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Abstract
We study in detail the procedure for obtaining couplings of D-branes to closed string
fields by evaluating string theory disc amplitudes. We perform a careful construction
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1 Introduction

As researchers have widened their exploration of the space of string theory vacua in
recent years, more attention has been paid to compactifications which include D-branes
and fluxes. Much of the work being done focuses primarily on the effective theories
which describe the low-energy dynamics of such theories, and so the effects of higher-
derivative corrections to the string theory action are often ignored. Caution is required
however, as there are situations in which these contributions play a crucial role in
establishing the consistency, or inconsistency, of solutions.

For example, consider the compactification of M-theory on a Calabi-Yau four-fold
with flux. The equation of motion for the three-form potential C5 extended in the

three space-time directions gives [I] (assuming also supersymmetry of the solution)

1
—dx*gdf = §G4 A *xgGy + 4#225(8)(95 — ;) — 4 Xg 4, (1.1)

where f is a function related to the warp-factor, x; are the positions of space-filling
M2-branes, and Xy is a particular eight-derivative term built from four curvature ten-
sors; other higher-derivative terms (eight-derivative and higher) are represented by - - - .
Solving this equation locally for the warp-factor, the higher-derivative corrections are
not relevant (assuming we are in the regime where the volume of the internal space is
large in Planck units). However, if we integrate over the internal space, then we

find
X
24’

where y is the Euler character of the four-fold, which comes from integrating X over

1 2

the internal space. Thus, if we had naively ignored the higher-derivative correction,
then we would have incorrectly concluded that a supersymmetric solution would require
vanishing flux and no M2-branes. Conversely, when we correctly include the higher-
derivative corrections to the action, we conclude that fluxes (or branes) are a required
ingredient on most Calabi-Yau four-folds (x is typically positive on these spaces). Thus,
understanding of these higher-derivative terms was crucial for determining the correct
consistency conditions on this class of solutions.

It is instructive to also consider another class of solutions that is related to the pre-
vious ones by duality, in which we compactify F-theory on the Calabi-Yau four-fold [2].
In this case, the global consistency condition corresponds, in IIB language, to a



D3-brane tadpole and reads

oz/FgAHﬁNDg—l (1.3)
24

From the point of view of IIB string theory, the contribution x/24 may at first appear
mysterious, since, as in M-theory, the bulk action does not receive corrections until
eight derivatives, but an eight derivative term would be too suppressed in the regime
of a large, smooth compactification to give a topological contribution when integrated
over the six-dimensional internal space of the IIB solution. The resolution is that the
I1B solution also necessarily includes D7-branes and O7-planes which wrap four-cycles
of the internal space. These brane actions can and do receive four-derivative corrections
like [3] [4, 5] 6] [7, [§]

2 (a’)?

0Spr = —T-
D7 o4 .

C4 A\ (tI‘RT A\ RT — tI'RN N RN) s (14)

and the integral of the trR? terms over the various seven brane world-volumes precisely
reconstructs the contribution proportional to the Euler character of the four-fold.

The lesson from this example is that it is not only important to understand higher-
derivative corrections in the bulk, but that higher-derivative corrections to D-brane
actions can also play a pivotal role in determining the consistency of string compacti-
fications; without taking these terms properly into account, we would reach mistaken
conclusions about the space of valid constructions of string vacua.

However, terms like those in ([1.4)) are not the full story; there are many other terms
at the same order of derivatives which will appear in D-brane actions [9]. There are
at least two routes by which we can learn about these additional terms; we can take
the known terms such as those in and apply T-duality, or else we can try to
compute the terms directly by evaluating scattering amplitudes. In the current work
we will concentrate on the latter approach, and in fact we will largely be laying the
ground-work for a more complete study by carefully examining many of the issues
which arise when computing disc amplitudes and using them to reconstruct space-
time actions. In [I0] we will use the tools presented in this paper to present the gauge
invariant completion of the four derivative corrections to the Wess-Zumino contribution
to the D-brane action found in [9]. These interactions have also been considered by
[11], 12, [13], [14], [15].

To compute the terms of interest, we must evaluate scattering amplitudes in which



various closed string fields interact with a D-brand!] We will restrict ourselves to tree-
level computations, so the relevant amplitudes are given by insertions of multiple closed
string vertex operators on a world-sheet with the topology of a disc. We will study this
problem using the boundary state formalism [I6] [17]. In this formalism we work with
the usual vertex operators and BRST cohomology that we would use on the sphere [18],
but to account for the effect of a world-sheet boundary, we insert a boundary state | B)
which encodes the boundary conditions of fields in the presence of the D-brane. We
also need to include a propagator which pushes this induced boundary out to the first
closed string insertion point, and a ghost factor b —i—go.

Though the boundary state itself is annihilated by the total (left- plus right-moving)
BRST charge, the extra ghost insertion is not invariant, and this fact leads to many
subtle issues which do not occur for sphere amplitudes. For example, it is not necessar-
ily true that BRST-exact operators decouple from disc amplitudes, and this potentially
leads to disturbing consequences. Gauge transformations of the space-time fields are
represented by shifting the corresponding vertex operators by BRST-exact pieces, so
if these do not decouple it would mean that the scattering amplitude was not gauge
invariant, which should not happen for physical quantities. A related issue is that
amplitudes in the NSR formalism are not supposed to depend upon how the total
picture charge is distributed among the various operators, but verifying this property
typically relies on the decoupling of certain BRST-exact states. So, in order to do
a careful analysis of disc amplitudes with closed string insertions, it is important to
really understand these issues and whether they affect the integrity of our answers.

The outline of this paper is as follows. In section[2]we start by constructing the phys-
ical state vertex operators by computing the relevant BRST-cohomologies to describe
the massless fields of the superstring. This section also serves as a summary of many of
our conventions for OPEs that we will need when we proceed to compute amplitudes.
In section , we discuss the boundary state | B) and its effects on the computation, and
in particular we demonstrate how we can use |B) to convert all right-moving fields in
the computation into left-movers to facilitate the evaluation of the amplitude. Section

deals with BRST-exact states in the amplitude and shows that they can give rise

Tt is also interesting to compute the scattering of closed string fields from orientifold planes,
by computing string amplitudes with a crosscap instead of a boundary. It is well known how to
accommodate that situation in the boundary state formalism. We don’t work out the details in the

present paper, but expect that most of our techniques and results carry over to that case easily.



to boundary terms that need not vanish. However, by appealing to the analyticity of
the amplitude as a function of the external momenta, we demonstrate that in a broad
variety of circumstances (we also discuss the situations where this argument fails) the
boundary terms do vanish identically. We show that this proves that the amplitudes
are indeed gauge invariant and that the result is independent of how we distribute the
total picture charge. Most of this discussion focusses on the two-point functions for
simplicity. Next, in section [b| we explicitly compute various two-point functions on the
disc, and in section [f] we compare the leading terms in the momentum expansion with

predictions from supergravity and show exact agreement.

2 Vertex operators

2.1 Notation and conventions

We start with the usual matter and ghosts on the world-sheet with OPEs on the
complex planeﬂ

XH(2,2) X (w, @) ~ —nIn|z—w|?,

P (w) ~ L

b(2)e(w) ~ c(2)b(w) ~ Z_lw, (2.1)
P(2)p(w) ~ —In(z—w),
W=)w) ~ EGnlw) ~

and similarly for the anti-holomorphic fields.

The (holomorphic) ghost charge g, and picture charge gp of an operator O are given

byf]

@010 = § 520,100 = 4,00) 22)
@r.010) = 3= 1(00) = 4r0(0) 23)

2The OPE for ¢* differs from [9] by a sign; we have changed conventions to match most of the

literature on boundary states.
3These definitions are not universally agreed upon. Our choice of picture charge is chosen so that

it commutes with BRST charge, [Qp, @Brst] = 0. Our ghost charge satisfies [Qg, @srsT] = Q@BRST,
i.e. the BRST current has ghost charge one, but this does not determine it uniquely; we could add
any multiple of Jp to J;. The precise form here is fixed by also requiring that the picture changing

operators have ghost number zero, so that they relate states or operators with the same ghost number.



where

Jg=:cb:+:n€:, Jp = =00+ : &n ey (2.4)

and @, and @Qp are the corresponding charge operators. The charges and conformal
weights of several of these fields are listed in Table [2.1]

49 qr h
c 1 0 -1
b -1 0 2
noo1 -1 1
£ 11 0
e 0 n —n(n+2)/2
oxX" 0 0 1
et X 0 0 k%/2
W00 1/2

Table 1: Left-moving fields with their ghost charge, picture charge, and conformal weight

Finally, in our conventions the left-moving BRST charge is given by

dz
(QBrsT, O] (0) = %JBRST(Z)O(O)a (2.5)
where
JersT = Jo + J1 + Ja, (2.6)

Jo = ¢ <—%8X“8Xu . %1#“81#“ - %&b&b — 0%¢ — ndE + acb) . @2

1
J = —§e¢nwaxu, (2.8)
1
Jy = 162%77677- (2.9)

2.2 Physical States

In the closed string we have both holomorphic (left-moving) fields and their anti-
holomorphic (right-moving) counterparts, which we denote throughout the paper with
tildes.

Physical states in the closed string correspond [19, 20, 2], 22 23] 24] to classes in

the semirelative BRST-cohomology, i.e. states which are annihilated by the operator
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by = by — 50 and by the total BRST charge Q) = Qpgrsr + @BRST, modulo states
which can be written as () acting on something that is annihilated by b, . In terms of

operators, we need
(b, V] =1Q,V]=0, 6V =[Q.U], [b,U]=0 (2.10)

In practice, obtaining a complete characterization of this cohomology is difficult,
especially since the b, condition does not factorize between the left- and right-movers.
In this section we will collect various results in the literature to explain how we have
a bit more flexibility when states have well-defined non-vanishing momentum, p* # 0,
and when we only intend to insert our vertex operators into disc amplitudes, and are

not worried about arbitrary higher-genus Riemann surfaces.

2.2.1 Chiral states

Let us start with states that are purely left-moving. In this case there are two coho-
mologies we can define, either that given by BRST-closed states modulo BRST-exact
states, without further restrictions, or the relative cohomology of states which are an-
nihilated by by. Note that the BRST charge has picture charge zero, ghost charge one,

conformal weight zero, and zero momentum,

(Qp,QBrst] = [Lo, @Brst| = [P", @BRsT] = 0, [Qg, @BrsT| = @BRsT,  (2.11)

where

& pxn(2)0(0), (2.12)

271

700~ ¢

is the momentum operator. Note that we also have
[@p, o] = [Lo, bo] = [P, bo] =0, [Qg: bo] = —bo, (2.13)
as well as
[Qp, Q] = [Qp, Lo] = [Qpr, "] = [Qyg; Lo] = [Qg, '] = [Lo, "] = 0. (2.14)

Now from (2.11)), (2.13)), and (2.14)), we see that without loss of generality we can

restrict attention to particular eigenspaces of Qp, Lo, and p*, and we can grade the

cohomology by ghost number. In other words, we can define spaces
C?’,A,p” = {V| [QP7 V] = PV, [L(J?V] = AV, [ﬁ#’ V] = p"V, [Q97 V] = TLV}, (215>

7



and then define the absolute and relative chiral cohomologies,

{V eCp,nlQprsr, V] =0}
{[Qprsr, UIIU € Cpyu)

Hpy e = (2.16)

and
AV € OBl 0, V] = [Qprsr, V] = 0}

Hizppe = {{Qprsr, Ul U € Cpytu, [bo, U =0}

Note that in the relative chiral cohomology we can drop the Ly eigenvalue because

[bo, V] = [@prst, V] = 0 implies that [Ly, V] = 0. In the case of the absolute chiral
cohomology, for A # 0 we have for BRST-closed operators V/,

(2.17)

V = [Qsrst, (A" [b0, V])] (2.18)

implying that Hp, . = 0 for A # 0. So there too we will assume that A = 0. We
will assume, in both cohomologies, that we have fixed P and p* to some agreed upon
values, and we will not bother to include them as subscripts. Thus we will talk about
the absolute chiral cohomology H™ and the relative chiral cohomology HF.

These two cohomologies fit together into a long exact sequence (see for exam-
ple [25]),

7

SRR S LN S LN S U ¢ (o RN - U (2.19)

where the map 7 is simply inclusion, and the other maps indicate taking the commutator
with by or with {Qpggrst, co} respectively. It is easy to check that the kernel of each
map is the image of the previous map.

Now we mention some results from the literature. It is possible to construct picture

changing operators
X(z) ={Qprst,2£(2)}, and  Y(2) = —2:cOée?(2) ., (2.20)

whose zero mode pieces X and Y commute with Qprsr, @4, Lo, and p*, and which

carry picture charge +1 and —1 respectively, and which further satisfy
XoYo = Yo Xo =14+ {QBrsr, " }- (2.21)

Thus, these operators can be used to construct an isomorphism between the absolute

cohomology with picture P and the one with picture P + k for any k € Z.



Unfortunately, Y,y does not commute with by, so these operators cannot be used to
construct an isomorphism of relative cohomologies. However, for p* # 0, it was shown

by Berkovits and Zwiebach [20] that one can construct an alternative operator
Y'(2) = =20, : e %YH(2) 1, where  (Mp, =1, (2.22)

whose zero mode piece Y does commute with by as well as Qprsr, @4, Lo, and p*,

and which, when restricted to the p* # 0 eigenspace satisfies
XoYy =Yy Xo =1+ {Qprsr, -}, (2.23)

where --- is annihilated by by. These then establish isomorphisms between Hp at
picture P and H} at picture P+ k, k € Z.

Next, we have a result due to Lian and Zuckerman [27], generalizing [28] for the
bosonic string, which shows that, again for p* # 0, H} = 0 unless n = 1. In fact,
looking carefully at their results, they prove this only for pictures —1, —1/2, and —3/2
(they start with a vacuum in one of these pictures and consider only states built by
acting on the vacuum with a finite number of 8 and ~ superghost oscillators), but
combining this result with the isomorphisms constructed by [26], we have that Hp = 0
for n # 1 in any picture and any non-zero p*.

If we plug the Lian-Zuckerman vanishing result into the sequence , we learn
that for p* # 0, the maps

oy -5 ', H*X H (2.24)

are isomorphisms, and that H” = 0 if n # 1,2. The first isomorphism in particular
implies that for any BRST-closed operator V' of ghost charge one, there exist operators
W and U satisfying

[bo, W] = [bo, U] = 0, (QprsT, W| =0, (2.25)

such that
V=W+ [QBRST, U] . (2.26)

2.2.2  Closed string states

In the closed string there are three different cohomologies that arise, the absolute

cohomology H", the semirelative cohomology H§, and the relative cohomology, H'%,

9



defined by

V][Q,V] =0, [Qa,V] = nV}

Q. UIT[Qc, Ul = (n = DU} *

{VIQ. V] = [bg, V] =0, [Qa,V] = nV}

{IQ.UI1 [b,U] =0, [Qe, U] = (n— 1)U}’
{VI1Q.V] = oo V] = [bo, V] =0, [Qa, V] =V}
HE = ~ : (2.29)
{10,011 100, U] = [t U] = 0, [Qc, U] = (n = 1)U}

Hn

(2.27)

(2.28)

where we recall that Q = Qgrsr + @B RrsTs by = bo —ZO, and we define the total ghost
charge, Q¢ = Q4+ CNQg. We assume that we are working at fixed left and right pictures
P and P and fixed momentum p*, and vanishing eigenvalues for Ly and Zo.
With standard techniques it is easy to express H" and H% in terms of chiral coho-
mologies by Kiinneth formulae,
W = > H'eH =Y Hi®Hf (2.30)
k+t=n k+t=n
Using the vanishing theorems of the previous subsection, this implies that for p* # 0,

we have

H" =0, forn#2,3,4, and Hp =0, forn#2. (2.31)

Because the semirelative condition does not factorize between left and right, we
can’t use such a simple decomposition for the semirelative complex, which are the

states of legitimate physical interest. However, there are long exact sequences [25]

anologous to the chiral (2.19)),

e L Dy gt 1 g g (232)
and
n ( n bg n—1 {Q7c+} nt+l @ n+1
o — Hp — Hg — H, 47—[1% — HGT — - (2.33)

Plugging in our vanishing theorems we learn that, for p* # 0, there are isomorphisms
H 2 HE 2 HE = HE 2 H? (2.34)

and the only other nonvanishing cohmology group is H? which can be obtained from
(2.30]) or from the short exact sequence

(2

00— H -2 2 12— 0. (2.35)

10



To summarize, this shows that if our purpose is simply to find the spectrum of
physical closed string states at non-zero momentum we have many choices, since there
are many cohomology groups which are isomorphic to the desiredlﬂ HE.

However, when we wish to insert our vertex operators into amplitudes then we need
to be more careful. The semirelative condition is imposed in order to make correlation
functions well-defined on arbitrary higher genus Riemann surfaces [19, 20, 22|, 23] 24].
In particular, if U corresponds to a state that is not annihilated by b,, then the
BRST exact insertion [@, U] is not guaranteed to decouple from amplitudes. Thus if
V represents a class in H? with p* # 0, then the last isomorphism in guarantees
that we can write

V=w+[QU], [, W]=0, (2.36)

but the second term may not decouple and so they may give different results inside
correlation functions. However, we will argue in section [4| that for correlation functions
on the disc at generic nonzero momenta, that [@, U] will in fact decouple, even if U is
not annihilated by by .

Our purpose in clarifying all these issues is that below we will find R-R operators in
H? which are not in H% but which enjoy certain desirable properties in the context of
disc amplitudes with one R-R field and several NS-NS fields. Using H%, one finds that
in the (—1/2,—1/2) picture one can write R-R vertex operators which are manifestly
gauge invariant (they depend on the R-R field strength F' rather than the potential
('), but we must put at least one of the NS-NS§ fields in an asymmetric picture and we
lose the manifest exchange symmetry between the NS-NS fields. Alternatively in the
(—3/2,—1/2) picture we can maintain the exchange symmetry, but we lose the gauge
invariance and in fact must work in a somewhat awkward gauge. However, if we are
willing to relax the semirelative condition and work with R-R operators in 2, then

we can find something which combines both of the desirable properties.
2.3 Vertex operators

2.3.1 Open string

Whether we wish to compute the absolute chiral cohomology at ghost number one, H*,

or the relative chiral cohomology H}j, we start the same way. At a given mass level,

4For unintegrated vertex operators, as we are discussing here, we are almost always interested in

total ghost number two.
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say p? = 0, and a given choice of picture, we can classify all possible open-string vertex
operators that have conformal weight zero and ghost number one and are constructed
out of the basic fields (these fields and their charges and weights were summarized in
Table . Suppose we want operators of picture P. If we start with a contribution
etP)? then to get the correct picture charge we must also include either n n’s, if
n >0, or |n| s if n < 0. Then to get the correct ghost number we need either n — 1
b's forn > 0 or 1 —n c¢’s for n < 0. Calculating the conformal weight in either case,

we find

2_9Pn—(P?2+2P +2
(b0~ 2bmdn - 9" et Pe] = 1 : (2 w2y

2= 2(P+1)n—(P?242P+2)
_ - ,

n >0,

[cOc - OMeOER?E - - - DMlgent 2] n <0.

We can then add more pieces which don’t change the picture charge or ghost number,
including contributions from the matter sector, additional n-£ or b-c¢ pairs, or derivatives
acting on any of these fields. All these contributions, however, will only increase the

conformal weight, so we need the basic contribution above to have weight less than or

equal to zero. For instance, if we want operators of picture P = —1, we have either
(n?*+2n —1)/2 for n > 0, or (n?> —1)/2 for n < 0. The only viable solutions are then
n =0 or n = —1, and the corresponding possible operators are

Vo= [a#ce"z’w“ + Bcﬁcﬁfe’zﬂ X (2.37)

Imposing the condition that this is BRST closed, we find that 8 = 0 and p*«a, = 0.
Note that if we imposed [by, V] = 0 first, we would set 8 = 0 before considering BRST
closure, but the end result is the same.

In general, under gauge transformations vertex operators change by BRST exact

operators
6Vp = [@prst, Up], (2.38)

where Up has the same momentum and picture charge as Vp, and vanishing conformal
weight and ghost charge.
Similar considerations to those above then allow us to classify all possible gauge

transformations. For picture —1, for example, we have only
U_, = idcOfe 20X (2.39)
generating the gauge transformations day, = %)\p“.

12



Similar calculations give, for picture 0,
. v 1 ) ipX
Vo = oy, [c(OXH —ip,p"yt) — 3¢ nyYt| e, (2.40)
subject to p* = 0 and p*a,, = 0. In this case
Up = —ide™ (2.41)

corresponding to the gauge transformations do, = Ap,,.

In both these pictures, the absolute and relative cohomologies are identical.

3

For picture —%, in the absolute cohomology H ! we have

Vs = |ascdcdte 2% + ifce™ 2| SAePX, (2.42)

2

subject to the conditions p? = 0 and ap = 0, where

P =pI", (2.43)

and our conventions for gamma matrices are detailed in appendix[A] In this case there

are gauge transformations parametrized by A4 and 4, generated by the operator

U

= —2@')\,4080058256*%“’ + QﬁuAcﬁﬁe’g‘b] SAePX (2.44)

[

which act as

Sa=v2\p, 6B = A+ pp. (2.45)

If we were to work in the relative cohomology H}, instead, then we would set o = A = 0
above, leading to an isomorphic cohomology at nonzero momentum, but with a smaller
space of states and of gauge transformations.

Finally for picture —%, we have
V.1 = asce 2¢54mX, (2.46)

with p? = 0 and ap = 0. There are no gauge transformations in this case, and the

absolute and relative cohomologies are identical.

2.3.2  Closed string

The closed string vertex operators will, of course, be (sums of) products of left- and

right-moving open string vertex operators. In the NS-NS sector, we would have
Vo p(2,2) = u VB (2)VE(2)eP 2, (2.47)

13



where

VH = ce‘¢¢“,

1 (2.48)
Vi = e (OX" — ipurur) — Setmu,

and similar expressions for the z dependent contributions. In each case BRST closure

requires
2
p- =0,
(2.49)
pevy = p e = 0.
There are gauge transformations
55/w = Aupu + pqu (250)

for vectors A, and (, satisfying p#*A, = p(, = 0. The operators constructed in this
way satisfy [bo, Vi p] = [bo, Vppl = 0, so we can consider them as elements of H%,
H%, or H?. Working in any of these three cohomologies we could enlarge the space of
operators we consider to ones where the left and right ghost numbers were not both
one (but the total ghost number should still be two), but by the arguments of section
all such operators would then be BRST-trivial as long as p* # 0, so the ones we
have written down here completely capture the cohomology at ghost number two.

In the R-R sector, we have the (—%, —%)—picture operator

Vi _1(2,2) = fapVA (2)VE (2)e?¥, (2.51)
27 2 2 2
where
VA = cem2094 (2.52)
2
In this case BRST implies
2
=0
" (2.53)
§i=Ip=0.

We must take a moment now to discuss the GSO projection. In the NS-NS sector,
this is simply the requirement that (—1)* and (—1)1E , where F and F are the left and
right world-sheet fermion number operators, are both equal to one when acting on a
physical state. It turns out that the NS-NS sector operators we wrote down already

satisfy this requirement. In the R-R sector, the GSO projection (we use the conventions

14



of [29]) is (—1)¥ =1 and (—1)15 = (—1)P*, where p is even for ITA and odd for IIB.

The action of (—1)¥ on R sector ground states is given by

()" |P;A) = (=17 (0)4, (P B), (2.54)
(P; Al (-1 = (1) ()4, (P B

where P € Z + § is the picture and A is the spinor index. The action of (—1)F is

given by the corresponding expressions with tildes. Thus the GSO projection on ([2.51|)
imposes

f=@Cw)" f= (=D T (2.55)

These conditions determine the choice of coefficient fp. Indeed, there is a natural

correspondence, using the algebra of gamma matrices (I'*)4 5, between objects with

two Lorentz spinor indices and (formal sums of ) space-time differential forms according

to
fap = <CZ —F) Mr%%) = (CF) .- (2.56)
AB

We will now argue that the BRST and GSO conditions make it very natural to associate
the differential forms £ Wlth the R-R field strengths. First of all, the GSO projection
immediately gives that F(™) = 0 unless p+n is even, so we only have even forms in ITA
or odd forms in IIB. The other implication of the GSO condition is the duality relation

2

x F = (—1)2("*=") p(o-m), (2.57)

which comes from ' = —I'1; F.
Turning next to the BRST conditions, it is easy to check that }/)T J=1[fp=0is

equivalent to the demand that
dF™ = dx F™ =0, (2.58)

for each n. Finally, since there were no BRST gauge transformations, the F(™ should
be gauge invariant quantities. It is thus very natural to associate these F(™ with the
R-R field strengths, at least up to an overall normalization which we won’t attempt to
fix.

For picture (—%, —3), if we work in the absolute cohomology H?, we have [16] (see

also discussions of R-R vertex operators in [30)], 31])

(2,2) = [fAB <Cac(9£efg¢8‘4) (Ee’%$§3> +igaB <ce’%¢SA) (Ee’éggB)] ePX
(2.59)

Vs

1
272
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with
p* =0,
pr=rp=0, (2.60)
gp =0,
and where we have gauge transformations
of =V2p'¢,
d P f (2.61)
dg=C+p X,

for any parameters (ap and xap satisfying (p = xp = 0. As before, fap corresponds
to a gauge-invariant differential form which is closed and co-closed, so it should be
proportional to CF.

For the other term, writing ¢ = C@ for a sum of differential forms G, the GSO

projection becomes
#=Tn¢ = (—1)" ¢y, (2.62)

which implies that we must only have terms satisfying p + n is odd, and we must have
« G = (—1)2(* ) gio-m) (2.63)

The BRST condition gp = 0 becomes the constraint
dG™ = — s dx G2, (2.64)

The gauge transformations imply that we can make shifts (these are the gauge

transformations parametrized by )

6G™ = gA—b), (2.65)

where the forms A1 satisfy
dAY = — s d x AT, (2.66)
By using the gauge transformation (4p = —gap we see that we can replace gap by

a contribution to fap given by 6F™ = 21/2dG" Y. For this reason it is natural to
assume that G should b proportional to the R-R potential C™ in a specific gauge.

Indeed, we should write

fap=2(1—=y) (CF) 5>  9gas=—7=(CT) ,p- (2.67)

4

2
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Here y is an arbitrary real parameter, and we have chosen a gauge in which dC™~ =
—xdx O qe.

n v n—2
C/Sl?",unfll’p = _(n - 1)0[(;11..‘/1”_2])#”_1]' (268)

The overall factor of two in ensures that amplitudes using this operator agree
with those computed using .

Our gauge transformations then act to either shift the parameter y by any amount,
or to shift ¢' according to . The most convenient choice of gauge for us is to
simply take y=0, in which case we can simply write

v

_3_1
272

(2,2) = fapV/4 VI e, (2.69)

where

VA = c@c@fe‘g¢SA, VB = Ge2935. (2.70)

Of course, if we want to use our vertex operators on arbitrary Riemann surfaces, then
we should work with H% rather than H?, and so we should be forced to take y = 1
and disallow the gauge transformations which shift y. However, we will demonstrate in
section [4] that for two-point disc amplitudes, we encounter no problems working with
the more general form, and it is somewhat more convenient for calculation (we don’t
need to deal with the messy gauge condition for instance).

1 _3

The story for picture (—3, —3) is completely analogous.

3 Boundary states and correlators

We will try to develop all the properties and results for our boundary states from

scratch, but some other useful references include [16] 17] and the review [32].

3.1 Boundary states

We will be taking a very pragmatic view of the boundary state |B) as being sim-
ply an implementation of the boundary conditions obeyed by the vertex operators.
These boundary conditions relate right-moving excitations to left-moving excitations,
as waves hit the boundary of the string world-sheet and reflect back. On the upper
half-plane, we expect the boundary conditions to relate a purely right-moving operator

of conformal weight h to a purely left-moving counterpart,
O4(@) = " RO (0) |- (3.1)
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Here a and b are indices that correspond to the Lorentz representation of the operator,
and R is a matrix encoding the boundary conditions. The sign n = =+ is included
for operators of half-integral conformal weight so that we can later sum over the two
choices when performing the GSO projection.

We will find it more useful to work not on the upper half-plane, but on the exterior
of the unit disc, |z] > 1 (this is so that we can place the boundary state at the origin
and propagate it outwards). In this case, if Oisa primary conformal operator, then

under the mapping z = e~™, the condition above becomes
(iz)" O%(2) = R (—i2)" O"(2)]op=r- (3.2)

The boundary state is designed to relate an anti-holomorphic operator defined on the
exterior of the disc to a holomorphic operator defined on the interior of the disc in a

way consistent with the boundary conditions,
O%(2)|B;m) = By (inz) " O°(z™") |B;n) . (3.3)
In the case that the operators in (3.3)) correspond to free fields,

Oz)=d%z) = Y ®iz"h 0%z =d"z)= Y iz (3.4)

reZ—h reZ—h

then (3.3]) implies boundary conditions on oscillators given by
;| Bin) = (in) ™" Ry @, | Byy) (3.5)

Note that these expressions are valid only for primary conformal fields, and need to

be modified otherwise. For instance, the current which measures ¢ charge, Jy = —0¢,
obeys
2 Js(0) | 9Js(0)
T(2)Js(0) ~ — . 3.6
()Jol0) ~ 5 + 2270+ 22 (3.6)

Due to the 2= term above, the transformation of J; under the mapping z = e~ is

given by
Jo(w) = —izdy(z) — 1, (3.7)

and so the action on the boundary state should be given by

T5(2) |Bsm) = (=2 2Js(z7") — 2271) [Bsm). (3.8)
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From this it follows that the total left- plus right- ¢ charge of the boundary state must

be —2,
(% EUCR 7{ d—zjq?(?)) |Bim) = =2|B). (3.9)

271 27
The property essentially fixes the boundary state |B;n) up to multiplication
by an overall, possibly n-dependent, number. We will try to avoid using the explicit
form of |B;n) whenever possible, simply making repeated use of .
We mention here one more aspect which will be of use in evaluating the correlators
below. Let us schematically write the boundary state as
IB) = > B |ii,m), (3.10)
7i,m>0
where 77 and m label states on the left and right respectively. We will use the label 0
for the vacuum states, and we consider an ordering where 7i; > iy if |7;) is obtained
from |7iy) by acting with creation operators. Then, again schematically, if we act with
a left-moving annihilation operator a; labeled by 7> 0 we get
az|B) =Y Y B |ii — 7,1) . (3.11)
m>0 >
By property , we should be able to equivalently write this in terms of a right-
moving creation operator, a_z,
a_z|B) = Biig |, M+ 7). (3.12)
7i,m>0
Comparing these two expressions for arbitrary 7 > 0, we see that the second series
does not contain the state |0,0), and so in the first series we must have By = 0. We

can similarly derive that Byz = 0. The key implication of this result is that
(71, 0] B) = Buo (71]0) , (3.13)

where By is just a number, or, if the vacua are degenerate, a matrix. In this case, if
we label vacua by an extra index «, then we have
(i1, 0a|B) = (Boo) g, (77]05) - (3.14)
B
This property means that in a correlator, if we first use to rewrite all the
operators as holomorphic, we can then simply evaluate a holomorphic correlator with
a vacuum as in-state, and do not need to worry about the detailed structure of the

boundary state, except the zero-mode part which accounts for degenerate vacua.
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3.2 Correlators

In this subsection we will use to evaluate various correlators that we will need to
compute disc amplitudes, proceeding sector by sector. When we eventually compute
full amplitudes, we will find it convenient to simplify our calculations by sending the
position of the first vertex operator, z;, to infinity (the full amplitude is independent
of z1). In this limit, it is natural to absorb any spin fields and exponentials of ¢ or 5

into the out-state using

Tim s (045 0, 0) - cQ9C) . (Q03) .~ LAQH) 0@+ <0¢; (Q.Q)s

, (3.15)
for integral () and @, and

lim s (0y; (0,0)] : €993 S4(2) 1 Q¥R GB(z) .
Z—00
= Q1008 (A, B),(Q, Q)| (3.16)
for half-integral ) and @

We will now discuss some of the particular correlators that we will need in different

sectors.

3.2.1 X sector

To relate the antiholomorphic fields to the holomorphic fields we use with Rt =
D*# . the diagonal matrix with entries +1 for directions along the brane and —1 for
orthogonal directions. If we use indices a,b,--- and 14, 7j,--- for these tangent and
normal directions respectively, then (lowering the index with 7, ), we have Dy, = s,
Dy = Di, =0, D;j = —9;;. Then we find for example,

0X*"(2)|B) = -z 2D* 0X"(z7 ") |B). (3.17)
For exponentials we first split into holomorphic and anti-holomorphic parts,

oPX(22) _ eipX(Z)eip)?(f)’ (3.18)

and then we use the boundary state to convert the anti-holomorphic piece into a holo-

morphic operator,
e?X() | By = ¢?PXE | B) | (3.19)

where we assume here p? = 0, so that the exponential has zero conformal weight.
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Once we have converted all the antiholomorphic operators in a correlator into holo-
morphic ones using , then we can use to evaluate the correlator. In this
sector there are degenerate vacua, labeled by momenta, but as usual for non-compact
directions we must have left and right momenta equa]EL and since we take the out-state
to have zero momentum (k, = 0 in the notation of ([3.14))), the correlator will simply
reduce to a holomorphic correlator.

It is now straightforward to evaluate the expectation value for products of expo-

nentials,
) _ ) _ 1
. ;1 X(z1,21) .. nX (2n,2n) . o p+1 +1 -
(O [ eP X2 e | Bx) = (2m)"" 67 2 (1+ D) sz
<TT0zl2 =)™ T 12— 2l 202 — 1277 . (3.22)
k=1 1<b<m<n

Indeed the second line appears frequently enough that we shall abbreviate it with the
symbol K. The first line implements conservation of momentum along the brane; in
the transverse directions we do not have conservation of momentuml

We will also need correlators which include explicit factors of 9X* or OX*. Again,
we convert right-movers into left-movers using the boundary state, and then evaluate

the correlator using the usual methods. For example,

<OX ’: P X () L gipe1 X (Zn10E-) 8X“(zn)eip”X(Z”’2") :‘ BX>
= <0X |: eP1X(zi2) L gion X (2n Zn) :} BX>
i iPp— iz D iZyDpp "
. (L+...+ Py _ 12 Dpy _..._Q_P)  (3.23)
21— Zn Zn-1—Zn 21— 1 ENRE

5Thus the zero-mode part of this boundary state has
Boo(k, k") = Boo(k)6" (k — k). (3.20)
Furthermore, applying to the momentum operator we learn that
kuBoo(k) = — (Dk),, Boo(k), (3.21)

which implies that Bgg(k) is nonzero only for momenta transverse to the brane. We won’t actually

need this result however, since we can use |i to reduce everything to the case with k£ = 0.
6 Alternatively, we can think of the D-brane itself, or equivalently the boundary state, as carrying

momentum in the transverse directions, as in the previous footnote.
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3.2.2 bec sector
Applying (3.3)) here gives
&2)|B) = =Fe(z ) [B),  b(z)|B)=z"b(z"")|B), (3.24)
or simply
e |B) = —c_n|B),  b,|B)=b_,|B). (3.25)
The boundary state which implements these relations is given byf|

| Bye) = exp [i (c,ng,n — b,nE,n)

n=1

Co +50

0151 ‘Obc> . (326)

Because of the insertion of (bg —1—50) in front of the boundary state, it is actually

simpler to just list the correlator that we will need,

<Obc

c(21)E(2))e(22)(Zs) <b0 +'50) ‘ Bbc> = |21 — 2 (|2l — 1), (3.27)

<Obc

de(21)E(z1)e(z2) (bo +50)

cde(21)E(5)) el z2) (bo +’60) ] Bbc> — 5 (21— ), (3.28)

Bbc> = (21— %) (sinzm—1). (3.29)

<0bc

3.2.83 ¢ sector

In this sector we will evaluate correlators which are products of exponentials of ¢ or 5
Since e?? is a primary operator of dimension —%@(@ + 2), we can use our techniques
above to convert it to an exponential of ¢. Indeed, 1} with R(‘i = 1 will yield

@) | B. ) = (inz)9(@42) Qo) | By (3.30)

In this sector there are degenerate vacua labeled by the the picture P. From (3.9)),
the only non-zero matrix elements of Byy will be those correspond to total picture
charge —2. After converting all of the anti-holomorphic exponentials into holomorphic
ones, we will pick out only the piece with picture (@1, —2— @1) To make use of

we still need the constants BOO(Qvl, -2 - @1) There is an overall constant which we

"Again, as throughout this work we are not fixing the overall normalization of the amplitudes,

including the normalization of the boundary state.
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cannot determine, but by imposing consistency between pictures (the freedom to have

rewritten @191 ag a holomorphic insertion, one can show that
Boo(Q1, —2 — Qy) ~ (in) @~ @met2) (3.31)

where a is a constant that should be an integer in the NS sector or half-integer in the
R sector. We have a choice of what value of a to take in each sector; we will choose
a=—1and a = —1/2 in the NS and R sector respectively.

Taking all of this into account, we can then derive the correlator of an arbitrary

number of exponentials of ¢ and 5,

(@10

L Q20(22) .. ,Q2d(%2) . ... Qué(n) .. Qnd(En) :‘ B¢;,7> _

(in)(él—a)(él—a+2)+22:2 Qr(Qr+2) e”(@l*a)(2+Q1+él) <H Z;Qkél Z}:@kQ1 (’Zk‘2 B 1)Qk@k>
k=2

x ( [T Gi—z) 9% (-2 (27— 1) 9% (1 - ZiZj)Qin> , (3.32)

1<i<j<n

3.2.4 n& sector

This sector will be dealt with on a case by case basis, and we will make use of (3.3))
with R =1, so that

N(2) 1By =—z"n(z"")|B),  &(2)|B)=¢£(")B). (3.33)

3.2.5 ) sector

For NS sector amplitudes, there are not degenerate vacua, so up to an undetermined

normalization we will simply use our rule to convert {/}V“ into Y using ‘)

H(2) [Bin) yg = —inz (DY) (Z7) | Bin) g (3.34)

and then use the OPE (2.1, so for example

(0 [ (21)0" (22)| Buin) = —nD™ (3.35)
N\ Y ! 2)| Puill NS 2133 — 1 '
In the R sector, there are zero modes ¢, and by (3.5)) these should obey

06 |Bsm) g = —in (DV)g | B . (3.36)
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These zero modes lead to degenerate vacua labeled by spinor indices A, B, etc (see our

spinor and gamma matrix conventions in appendix . Let us write

M) as = (Boo) 455 - (3.37)

Since the zero modes of ¢ and zz act on R ground states as

1

~ 1
vy |A, B) = 7 (r*.1C,B), Y |A B) = 7 (Tu)c @?,1C, D), (3.38)
we can rewrite as

(T1)" M(n)T* = —inD*, (T")" M(n). (3.39)

It is not difficult to check that this relation is solved by

M(n) = (in)" €T - TP (P, —inP-), (3.40)
with .
Py =5 (1£Tn), (3.41)

Cap is an antisymmetric charge-conjugation matrix, and we have assumed that the
Dp-brane is extended in the directions 0 through p. The boundary conditions only fix
M(n) up to an overall, possibly n-dependent constant. We have chosen the prefactor
(in)P for later convenience.

This, along with the holomorphic expectation values for products of 1 between R

ground states, leads to the result

N

R (A B (1) 0 (2) | Byim) p = (=) 275 (210 20)

% {[Fﬂl-"unclM(n)Cl] AB + 21t 2277#1,“2 [ AB

P i M(n)C

21 — 22

AB

- 21+ 2223+ 24 2 s s [FHS“'“”CAM(TI)CA]
21 — k2R3 — 24

+} (3.42)

where --- represent all other possible contractions, with appropriate signs from anti-
commuting the fermions or the gamma matrices. Then any desired correlator can be

obtained by first using (3.34]) and then using (3.42]).

As examples we have

A4 B)y [0 ()| Bys) = % reetMpe]? (3.43)
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and

v 1
" <A, B @D'U‘(Z)@Z)V@Z)p(,?) Bw; 77>R = _22\/§DV0DF)T { [FHUTC_IMO])C_I} AB
+ ;;’z i_ 1 (nlw [FTC_lM(n)C_l}AB e [Fgc_l./\/l(n)c_l} AB)} . (344)

3.3 Evaluating the Traces

From the 1 correlators in the R-R sector above, we will find our amplitudes include

traces of the form

Tt — fup [Pt M) = Tr [fcflM(n)TC*1 (rb=)" (rmﬂ
(3.45)
Using the explicit form of M (n) from (3.40)), the relation (A.3)), and writing f = CF,

this becomes
T — ()P (_1)%(p2fp+n2+n) Tr [ (P — inPy) TOPTHhn] (3.46)

If we now bring in the fact that the GSO projection on R-R field strengths implies
FT1 = (=1)P*1F, we find (for instance by separately evaluating for p even and p odd)

i (_1)%(n2+n) Ty [0 PL#e#n] (3.47)

Finally, if we use a to denote indices along the brane and i to denote transverse indices,
then the trace picks out only the field strength of degree p + 1 + ¢ — k and we have
explicitly

. 1 32 a
T ™ty P07 (3.48)

3.4 GSO Projection

Finally, we should apply the GSO projection to our boundary states before inserting

them into amplitudes. In the NS sector, this means taking

B)ys = I ED 5 (3.49)

where F and F are the left-moving and right-moving world-sheet fermion numbers,
and in the R sector we take

14+ (=) 14 (—1)r*! (—1)ﬁ

BY. =
’>R 2 9

1B +) (3.50)
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In appendix [B| we show that in our conventions the fermion numbers act on the

boundary states as

(D" |Bin)ys == 1Bi=nys, (07 |Bim)ys =~ Bi-nlys,  (351)
and

(D) 1Bin)p = 1Bi=nbp, (D) [Bim)p = (—1"" [Bi—m)p.  (352)
These then imply that the correct GSO-projected boundary states are

[B)vs = 5 (IBi H)ng = 1B =)ns) (3.53)

N | —

and

|1B)r==(|B;+)p +1B;—)p) (3.54)

N —

3.5 Amplitudes

Finally, inside amplitudes we must also insert a ghost factor (bg +g0) and a propagator
which pushes the boundary out to the first insertion point, so the total state is given
by ,

<b0 +50> / dW Lo gy=To |B). (3.55)

|w|>max{1/|z;|} |U)|2
Here z; are the insertion points of the various operators. Some of these may be inte-
grated over (for three- or higher-point functions), in which case the w integration as

defined should be taken as the inner-most integral.

4 BRST-Exact States

We will now discuss certain features of amplitudes on the disc. We will show that
BRST-exact operators do not necessarily decouple from such amplitudes. However, we
will then demonstrate that if all the operators in the amplitude correspond to states
with generic momenta, so that we can use analytic continuation of momenta to do the
computation, then the BRST-exact states do decouple and the amplitude should be
gauge invariant. With this result we can also show that, under the same assumptions,
the amplitude does not depend on how we distribute picture charge. We will show

these results for the two-point functions on the disc, since those are the ones relevant
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in the current paper, but most of these arguments will carry forward to higher-point
functions [10].

To construct the two-point function, we insert a pair of BRST-closed operators at
arbitrary fixed positions on the sphere, and also insert the appropriate boundary state
along with a ghost factor (bg +go) and a propagator which extends the boundary state
out to the first operator insertion. We can use the conformal group of the sphere to fix
the position of the boundary state insertion at z = 0 on the complex plane, and then

the amplitude is written

W (o V@ (re 5 = dPw oo
Vi (21, 21) V' (22, Z2) (bo + bo) Z pto 0

2
|w|>max(1/]z1],1/|22]) ’w’

B > : (4.1)
We can then pull the integration to the left and use the relation
wLowzo(’)(z, E)w_LOw_ZO = whwz(’)(zw, Zw), (4.2)

for an operator O of conformal weight (h,%), to express the amplitude as

/| Pw (VO (g, 02)V D (w2, 2) (bo + o) ‘ B).  (43)

2
|>max(1/|21],1/|22]) |w|

Let’s consider the situation in which |z;| > |2| and V(! is BRST-exact,

V(l)(z, Z)={Q,A\(z,2)}, (4.4)

where A(z, Z) is a local operator of weight (0,0) and total ghost number one. We can

then compute

[ (i wm) Vs ) (b+ ) 15)

[>1/|22] |w’2

= /| d2_w <A(wz1,w,§1)V(2)(w22, WZs) (Lo + Z0) |B>

w|>1/|z2| ‘U)P
2
N ‘/ o ( 2 s > (Mwzy, 020)V® (w25, 02)|B), (4.5)
|

= (w4 w—
w|>1/]z2| |U}‘2 ow ow

where we used the fact that, for an operator of weight (0,0),

[LO + Lo, O(wz, wz)} = (w20 + wz0) O(wz,wz) = <w— + w—) O(wz, wz).
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We also used the fact that

{Q, bo +'50} — Lo + Lo, (4.7)

and that the boundary state is annihilated by the total BRST charge Q). If we now

switch to polar coordinates, w = re/z,, then we have

27 e )
21'/ d@/ drg <A<Tei021/22, re "z [z)VP (re?, Te_i9)|B>
0 1 or

r=00

2m . ) ]
= 22’/ do <A(rei‘921/zg, re” 21 [20) VP (re', re’za)|B> (4.8)
0

r=1
If |21] > |22| but V?) is the BRST-exact operator, we get a similar expression,

r=00

2m
22’/ db <V(1)(Tewzl/22,re_wzl/z'g)A(rew,Te_i0)|B> (4.9)
0

r=1

In order to argue that BRST-exact states decouple from the disc amplitude then,
we need to argue that the boundary contributions above vanish, and this will require
an additional assumption on the operators appearing in the amplitude. In particular,
we will assume that V) and V® carry momentum p; and p, respectively, i.e. V(Y is
constructed from e?1X(#1:21) multiplied by fields which do not depend on the constant
mode of X*(z, 2), and similarly V2 is constructed with e72X . In this familiar situation,
the amplitude produces a delta function enforcing momentum conservation along the
brane,

6"*'(p1 + Dp1 + p2 + Dpa), (4.10)

and thus on-shell the only invariants which can be constructed from these momenta

are
s = p1Dpy, t = pip2. (4.11)

The remaining combinations can be expressed in terms of s and ¢ as
p1Dps = —s — 1, p2Dps = s. (4.12)

In addition to the delta function, the OPEs of the exponential factors amongst

themselves produces a universal factor

K= (|Zl|2 — 1)5 (‘22|2 — 1)8 |Zl — 22‘215 |21§2 — 1|_2S_2t. (413)
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All the remaining OPEs in the amplitude will combine to multiply I by a rational
function of the insertion positions, i.e. the ratio of two polynomialsﬂ in 21, 20, Z1, and
2.

If we plug these results into the amplitude , and use variables of integration
where the range of the radial integral is from one to infinity, then near r = 1 we
have approximately (for some integer n determined by the other contractions in the

amplitude)
~ /dr (r—1)"™, (4.14)
1

which only converges for Re(s) > —n — 1. At the other end of the range we have (for

some integer m)

~ / dr =2+, (4.15)

which only converges for Re(t) > (m+1)/2. Outside of this range of s and ¢ the integral
diverges and we cannot make sense of our usual expression. Fortunately, we expect
the physical amplitude to be an analytic function of the momenta p; and ps. Thus we
can first complexify the momenta and then continue to the region where the integral
converges; once we find the answer we're looking for, we can extrapolate back to the
region where the integral failed to converge. Note that with complex momenta we can
perform the continuation while remaining on shell. For instance, with a Lorentzian
brane we have s = p? — 2pip!, where i indexes the transverse directions. We can stay
on-shell, p? = 0, and send s to be something with sufficiently positive real part, as long
as we let p! have sufficiently large imaginary parts.

The same results will hold for the boundary terms of ; they will be given by
either

O S R i M (4.16)

Since we expect the result to be analytic in s and t, and since the result is clearly
zero if s and t have sufficiently large real parts, it follows that the result must be zero
identically.

Let us comment briefly on a couple of situations where this line of reasoning is
not available. If either state is prevented from carrying generic momentum (it could
happen that the spectrum of physical states gets a enhanced at zero-momentum for

example) then we can’t use the argument as presented. There are also situations where

8Individual OPEs in R sectors can produce factors with half-integral exponents, but if all the vertex

operators satisfy the GSO projection, then the final OPE result will involve only integer exponents.
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the vertex operators can carry generic momenta, and the amplitude is still expected
to be an analytic function of those momenta, but where some momentum invariant
vanishes for kinematic reasons. For example, in the case of a D9-brane, momentum
conservation and the on-shell condition forces s = ¢ = 0. And in the case of a D-
instanton we can have arbitrary ¢ (after continuation), but s = —p? = 0. In these
situations it may be that the integral diverges for all on-shell momenta, regardless of
how we try to analytically continue. We shall not discuss these cases further in the
present work.

To finish off this section, we shall show that, as a corollary to the decoupling of
generic BRST-exact states, the two-point function is independent of the distribution
of picture charge. In the RNS formalism, picture changing is implemented by X, (or

)?0), which is the zero mode of the local operator

X() = 3 X = {Q,26(2)} (4.17)

nez

= (208{ + ePPrOX, — %abne% — bone?? — bn8¢62¢) () :.

Note that X (z) is not BRST-exact because the field (z) is not included in our algebra
of free fields, but 0X (2) = {Q,20¢(z)} is BRST-exact. Given a BRST-closed physical

state Vp(z, Z) of left-moving picture P, we define

dw

e 2MIW

Vpi(z,2) = XoVp(2,2) = 7{

lw|=|2

X(w)Vp(z,2), (4.18)

for some small ¢ > 0. It can be verified that Vp,; has picture P + 1, has the correct
weight and ghost number to be a physical state, is BRST-closed, and is BRST-exact
if and only iiﬂ Vp is BRST-exact. Thus to redistribute the left-moving picture charge
in an amplitude, whether on the sphere or on the disc, we have simply to repeatedly

commute copies of Xy through operators to move it to the position we want.

9This statement should only hold at generic momenta [26], which is of course the case we are

interested in here. We would like to thank Nathan Berkovits for useful correspondence on this topic.
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Each time we commute X, through one of our operators, we pick up a contribution

_ dw
[X()) Vp(z7 Z)] - %wz<5 27TZ’LU

(e foon)

X(w)V(2)

wo

dw v B
= {Q,Q?{L}ZKE = /w0 du@{(u)vp(z,z)}

_ {Q,Q fw_m dw g(w)vp(z,z)}. (4.19)

2mw

Similar expressions can be derived for the lowering operator, and the right-moving
operators.

Since this shows that the additional contribution from redistributing the picture
charge is BRST-exact, and since we have already shown that BRST-exact states de-
couple for generic momenta, we see that we can freely move the picture charge around
as long as we keep the total left- and right-picture charges fixed.

Finally, we would like to argue that on the disc we can also move picture charge
from the left to the right. But in fact this is also straight-forward, and requires only
the facts that

[Xo,bo+50] — [)?O,bo +EO] —0, and Xo|B)=X,|B). (4.20)

With these we see that we can always move the operator X, to the right, generating
BRST-exact terms along the way, convert it into )’50 when it hits the boundary state,
and then move it to the left to the desired position, again possibly generating BRST-
exact states as it commutes back through the operators. Since under our assumptions
all those BRST-exact states decouple, we can freely redistribute picture charge however

we like, as long as we keep the total charge constant at —2.

5 Two-point Functions on the Disc

In this section we will compute the disc amplitudes corresponding to two closed strings
interacting with the D-brane using the formalism that we have developed in the previ-
ous sections, paying close attention to the steps needed to compare different pictures
and to reconstruct the effective action on the brane. Our results agree with earlier
computations in the literature [33] 34 35| 36].
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5.1 Two NS-NS fields

To begin, let us start with two NS-NS fields with polarization tensors €;,, and 3,
and momenta p; and ps, which we take to be physical on-shell states. All the possible

combinations of momenta can be expressed in terms of two invariants,
s=piDpy  and ¢t =pps. (5.1)

Putting the first operator in the (—1, —1)-picture and the second one in the (0, 0)-

picture, the amplitude is

T(1+ s)D(1 +1)
F'1+s+1t)

<V,1’,1‘/E)’(]> = N

as  as S t
— 4+ — - -]. 5.2
<a1+8+t+a4t+a5s> (5.2)

Here we have use the result that

2 Tl 1\"  T(-1-$T(+b)
/|w|2>1dw|w| (1_W) I (5-3)

which can be easily obtained using polar coordinates. The overall normalization is
N =i (2m)P 6 (pf + p5), (5.4)
and the explicit expressions for the coefficients a; are

a; = —Tr(e,D)Tr(eaD) + Tr(e1Dey D) — Tr(e163)

1 1
o9 = Tl"(élD)pl (D62D — 52)])1 + Dp1 [€1D€2 — §€1T62 — 55185] Dp2 + (1 <~ 2)

as = | — (p1e2p1)Tr(e1D) + pec1Deapr + (1 < 2)] + Dp; [5251T +eger — (1 2)] Dp,

ay = —Tr(e1el)
as = —TI'(€1D)TI'(€2D).
(5.5)

This is the result for the two point function of two NS-NS fields with arbitrary polar-
izations. This result is obviously symmetric under the interchange of the two NS-NS
operators. To facilitate the comparison with supergravity we will quote next how ([5.2))

simplifies for different polarizations which can be anti-symmetric eg) = B, symmet-

ric traceless a,gf,) = hy,, or pure trace £(®) = \%(nw, — lupy — Lup,), with [,pt = 1.
The coefficients (5.5)) vanish if one of the polarizations is symmetric and the other

anti-symmetric. As a result the only non-vanishing amplitudes are (®®), (Dh), (hh)
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and (BB). Explicitly

s 1 t
p_3 a 4 a, i 1 a a, i i J 2t a
(®h) =N %(ﬁ [% ot hapipi + 3 (havpD} + 2haipip} + hijpipl) + ~h a:| ,

‘ S ‘ ‘ ‘
(hh) =N {4h‘1‘ah35 + 4h{" hagi + 3 (hTathiplfpﬁ - hlaih’ébp‘fpé - thlahzbipcfplf)

+ ; (hClLthab + 2R hogi + hijh%j) + % [thfa (h2bcplipf + 2h2bz‘pl{p§ + hzijpipji)
+2 (hmbpcfplf - 2h1az‘p61lpé + hujp;p‘;) he — 4h(11bh2acplip(1: - 4h‘fih2ajp{p§
— 8l hawp i} — 4} hoispip] + 4hijh2a¢p(fp%] + 4§h(1lahgb}7
(BB) =N [2B{" Bouy + 2BY By — = By B+ (BY* Boas + 251 Bos + B By
- % (QbeBzacplfpf + B, Baaip} P} — BY; Baay Dl
+Biai Bay'pip} + BLB%kplfp%) }
(5.6)

In section , we will describe in detail the supergravity interpretation of the (®®)
correlator, and the comparison for the others appears in appendix [C.I] We will pay
particular attention to the origin of the poles in the s and ¢ parameters.

Since the fields above must be physical on-shell states, we need p? = p3 = 0 and
E1 D] = €1vuP] = €2,D5 = €2,up5 = 0, and we also have momentum conservation,
(p1 + p2)® = 0. To eliminate the ambiguities due to these conditions we have made

systematically the following replacements,

a a
P> = —Di
V. a
€1uiP1 = —E€1paPis
7 a
€1iulP1 = —E€1auPi (57>
7 a
82,uip2 = €2uap17
7 a
€2iuPy = E2auPi-

5.2 One R-R and one NS-NS field

We will consider the vertex operators with pictures (-1/2,-1/2) and (-1,0), first. Then
we will consider the pictures (-1/2,-1/2) and (0,-1) and verify explicitly that the results
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are independent of the choice of picture. In section [6] we will show how to obtain the
result from the string amplitude from interactions in space-time and on the D-brane.

The amplitude is

im T(t+1)I'(s+1)

VotV = A Ny s 4 1) { N % (D), (Dp2), T+
_g (€Dp2)# + % <€p1)# — i—; [tr (eD) (ng)u — <p2D€D>uH Tu} (5.8)

The traces T are given in section [3.3] and we have defined the useful combination

S
=t+ —. 5.
r + 5 (5.9)

Now let us try to reduce this to the on-shell results. We will list the contributions

according to the degree of the RR field involved:

e Consider first FP=2. The only possible term would come from the T#* term

above and would be proportional to
€a1...ap+1€ala2p2 as Féf:§l+1’ (510)

but this is zero since pa,, = —Di44, and antisymmetrizing with F' then gives
dF N e =0, since F' is closed.

e Next we have F®. In order to make full use of the on-shell and physical state
conditions, we will split all indices into along the brane and transverse to the

brane, and we need to agree to always make certain substitutions:

P2a — —Plas
Ew;pé — 5,uap?a
cily = Eaup (5.11)
Cul...unipi — _Cu1~~~unap(11'

Also, whenever we have indices of C' which are along the brane and which are not
contracted by the volume form of the brane (like the index a on the right hand
side of the bottom line of (5.11))), then we will rewrite C' using substitutions like

601...Cp+1 061.”6177151[)“;071 (5(lp5ap+l] (512)

ai-api1 _
g Cal...apﬂb = epOcprn -

(p—2)! (p—1)!
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The possible contractions of momenta in this scheme are also quite constrained,

PiPia = —Pip1i = —PiP2a = P3Paa = —Phpai = Pipai =1 (5.13)

S
2 Y
Employing all these substitutions

1 r ala 8T a 2 i az---a
[ﬁ(;e - “pipi? — e pip 2)0 4

p—1)! t
(_1)p+1 1 ga1a ag--a <514>
Mt 1 2p1 pQC T Ea “Ap41*

In this case € is anti-symmetric and the result vanishes if € is symmetric; only
the B-field interacts with C®~1)| as expected.

e Next we turn to F®+2)_ Following the same procedure we find a result propor-

tional to
(—1)P+trr? ~ Ar 1 S
(SR 00+ it b
1 j 4r i,.Q LY 1a i, 1 1ia‘ az--a
o [—tm Py (e —5) + gl PPy — $E T 3E 'jpips + € jpllpi]c T
(_1)17 1 aii,.a2,..J ,vaz--a
(p _ 1)' Zs ! p12p%0 ’ p+1ij}6a1"'ap+l’

(5.15)

This time only symmetric polarizations (graviton and dilaton) can contribute.

e The remaining couplings involve F®*% and are necessarily of the form

1 1
(p—l—l)'t

ai-Gp41 F

a: ap+11]k€ pz (516)

We would like to compare this to a computation done in picture (-1/2,-1/2) and
(0,-1). In this picture the amplitude is

o It 4+ 1) 1) (1
LRNESIN SR

(Vo1 Vo q) = r

272 S 2v2 T(t+s+1)

% (p2DeD),, — % (meD), + % [tr (eD) 2y — (€DP2)MH T“} (5.17)

There are a couple of ways we can compare this amplitude to (5.8]). We could separate
all of the indices into tangent or normal to the brane world-volume, and then make use
of the rules ([5.11]) to see that we do indeed get identical results for on-shell amplitudes.
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There is also a more direct comparison which is worth sketching out, however. There
is a certain Z, symmetry enjoyed by the string world-sheet theory with boundary
conditions given by our Dp-brane. This is the symmetry which acts by world-sheet
parity €2, reflection og_, in the space-time directions normal to the brane, and for
certain values of p carries an additional sign for left-moving space-time fermion number,

(—1)z. Explicitly the generator is given by

Qog_p (=)™, forp=—1,2,3,6,7
g:{ 09 P( ) ) orp ) “y Iy Uy by (518)

Qog_p, forp=0,1,4,5,8,9.

If we were to quotient the theory by this symmetry, we would be effectively creating
an Op-plane on top of the Dp-brane. Here we don’t wish to perform the quotient, but

wish to use the fact that g acts as

(n), = (Dpn)y,

ew — DD, ey, =(De'D) (5.19)
F e = (CDT D, Dy RS
One can then verify using that ¢g sends
Tty (1) T, (5.20)

It is straightforward to then check that under (5.19) and (5.20]) the result (5.17) is

mapped into the result (5.8)).
It is of course expected that the two pictures agree, in light of the arguments in

section [] but it is interesting to see the mechanism. Let us also consider the same
computation in the (—%, —%)—(0, 0) picture, where we take the y = 0 gauge for
the R-R vertex operator. Recall that this version of the vertex operator only lived
in the absolute cohomology since it was annihilated by g@ but not by by. In order to
get a nonzero contribution we must have total ¢ and 5 charge of —2, which means we
must take from the NS-NS (0,0) picture operator either the term with e® or the term
with €?. In each case we can evaluate the ghost and superghost correlators, reducing

the amplitude to correlators in the matter sectors alone. In the latter case, the entire
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contribution vanishes in the limit z; — oo, while in the former case we are left with

B;??>
R

X 5 g <5XV — im{/j”{ﬂ”) eP>X (2, 52)‘ By 77>
R
(5.21)

<O ‘2 (CF) . c@ce_g¢8§SAEe_%$§Beip1X(21, Z)

1 /- N
X — Eeuye‘z’mb“c <8X” - zp,nﬁ%b”) e”’zX(zQ, Z)

= (CF) \pemn 2 (A B

But this result precisely matches what we get in the (—3, —3)-(—1,0) picture com-

putation,
<O ‘ (CF)AB C€7%¢SAE€7%¢T§B€ZIP1X<2121>
xce PYrE (5X” — ippgzplz”> eP2X (2, 7))

= (CH) , emei® (4B

B;>
77R

e sy (DX — ipp ) € (2, 2)

B ;>
Xy T R
(5.22)

So the two pictures will certainly agree. Note that this argument easily extends to
include any number of additional integrated operators in the (0,0) picture, since these

are independent of the ghosts and superghosts.

6 Comparison with Space-Time Lagrangian

6.1 Two NS-NS fields

We will now show how the correlators of (5.6 can be obtained by evaluating field
theory diagrams (parts of this computation have appeared before, in [33, 34 35], [36]).
We will work to leading order in momenta, meaning that we will take only the leading
constant term in the expansion

L1+ s)(1+1¢) 72

NTETET) zl—gst—i-C(S)st(s—i—t)—k..._ (6.1)

Let’s begin with (®®). We will show that in supergravity three diagrams contribute
to this amplitude, as shown in Figure[6.1] These three diagrams correspond to a contact
term on the brane, an interaction in the bulk which produces a graviton, which is then

absorbed by the brane, or a process where each dilaton hits the brane and they exchange
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Wa< X

Figure 1: Dilaton two point function.

a scalar field on the brane. These three diagrams are then related to the amplitude by

56 5 85 0 5
(D182) ~ D12, { (5@1 5<1>25p+1> o (5@1 505 5 10) G (5hm Sp“)
5 6 A
(0 0 i (09
“(5@15)(@'5’?“)(; ](5%5)(]'5’?“)}‘ (6.2)

Here the objects G™ and G&) are propagators for the graviton and the scalar field on

the brane respectively, and the three terms above represent the three diagrams of the
figure.
We will be working with fields whose kinetic terms are canonically normalized, so

it is easy to list the propagators of all the fields we need in the bulk

—1

G® = —
P2
h —1 1
wa)ﬁpﬂ = 2_1)2 (77#977”0 + Mo Tvp — Znuunw) 5
—1
G;(Li)pg = 2_]72 (nupnua - 77;10”1/;)) ) (63)
(6.4)
and on the brane
GgA) = __inab7
b q2.
GWXi — _Z(;ZJ (6.5)
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where the momentum ¢, lies only along the brane. Here we have chosen specific gauges
for the propagators G, GB) and G, but the physical amplitude should not depend

on these choices. We will mention some useful relations for the graviton propagator,

() ed _ P T () . be _ " aw_ P+1
Cobeall” =1 16¢ 1 Gaincl” =0, Gijapll” =1 16t

5. (6.6)

Now we need to convert the NS-NS sector of the bulk action and the DBI action on
the brane into forms where all fluctuating fields are canonically normalized. In string

frame, the bulk action is given by

1 1
S0 = ﬁ/dlox\/ —G, e 2 (Rs + 40"P;0, P, — EHéprswp) ) (6.7)

where we use a subscript s for string frame. To use the propagators above, we need to

change variables as follows,
Gop = e*/%G,,, D, = 2k, B, = 2kB, (6.8)
which converts the action to
1 1 1 _ 5. ,
SIO = /dlol‘\/ —G (@R — ia“cbﬁufb - 66 V2 (I)Hu pHW,p> . (69)
If additionally we write

G}J,V — T]uy + 2/{}2/“”, (610)

then ®, h,,, B, are all canonically normalized and have the propagators (6.3)).

The DBI action in string frame is

Sﬁf” = —, / A" e [~ det (g, + B, + 21’ )]/ (6.11)

=K ——=kK 1 —— =K 12
= —up/dp+1a:eg¢g ® [—det (9—1—2/@6 vy : B8 e V3 LPF)} :
VHp

Here we have switched to a canonically normalized gauge field. We will also use X! =
X'/\/Bp for the same reason. We work in a gauge in which X*(z) = 2% (where X*
are the scalars describing the embedding of the brane into space-time, and z* are the
coordinates on the world-volume), so only X*(z) are propagating fields. The bulk fields

have been pulled back to the brane, so for example we use (up to rescaling the X*)

®=d(X)=d(x)+ X'0P(x) + %Xin@-@ij)(:c) T (6.12)
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and

Gab = Gab(X) + Gal(X>asz($) + GbZ(X)aaXZ(f) + G,](X)aaXZ(x)(?ij(x)

= Nab + aaXiain + 2K (hab + Xiaihab + haiain + hbiaaXi
5 X X905y + X20;haiOh X' + XI0hy,0, X" + hig0, X X7 + - ) . (6.13)

Expanding S,41 to the order we need, we find
S = /dp+1x Loexigx, — Lpeg, - Liph P34 pe
p+1 9 a<\q 4 ab D 2\/§ a

—3)? -3 1
_[/Jp1'§2 ((p o ) @2_'_2?2\/5 (Dhaa+§haahbb_habhab+BabBab)

— ik (%a@xi + 'R, X; + 200, X; + 2B“baaAb) + - } . (6.14)

From these actions we can derive the variations we need™|

o 0 _ ,(p—3)
5B, 50, 01 T TH T
6 o6 0 " "y v
3B 50, 0010 = sty — Kk (pips + pips), (6.15)
iy
) ) )
Sha St = T S = g Spe =0,
a ai 1j
o 0 , p—3
EWSP—H = —Z\/Mp"&ﬁpu-

We have assumed that ®; and $, are on-shell states with momenta p; and py respec-
tively, but we of course do not assume that the fields corresponding to internal lines

are on-shell.

10We are ignoring the delta functions enforcing momentum conservation which also come from these
variations, and which would be identical to the delta functions which emerge from the disc amplitudes;
these would be easy to restore, but since we did not carefully keep track of the overall normalization

constant of the disc amplitudes, this restoration would not gain us anything.
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Now we can plug these results into (6.2]) to find

2

p_3 . v v v a
(®1Dy) ~ <I>1<I>2{—up/f2( S ) + i (k" — K (pyPy +p1p‘2’“))Gfﬂab (=)

+1 (—i up/{p

-3 . , p—3
L) Xy (_ rg_- )}
Woka > AR PWoR

o R e e (P R (RIS
(p—3)2t+s/2
+ 8/2> (6.16)

- e 252 (1)

Up to an overall normalization factor which we have not tried to determine carefully,
this is in perfect agreement with (5.6]).

The other three nonvanishing amplitudes can be treated similarly, using (schemat-
ically)

5 6 600 §
~ 000 @ (2
(®h) q)h{(a@ah p“) (5@ h6® )G (5@S”+l)
5 6 a0 (9
Y s P s
5 6 . 5
iy~ h1h2{<5h15h25p+1> (75—5 51 )G (@SM)
o5
<5h (SX P+1) ( h P-‘rl)} (617>
< 532 ”“) (B 0B, 6P 10)G ( ”“)
(5 532 oh 10) (6h ”“)

o)
531 oA p“) (532 5A5p+1> }

We relegate the details to appendix [C.1]

<BB ~ BlBQ {

6.2 One R-R and one NS-NS field

We will need one more propagator, for R-R fields in the bulk,

cn) —Z
G/S,l"-,u)n,lllu-l/n - n'_zjg (77#1111 o n#nl’n + perms) . (6]'8>
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A useful relation is that

O ey €04 = ppe G g = 0. (6.19)

The conventional way of writing the bulk action for the R-R fields in either type
ITA or IIB is inconvenient for our purposes for several reasons - we use duality to
eliminate the higher degree potentials C,,, n > 4, we have to deal with both kinetic
terms and Chern-Simons terms for the remaining fields, and in IIB we have to impose
the self-duality of F® by hand. There is an alternative formulation which suits our

purposes much better and is known as the democratic formulation [37],
1 10 (n) (n—2)|2
Sw=-g3 | d x\/—Gs;MCS +H A CM|T (6.20)

where for an (n + 1)-form we use the notation

1

(6.21)

Mn+1"

Notice that there are no Chern-Simons terms when the action is written this way.
However, in this formulation we have to impose the duality constraints by hand. In
principle, when varying the action with respect to one of the R-R potentials, we should
first rewrite all occurrences of the dual potential in terms of the one we are interested
in, and then take the variation. In practice, this simply means that we get an extra
factor of two from the action above, and we can proceed as if each of our bulk vertices
comes from the variation of a term

Sio D —ﬁ d"0z/=G, |dC™ + Hy n CO)| (6.22)
in the action]

To convert to normalized kinetic terms we need to define

= v2kC™)

M1 pin?

(6.24)

5#1 ‘Hn

11Tt is easy to check using the conventional action that this procedure works for low-degree potentials,

for instance in IIB we have a term

4/{/2 / le

and for either the CAC@h or CACO B bulk vertices, this is the only contribution.

) 4 of °>H , (6.23)
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and the action above becomes

S0 = ——/dl%\/ Ze |0 4 2kH A O (6.25)
Meanwhile, the Wess-Zumino part of the brane action becomes

1
Spr1 = \/—Np / ko
2
= /dp+1$€al'”ap+1 { \/Zup’% ot \/Zupﬂ 1)

(p+ 1)@t (p—1)! al"‘ap—lB“pap+1

2#17% 7 2/’Lp 7
H Ao 0'O) | X YOt 1, X
(p+1)! p!

\/ 2K
e Y. S } (6.26)

HCESRGE

With these preliminaries, we can compute the expected contributions to the am-
plitudes of section [5.2) namely (C@+3)B), (C®~VB), (CP+D®), and (CP+Vh). The
computations are straightforward but long, so we again leave the details to an appendix,
There it can be verified that these field theory computations exactly agreem with
the disc amplitude computations, up to an overall normalization (but, again with the

same normalization for all four of the non-vanishing two-point functions).
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A Gamma matrix conventions

We define flat space gamma matrices (I'*)#; which obey

{1} =20, (A.1)

2This clarifies a confusion regarding the string theory amplitude computation of the [C A B

coupling mentioned in [7], 38].
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and we write [#1#n = Tlmr2 ... Tenl for antisymmetrized products of gamma matri-

ces. We also define .

'y = PO...Q = _1_()!6M1"'M10

[Hako. (A.Q)

09 =1, 50 gg..g = —1).

(note that we use €
The matrix C4p is an antisymmetric charge conjugation matrix which we use for

raising and lowering spinor indices. It satisfies the useful identities

CIWC_I - — (F#)T, CFHC_l - — (FH)T. (A3)

B Computation of (—1)" on the boundary state

The operator (—1)!" commutes with everything outside of the ¢ and ¢ sectors, so we
shall ignore those other sectors (which are also independent of 7). Then we will use the
correlators of section to argue that and hold. We won’t work through
the complete details, but rather sketch how this can be done.

In the NS sector, we use the fact that (—1)f" acts as —1 on the —1-picture vacuum,
and anticommutes with left moving fermions, to establish for example

<—1, -1 ‘(—UF‘ B;77>NS =—1=—(-1-1B;=n)ys. (B.1)

and

<—1,—1

~ —inD""
V()" (22) (_1)F‘ B; 77>Ns B #

E— <—1, -1 )@D“(ZQ@Z”(Z)&T@)‘ B; —77> , (B2)

NS

It is not difficult to show that correlators with arbitrary many , {/;, ¢, and gg insertions

will obey similar expressions and thus that

(=17 [Bin)ys = = |B: =n)ys (B.3)

The right-moving fermion number works exactly the same way, and one finds also

(=17 |Bsn) s = — B —m s - (B.4)
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In the R sector, we will make use of (2.54]) to proceed in a similar fashion,

< ; ;AB (-1)" B;?7> = —ip[LuCM@mC]",

< ;) ; B|(=1)" B57’>R = —[tuC ' Mme 7, (B.5)
< 3 A B[ Bsn>R = in[cT M) T

< 5 A B[ B;U>R 0 s

Using , we have
I'iC'M(n) = —C'"M(—n),  M@)C'T], = (-1’ M(-n)C',  (B.6)

which, comparing with

1 3
<——, 54, B|B; n> = —in[c M(me] Y, (B.7)
22 .
3 1 4 _11AB
5, =5 ABIBin) = [CT' M, (B.8)
22 .
implies that all of (B.5]) are consistent with
(D" 1Bimg = Bi=n)p, (=17 [Bim)y = (=1 |B;—n) . (B.9)

One can show that similar expressions hold for all correlators, which establishes
(B.9).
C Details of field theory computations

C.1 Two NS-NS fields

In this section we will do the detailed field theory computations for the amplitudes
involving two NS-NS fields interacting with a type II Dp-brane.

We start with the interaction between a dilaton ® and a graviton h,, .

56 5506 5
- L YN @ (0
(Ph) ~ Pl { (5@ S S”“) T (5@ Sy 50" 10) ¢ <5<1> S”“)

N VAN
#(Faxsn) O (s ) | (€1
%
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In order to use this formula we need to compute some variations of the bulk and brane
actions (note that we already computed dpdxSp11 in section [6.1]),

hwé%%wspﬂ = ik 2]92\/—3
W(S%%Wé%sm = 2kh"p1.p1.,

SpSen = (€2)
hw%%spﬂ fipk (=R, p2i + 2h%p2a) ,

It is important to emphasize that we assume in these expressions that external states
(though not the propagating internal lines of course) are on-shell, so we drop terms
such as h¥, or h*"py,. Plugging these results into l) we get

p—3 . p—3
L iy (— Kt 2 Eo¥ + php?
{ HpR 92 a T Uy (—rt" + K ( p1p1 +p1p2+p2p1)) o < Hphk 2\/—)
i (iR 2, L‘Sij(—z‘,/—m- h, + 20 /TipkpSha;)
:up 2\/51?11 8/2 :up p2] a :up Do aj
p—3 1 , 2t , 4 o i “
= —Mpﬁzﬁq) {;huup‘fm +—h%a+ Shapipy +20% ¢, (C.3)

in precise agreement with ([5.6]), including the same normalization constant as in the
(®®) amplitude of section [6.1]

Next we turn to the interaction of two gravitons,

56
BB ~ bt s o 4 [ —— 2
< > 1pv o2 p {((Shleéthasp—’—l)
AN B w [0
o <5h1,w 52 Py 10 ) Crawe (MW Sp“)

) ) X)id ) )
+. —_— ( )Z —_—
! (5h1MV 0X' Sp+1) G ’ ((Shgpa 0X1J Sp+1) } ‘ (C4>

The additional variations we will need are

o ) a u
hl “thpgmmSp+l = /Lpliz (_hlah’gb + 2h1bh2ab) y (CB)
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and the cubic graviton interaction from the Einstein-Hilbert term in the bulk,

4] b 0
Oh1 po Ohorx Ohy

AR RY) 4 2B 1y ppr o+ 2RET R o ypa e — AR RY s

hl po—hQ TA SIO =K [_3th/1)0h2po77uy + 2h§gh2pr1 D2 077#1’

— 4Ry TP by — AR RS DY pag + 2187 oo (DYDY + PhDY) + 20 e DY |

where we again emphasize that we assume that the external gravitons h; and hy are
on-shell. Then (hh) becomes

16t
+2(p+ 1) 1Yy, p1 ppas + 4th 1 By oy + 205 0" P11y + 207 D P2 2y
_4h<11Mh2 anl l/p2u + 4h(11’uh2uypl vP2a + 4hl1“/hgupl alP2v + Sh"fth ;,LV:|

op+1
16¢

—2h8 hE p1up1s — 2RV RS (D2 up2y — ARY By prupa s — AR hy DD
—4hY" hg p1ap2y + (2t — 5) D Do |

s (=S By + 208 hy o) + sy Bl =3t (p + 1) B ha

+ Hpk (=3t (9 = p) W{" hay + 2(9 — p) K" hy P D1 p2ss + 4tH o,

- Np“2§ [(75 + g) h§ JhSy + 2hS h5prspri + 2R RS po apai + 4RSTRS 1 bp2a]
= —pipk” {% Eh‘fl’hg uv + By hE 1 1y + RYY RS yp2 yp2y + 2h5%hy D1 D2
—2h"hy ' 1 P2 + AR hy Pp1paa + 2R Ry ijpl jP2a T 20y hg ;pr ap2j]
‘f‘% [2th$ b5, + 4k WS propri + AR Y ypaapai + 8RY'hY ;p1ypaa]
+2h b5, + 2k he e}, (C.6)

once again in precise agreement with ([5.6)).

Finally we turn to the interaction of two B-fields with the brane,

56 55 5 5
BB) ~ B,,,B — j — @ (=g
(BB) ~ Biyw 2”"{(531“”532,,05“1)“(531#,,532,)05@510)(; (5@ p“)
VY R o 5
Tt <(5B1 5B Sy 10) Grrwe (MW Spi1

{56 w( & 6
“(531%5_1%5“1) oo (6szaéAbSp“ ek

We need vertices on the brane

o )

BluVngo-mmSerl = —QMPHQBiLngab, (CS)
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and

B B ESP—H = 21y, ,up’fB(fbp2 bs (C.9)
and bulk interactions
Bl BQ LL1510 == _\/ifﬁltB'L“jBQ + 2\/§/€BWJB ppl D2 (ClO)
224 pU(SBl;w5B2p05q) 1 224 1 21 pLravy
and
) ) 0 po v po - uw
Blpch2T)\ SlO =K [tBl BQpaT] - 231 B2p P17P2sM

0B po 0Barx 0Ny,
—2B" B, papgupg) _ 4tB§“|p|B2V)p + 4B§Mp|B;)0p1 D2,

4B By, py ) — 4B BYp | (C11)
These then lead to an amplitude

p—3

44/t

- 2Np52Bile2ab + /Lp/€2

[\/ithyBg 7 2\/§BiWBQ uppl pp2 1/]

p— 7 v v v
+ pipK° o [(p+ 1) tBY By — 2 (p+ 1) BY B, p1 ppaw + sBY Ba
_4tBil“B2au + 4BimB2an1 Vp2,u - 4Bil)uB2‘uyp1 vP2a — 4B#VB§LMPI aP2 l/:|
p + 1 v v v
+ upf@?l—& [(9—p) tBY By — 2(9 — p) BY B, p1,pp2y — (2t + 5) B By

—AtBY By + ABY By, prupay — 4BV By " p1upas — ABYY B jp1ip2y)
8
- Mp"ﬁ2gBileQan1 eD2b
2 Lrs v ab c ab 7 ai b
= —Hpk Z [§B1 B2W +4B1"By D1 cp2b + 2B By 'p1ip2y + 2B By D1bD2i
+2BY BS ;p1ypaa — 2BY By p1ip2

8
+ngbB2acplcp2b + BileZab + BljBZij} . (012)

Comparing with (5.6)), it is gratifying to note that all the two-point functions agree.
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C.2 Omne NS-NS and one R-R field

Here we give the details for the field theory computations of two-point functions in-

volving one R-R potential and one NS-NS field. The first one is

d J J
cPIBY ~ 0Pty B Sto
< > K1 pp+3~" VP 50;(5f?;2p+3 (5Bl,p 5C(p+1)

01+0pt1

c(p+1) )
x G — oS |- (C.13)
0CT s
Since only one diagram contributes, the only variations we need to compute are the

one-point contact term

) S . = \/ﬁup/f
— S =
scwt) P (p+ 1)

al-a
g apt1

, (C.14)

and the bulk interaction

5 5 5
B o5 S5 st
5CPH) 0By 5C

M1 pp41

10

1 v o 1 (p+3) vpo
=K [mcﬁff-‘rﬁw ?(tBup = 2B, p1op2p) — HC[ZZ...HP  BluplP1 sy ia)P2o | - (C-15)

We can now evaluate the amplitude (O3 B) as

2

PpK® 4 oa 1 ij b k

ﬁ&? e {mogfilﬂ ! (th‘j +2B%p1op2; — 2B,"p1 kp2j)
1 . .

o [Cgff?;i,b” (2Bvip1a,,1p2j + Bijpra,..p2s) + Cé]ffil”kBijpl api1P2 k} }

2
HpR o 1 +3) i k
= —\;Et gttt {—< 1)!an.i)p+1 ’ (TBU' —2B; plkp?j)

1 g
—HCéff?;)p”kBijpl ap+1p2k} . (C.16)

Recall that we have defined r = ¢ + 5. This expression can be rewritten as something

proportional to %Fa(ffizjﬂ iijijk in agreement with (/5.16)).

Next we turn to the (C»~YB) amplitude, which is the only one in this section
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which receives contributions from three different diagrams,

1) )
(o By~ 00 B{( d s)
K1 pp 60}871’“217_1 (SB,,p
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As usual, we need to compute some contact terms,
0 ) o
(r-1) _ p ai--a (p—1)
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as well as a bulk interaction
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Plugging into the amplitude, we find
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This result agrees with the amplitude ((5.14]).
Finally, we have the couplings to C®*1). In each case there is no direct contact term

but there are two contributing diagrams, in the ¢ channel and s channel respectively.

For the dilaton we have

B o 4
1 1 )
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M1 fp4-1

The requisite variations are

L
K1 fp1 5Cu1~~up+1 SXiTP

. I 1 1 1
= U/ 24k P ((p n 1)!Cgf?p+lp” — ﬁcg--aliplapﬂ) , (C.23)
and
(p+1) 0 i J S1o
oty 0 okt
_p—3 1 (p+1) L 1) v
V2 " [(p—l- 1)!tcﬂzl)"-up+1 N ]7!0[”1"'#10 Prugaipev | - (C.24)
These lead to an amplitude
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And for the coupling of C?*1) to a graviton we have

(9o & 0
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The only variation we’re missing is
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Then the amplitude is given by

ara 1 1 v
\/§,Up/12€ o {¥ {(p + 1)!C‘S}:f}1)p+1hu PruP1v
1 v v
+HC{$~—|~—-}11,M (thapﬂu - hap+1 PrvP2pu — hu Pray:P1 ”>
1

= (ptD)
(p— 1) @

2 1 _ 1 .
H b bi +1) i (b b
+§ [(P + 1)!0‘91)”'“)?+1 (rh’y + 21" prop1) — Hogf...ai, (R*yp1ay i p2i + 200 D1 gy 1 b)} }

I 1 2r? 4r L .
G (v CRAS T )

v
. hap,upl ap+1p2 1/:|

1 (T 1 . 2r
+HC’$+2)F (Zhap“i - ;hapﬂjpljpw — = hpra,. P2

st
_ghbipl ap+1p1b - ;hﬂpl ap-‘rlplj) - (p _ 1)' ¥C£€+}1)17_1 ]hap’ipl ap+1p2j} . (028>

By substituting the polarizations for the dilaton or graviton into we can check
that both of the field theory results above also agree with the disc amplitude compu-
tation.

Since all two-point functions agree between the string and field theory computa-
tions (at lowest derivative order), we feel justified in expressing some confidence in the

techniques which we have outlined in this paper.
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