse space increases as the contrast increases κmax/κmin, which is in agreement with the
analysis of Section 4.1. The decrease in the estimated condition number when going from
κmax/κmin = 1e2 to κmax/κmin = 1e3 and further to κmax/κmin = 1e4 can be explained
by the fact that for higher contrasts more eigenvalues are below the prescribed threshold,
yielding a higher dimensional coarse space and a lower condition number. However, it is
important to note that the dimension of the coarse space reaches a maximum for κmax/κmin

above a certain threshold. As we can see for κmax/κmin in the range 1e4, . . . , 1e6, the
dimension of the coarse space stays the same. By the analysis in Section 4.1 we know that
there is only a finite number of asymptotically small (with the contrast tending to infinity)
generalized eigenvalues. The reported data can be seen as evidence that for this specific
configuration we have reached this asymptotic regime for κmax/κmin = 1e4.

In columns 8 − 10 we present the numerical results of the algorithm when the precon-
ditioner is based on the multiscale coarse space V ms

H , which consist of one basis function
per interior coarse node. As we can see from the data, the number of PCG-iterations as
well as the condition number of the preconditioned system grow steadily with the growth
of the contrast.

The important point to observe when using the multiscale spectral coarse space ṼH
(see columns 5 − 7 of Table 6.5) is that its dimension is drastically reduced compared
to the spectral coarse space VH . In our specific example, the largest dimension of the

multiscale spectral coarse space ṼH , which is constructed using the multiscale partition of

unity {ξ̃j}nx
j=1, is 60, compared to the dimension 838 of the spectral coarse space VH , which

is based on the standard partition of unity {ξj}nx
j=1. 0ne is generally interested in keeping

the dimension of the coarse space as small as possible, especially when the problem is
solved multiple times. The data is a confirmation of our reasoning in Section 5.

6.4. Numerical experiments for Geometries 3 and 4. In Table 6.6 we present the
numerical results for the scalar elliptic equation of second order in Galerkin formulation
from Section 4.1 for highly heterogeneous permeability distributions shown in Figure 6.2.
Geometry 3 represents a rather challenging example: the permeability field is highly het-
erogeneous with more than 4000 small and about 100 large randomly distributed inclusions.
We consider this a challenging test for the robustness of the iterative method by perform-
ing a relatively small number of iterations using a coarse space of low dimension. Here,
we have used a 16× 16 coarse mesh and subdivided each coarse cell into 16× 16 subcells
to obtain a 256 × 256 fine mesh. The preconditioner is based on the multi-scale spectral
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(a) Geometry 3: periodic background
and randomly distributed inclusions.

(b) Geometry 4: random background and
randomly distributed inclusions – logarith-
mic plot of κ.

Figure 6.2. Two geometries with a 256× 256 fine mesh and a 16× 16 coarse mesh.

coarse space ṼH . The dimension of the fine space is 66049 while dimension of the coarse
space is at most 293. As we can see, the condition number of the preconditioned system is
robust with respect to the contrast and the dimension of the coarse space is quite small.

Geometry 4 (see Figure 6.2) represents a more challenging problem in that it is no longer
a binary medium, i.e., κ assumes many and not just two extreme values. The geometry
is generated by setting κ in a fine mesh cell to 10γ rand, where rand denotes a uniformly
distributed random number and γ = 2, . . . , 6. This produces a random field 10γ η(x) where
η(x) is a realization of a spatially uncorrelated random field. This yields a “background”
on top of which we put randomly generated inclusions similar to Geometry 3. In Table 6.6
(columns 5 − 7) we report the numerical results using the preconditioner based on the

multiscale spectral space ṼH . As we can see, the number of PCG iterations and the
condition number of the preconditioned system are robust with respect to increases in the
contrast. It is furthermore important to note that, even for this random case, the dimension
of the coarse space stays reasonably small (at most 397) compared to the dimension of the
fine space, i.e., 66049. This exemplifies the robustness and applicability of the numerical
method developed above.

7. Conclusions

The theory developed above introduces a method for constructing stable decomposi-
tions with respect to symmetric positive definite operators. The robustness with respect
to problem and mesh parameters is proved under rather general assumptions. We have
furthermore applied this abstract framework to several important cases, i.e., the scalar
elliptic equation in Galerkin and mixed formulation, Stokes’ equations, and Brinkman’s
equations. For the scalar elliptic equation in Galerkin formulation, we have additionally
presented a strategy of reducing the dimension of the coarse space in the stable decompo-
sition. To verify our analytical results, we have performed several numerical experiments,
which are in coherence with our theory and show the usefulness of the method.
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Geometry 3 Geometry 4

κmax/κmin # iter. dim ṼH cond. # # iter. dim ṼH cond. #

1e2 22 209 11.2 19 217 8.47

1e3 24 259 15.2 20 221 9.48

1e4 23 275 11.2 22 244 11.5

1e5 24 277 11.2 25 317 16.3

1e6 27 293 11.7 23 397 11.7

Table 6.6. Scalar elliptic problem – Galerkin formulation: Numerical re-
sults for permeability fields shown in Figure 6.2 using multiscale spectral

coarse spaces ṼH .
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