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(Vol 28, n* 7, 1994, p 903 a 919)

ON VARIATIONAL FORMULATIONS FOR THE STOKES EQUATIONS
WITH NONSTANDARD BOUNDARY CONDITIONS (*)

by James H. BRAMBLE C) and Ping LEE (2)

Commumcated by R TEMAM

Abstract — Variational formulations are proposedfor the Stokes équations with nonstandard
boundary conditions Due to the nonstandard boundary conditions, the pressure is découpléd
from the System and the remaining velocity équation admits weak formulations with no
divergence constraint on the spaces of test functtons and yet the solutions of the variational
problems are divergence free Finit e element approximations are introduced based on these
formulations and error estimâtes are proved

Résumé — Des formules vanationnelles sont données pour Véquation de Stokes avec des
conditions au bord non-standards Ces conditions font que V équation de la pression est
indépendante des autres variables, et que V équation de la vitesse peut être formulée faiblement
de telle sorte que la divergence des fonctions tests ne soit pas soumise a des conditions
restrictives, et que la divergence des solutions au problème vanationnel soit nulle Nous
donnons des approximations par éléments finis basés sur cette formulation, et des estimations
d'erreur

1. INTRODUCTION

We descnbe in this paper two formulations for solvmg the followmg
Stokes équations with non-standard boundary conditions :

- ï ' A u + V p - f in Ü
V • u = 0 in H
u * n = g* n on F (1)

V x u x n - h x n on F

i pdx = 0 ,
n
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904 J. H. BRAMBLE, P. LEE

where O is a bounded domain in R3 with boundary F = d/2, v > 0, and n is
the outward normal vector on F and the variables u and p usually represent
velocity and pressure in fluid mechanics. The function g satisfies the
compatibility condition

g • n ds = 0 . (2)
Jr

Recently, there has been increasing interest in Stokes équations with
nonstandard boundary conditions, cf. [2], [3], [7], [10], [13] and [16]. Such
problems come up in many practical applications, e.g. fluid dynamics,
electromagnetic field applications, and décompositions of vector fields.
Unlike the Stokes équations with Dirichlet boundary conditions, the
nonstandard boundary conditions

u * n = g . n and V x u x n ^ h x n o n T (3)

allow one to découplé p from the équations. More precisely, one can find
p independently of u. Variational formulations can then be introduced for the
reduced Stokes équations (without the p term).

It is well-known that one of the major difficulties in implementing
numerical schemes for solving Stokes problems in gênerai is how to impose
the divergence free condition or sometimes how to avoid imposing the
divergence free condition on the discrete spaces of test functions. In most
cases, properly imposed divergence free conditions on properly chosen
approximating spaces will directly lead to results of solvability and also error
estimâtes. Various numerical methods have been developed for solving the
Stokes problems in the literature to address this difficulty. Among those
methods, perhaps the most frequently used and investigated are the mixed
methods, cf. [11], which formulate the Stokes. problems as saddle point
problems. However, it is well documented that the analysis for such methods
usually amounts to vérification of the stability condition, usually referred to
as the inf-sup condition or the Babuska-Brezzi condition which must be
satisfied by the pair of discrete spaces chosen for velocity and pressure
approximations. Many combinations of discrete approximation spaces which
satisfy the stability condition are known to exist, although vérification of the
stability condition is often technical and delicate. There are also other
methods which avoid imposing the divergence free condition by introducing
the stream function in the two dimensional case or a vector potential
<p in the three dimensional case satisfying V x <p = u. In R3 the domain is
required to be simply connected to insure uniqueness of the vector potential.
Such methods generally lead to solutions of biharmonic or biharmonic-type
équations.

The aforementioned studies [2], [3], [7], [10] and [16] on the Stokes

M2 AN Modélisation mathématique et Analyse numérique
Mathematica! Modelling and Numerical Analysis



STOKES EQUATIONS WITH NONSTANDARD BOUNDARY CONDITIONS 905

équations with nonstandard boundary conditions all consider mixed formu-
lations. In V. Girault [10], a mixed method using vector potential-vorticity
formulation was proposed and analyzed. Similar studies can also be found in
C. Begue, el. [2], A. Bendali, el. [3], J. M. Dominguez [7], and R. Ver-
fürth [16]. In [15], a variational formulation similar to the first formulation of
this paper was studied for the three dimensional Maxwell's équations. As we
shall demonstrate in this paper, however, the nonstandard boundary con-
ditions (3) are somewhat more natural to Stokes équations than the standard
Dirichlet boundary conditions. They permit the pressure to be completely
decoupled from the system. In fact, the pressure can be sought independently
of the velocity as the solution of a certain Neumann problem. We can then
show that the remaining velocity équation admits weak formulations in
which the divergence constraint is not required for the spaces of test
functions but the solutions of the variational problems indeed have zero
divergence.

The remainder of this paper is outlined as foliows. In Section 2 we will
introducé some notation and preliminary results needed for the development
in the remaining sections. Section 3 is devoted to the dérivations of
variational formulations and proofs of characterization results for the Stokes
problems. Finite element approximation are then proposed in Section 4 and
error estimâtes in the energy norm are proved. We will also give some brief
comments on calculations of the bilinear forms in the weak formulations and
preconditioning in Section 5.

Finally, we remark that time dependent problems can be treated similarly
but they are omitted in this paper.

2. NOTATION AND PRELIMINAIRES

We will use the standard notation for gradient, divergence and curl
operators, Le. for a scalar function ƒ and a vector function v, we write
Vf, V • v and V x v f or the gradient, divergence and the curl respectively.
We further recall that the vector-valued Laplace operator, A, is defined by

Av = (Ai?!, Av2, Av3) (4)

and we have the vector identity

V x (V x v) - V(V. v ) - Av .

Next, we let 12 be an open bounded domain in IR3 with boundary
öü — F. The boundary of fï is a 2-dimensional manifold without boundary.
In gênerai we shall assume a certain smoothness property for F, e.g.
F is of C ( r s s2 ) . We recall the définition of classical Sobolev space
Hm (O ) being the completion of smooth functions under the norm

vol. 28, n° 7, 1994



906 J. H. BRAMBLE, P. LEE

where

|v | ,„= I \ö"v\2dx\ . (7)

When m = 0 w e have L2(f2) = H°(f2 ). We will dénote the inner products in
Hm(f2) by ( • , • )m, a* In particular, we will use ( • , • ) to dénote the
L2 inner product. For s =- 0, Hs(f2) is defined by interpolation. The spaces
Ha (F) for OÙ 5= 0 are defined in a similar fashion. We will use < * , - ) « r t 0

dénote the //"-inner product and <•>•> = < * > * ) 0 r*

For vector valued functions the above norm s extend naturally as follows :
for v = (vl9 v2, v3)

1/2

The corresponding spaces will be denoted by Hs(f2)3.
We shall now introducé some function spaces which are related to the

study of équations (1). First, we dénote the space of square integrable
functions with zero mean value on 12 by

= \<peL2(n): f <p dx = o| . (9)
J

Next, for 0 =s « =s 1/2, we define the spaces

{v G L 2 ( / 2 ) 3 : V x v e L 2 ( / 2 ) 3 , V . V G L 2 ( / 2 ) , and v • n e Ha (F)} . (10)

We further dénote by UT(f2 ) the subspace of H a (f2 ) with vanishing normal
components on Ff i.e.

{v eL2(f2)3 : V x veL 2( /2) 3 , V«veL 2 ( /2 ) , andv-n = 0} . (11)

The dual spaces of HT(/2) and Ha(f2) are denoted by H|(/2) and
H ; ( / 2 ) respectively ; the dual of Hm(F) is denoted by H-m(F).

The following preliminary results will be assumed in subséquent sections.
Their proofe can be found in the références given below and therefore are
vOmitted Jtiere. First we state a well-known resuit on orthogonal décomposi-
tions oî fonctions in L2(/2)3, (cf. [11]).
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LEMMA 2.1 : For every functions vs L2(f2)3, there exist unique w and
<p e H{(f2 )/R, with V • w = 0 and w x n = 0 on F, such that the following
orthogonal décomposition holds :

v = V x w 4- Vcp .

The following lemma plays an important role in the variational formulation
proposed in subséquent sections, it provides the positivity of the bilinear
forms in the variational formulations to be introduced in the next section.

LEMMA 2.2 : (1) The mapping v -+ | | v l i H given by

l | v | | H a = ( l l V x v | l o , / 2 + | | V - V | | ^ + | V . n | 2
a r ) 1 / 2 ( 1 2 )

defines a norm on Ha (12 ).
(2) Moreover, when a = 1/2, the space Ha(f2) is equal to Hl(f2)3

algebraically and topologically.
Proof : Statement (1) is a direct conséquence of Lemma 2.1. The prooffor

(2) can be found in [3], [8] and [9].
As a conséquence of the preceeding lemma, we have the following.

COROLLARY 2.1 : The mappinQ v -» ||v||„ given by

(13)

defines a norm on H r(/2).
In the remainder of this paper, we will use C to dénote a generic constant
which does not depend on functions in certain function spaces in context or
the mesh size of finite element mesh domains.

We end this section by stating the following regularity result for (1). lts
proof can be obtained following the gênerai proof for elliptic Systems,
{cf. [l], [12], [17]).

THEOREM 2 .1 : Let F be of class C r ( r ^ 2 ) . If ( / , h x n , g - n ) e
Hf(/2) x H~ m(Ff x Hm(F\ then there exists a unique solution
(u,p)eHl(üf xLl(ü) of (\) such that

I W I i l f l + « P l l o . i l * C { | | f | | H H i 3 ) + | | h x n | L 1 / 2 r + | | g . n | | 1 / 2 > r } . ( 1 4 )

For the gênerai shift theorem, we let F be of class Cr(r ^ m + 2). Then for
(f, h x n, g • n) e Hm~l(n )3 x Hm'm(Ff x Hm+m(F\ there exists a un-
ique solution (u,p)eHm+l(nfx (Hm(n)n L§(/2)) of (1) such that

vol 28, n° 7, 1994



908 J H BRAMBLE, P LEE

3. VARIATIONAL FORMULATIONS

In this section we will dérive two variational formulations for the Stokes
problem (1) Without loss of generahty, we assume from now on that
v = 1. Usmg the nonstandard boundary conditions, we can solve for the
pressure p independently. With p and hence Vp known the resulting System
contams only the velocity variable u and is self consistent. We therefore
introducé variational formulations for the reduced velocity équations. To
proceed, we let (u, p ) be the solution of (1) and multiply the first équation by
Vq for any q e Hl fl and integrate over fl. Using the vector identity (5), we
find that

( - Au, Vq) = (V x (V x u), Vq)

= - <V x u x n, Vq) (15)

= - <h x n, Vq)

By the Stokes Theorem,

- <h x n, Vq) = (V x h . n, q) - qh - d<r . (16)

Since F is a two dimensional mamfold without boundary, dF is empty.
Hence,

( - Au, Vq ) = ( V x h - n ^ ) (17)

Consequently, for any q e Hx{fl)y we have the équation

(V/7, Vq)= (f, Vq)- ( V x h . n ^ ) (18)

On the other hand, if we apply the divergence operator to the both sides of
first équation of (1), multiply by q for qeHl{n), integrate over
ƒ2 and then use the above équation, we obtain

(Vp .n^) = ( f . n ^ ) - ( V x h . n ^ ) , for all q e H1 {fl) (19)

From (18) and (19), we find that p is the solution of the Neumann problem,

- Ap = - V . f m fl ( 2 0 )

a / 9 = ( f - V x h ) - n on F.

Remark 3 1 ( 1 7 ) w i t h q - 1 s h o w s t h a t V x h - n ^ ^ O . T h i s is t h e

Jr
compatibihty condition for (20).
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Therefore ƒ? can be found indenpendently of u by solving the problem (20).
With p known, we put F = f - Wp and obtain a System of équations
involving only the velocity variable u. That is

- Au = F in n
V u = 0 in O
u • n = g - n on F

V x u x / ? = h x n on F .

We note that by équations (1) F satisfies

V . F = V . ( - Au) = - A(V -u) = 0 , (22)

and
F n = (f- V/?)-n = V x h n . (23)

Remark 3.2 : The above two conditions that F satisfies are not coincidental.
They are in fact the compatibility conditions on F in order that the
System (21) have a unique solution.

We shall now describe two variational formulations for the reduced
velocity équations (21).

3.1. First Formulation

For simplicity, we will assume in this section that g • n = 0 and
h x n = 0 on F. Nonhomogeneous boundary conditions are analyzed in the
next section and the same argument could be used here to treat the case of
nonhomogeneous boundary conditions. Let us recall in Section 2 that
HT(f2) is the subspace of Hl(f2)3 whose normal components vanish on
7". We define a bilinear form on HT(f2) x H r(/2) by

Z?r(u, v) = (V x u, V x v) + (V • u, V • v ) .

With the définition of the bilinear form BT(u, v), the reduced Stokes
équations (21) admits the following weak formulation :

(Si) : For F e Hf (Ü \ find u e HT(f2 ) such that

Z?r(u, v )= (F, v)

for all v e HT(f2 ). Clearly, by the Cauchy-Schwarz inequality and the Riesz
Représentation Theorem we have the following.

THEOREM 3.1 : For every F e Hf(/2) there exists a unique u e H r(/2)
such that u is a solution of problem (Si). Furthermore,

for some constant C.

vol. 28, n° 7, 1994



9 1 0 J H BRAMBLE, P LEE

The followmg theorem shows the équivalence of the reduced Stokes
équations (21) and the variational problem (Si) when F satisfies the
compatibihty conditions

THEOREM 3 2 Assuming that the boundaiy F of f2, the solutions of the
reduced problem (21) and the variational problem (S^) are sufficiently
regular, then for F satisfying the compatibihty conditions (22) and (23),
(Sf ) is equivalent to (21) with homogeneous boundary conditions, i e
g • n = 0 and h x n = 0

Proof It is straightforward to see that the solution u of (21) satisfies the
variational équation of (S„) For the converse, we sketch the proof as
follows Let u be the solution of (Si) and v an arbitrary smooth vector
function We ïntegrate by parts and use ïdentity (5) to get

BT(u, v) = ( - Au, v) + <V x u x n, v )

Taking v vamshing on the boundary, we obtain

- Au = F m O .

Let w be arbitrary and choose v such that v = w - ( w « n ) n o n F. Then

(V x u x n, w) = <V x u x n, v ) = 0 .

We conclude that

V x u x n = 0 on F.

It remains to show that the solution u of the variational problem satisfies
V • u = 0. For arbitrary <p e L2(O ) and we let <p dénote the mean value of
<P, ï.e

where \O | is the measure of O. We choose t// such that

— Atj/ — <p — <p in O
= 0 on T .

Observe by the divergence theorem that

(V - u, <p ) = ïp \ u • n ds = 0 .
Jr
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Then

(V . u, <p ) = (V . u, <p - <p )
= (V - u, - A* )
= - (V • u, V • V^ )

= - (F, V*)
= (V.F, 4,)- <F-n, 0>
= 0 .

We remark that the last equality is the conséquence of the compatibility
conditions on F. Now it is clear that,

V . u = 0 in O .

This complètes the proof.

3.2. Second Formulation

To describe our second formulation, we define a bilinear form on
Ha (ü ) x Ua (O ) and for 0 ^ a === 1/2 and w > 0,

^«, » (u, v) = (V x u, V x v ) + (V • u, V . v ) + (o <u • n, v - n> a r (25)

From Lemma 2.2 we know the above Ba w-form induces a norm which we
shall dénote by 111 • III a . We therefore have the following.

Corresponding to the new bilinear form Ba w ( •, • ). We introducé the
following variational problem : (Sv) : For (F, h x n, g • n) e Hf(/2 ) x
H- m(rf x Ha (r\ find u e H J i ï ), such that

Bat(ü(u,\)= (F, v) + <h x n, v> + <*> <g • n, v . n>a r ,

for all V G H C ( / 2 ) . (26)

For the above variational problem (5y), we have

THEOREM 3.3 : For every (F, h x n, g . n ) e Hf(ƒ2 ) x H~ m(rf x
Ha(F), there exists a unique solution u of problem (Sv) such that

l l l u l l l . « C { | |F | | H , ( / 2 ) + | | h x n | | _ 1 / 2 r + | | g . n | | a > r } , (27)

for some constant C.

Proof: Uniqueness follows directly from coercivity of 111 • 111 a .. For
existence, we split (So) into two parts, namely

(1) For ( F , / i x n ) e Hf (H ) x H~ m(rfJ find ux in Hr(/2 ) such that

5«,«<Ui. • ) = (F, v ) + < h x n , v> , for ail v e H a ( i 2 ) . (28)
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912 J H BRAMBLE, P LEE

and

(2) for g n e Ha(F\ find u2 in Ha(/2) such that

Ba „(u2, v ) = oi <g n, v n)a r , for all v e H a ( / 3 ) (29)

It is clear from the Cauchy-Schwarz mequality and the Riesz représentation
Theorem that both problems (1) and (2) admit unique solutions since F and
h x n define bounded lmear functionals on Hr(/2 ) and g • n gives nse to a
bounded lmear functional on Ha (f2 ) Now by lmeanty, it is also easy to see
that the solution u of (Sv) is the sum of Uj and u2 To prove estimate (27), we
start with

\ W n 1 \ \ \ l = B a „ ( m , U l ) = ( F , U l ) + < h x n , U l >

For the second term, we have

<h x n, U l > ^ | |h x n | | _ 1 / 2 r ||Ui || 1 / 2 r

^C | | h x n | | m r \\nx\\x a

^C | ] h x n | L 1 / 2 r | | U l | | a ,

since ul n = 0 on F In the second step we used the standard trace
mequali ty | |v | | 1/2 r ^ C \\\\\x n for all v e H\nf Hence,

H l u i l l l » ^ I |F | I H 7 . (Û) + C ||h x n | | _ 1 / 2 ^ (30)

Next , we have

111 "2 111 l = Ba w (u2, u 2 ) = co (g . n, u 2 . n> a p

g n | | a r l l l u 2 l l l a (31)(O
1/2

The estimate (27) then follows readily from (30) and (31)
We now prove the following charactenzation resuit for our second

variational formulation

THEOREM 3 4 Assumtn% that the boundaiy F of fl, the solutions of the
reduced problem (21) and the variational problem (Sv) are sufficiently
regular, then for g, h and F satisfying the compatibihty conditions (2), (22)
and (23), (Sv) is equivalent to (21)

Proof Again it is straightforward to see that the solution u of (21) satisfies
the variational équations (Sv) We will sketch the proof for the reverse
direction Let u be the solution of (Sv) Then, after mtegrating by parts,

Ba w(u, v) - ( - Au, v) + <V x u x n, v> +
+ <V u, v n) + o) (u n, v • n ) a r
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STOKES EQUATIONS WITH NONSTANDARD BOUNDARY CONDITIONS 913

Taking v vamshing on the boundary, we obtain

- Au - F in O .

Let w be arbitrary and choose v so that v = w — (w • n ) n on F. Then

<V x u x n, w ) = <V x u x n, v) = <h x n, v) = <h x n, w) .

We conclude that

V x u x n = h x n on F .

Therefore the remaining équation becomes

<V . u, v- n> + (o <u n, v- n) a r - <o <g • n, v- n) a r . (32)

For arbitrary <p 6 L2(f2), we choose if/ such that

— Ai/j = (p — <p in 12
dtff/dn = 0 on F .

Now

<V . u, <p - <p) = (V • u, - A r̂ )
= (V(V • u), V^r) - <V . u, dtff/dn)
= (V x V x u + Au, Vip )
= (V x u, V x (Vt// )) - <V x u x n, Wt// > - (F, Vif/ ),
= — (h x n, V0- ) + (V • F, t// ) - <F • n, ^ )
= < V x h • n, <A > + (y - F, *A ) - <F • n, ^ >
- 0 . (33)

Again, the last equality results from the compatibility condition on F.
Equation (33) then implies

(V . u - V • u, <p ) = (V • u, <p - <p ) = 0 .

Hence

V - u = V - u .

Now from (2) we have that

f
<V . u, g • n) = V • u g ' i iöf^O.

Jr

Thus, choosing v in (32) such that v = u - g on f, it follows that

\f2\ V T ^ 2 + Û> < ( u - g ) - n , ( u - g ) . n ) a r = 0

vol 28, n° 7, 1994



9 1 4 J. H. BRAMBLE, P. LEE

Therefore

V . u = 0 in ft ,

and

u • n = g • n on F .

This complètes the proof of Theorem 3.4.

Remark 3.3 : As we have seen, in both variational formulations, the
divergence free condition is not imposed on the spaces of test functions. In
fact, they are taken to be Hr(/2 ) and Ha (ft ), respectively. In particular when
a = 1/2 the space of test functions is all of H1 (ft )3. And yet the solution u of
our variational problem satisfies V • u = 0. This is particularly useful in our
approximate problem since the divergence free condition might be difficult
to impose.

4. FINITE ELEMENT APPROXIMATIONS

4.1. Approximating Spaces and Discrete Formulations

We will only consider the discrete approximations to the second variational
formulation (Sv) introduced in Section 3. The discrete approximations
corresponding to the first variational formulation can be given similarly and
hence are omitted here.

We will need spaces of approximating functions for the pressure and
approximating vectors for the velocity. To this end let {Sh} be a family of
finite dimensional subspaces of Hl (ft ) n L%(Q ) and or m =* 2, an integer,
we assume that for any <p e Hk(ft),

inf̂  H^-A-II^^Ch*-; IMU/2> 04)

for 1 =s j- === k =s; m. Furthermore, let {£fh} c Ha(ft) he a family of finite
dimensional spaces of vector functions such that the following approximation
property is satisfied. For m s* 2 and 1 =s s =s m, we have

• f / I I ^ II ^ Z » 2 | h [2 \ (~*\\2-s || || 2 >"2 £ j ^

for any w e Hs(ftf.

Remark 4.1 : Finite element spaces satisfying (34) may be found in [6] for
instance. Perhaps the simplest and most common example is that in which

M2 AN Modélisation mathématique et Analyse numérique
Mathematica! Modelling and Numerical Analysis



STOKES EQUATIONS WITH NONSTANDARD BOUNDARY CONDITIONS 915

the éléments in Sh are piecewise hnear functions on a given triangulation of
H Similarly, the components of the vectors in Sfh may be chosen m the
same way

Smce p e LQ we will approximate ph in S§ = Sh n LQ Our finite element
approximation to problem (1) is defined as follows

Find p1' e Sg and uhe £fh such that

( V , V * ) = (f, VX)- < V x h n, x) , for all X e Sh
ö (36)

and

Ba h2* . (u\ v") = (F", v") + h1' ' <g n, vy' n>n ; ,

for all v " e ^ \ (37)

where Fh = f - Vp/?

Remark 4 2 the choice of w ^ / j 2 " " 1 is made lor the purpose of
balancing the norms and leads to optimal error estimâtes for the finite
element solutions

4.2. Error estimâtes

We will now prove the error estimâtes for the solutions of finite element
approximations (36) and (37) In the lollowing, III III a h will be used to
dénote the norm mduced by the bilinear form Ba h2<* i( •, • )

THEOREM 4 1 Let f e L2(/2 )3, g . n e Hm(F) and h x n e Hy2(F)3 Let
(u, p) be the solution of{\) and (u\ ph) be the solutions of (37) and (36),
respectively Then

I I P - P X ^ + I I I U - U ' I I I . ^ C / K I H , n + \ \n \ \ 2 i l ) (38)

Proof The estimâtes for p — ph are standard We dérive them hère for
completeness As usual

(V(p-/>*), A * ) = 0 , for all X e Sh
0

implies that, for any x e SQ,

Hence
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This is the usual Hl estimate for p — ph. Now, to dérive the L2 estimate we
use the standard duality argument. Let a> be the solution in H2(f2) n L\ of

— Act> = p — ph

d<o/dn = 0 .

Note that p - ph e L Q ( / 2 ) , SO that <o is well defined. Then we see that

« | |V(p-p*)||of l inf
A" e S"

^Ch\\V(p-ph)\\0 J

Usmg the a priori estimate, cf. [14],

||a,||2^C||p

we conclude that

This is the standard L2 estimate for p — ph.

We next define the projection P\ of Hl(O)3 onto 9>h by

^ ^ . . ( u - P j u , v/;) = 0 , for all v/; e S?h.

Then

l l l u - u h l l l a f A a S l l l u - J P Î u l l l a i A + l l l u f c - J P Î u l l l a ( A .

The first term can be estimated by approximation property

l l l u - P Ï u l l L , * * inf l l l u - v * l l l a i A . (40)
v* e yh

For the second term, we have

= - (p - p", V • (u" - P'; u )) + (p- p\ (u" - f',' u ) • n)
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*y-p\o\\v-<.»h-p»ha

+ (hm-"\p-ph\_a r)(h-m + a\(uh-Plïu)-n\a r)

^(\\P-pXo + hl-2"\p-p"\iatr)
l'2\\\n

ll-Pliu\\\a,h. (41)

In (41),

U r . sup

Hence

Because of (39), we only need to show

ph)\ln. (42)

For this purpose, we define tf/ such that

- A^ + ft = 0 in O
dij/fdn = <p on r .

Then

(p-p\ <p) = (p-p\ àip/dn)
h (p-p\Aifr)

*))+ (p-p\

for arbitrary x in 5§. Therefore,

/ o ^
SUp p—: +

BOfl sup

a, r

which complètes the proof.
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Similarly, we can show.

THEOREM 4.2 : Let F be sufficiently smooth, f e Hr(f2)3,
g . n e Hr + m(r) and h x n e H' + 1 /2(r)3. Let (u, p) be the solutions of(l)9

(u\ ph) be the solutions of (37) and (36), respectively. Then

0 =s= r =£ m —
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