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Abstract: We use the conformal bootstrap approach to explore 5D CFTs with O(N)

global symmetry, which contain N scalars φi transforming as O(N) vector. Specifically, we

study multiple four-point correlators of the leading O(N) vector φi and the O(N) singlet

σ. The crossing symmetry of the four-point functions and the unitarity condition provide

nontrivial constraints on the scaling dimensions (∆φ, ∆σ) of φi and σ. With reasonable

assumptions on the gaps between scaling dimensions of φi (σ) and the next O(N) vector

φ′i (singlet σ′) scalar, we are able to isolate the scaling dimensions (∆φ, ∆σ) in small

islands. In particular, for large N = 500, the isolated region is highly consistent with the

result obtained from large N expansion. We also study the interacting O(N) CFTs for

1 ≤ N ≤ 100. Isolated regions on (∆φ,∆σ) plane are obtained using conformal bootstrap

program with lower order of derivatives Λ; however, they disappear after increasing Λ. For

N = 100, no solution can be found with Λ = 25 under the assumptions on the scaling

dimensions of next O(N) vector ∆φ′i
≥ 5.0 (singlet ∆σ′ ≥ 3.3). These islands are expected

to be corresponding to interacting but nonunitary O(N) CFTs. Our results suggest a lower

bound on the critical value Nc > 100, below which the interacting O(N) CFTs turn into

nonunitary.
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1 Introduction

The conformal bootstrap [1–4] provides a non-perturbative approach to solve conformal

field theories (CFTs) using general consistency conditions of CFT. It has led to great

successes in 2D, such as the seminal work [4] on solving 2D rational CFTs. In recent

years the conformal bootstrap has been revived since the breakthrough discovery in [5],

which shows that the crossing symmetry and the unitary conditions can provide strong

constraints on the operator scaling dimensions without an explicit form of Lagrangian.

The crossing symmetry of four-point correlator leads to an infinite set of constraints on

the CFT data. These constraints are difficult to be solved analytically, instead, they are

truncated to a finite set and reformulated as a convex optimization problem so that they

can be solved numerically. Here the convexity of conformal block functions [6, 7] plays a

crucial role. Since then the conformal bootstrap has been significantly developed and it

becomes a remarkably powerful technique to obtain CFT data, including operator scaling

dimensions and operator product expansion (OPE) coefficients in D > 2 dimensions [8–49].

Review of previous developments on conformal bootstrap is provided in [50].

From conformal bootstrap with single correlator 〈φφφφ〉, one can obtain bounds on

the conformal dimension or OPE coefficient of objective operator. The bounds may exhibit

singular behaviors, such as kinks which are believed to be related to unitary CFTs. One

can expect to obtain more information on CFTs through bootstrapping mixed correlators

like 〈φφφ2φ2〉. Conformal bootstrap with mixed operators has been fulfilled in [28, 39]
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for 3D Ising model and critical O(N) vector models and the results are quite impressive

— the allowed scaling dimensions are isolated in small islands. The accuracy can be

improved further by refining the numerical techniques [37, 49]. Studies on the 3D O(N)

vector models are strongly motivated by their special importance in physics. For small

N ≤ 3 they describe second-order phase transitions occurring in real physical systems [51].

Besides, its O(N)-singlet sector is proposed to be dual to higher spin quantum gravity in

AdS4 with Dirichlet boundary conditions [52]. In the UV side, the 3D O(N) vector model

contains N free scalars φi, i = 1, · · · , N perturbed by quartic coupling (φiφi)
2. The RG

flows to an IR fixed point which is strongly coupled. For the critical O(N) vector models

with large N or in D = 4−ε, ε� 1 dimensions, one can obtain reliable results using large N

expansion or the well-known Wilson-Fisher ε expansion. Actually these analytical results

have been used as consistency checks of conformal bootstrap in [18, 19]. Nevertheless,

for the 3D (ε = 1) critical O(N) vector models with small N which are more physically

attractive, these perturbative methods turn into less effective. In contrast, conformal

bootstrap remains useful and has provided the most accurate results up to date [49].

Following the success of conformal bootstrap in critical 3D O(N) vector models, one

may expect to generalize the results to critical O(N) vector models in higher dimensions.

These models, if exist, are expected to provide examples on AdSd+1/CFTd correspondence

in higher dimensions. In 4D there is no critical O(N) CFT, while in D > 4, the interaction

term (φiφi)
2 is irrelevant in the free O(N) theory so the UV free O(N) theory perturbed

by the quartic interaction does not lead to an interacting fixed point in the IR, instead,

the theory admits a Gaussian fixed point in the IR which flows to an interacting UV fixed

point under (φiφi)
2 perturbation [53, 54]. In D = 4 + ε such UV fixed point theory is

weakly coupled for sufficient small ε and it requires a negative quartic coupling coefficient,

which may introduce the problem of instability even though the scaling dimensions of the

operators are above the unitary bound. A UV-completed formulation of the O(N) model

in D > 4 dimensions has been proposed in [55, 56]

L =
1

2
(∂µφi)

2 +
1

2
(∂iσ)2 +

1

2
gσφ2

i +
1

6
λσ3, (1.1)

in which the φi constructs fundamental representation of O(N) and the O(N) singlet σ

performs as composite field φ2
i in the UV side. The theory contains cubic interaction terms

which are relevant in space with dimension D < 6. Using the combination of ε and large N

expansion it has been shown that this theory admits an interacting IR fixed point [55, 56],

which is unitary for N > Nc, while below the critical value N < Nc the coupling turns into

complex and the IR fixed point theory is nonunitary. At one-loop level the critical value

Nc is about Nc ≈ 1038. For 5D (ε = 1) critical O(N) theories, the small ε condition for ε

expansion approach breaks down so the results obtained from ε expansion should be treated

carefully. Actually the critical value decreases to Nc ≈ 64 at three-loop level. In [57] the

author has obtained a critical value Nc ≈ 400 at four-loop level based on resummation

methods. A non-perturbative method is desirable to determine the critical value Nc in

5D. The 5D critical O(N) models have been studied using the nonperturbative functional

renormalization group equations [58–63]. In these works the 5D interacting O(N) fixed
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points have been obtained while the effective potential is metastalbe. Specifically the

analysis in [63] agrees with the results from the D = 6 − ε perturbative approach when

ε� 1 and predicts the 5D critical value Nc = 1.

The conformal bootstrap approach has been employed to study 5D critical O(N) mod-

els in [25, 35, 36] following the proposal of the cubic model [55, 56]. In [25] the 5D critical

O(N) models have been assumed to saturate the minimum of the O(N) current central

charge cJ for large N and the existence of 5D critical O(N) models are indicated from these

minimums obtained from conformal bootstrap. The authors focused on bootstrapping the

OPE coefficients rather than the scaling dimensions of conformal primary operators. In

3D conformal bootstrap the interacting O(N) CFTs have been found to lie at the kinks of

the bounds for the scaling dimension ∆σ of the O(N) singlet σ, which appears as lowest

dimension operator in the S channel of the correlator 〈φiφjφkφl〉. However, in 5D cubic

model the lowest dimension O(N) singlet operator σ performs as φ2
i , ∆σ = 2∆φ = 3 at the

UV Gaussian fixed point which reduces to ∆σ = 2 +O(1/N) near the IR fixed point. The

IR fixed point is below the upper bound of scaling dimensions ∆σ so there is no clue on the

fixed point theory in the bound of scaling dimensions. This problem has been overcome

in [35, 36] by imposing a gap on the scaling dimensions of σ and the second lowest O(N)

singlet conformal primary scalar. With a reasonable assumption on the gap, the allowed

region of the scaling dimensions (∆φ,∆σ) can be carved out and forms two sharp kinks.

The UV Gaussian fixed point lies at the higher kink while the lower kink agrees with the

large N expansion predictions on IR interacting fixed point theories. Furthermore, the

kink disappears for small N ≈ 15 which may indicate a small critical value Nc [36].

However, one should be careful to consider the kinks in conformal dimension bound or

the minimum of central charges as unitary CFTs. From perturbative methods it is known

that in D = 6−ε, ε� 1 the IR fixed point of cubic O(N) models is endowed with complex

critical couplings for N ≤ 1000.1 Nevertheless, in [36] a sharp kink is still generated from

conformal bootstrap for D = 5.95, N = 600 which is much lower than the threshold value

and should be nonunitary. The reason seems to be that the precision adopted in [36] is not

high enough to detect the small violation of unitary. A more powerful bootstrap approach

is needed to study the 5D O(N) models, especially on its critical value Nc.

In this work, we will study the conformal bootstrap with multiple correlators of con-

formal primaries φi and σ: 〈φiφjφkφl〉, 〈φiφjσσ〉, 〈σσσσ〉. Since there are more operators

involved in the bootstrap program, it is expected that the results will provide more rigid

restrictions on the scaling dimensions of (∆φ,∆σ). Actually we find that the scaling di-

mensions (∆φ,∆σ) obtained from bootstrapping multiple correlators of 5D O(500) model

is isolated in a rather small island, which is nicely compatible with the perturbative re-

sults. We also study the critical value Nc in 5D. In preliminary numerical calculations

we find small islands on the allowed scaling dimensions (∆φ,∆σ) for all N ≥ 1. However,

these islands disappear after improving the bootstrapping precisions. Taking N = 100

for example, it shows an apparent kink in the bound from bootstrapping single correlator

1CFTs in fractional dimensions are known to be nonunitary even with real couplings [64, 65]. However,

the unitarity is violated by operators with high scaling dimensions so they are more difficult to be tested

through conformal bootstrap approach.
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〈φiφjφkφl〉. Using multiple correlator conformal bootstrap with small Λ, we obtain an is-

land on (∆φ,∆σ) plane close to the kink from single correlator conformal bootstrap, while it

vanishes after increasing Λ even though we relax the conformal dimension gap to ∆φ′i
≥ 5.0

and ∆σ′ ≥ 3.3.2 Therefore our results suggest a rather large critical value Nc > 100 unless

the perturbative methods have drastically overestimated the scaling dimensions.

This paper is organized as follows. In section 2 we briefly review the cubic model

of O(N) vector model in 4 < D < 6 and the perturbative results on scaling dimensions

of lowest primary scalars. The scaling dimensions (∆φ,∆σ) obtained from large N and ε

expansions provide consistency checks for the results from conformal bootstrap. In section

3 we introduce the numerical conformal bootstrap equations for 5D O(N) vector models

and their numerical implementation. Our results are presented in section 4. We show

that through bootstrapping the multiple correlators the scaling dimensions (∆φ,∆σ) are

isolated in a small island for large N = 500, while disappear with larger Λ for N ≤ 100.

Conclusions are made in section 5.

2 Perturbative results for 5D critical O(N) models

The critical O(N) vector model with quartic interaction in arbitrary dimensions D = 4− ε
has been analyzed using the large N expansions [66–72, 74–77]. In 2 < D < 4 (ε > 0),

the quartic interaction is relevant and the RG flows from UV Gaussian fixed point to

interacting IR fixed point perturbed by this coupling. The quartic interaction is irrelevant

in 4 < D < 6 (ε < 0) so the long-range physics is described by free field theory. The quartic

coupling generates RG flow from the IR Gaussian fixed point to an interacting UV fixed

point. The perturbative result for small ε shows the interaction coupling is negative at

interacting UV fixed point which may lead to the stability problem. However, the scaling

dimensions of scalar operators obtained from the large N expansion are still above unitary

bound and the unitary conditions remain unbroken for sufficient large N . One may expect

the interacting UV fixed point from quartic model describes a universality class with O(N)

global symmetry in 4 < D < 6 whose stable or metastable formulation may be realized in

different model.

In D = 5 spacetime, the conformal dimensions of φi and σ have been evaluated at

three-loop level

∆φ =
3

2
+

0.216152

N
− 4.342

N2
− 121.673

N3
+ · · · (2.1)

∆σ = 2 +
10.3753

N
+

206.542

N2
+ · · · (2.2)

∆σ2 = 4− 13.8337

N
− 1819.66

N2
+ · · · (2.3)

According to above 1/N expansion, the conformal dimension of φi is above the unitary

bound (∆φ > 3/2 for scalar fields) given N > 35. The critical value Nc = 35 can be

2As a comparison, ∆φ′
i
≈ 5.39 up to the order 1/N and ∆σ′ ≈ 3.68 up to the order 1/N2 from

perturbative methods.
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significantly modified by by higher order corrections. Actually the 5D 1/N expansions

converge much slower than those in 3D [55].

Alternatively, the 5D quartic theory can also be studied using ε expansion [78]. Con-

formal dimensions of φi and φ2 (σ) have been calculated up to five-loop [79]:

∆φ = 1− ε

2
+

N + 2

4(N + 8)2
ε2(1 + a1ε+ a2ε

2 + a3ε
3) + · · · , (2.4)

where

a1 =
−N2 + 56N + 272

4(N + 8)2
,

a2 = − 1

16(N + 8)4
(5N4 + 230N3 − 1124N2 − 17920N

−46144 + 384ζ(3)(N + 8)(5N + 22)),

a3 = − 1

64(N + 8)6

(
13N6 + 946N5 + 27620N4 + 121472N3 − 262528N2 − 2912768N

−5655552− 16ζ(3)(N + 8)(N5 + 10N4 + 1220N3

−1136N2 − 68672N − 171264) + 1152ζ(4)(N + 8)3(5N + 22)

−5120ζ(5)(N + 8)2(2N2 + 55N + 186)
)
,

and

∆σ = 2− ε+
N + 2

N + 8
ε
(
1 + c1ε+ c2ε

2 + c3ε
3 + c4ε

4
)

+ · · · , (2.5)

where

c1 =
13N + 44

2(N + 8)2
,

c2 = − 1

8(N + 8)4
(3N3 − 452N2 − 2672N − 5312 + 96ζ(3)(N + 8)(5N + 22)),

c3 = − 1

32(N + 8)6

(
3N5 + 398N4 − 12900N3 − 81552N2 − 219968N − 357120

+16ζ(3)(N + 8)(3N4 − 194N3 + 148N2 + 9472N + 19488)

+288ζ(4)(N+8)3(5N+22)−1280ζ(5)(N+8)2(2N2+55N+186)
)
,

c4 = − 1

128(N + 8)8

(
3N7− 1198N6 − 27484N5 − 1055344N4 − 5242112N3 − 5256704N2

+6999040N − 626688− 16ζ(3)(N + 8)(19004N4 + 102400N3

+13N6 − 310N5 − 381536N2 − 2792576N − 4240640)

−1024ζ(3)2(N + 8)2(2N4 + 18N3 + 981N2 + 6994N + 11688)

+48ζ(4)(N + 8)3(148N2 + 3N4 − 194N3 + 9472N + 19488)

+256ζ(5)(N + 8)2(155N4 + 3026N3+ 989N2 − 66018N−130608)

−6400ζ(6)(2N2 + 55N + 186)(N + 8)4

+56448ζ(7)(14N2 + 189N + 526)(N + 8)3
)
.

Besides, for the next O(N) vector operator φ′i ≡ φ4φi, its scaling dimension has been

provided in [73] at the first order

∆φ′i
= 5− ε

2
+

12

N + 8
ε+ · · · . (2.6)
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Taking ε = −1 the results can be interpolated to 5D. For large N the higher order

coefficients cis are of order 1/N . In this case the ε expansion performs worse asymptotically

in 5D comparing with the large N expansion. While for small N it is not clear at this stage

which approach can provide better estimation. These perturbative results will be useful to

estimate the conformal dimension gap which can be applied in the conformal bootstrap to

improve the numerical efficiency.

Both the large N expansion and the ε expansion contain negative terms at higher

loop level. For small Ns these negative contributions may play dominating roles in the

perturbative expansion and result in negative anomalous dimension. Specifically the five-

loop result (2.4) shows the conformal dimension ∆φ < 3/2 for N ≤ 14 [55]. In [36] the

conformal bootstrap with single correlator has been applied to generate bound on ∆σ.

Interestingly the bounds are featured with kinks which are expected to relate to certain

unitary fixed point theories while the kinks disappear near N ≈ 15, close to the critical

value estimated from ε expansion. However, as in the large N expansion, the ε expansion

in 5D is not converged up to fifth order and the contributions from higher loops are likely

to modify the threshold value Nc significantly.

The cubic O(N) model (1.1) provides an approach to realize stable interacting O(N)

fixed point in 5D [55, 56]. The authors show that at one of the IR fixed point the cubic

O(N) model shares the same relevant critical exponents with the quartic O(N) model so

the two models are expected to describe the same universality class.3 Like the quartic O(N)

model, the cubic O(N) model also requires a critical value Nc from unitarity constraint. In

the cubic model, the unitarity is violated in the way that the coupling coefficients acquire

imaginary part when N < Nc. In [55, 56] the critical value Nc is evaluated up to order

ε2 in arbitrary dimension D = 6− ε. Four-loop results which include corrections on Nc at

order ε3 have been calculated in [57]

Nc = 1038.26605− 609.83980ε− 364.17333ε2 + 452.71060ε3 +O(ε4). (2.7)

As usual, above perturbative result is not sufficient to make a solid estimation on 5D (ε = 1)

Nc due to its asymptotic performance. It is tempting to evaluate the critical value Nc

using non-perturbative method. Besides the above interacting IR fixed point, the cubic

model also admits extra fixed points with different critical value N ′c; however, they are not

corresponding to the classical interacting quartic fixed point and will not be studied in

this work.

3 Conformal bootstrap with multiple correlators

Conformal bootstrap with multiple correlators has been developed in [28, 39] which aimed

to solve the 3D Ising model and O(N) vector model. This approach has obtained the most

accurate solutions on 3D Ising model and O(N) vector model up to date [49]. Here we

3The renormalization group approach suggests the cubic model admits an extra RG relevant direction

with positive critical exponent at the IR fixed point [63]. In this sense the universality class of the quartic

O(N) model is a subset of that of cubic O(N) model.

– 6 –



J
H
E
P
0
4
(
2
0
1
7
)
0
9
8

briefly introduce the conformal bootstrap program for 5D O(N) vector model analogous

to that for 3D O(N) vector model [39]. More details on this program are provided in [37].

3.1 Bootstrap equations from crossing symmetry

Conformal partial wave function is the crucial ingredient for conformal bootstrap. In even

dimensions D = 2, 4, 6, the conformal partial wave functions have been solved analyti-

cally [6, 7]. In odd dimensions there is no analytical expression for conformal partial wave

function; however, it can be calculated recursively with arbitrary precision [18, 28, 80].4

The general four-point function of scalar operators can be expanded in terms of conformal

partial waves

〈σ1σ2σ3σ4〉 =
1

x∆1+∆2
12 x∆3+∆4

34

(
x24

x14

)∆12
(
x14

x13

)∆34 ∑
O
λ12Oλ34Og

∆12,∆34

∆,` (u, v), (3.1)

where σis are scalar operators with conformal dimension ∆i (∆ij = ∆i − ∆j) and O is

the conformal primary operator appears in the OPE expansion of σ1σ2 ∼ λ12OO (and also

σ3σ4 ∼ λ34OO), whose conformal dimension and spin are (∆, `). The conformal invariant

cross ratios u, v are of the standard form u =
x2

12x
2
34

x2
13x

2
24

and v =
x2

14x
2
23

x2
13x

2
24

, xij = |xi − xj |.
The four-point function can be evaluated equivalently in different channels, as sug-

gested by crossing symmetry, and it leads to the following equations∑
O

(
λ12Oλ34OF

12,34
∓,∆,`(u, v)± λ32Oλ14OF

32,14
∓,∆,`(u, v)

)
= 0, (3.2)

in which

F 12,34
∓,∆,`(u, v) = v

∆2+∆3
2 g∆12,∆34

∆,` (u, v)∓ u
∆2+∆3

2 g∆12,∆34

∆,` (v, u). (3.3)

To study the 5D O(N) vector model, we apply the crossing relations for correlators

〈φiφjφkφl〉, 〈σσσσ〉 and 〈φiφjσσ〉. The O(N) indices in the correlators are decomposed

into three irreducible structures: the O(N) invariant, traceless symmetric and antisymmet-

ric tensors. The conformal primaries appearing in the OPE of O(N) vector representations

φi can be classified into three irreducible representations:

φi × φj ∼
∑
S

λφφOSOδij +
∑
T

λφφOTO(ij) +
∑
A

λφφOAO[ij], (3.4)

in which S, T and A denote O(N) singlet, traceless symmetric tensor and anti-symmetric

tensor representations. Consequently, the four-point correlator 〈φiφjφkφl〉 and its crossing

symmetric partners are separated into three channels: S, T,A. For the mixed four-point

correlator 〈φiσφjσ〉, one needs to consider the OPE φiσ ∼
∑

V λφiσOiOi which introduces

the vector representations (denoted by V ) as propagating operators in the mixed four-point

correlator and its crossing symmetric partner.

4Details on calculating conformal block function in arbitrary dimensions are provided in [33] as part of

an open-source numerical conformal bootstrap program JuliBootS. In this work we will use the JuliBoots

code to calculate the conformal block functions of scalar operators in 5D.
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The crossing relations for bootstrapping 5D O(N) critical theories are essentially the

same as those for 3D O(N) vector model [39]. These equations can be written in a compact

form [39] which are presented below for later reference

0 =
∑
OS

(
λφφOS λσσOS

)
~VS,∆,`

(
λφφOS
λσσOS

)
+
∑
OT

λ2
φφOT

~VT,∆,` +
∑
OA

λ2
φφOA

~VA,∆,` +
∑
OV

λ2
φσOV

~VV,∆,`. (3.5)

Explicit forms of the 7-component vectors ~VS , ~VT , ~VA, ~VV are provided in the appendix.

3.2 Bounds from crossing relations

The equations from crossing symmetry (3.5) provide nontrivial constraints on the CFT

data. The numerical approach to study these equations was first proposed in [5] and the

following developments show this method is extremely powerful. The logic of numerical

conformal bootstrap is firstly to make assumptions on the CFT spectra. If the assump-

tions are physical they are required to satisfy the crossing relations (3.5) and the unitary

condition. Numerical conformal bootstrap provides a systematical way to check the con-

sistency between the assumptions and general constraints on CFTs. Bounds on the CFT

data, including conformal dimensions of primary operators and OPE coefficients can be

obtained by falsifying possible assumptions on the CFT spectra.

Specifically for any hypothetical spectra (∆φ,∆σ) above the unitary bounds, they

should be consistent with the crossing relations (3.5). However, if there are linear func-

tionals ~α = (α1, α2, · · · , α7) satisfying

( 1 1 ) ~α · ~VS,0,0

(
1

1

)
= 1,

~α · ~VS,∆,` � 0, ∆ ≥ ∆∗S,0 for the O(N) singlet scalars except σ,

~α · ~VT,∆,` ≥ 0, (3.6)

~α · ~VA,∆,` ≥ 0,

~α · ~VV,∆,` ≥ 0, ∆ ≥ ∆∗V,0 for the O(N) vector scalars except φi,

~α ·

(
~VS,∆σ ,0 + ~VV,∆φ,0 ⊗

(
1 0

0 0

))
� 0,

then the crossing relations (3.5) can never be satisfied and initial assumption on the spectra

(∆φ,∆σ) have to be abandoned as unphysical. In the bootstrap conditions (3.6), we have

required the O(N) singlet scalars (except σ) have conformal dimensions above a lower

bound ∆∗S,0, and similarly a lower bound for ∆∗V,0 for O(N) vector scalars in addition to φi.

Besides, we have implicitly assumed that all the extra operators accord with the unitary

bound. In the last equation of (3.6), it is the summation of contributions in S (from σ)
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and V channels (from φ) that is required to be positive-semidefinite due to the equality of

OPE coefficients λφφσ = λφσφ.

The bootstrap conditions in (3.6) are not the only way to break the crossing rela-

tions (3.5). In particular, to bootstrap certain OPE coefficient of operator (∆0, `0) in

channel X, one may set ~α · ~VX,∆0,`0 = 1 instead of choosing the unit operator as in (3.6).

The bootstrap conditions are further refined in [49]. The lower bounds ∆∗S,0 and ∆∗V,0
introduced in (3.6) are necessary to isolate the conformal dimensions (∆φ,∆σ) in a small

island. A higher but remaining physical lower bound can improve the numerical efficiency

to carve out the allowed parameter space. For sufficient large N , these lower bounds can

be justified from perturbative expansions. The O(N) singlet scalar next to φ2 is φ4 in the

quartic model, and its conformal dimension can be evaluated through the large N expan-

sion (2.3). In the cubic theory (1.1) this is given by a mixing of σ2 and φ2. One of the linear

combination of σ2 and φ2 is actually the descendent of σ, while another orthogonal mixing

constructs a primary O(N) singlet that shares the same conformal dimension as obtained

from quartic theory [55, 56]. The candidate of next O(N) vector scalar φ′i is φ2φi (or σφi
in the cubic theory). However, as argued in [39] for the 3D theories, in D = 6− ε, ε � 1

dimension the quartic theory generates the following equation of motion for φi:

∂2φi ∝ φ2φi, (3.7)

which suggests that the operator φ2φi is a descendent of φi rather than a conformal primary

scalar. One can get the same conclusion in cubic theory (1.1) with replacement φ2 → σ.

The next candidate is φ4φi (in D = 6 − ε, ε � 1 dimension operators with derivatives,

like φ2∂2φi, (∂µφ)2φi have different bare conformal dimensions given ε 6= 0 so they do not

mix with φ4φi). At the interacting fixed point, the conformal dimension of φ4φi has been

studied in [73]. At tree level the conformal dimension of φ2 near the interacting fixed point

is 2, so the conformal dimension of φ4φi is 5.5 with 1/N corrections, as shown in (2.6).

In the cubic theory the potential second O(N) vector scalar is a mixing of σ2φi and φ2φi,

which has not been explicitly studied yet. One can expect that one of the mixing is actually

a descendent of φi while another primary mixing has the same conformal dimension as φ4φi
in quartic theory, like the quadratic and cubic O(N) singlet operators [55, 56]. The lower

bound of the φ4φi conformal dimension would be rather subtle for small N . Fortunately we

will show that a unitary interacting fixed point disappears even for N = 100 (corresponding

to ∆φ′i
= 5.39 at order 1/N), indicating a large critical value Nc.

3.3 Numerical implementation of conformal bootstrap

Equations from crossing symmetry (3.5) provide an infinite set of constraints (3.6) on the

CFT data. For the numerical implementation the constraints need to be truncated to

a large but finite set. In (3.6) the constraints are parameterized by (∆, `). The spins `

construct an infinite tower of spectra while in conformal bootstrap only these spectra with

small ` will be considered. Contributions from operators with large spin are exponentially

suppressed. The linear functionals ~α can be expanded as

αi =
∑

m+n≤Λ

aimn∂
m
z ∂

n
z̄ , (3.8)
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where (z, z̄) are defined in terms of (u, v) through: u = zz̄, v = (1−z)(1− z̄). Moreover, for

the linear functional αi, the number of derivatives is also truncated up to Λ. Taking higher

order of derivatives in (3.8), we have more chances to find the linear function satisfying (3.6).

As a result, the conformal bootstrap program can exclude larger regions in parameter space.

In practice the parameter Λ is restricted by computation power. The setups of parameter

Λ and spins used in this work are as follows

SΛ=19 = {0, 1, · · · , 30} ∪ {49, 50},
SΛ=21 = {0, 1, · · · , 30} ∪ {47, 48, 49, 50, 51, 52},
SΛ=23 = {0, 1, · · · , 30} ∪ {47, 48, 49, 50, 51, 52, 53, 54},
SΛ=25 = {0, 1, · · · , 30} ∪ {47, 48, 49, 50, 51, 52, 53, 54, 55, 56}. (3.9)

The problem to find the linear functions ~α under truncated constraints can be solved with

SDPB program [37].

4 Results

4.1 Bootstrapping 5D O(500) vector model

The 5D O(500) vector model has been studied in [25, 35, 36] using conformal bootstrap with

single correlator 〈φiφjφkφl〉. At the fixed point the conformal dimensions (∆φ,∆σ) of the

lowest O(N) vector φi and O(N) singlet σ can be evaluated from the large N expansion

in (2.1), (2.2) or the ε expansion in (2.4), (2.5). Taking N = 500, we get (∆φ,∆σ) =

(1.500414, 2.02158) from 3-loop large N expansion and (∆φ,∆σ) = (1.500400, 2.02156)

from 5-loop ε expansion. These predictions will be compared with the results obtained

from conformal bootstrap.

In figure 1 we present the bounds on (∆φ,∆σ) obtained through bootstrapping the

single correlator 〈φiφjφkφl〉 (light blue region) and the multiple correlators (dark blue

island). To bootstrap the single correlator we have assumed that the next O(N) singlet

scalar has dimension above the gap ∆∗S,0 = 3.965, which can be justified from the large N

expansion result (2.3): ∆σ2 ≈ 3.972. This gap is also employed in [36]. The upper part of

light blue region is similar to the bound provided in [36]. Besides, there is an extra kink

in the lower region and the whole region actually forms a sharp tip like presented in [35],

although a much larger gap was used in that work. Results of perturbative methods are

also shown in figure 1. Prediction from the large N expansion (denoted by the black cross)

lies in the allowed region while prediction from the ε expansion (denoted by the black

dot) is outside of the bound so is excluded. According to the conformal bootstrap results,

the large N expansion does provide a better estimation on the conformal dimensions for

large N = 500. Difference between the two perturbative approaches appears at the order

10−5 ≈ O(1/N2), as discussed before.

Remarkably, the allowed region of (∆φ,∆σ) obtained from the multiple correlator

bootstrap is enclosed in a small island, which is colored in dark blue in figure 1. Besides

the dimension gap ∆∗S,0 = 3.965 in S-channel, we have employed another dimension gap

∆∗V,0 = 5 in V-channel that the next primary O(N) vector scalar has dimension ∆ ≥
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Figure 1. Bounds on the conformal dimensions (∆φ,∆σ) in the interacting 5D O(500) CFT. The

colored regions represent the conformal dimensions allowed by conformal bootstrap. Specifically the

light blue region is obtained from single correlator bootstrap, while the dark blue island is isolated

through bootstrapping the multiple correlators. We used the derivative at order Λ = 19 and spins

SΛ=19 in the numerical calculations. Besides, we assumed a gap ∆∗
S,0 = 3.965 in the S-channel. An

extra gap ∆∗
V,0 = 5 has been used in the V-channel for bootstrapping multiple correlators. The

black dot and cross relate to the predictions from ε expansion and large N expansion, respectively.

5. The dark blue island lies in the center of the tip, and the black cross denoting the

large N prediction is rather close to the center of this island. Such a high coincidence

is extraordinary in view of only crossing symmetry and unitary condition are applied to

carve out the island. On the other hand, the conformal bootstrap result also shows that

the large N expansion is reliable at third order.5

However, it should be careful to make statement based on results from conformal

bootstrap with lower order of derivatives. Actually in preliminary study we have obtained

isolated islands even for N = 1 with Λ ∼ 15; however, they disappear after increasing Λ.

As to the model with N = 500, we have checked the performance of the island with larger

Λ. The results are provided in figure 2. The allowed regions shrink notably from Λ = 21 to

Λ = 25. Interestingly, the fixed point predicted by large N expansion remains located in

the center of the small island even though the allowed region has contracted significantly.

5Strictly speaking, such consistency check is not completely self-contained since we have already used

the large N expansion result in setting the dimension gaps.
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Figure 2. Isolated regions for the conformal dimensions (∆φ,∆σ) in 5D O(500) vector model.

The light, medium and dark blue regions are corresponding to the results from multiple correlator

conformal bootstrap with Λ = 21, 23, 25, respectively. In the graph we have used the dimension

gaps ∆∗
S,0 = 3.965 and ∆∗

V,0 = 5. The black cross denotes the prediction from large N expansion.

4.2 Bootstrapping 5D O(N) (N ≤ 100) vector models and the critical Nc

In 5D there is an interesting problem on the unitarity of the interacting O(N) CFTs, that

there is a threshold value Nc below which the CFTs become nonunitary [55, 56]. In contrast,

the interacting O(N) CFTs in 3D are unitary for any integer N ≥ 1. Prior to our work,

there are several evidences from conformal bootstrap which prefer to small Nc [25, 35, 36].

There are also some clues from perturbative results that the critical value Nc < 100. In

this part we apply the conformal bootstrap with multiple correlators to study the 5D

O(N) vector model for small Ns. The multiple correlator conformal bootstrap involves in

more O(N) sectors and provides stronger constraints on the CFT data comparing with the

conformal bootstrap with single correlator only.

We have searched the allowed regions on (∆φ,∆σ) plane for N ≤ 100. The iso-

lated islands can be obtained for small Ns with assumptions on the dimension gaps

(∆∗S,0,∆
∗
V,0). However, these islands disappear after increasing the number of derivatives

Λ. For N ∼ O(10) or smaller, the perturbative approaches cannot provide an approximate

estimation on the conformal dimension ∆σ2 . One may argue that the islands disappear

due to the reason of the unphysical dimension gaps (∆∗S,0, ∆∗V,0) used in the bootstrap

program instead of the nonunitarity of the CFTs. While for sufficient large Ns the per-

turbative predictions are expected to provide rough estimations on the fixed point. This

– 12 –
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Figure 3. From top to bottom, the islands represent the allowed regions of (∆φ,∆σ) in the 5D

O(N) N = 40, 60, 70 vector models. The results are obtained from conformal bootstrap with

Λ = 19 and spins SΛ=19. The black dots and crosses denote predictions from ε expansion and

large N expansions, respectively. The dimension gaps used in conformal bootstrap program are:

(∆∗
S,0,∆

∗
V,0) = (3.4, 4.1) for N = 40, (∆∗

S,0,∆
∗
V,0) = (3.5, 4.3) for N = 60, 70. The perturbative

methods, especially the large N expansion get abnormal and stay away from the region allowed by

conformal bootstrap at N = 40.

can be seen from the fact that the isolated islands obtained from conformal bootstrap are

close to the perturbative predictions before vanishing. In figure 3 we present the isolated

regions for N = 40, 60, 70 from conformal bootstrap.6 At derivative order Λ = 19, the

conformal bootstrap program generates closed regions on the (∆φ,∆σ) plane, which disap-

pear for larger Λ ≥ 23. According to the results from conformal bootstrap, for N = 60, 70

the perturbative approaches can still provide approximate estimations on the conformal

dimensions at the interacting fixed points, although the theories are likely to be nonuni-

tary. While for N = 40, the perturbative approaches, especially the large N expansion

cannot provide reliable estimations on the interacting fixed point. One may note that the

6The perturbative results on conformal dimension gaps are subtle for not so large Ns, and it is possible

that the gaps used in figure 3 are unphysical, however, in this figure we are more interested in the comparison

with the predictions from perturbative approach. We will adopt more “safe” scaling dimension gaps for

N = 100 to study the unitarity problem.
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Figure 4. Bounds on the conformal dimensions (∆φ,∆σ) in 5D O(100) vector model. The light

blue region is obtained from single correlator bootstrap. The multiple correlators bootstrap leads

to a small island colored in dark blue. In the bootstrap program we adopt the setup with Λ = 19

and the correspond spins provided in (3.9). We apply a dimension gap ∆∗
S,0 = 3.6 in the S-channel.

Besides, an extra dimension gap ∆∗
V,0 = 5 has been used in the V-channel for bootstrapping

multiple correlators. The black dot and cross relate to the predictions from ε expansion and large

N expansion, respectively.

island corresponding to N = 40 shown in figure 3 is rather close to the kink from single

correlator bootstrap presented in [36], where the kink was considered to indicate a unitary

CFT. However, our studies based on multiple correlator bootstrap show that bootstrap

results from single correlator or mixed correlators with low derivatives can be significantly

modified in a more precise evaluation.

In fact there is no stable island from conformal bootstrap even at N = 100. The

perturbative methods predict that the interacting O(100) fixed point locates in the posi-

tion with conformal dimensions (∆φ,∆σ) = (1.50161, 2.124) from large N expansion and

(∆φ,∆σ) = (1.50162, 2.122) from ε expansion. In figure 4 we show the conformal bootstrap

results of O(100) vector model with Λ = 19. The single correlator conformal bootstrap

generates a kinked bound similar to that of O(500) vector model. The isolated region from

multiple correlator conformal bootstrap lies in the middle of the tip. Here we have assumed

a dimension gap ∆∗S,0 = 3.6 in the S-channel, lower than the large N prediction ∆σ2 ≈ 3.68.

Besides, in the V-channel a dimension gap ∆∗V,0 = 5 has been used, much lower than the
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one loop prediction ∆φ′i
≈ 5.39. Predictions from large N and ε expansions are presented

in the graph, both of which are nicely consistent with the conformal bootstrap bounds. In

particular they locate in the isolated small island. All these features indicate a promising

fixed point satisfying the crossing symmetry and unitarity constraints. However, the island

disappears by taking higher order of derivatives Λ = 23! No isolated region can be found at

Λ = 25 even we relax the S-channel gap to ∆∗S,0 = 3.3. Unless the “true” island shrinks so

drastically at certain order of Λ that it is hardly to be detected by scanning the parameter

space, our bootstrap results disprove a unitary 5D O(N) vector model even with N = 100!

Vanishing of the “allowed region” for N ≤ 100 suggests that the theories with small

N actually are not unitary. The violation of unitarity is rather small so that it cannot

be uncovered by the bootstrap program with smaller Λ. This reminds us other examples

on “pseudo” unitarity in conformal bootstrap. In [19] the O(N) vector models in frac-

tional dimensions 2 < D < 4 have been studied using conformal bootstrap. In the work

pronounced kinks are obtained in the bounds of conformal dimension of the lowest O(N)

singlet σ and are well consistent with the results obtained from extra approaches. How-

ever, careful studies in [64, 65] have shown that the CFTs in fractional dimensions are

necessarily to be nonunitary, which are too subtle to be discovered in numerical conformal

bootstrap. In the 5D O(N) single correlator conformal bootstrap [36], sharp kinks are

also generated in the fractional dimension D = 5.95 with N = 600, notably lower than

the critical value Nc ≈ 1000. We have studied this model through bootstrapping multiple

correlators. There remains isolated allowed region even at Λ = 21, though it is quite small.

The uncertainty on ∆σ shown in the island is about 2 × 10−3, while as shown in [36], the

magnitude of imaginary part in ∆σ is of the same order ∼ 1.5× 10−3 so it is expected that

current conformal bootstrap program cannot capture the tiny unitarity violation unless the

numerical accuracy can be improved significantly.

To summarize, the numerical conformal bootstrap provides a powerful approach to

falsify assumptions on unitary CFTs. However, it is premature to validate the unitary CFTs

using conformal bootstrap due to these “pseudo” unitary solutions. As to the 5D O(500)

model, although our results have provided strong evidence, they are still not sufficient to

make a strict conclusion on its unitarity. On the other hand, it is surprising that the 5D

O(N) vector model is nonunitary even for N = 100. Consequenctly, the critical value

Nc > 100, which is considerably larger than the value estimated before.

5 Conclusions

In this work, we have studied the interacting 5D CFTs with global O(N) symmetry using

the conformal bootstrap with multiple correlators. The multiple correlator conformal boot-

strap has been developed in [28, 39] and obtained remarkable successes in 3D Ising and

O(N) vector models. The approach employs the correlators of the O(N) vector scalar φi as

well as the O(N) singlet scalar σ. Since there are more operators involved in the crossing

symmetry relations, the new method is expected to generate more strong constraints on

the CFT data. Indeed the allowed regions on (∆φ,∆σ) plane is limited in a small island

under reasonable assumptions on the dimension gaps.
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Specifically, in this study we have shown that by bootstrapping multiple correlators

from the interacting 5D CFTs with O(N) symmetry (N = 500), the allowed conformal

dimensions (∆φ,∆σ) are strongly limited in a closed region, which is highly consistent

with predictions from large N expansion. In order to uncover the isolated region we

also applied assumptions on the dimension gaps both in the O(N) singlet sector and the

O(N) vector sector. Our results suggest that the interacting fixed point of O(N) vector

model is unitary for sufficient large N and support the asymptotic free 5D O(N) cubic

model proposed in [55, 56]. Evidence of such fixed point has already been shown in the

single correlator conformal bootstrap studied in [25, 35, 36]. The island obtained in this

work is rather close to the kink in the bound of conformal dimension ∆σ obtained from

bootstrapping correlator of four φis [36]. We have studied the performance of the island

under higher order of derivatives Λ. The island shrinks notably from Λ = 19 to Λ = 25,

while the large N expansion predictions remain staying in the center of the allowed region.

Such coincidence is surprising in considering of that only crossing symmetry and unitary

conditions are employed to generate the allowed region. Besides we only input the O(N)

global symmetry for this model while even did not use its Lagrangian at all.

We are particularly interested in the critical value Nc of 5D O(N) vector model below

which the interacting fixed point theory loses unitarity. The problem on the critical value Nc

can also be seen from the perturbative expansions of conformal dimension ∆φ, that below

the critical value the scalar φi acquires conformal dimension smaller than the unitary bound

and breaks the unitary condition. However, in 5D the perturbative expansions converges

much slower comparing with these of 3D. In [55, 56] the critical value Nc has been evaluated

based on large N expansion in D = 6− ε spacetime. The critical value Nc ' 1038 at one-

loop level; however, it oscillates drastically order by order. Conformal bootstrap provides

a nonperturbative approach to study CFTs, and it has been applied to estimate Nc in [36].

The authors found that the pronounced kink in the bound of ∆σ disappears near N ∼ 15,

which may suggest Nc ∼ 15 in view of the observation that the singular behaviors, like

kink in the dimension bound usually relate to unitary CFTs. In 3D such observation has

helped to numerically solve the Ising model [23] and O(N) vector model [18]. However, the

unitarity condition becomes subtle for 5D CFTs and the unitarity violation may be too

small to be detected by the bootstrap program with low order of derivatives. Therefore a

kink does not necessarily guarantee unitarity, instead, it may relate to an interacting but

nonunitary CFTs.

We have searched the allowed regions using multiple correlator conformal bootstrap for

1 ≤ N ≤ 100. The isolated regions on the (∆φ,∆σ) plan can be obtained from conformal

bootstrap program with lower order of derivatives. Moreover, the islands actually locate

in the position close to the predictions from perturbative approaches given the Ns are not

too small. However, the islands disappear after increasing the number of derivatives in

bootstrap program. We believe these islands relate to interacting while nonunitary CFTs

and the violation of unitarity can not be observed unless the program is equipped with

sufficient high precision. In particular, our results suggest the critical value Nc > 100,

much larger than the value estimated before. The bounds of Nc is expected to be improved

further using conformal bootstrap. However, for larger N the unitarity violation in O(N)
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fixed point theory gets smaller and more difficult to be detected. It requires higher accuracy

in the bootstrap program to determine the critical value Nc and we leave this problem for

future work. On the other hand, for a sufficient large Nc, the large N expansion approach

is validated. The critical value Nc can be effectively studied based on this perturbative

approach as well. Due to the asymptotic behavior of perturbative expansions in 5D,

probably one needs to calculate several orders higher than in [55–57] to get a sufficient

good estimation.
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A Bootstrap equations

In (3.5) the crossing symmetry relations have been summarized in a compact form, as in [39]

for 3D O(N) vector model. The seven bootstrap equations obtained from O(N) singlet

(S), traceless symmetric tensor (T ), antisymmetric tensor (A) and vector (V ) sectors of

multiple correlators are summarized in a 7-component vector equation (3.5), in which the

vectors ~VS , ~VT , ~VA, ~VV are:

~VT,∆,` =


F φφ,φφ−,∆,`(

1− 2
N

)
F φφ,φφ−,∆,`

−
(
1 + 2

N

)
F φφ,φφ+,∆,`

04×1

 , ~VA,∆,` =


−F φφ,φφ−,∆,`
F φφ,φφ−,∆,`
−F φφ,φφ+,∆,`

04×1

 , ~VV,∆,` =


04×1

(−1)`F φσ,φσ−,∆,`
F σφ,φσ−,∆,`
−F σφ,φσ+,∆,`

 ,

~VS,∆,` =



02×2(
F φφ,φφ−,∆,` (u, v) 0

0 0

)
(
F φφ,φφ+,∆,` (u, v) 0

0 0

)
(

0 0

0 F σσ,σσ−,∆,` (u, v)

)
02×2(

0 1
2F

φφ,σσ
−,∆,` (u, v)

1
2F

φφ,σσ
−,∆,` (u, v) 0

)
(

0 1
2F

φφ,σσ
+,∆,` (u, v)

1
2F

φφ,σσ
+,∆,` (u, v) 0

)



. (A.1)

Here our convention differs from [39] by a factor (−1)`.
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