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Abstract

We propose a natural inflation model driven by an imaginary or axionic component of a Kähler

modulus in string-inspired supergravity. The shift symmetry of the axion is gauged under an

anomalous U(1)X symmetry, which leads to a modulus-dependent Fayet-Iliopoulos (FI) term. The

matter fields are stabilized by F-terms, and the real component of the modulus is stabilized by

the U(1)X D-term, while its axion remains light. Therefore, the masses of real and imaginary

components of the modulus are separated at different scales. The scalar potential for natural

inflation is realized by the superpotential from the non-perturbative effects. The trans-Planckian

axion decay constant, which is needed to fit with BICEP2 observations, can be obtained naturally

in this model.

PACS numbers: 04.65.+e, 04.50.Kd, 12.60.Jv, 98.80.Cq
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I. INTRODUCTION

The recent discovery of the B-mode polarization by the BICEP2 Collaboration, if con-

firmed, provides further strong evidence on the inflationary paradigm for the early epoch

of the Universe [1]. The observed tensor-to-scalar ratio r is r = 0.20+0.07
−0.05, or r = 0.16+0.06

−0.05

without the dust contributions. One of the inflation models, which agrees with the BICEP2

results, is the well-known natural inflation [2].

The motivation of natural inflation [2] is to solve the flatness problem of inflation potential

at tree level, and remains flat against radiative corrections. The continuous shift symmetry

protects the flatness of inflation potential. To realize inflation, the continuous symmetry

should be broken to a discrete shift symmetry φ → φ + 2πf with f the axion (or inflaton)

decay constant, and the potential for natural inflation is

V (φ) = Λ4(1± cos(
φ

f
)) , (1)

where Λ is the inflation energy scale around 2 × 1016 GeV or 10−2 MPl for r = 0.16/0.20

with MPl the reduced Planck mass (MPl = 2.4× 1018 GeV).

Axion is a “natural” inflaton candidate since it preserves the exact continuous shift sym-

metry at perturbative level. Axions can be obtained from antisymmetric tensor fields in

string theory through spacetime compactification [3]. Considering the non-perturbative ef-

fects, such as gaugino condensation or instanton effect, one can break such continuous shift

symmetry of axion to the discrete symmetry and then realize natural inflation in string

theory.

The challenge to natural inflation is the large decay constant f . To generate sufficient

large tensor fluctuations that are consistent with BICEP2 observations, the decay constant

f should be trans-Planckian f ∼ O(10) in the Planck units [4]. However, in string theory the

axion decay constant cannot be larger than the string scale MString [3, 5, 6], which is about

one order below the reduced Planck scale as required by the weak interaction assumption.

An effective large axion decay constant was realized by the N-flation [7, 8] or the aligned

axion mechanism [9]. In the aligned natural inflation [9], two axions with small decay

constants are carefully adjusted to form a flat direction for inflation, and then one-linear

combination of two axions can have the effective trans-Planckian decay constant. Recently,

there are many works proposed to realize large decay constant with multi-aligned axions

[10] or realize N-flation and natural inflation in string theory [11–17].
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To obtain inflation in string theory or its low energy approximation–supergravity

(SUGRA), there is a general problem on the moduli stabilization. For single field infla-

tion, all the scalars except the inflaton should be fixed during inflation. The well-known

KKLT mechanism based on F-term was proposed in [18], where the complex-structure mod-

uli are stabilized by the fluxes [19] while the Kähler modulus is stabilized through the

non-perturbative effects. The difficulty to realize axion inflation based on the KKLT mech-

anism is: once the real component of the Kähler modulus is fixed, its axionic component

obtains large mass as well and then destroys inflation [20]. This problem can be solved by

considering the modulus-dependent FI term associated with anomalous U(1)X [21, 22]. The

FI term only depends on the real component of modulus, which can obtain large mass from

D-term flatness. The axion is still light as it decouples from D-term.

In this work, we construct a natural inflation model in string-inspired SUGRA where only

one modulus couples to the matter fields. The shift symmetry of axion is gauged to obtain

anomalous U(1)X . The gauge invariant superpotential consists of the non-perturbative term

of modulus and various couplings among matter fields. All the matter fields are stabilized by

F-terms, and the vanishing D-term gives large mass to the real component of the modulus.

The axion is still light after modulus stabilization and its potential is given exactly by Eq. (1).

Besides, the trans-Planckian axion decay constant can be obtained naturally by taking the

large condensation gauge group and numbers of U(1)X charged matter fields (around 20).

This paper is organized as follows. In Section 2 we provide the string-inspired SUGRA

structure for model building and show the anomaly cancellation of U(1)X . In Section 3 the

matter fields/modulus stabilizations based on the F-terms/D-term are discussed. In Section

4 we obtain the natural inflation potential after stabilizations, and the trans-Planckian axion

decay constant is realized from the non-perturbative effects with suitable condensation gauge

group. We conclude in Section 5.

II. NATURAL INFLATION MODEL BUILDING

We consider the following Kähler potential

K = −ln(T + T̄ ) + φiφ̄i + χjχ̄j + ϕkϕ̄k +QQ̄+XlX̄l , (2)
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in which the indexes are i = 1, 2, · · · , m, j = 1, 2, · · · , m − 2, k = 1, 2, 3, 4 and

l = 0, 1, 2, · · · , m. The modulus T can be dilaton superfield or one of the Kähler mod-

uli from string compactification. The U(1)X charged matter fields (φi, χj, ϕk, Q), which will

be generically denoted as zh, are introduced to construct gauge invariant superpotential and

cancel the gauge anomalies. The modulus T and matter fields zh transform under U(1)X as

follows

T → T + iδǫ

zh → zhe
iǫqzh ,

(3)

in which the U(1)X charges qz are qφi
= −qχj

= q, qϕk
= (−1)kq, qQ = −2q. Xl are neutral

under U(1)X and vanish during inflation, their F-terms are used to stabilize φi and ϕ1,2 with

non-zero vacuum expectation values (VEV).

The superpotential is

W = w0 + aφ
1

n
1 e

−bT +Xi(φiϕ1 − λ1) +X0(ϕ1ϕ2 − λ2)

+c1(ϕ1ϕ4 + ϕ2ϕ3) +mjϕ4χj + ϕ2
4Q.

(4)

Given q = nbδ, above superpotential is obviously U(1)X invariant. The first two terms

in (4) is similar with the KKLT scenario in a gauge invariant form [18]. The constant

term w0 is from the complex-structure moduli stabilization. Different from the KKLT sce-

nario, the non-perturbative term aφ
1

n
1 e

−bT is U(1)X invariant. The U(1)X transformation

of matter field φ
1/n
1 → φ

1/n
1 eiq/n cancels the phase factor e−ibδ from shift of the modulus

T → T + iǫδ under U(1)X . Such kind of non-perturbative superpotential can be obtained

from the gaugino condensation with massive chiral superfields, which form representation

of the condensation group, such as SU(n) and can be integrated out in effective field the-

ory. The effective superpotential is guaranteed to be U(1)X invariant [23–25, 28]. Effects of

the gauge invariant non-perturbative term on moduli stabilization and inflation have been

studied in [26–31]. Furthermore, in this form the matter field φ1 has positive exponent,

and gives an analytic coefficient for the non-perturbative term, which makes the anomalous

U(1)X D-term cancellable. The D-term flatness is needed for modulus stabilization.

In Eq. (4), we will have many other superpotential terms, for example, φiχj , etc, which

are allowed by the U(1)X symmetry but neglected. To solve this problem, we can introduce

a Zm discrete symmetry under which ϕ3, ϕ4, χj, and Q transform as follows

ϕ3 → ωkϕ3 , ϕ4 → ω−kϕ4 , χj → ωkχj , Q → ω2kQ , (5)
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with ωm = 1, while all the other fields are neutral under Zm. Thus, superpotential will be

W = w0 + aφ
1

n
1 e

−bT +Xi(φiϕ1 − λ1) +X0(ϕ1ϕ2 − λ2)

+c1ϕ1ϕ2 +m0ϕ3ϕ4 +mjϕ4χj + ϕ2
4Q .

(6)

With our numerical study assumption, we will point out that the superpotentials in both

Eq. (4) and Eq. (6) will give the similar inflaton potential. In general, we can have the su-

perpotential terms c′iφiϕ1+c1ϕ1ϕ2. Without loss of generality, we can make a tranformation

for φi/ϕ2, and Xi, and obtain the above superpotential since ϕ1 is only coupled to one linear

combination of φi and ϕ2.

Gauge Anomaly Cancellation

The anomalous U(1)X plays a special role in the quantum anomaly cancellation through

the Green-Schwarz mechanism in four dimensional spacetime [32]. The gauge kinetic term

of U(1)X is
∫

d2θfW 2
α , (7)

in whichWα is U(1)X gauge field strength. Here we take the gauge kinetic function f = kXT .

The gauge kinetic term contains two parts Re(f)F 2 and Im(f)FF̃ . The first term is U(1)X

invariant, while the second term transforms non-trivially under U(1)X . The shift of modulus

T introduces an extra term iδkX
∫

d2θW 2
α, which cancels the anomaly from charged fermionic

fields and keep the theory anomaly free.

Ignoring the anomaly of condensation gauge group SU(n), we need to consider two kinds

of anomalies : the gravitational anomaly U(1)X and the cubic anomaly U(1)3X . The fermionic

contributions are:

Tr qz =
∑

z

qz = 0 ,

Tr q3z =
∑

z

q3z = −6q3.
(8)

The gravitational anomaly is canceled without higher derivative terms R2. Anomaly cance-

lation of cubic term U(1)3X requires

kXδ = − 1

48π2

∑

z

q3z =
1

8π2
q3. (9)

As q = nbδ, we have kX = nbq2/8π2.
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III. MATTER FIELDS AND MODULUS STABILIZATION

In this model, the matter fields are stabilized by F-terms. Even though there is the KKLT

type superpotential in (4), it has nothing to do with modulus stabilization but provides

potential for natural inflation, actually, the real component of the modulus is stabilized by

U(1)X D-term.

The F-term scalar potential is given by

VF = eK(Kij̄DiWDj̄W̄ − 3WW̄ ) , (10)

in which Kij̄ is the inverse of the Kähler metric Kij̄ = ∂i∂j̄K and DiW = Wi +KiW . The

complete expression of VF is rather tedious, nevertheless, it can be remarkably simplified

after field stabilization.

A. Matter Fields Stabilization

For matter fields stabilization, we ignore the constant term and the non-perturbative

term, as they provide inflationary potential which is significantly lower than the matter

fields stabilization scale. Their effects will be estimated later.

Clearly the matter fields χj, ϕ3,4, Q and Xl have global minimum at origin while extra

matter fields φi and ϕ1,2 will get non-trivial VEVs. During inflation they will evolve to

the minimum rapidly driven by the exponential factor eK of F-term scalar potential and

the large masses obtained from the matter couplings in Eq. (4). Therefore the value of

superpotential during inflation is simplified as 〈W 〉 ≡ W0 = w0 + aφ
1

n
1 e

−bT . In Eq. (10),

only these terms independent with χj, ϕ3,4, Q and Xl are non-vanishing. The non-vanishing

F-terms Vz introduced by fields z are (multiplied by an overall factor eK):

For T :

VT = (T + T̄ )2[a2b2(φ1φ̄1)
1

n e−b(T+T̄ ) + 2a2b
1

T + T̄
(φ1φ̄1)

1

n e−b(T+T̄ )

+abw0
1

T + T̄
(φ

1

n e−bT + φ̄
1

n e−bT̄ )] +W0W̄0,
(11)

for φ1:

Vφ1
=

a2

n2
(φ1φ̄1)

1

n
−1e−b(T+T̄ ) +

2a2

n
(φ1φ̄1)

1

n e−b(T+T̄ )

+
a

n
w0(φ

1

n e−bT + φ̄
1

n e−bT̄ ) + φ1φ̄1W0W̄0,

(12)
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for φi>1:

Vφi>1
= φi>1φ̄i>1W0W̄0, (13)

and similarly, for ϕ1 and ϕ2:

Vϕ1,2 = (ϕϕ̄)1,2W0W̄0. (14)

Above terms are proportional to a2, aw0 or w
2
0. In this model, the parameters have orders of

a ∼ w0 ∼ 10−5, while c1 ∼ 10−3−10−2, therefore above terms are extremely small comparing

with the following F-terms.

For the superpotential in Eq. (6), VT , Vφ1
, Vφi>1

are the same, while Vϕ1,2 become

Vϕ1,2 = |ϕ̄W0 + c1ϕ2,1|2 . (15)

Note that in the above equation only the terms |c1ϕ1,2|2 are relevant while all the other

terms are small and negligible, thus, all the rest discussions will be the same and we will

not repeat here.

The vanishing neutral matter fields Xl provide F-terms |WXl
|2 in the scalar potential,

besides, ϕ1 and ϕ2 get mass terms from |Wϕ4
|2 and |Wϕ3

|2, respectively. Combining these

F-terms together we have

VF1
= eK |WXl

|2 = eK(
∑

i

|φiϕ1 − λ1|2 + |ϕ1ϕ2 − λ2|2 + c21(|ϕ1|2 + |ϕ2|2)). (16)

Of course there are numerous corrections containing φi and ϕ1,2 in (11, 12, 13, 14), however,

they are either significantly smaller than (16) or can be canceled with each other. The VEVs

of φi are mainly dominated by the results obtained from (16).

Taking ϕi = rie
iθi , the potential (16) becomes

VF1
= eK |WXl

|2 = eK{
∑

i

|φiϕ1 − λ1|2 + r21r
2
2 − 2λ2r1r2cos(θ1 + θ2) + λ2

2 + c21(r
2
1 + r22)}

> eK{
∑

i

|φiϕ1 − λ1|2 + r21r
2
2 − 2λ2r1r2 + λ2

2 + c21(r
2
1 + r22)}

= eK{
∑

i

|φiϕ1 − λ1|2 + (r1r2 − (λ2 − c21))
2 + c21(r1 − r2)

2 + c21(2λ2 − c21)}.

(17)

The vacuum takes place at θ1+θ2 = 2nπ, while the direction θ1−θ2 is flat. The minimization

of the potential in the bracket gives

r1 = r2 = r0 =
√

λ2 − c21,

|φi| ≡ r =
λ1

r0
.

(18)
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The orders of parameters are simply taken as r0 ∼ 10−2 and r2 = 0.1 in following estimations.

Eq. (17) provides strong stabilization on the matter fields. For the condition r1 = r2, the

mass of direction along (r1− r2)/
√
2 is 2c1 ∼ 10−3−10−2 ≫ H , where H is Hubble constant

during inflation, therefore it is strongly stabilized as well. Besides, we get a cosmology

constant term V0 = c21(2λ2 − c21).

The anomalous U(1)X is spontaneously broken by VEVs of charged matter fields. The

phases of φi = reiαi satisfy αi = θ2, we take the U(1)X gauge θ2 = 0 for simplicity. The

flat direction is absorbed by U(1)X massive vector field through the Higgs mechanism after

spontaneous symmetry broken.

It should be careful to consider above values as VEVs of these fields. Actually the

cosmology constant term V0, together with the overall factor eK , can shift the non-zero

VEVs. Specifically, the first condition r1 = r2 remains the same, while the results of φi and

r0 =
√

λ2 − c21 will be slightly modified.

In general, considering a field φ with mass m0 and non-zero VEV φ0, assuming its Kähler

potential is minimal, and the overall scalar potential V = eφ
2

(1
2
m2

0(φ − φ0)
2 + V0), where

V0 is the residual cosmology constant term after field stabilization or during inflation, the

vacuum is determined by

dV

dφ
= eφ

2

(m2
0(φ− φ0) +m2

0φ(φ− φ0)
2 + 2V0φ) = 0, (19)

which gives a new VEV φ′

0 ≃ φ0−2V0φ0/m
2
0. During inflation, the quasi-cosmology constant

provided by inflaton is V0 ∼ 10−8 in the Planck units, m0 is of order O(10−2) in our model,

therefore the shift of matter fields is about ∆φ/φ0 ≃ 10−4. The vacuum energy is reduced by

2V 2
0 φ

2
0/m

2
0 ∼ 10−13, which is completely ignorable during inflation. Therefore we can safely

consider the values obtained in (18) are VEVs of these fields. Besides, there is a coupling

between φ1 and modulus T through aφ
1

n
1 e

−bT , however, we will show that the interaction is

seriously suppressed by aw0 ∼ 10−9 and has ignorable effect on φ1 stabilization as well.
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B. F-term Potential after Stabilization

After field stabilization, the F-term potential is simplified. Besides an overall factor eK ,

it is

V = (T + T̄ )2[a2b2(φ1φ̄1)
1

n e−b(T+T̄ ) + 2a2b
1

T + T̄
(φ1φ̄1)

1

n e−b(T+T̄ )

+abw0
1

T + T̄
(φ

1

n
1 e

−bT + φ̄
1

n
1 e

−bT̄ )] +
a2

n2
(φ1φ̄1)

1

n
−1e−b(T+T̄ )

+
2a2

n
(φ1φ̄1)

1

n e−b(T+T̄ ) +
a

n
w0(φ

1

n
1 e

−bT + φ̄
1

n
1 e

−bT̄ )

+c21(2λ2 − c21) + (
∑

i

|φi|2 + |ϕ1|2 + |ϕ2|2 − 2)W0W̄0.

(20)

Taking r20 ≪ r2, we ignore the contributions from |ϕ1, 2|2W0W̄0. The parameters can be

simply taking as
∑

i |φi|2 = mr2 = 2 so that the last term in Eq. (20) vanishes.

Couplings between modulus T and φ1 are shown in Eq. (20), the dominant term is

g(T )φ
1

n
1 with g(T ) ∼ 10−8. Ignoring the factor eK , the potential of φ1 is approximate to

Vφ1
=

1

2
m2

1(φ1 − r)2 + g(T )φ
1

n
1 , (21)

in which m2
1 ∼ 10−4. VEV of φ1 is shifted about ∆〈φ1〉 ≃ g(T )r

1

n/nm2
1r ∼ 10−4, and the

energy is reduced by 1
2
g(T )2r2/n

n2m2

1
r2

∼ 10−12, which confirms that the non-perturbative effect is

ignorable for matter field stabilization.

C. Anomalous U(1)X D-term and Modulus Stabilization

The anomalous U(1)X D-term scalar potential is given by

VD =
1

2Re(f)
D2, (22)

where D = iKzX
z + iWz

W
Xz. Xz are the components of Killing vector corresponding to

U(1)X isometries of the Kähler manifold, which are

(XT , Xφi, Xχj , Xϕk , XQ) = (iδ, iqφi, −iqχj , (−1)kiqϕk, −2iqQ). (23)

In this model the superpotential is gauge invariant, the D-term is simplified as D = iKzX
z

and it reads

D =
δ

T + T̄
− q

∑

i

|φi|2 + q
∑

j

|χj|2 − (−1)kq
∑

k

|ϕk|2 + 2q|Q|2. (24)
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After field stabilization, χj , ϕ3,4 and Q have vanshing VEVs, the ϕ1 and ϕ2 D-terms cancel

each other due to |ϕ1| = |ϕ2|, and then the D-term is reduced to

D =
δ

T + T̄
− q

∑

i

|φi|2 =
δ

T + T̄
−mqr2 . (25)

The D-term potential is

VD =
1

2kXTR
(

δ

T + T̄
−mqr2)2

=
4π2

(nb)3TR

(
1

2TR

−mnbr2)2,

(26)

in which TR ≡ ReT and the gauge invariant condition q = nbδ and cubic anomaly U(1)3X

cancelation kX = nbq2/8π2 are used. The D-term vanishing condition gives 〈TR〉 ≡ T0 =

1/2mnbr2. In the simplified case withmr2 = 2, the real component of modulus is T0 = 1/4nb.

IV. NATURAL INFLATION POTENTIAL

We have stabilized all the fields except the imaginary component of T . Now the scalar

potential (20) becomes

V = 2e2b [a2r
2

n e−
1

2n (
1

4n
+ 3 +

1

nr2
)

+nc21(2λ2 − c21) + 3aw0r
1

n e−
1

4n cos(bθ)],

(27)

where θ is the imaginary component of T . To get global Minkowski vacuum the parameters

need to be adjusted so that

nc21(2λ2 − c21) + a2r
2

n e−
1

2n (
1

4n
+ 3 +

1

nr2
) = 3aw0r

1

n e−
1

4n , (28)

and we get the scalar potential

V = 6abw0e
2r

1

n e−
1

4n (1 + cos(bθ)), (29)

which is of the same form in Eq. (1) with Λ4 = 6abw0e
2r1/ne−1/4n. Taking a ≃ 5 × 10−5,

w0 ∼ 6 × 10−5, r2 ∼ 0.1, b = 0.1 and n > 6, it gives the inflation scale Λ ∼ 10−2 in the

Planck units.

Before we consider θ as our inflaton, a field re-scale is needed to get canonical kinetic

term, and this will affect the decay constant of θ.
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The kinetic term of T is

LK =
1

(T + T̄ )2
∂µT∂

µT =
1

4T 2
0

(∂µTR∂
µTR + ∂µθ∂

µθ). (30)

Defining θ =
√
2T0ρ, we get the action of inflaton

L =
1

2
∂µρ∂

µρ+ Λ4(1 + cos(
ρ√

2mnr2
)), (31)

in which the D-term stabilization condition bT0 = 1/2mnr2 has been used. The axion decay

constant in this model is f =
√
2mnr2. The VEV of matter fields r is smaller than the

Planck mass. Without uplift from parameters m,n, the axion decay constant f cannot be

super-Planckian. Nevertheless, f is proportional to the product of charged field number m

and the degree of condensation gauge group n, it is very easy to get super-Plankian f by

taking large m or n. We used r2 = 0.1 and mr2 = 2 before, in such case we have m = 20,

then f = 2
√
2n and it is of order O(10) with n = 4. By using larger n the axion decay

constant f increases linearly, the potential gets close to the type 1
2
m2ρ2, and we get chaotic

inflation.

Gravitino Mass

Even though the matter fields are stabilized at the scales much higher than inflation scale,

they do not introduce too heavy gravitino mass. After field stabilization, the pure matter

couplings in the superpotential in Eq. (4) vanish, the VEV of superpotential 〈W 〉 during

inflation is

〈W 〉 ≡ W0 = w0 + a〈φ
1

n
1 e

−bT 〉 = w0 − ar
1

n e−
1

4n . (32)

Besides, we also have the VEV of eK

〈eK〉 = e2

2T0
, (33)

in which we have used mr2 = 2 and the small term 2r21 from VEVs of ϕ1,2 is ignored. The

gravitino mass is

M 3

2

≡ exp(
〈G〉
2

) = 〈eK
2 (W0W̄0)

1

2 〉

= e
√
2nb(w0 − ar

1

n e−
1

4n ).

(34)
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The gravitino mass relates to the inflation energy scale through

(e
√
2nb)2w0ar

1

n e−
1

4n =
n

3
Λ4. (35)

Small gravitino mass can be obtained by taking w0 → ar
1

n e−
1

4n , however, Eq. (28) provides

a lower bound on it

w0 − ar
1

n e−
1

4n = nc21(2λ2 − c21)(3ar
1

n e−
1

4n )−1 +
1

3n
ar

1

n e−
1

4n (
1

4
+

1

r2
)

>
2

3
c1(2λ2 − c21)

1

2 (
1

4
+

1

r2
)
1

2 .
(36)

The minimum locates at c21(2λ2 − c21) ≃ (1
4
+ 1

r2
)w2

0/n
2. For c1 ∼ 10−3, λ2 ∼ 10−4, the

gravitino mass can be reduced to the order of 10−5, while it cannot get significantly smaller

otherwise the field stabilization is not strong enough for inflation. In short, the gravitino

mass will not affect inflation in our model.

V. CONCLUSION

We have proposed a natural infaltion model based on string inspired SUGRA with gauged

shift symmetry U(1)X . The matter fields are stabilized by F-terms, part of them obtain non-

zero VEVs which break the anomalous U(1)X spontaneously. They obtain masses several

orders larger than the mass of inflaton, consequently the effect of vacuum energy from

inflaton on field stabilization is seriously suppressed and ignorable. The modulus-dependent

FI term of U(1)X plays a critical role in modulus stabilization. As the coupling between

matter field and modulus is analytic, the D-term can be vanished in our model. Once the

matter fields obtain non-zero VEVs, the real component of modulus T is fixed by the D-term

flatness. While the D-term is independent with the axionic component of T , therefore its

cancellation has no effect on axion which remains light after modulus stabilization. The

anomalous U(1)X splits the masses of real and imaginary components of T . Such role of

anomalous U(1)X D-term on modulus stabilization has been studied in [21]. In the F-term

moduli stabilization, usually the imaginary component of modulus obtains mass as large as

the real component [20], the axion inflation cannot be realized. The reason is in F-term

potential, the real and imaginary components of moduli couple with each other, it is highly

non-trivial to split their masses at different scale so that one of them can play the role of

inflaton while the other is frozen during inflation.
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Potential for natural inflation is obtained from non-perturbative effect. Generally it

is very difficult to get trans-Planckian axion decay constant, which is needed to fit with

BICEP2 results. In our model, the axion decay constant linearly depends on the degree

of condensation gauge group SU(n) and number of U(1)X charged matter fields, therefore,

the super-Planckian axion decay constant can be easily fulfilled by using large condensation

gauge group and more U(1)X charged fields.
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