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ABSTRACT: At the leading order, the low-energy effective field equations of string theory
admit solutions in the form of products of Minkowski spacetime with a Ricci-flat Calabi-
Yau space. The equations of motion receive corrections at higher orders in o', which imply
that the Ricci-flat Calabi-Yau space is modified. In an appropriate choice of scheme, the
corrected Calabi-Yau space remains of Kahler structure, but is no longer Ricci-flat. We
discuss the nature of these corrections at order 0/3, and consider the deformations of the
known cohomogeneity-one non-compact Kéahler metrics in six and eight dimensions. We
do this by deriving the first-order equations associated with the modified Killing-spinor
conditions, and we thereby obtain the modified supersymmetric solutions. We also give a
detailed discussion of the boundary terms for the Euler complex in six and eight dimensions,
and apply the results to the cohomogeneity-one examples.
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1. Introduction

Calabi-Yau manifolds have played a central role in string theory, by providing the com-
pactifying spaces that permit four-dimensional effective actions to be extracted from ten-
dimensional strings, via a Kaluza-Klein mechanism [[[]. In this context, the requisite Calabi-
Yau manifolds are six-dimensional, and they must be compact so that the Kaluza-Klein
spectrum will be discrete, with a mass gap. The special holonomy, SU(3), of the Calabi-
Yau spaces is a crucial aspect of their structure, since it implies that there will be N =1

supersymmetry in the four-dimensional spacetime.



More recently, within the framework of the AdS/CFT correspondence, Calabi-Yau
manifolds and other spaces of special holonomy that are instead non-compact have found
a natural role. They can provide gravity duals for superconformal field theories with less
than the maximal supersymmetry on the boundaries of anti-de Sitter spacetimes that arise
in the decoupling limits of D-branes or M-branes.

At leading order, the effective equations of motion in string theory imply that a con-
figuration of the form (Minkowski)y x Kj9_q will give a solution if the “internal” manifold
Kip_g is Ricci-flat. The further requirement of unbroken supersymmetry implies that it
should have special holonomy. Beyond the leading order, there are correction terms in
the effective action that modify the equations of motion that the background must sat-
isfy. In particular, there are corrections, starting at order 0/3, which imply in general that
the internal manifold will no longer be Ricci-flat. This is the case even in situations with
supersymmetry, such as when K is a Kahler manifold.

In this paper we study the effects of the o’ 3 corrections in detail for several examples
of six-dimensional and eight-dimensional Kahler manifolds. The metrics that we consider
are all of cohomogeneity one, which means that the Einstein equation, together with the
higher-order corrections, gives rise to a system of coupled ordinary differential equations
for metric functions. At leading order the metrics are Ricci flat. Our examples in six
dimensions include the resolved and deformed conifolds, and the R? bundle over CP? or
S2 x S2. In eight dimensions we consider R? bundles over S2 x 5% x §2, §2 x CP? or CP?;
R* bundles over S? x S? or CP?; and the Stenzel metric on the R* bundle over S*. (The
o’3 corrections for the six dimensional resolved and deformed conifolds, and the R? bundle
over S? x S% were previously studied in [f].) In each case we derive first-order systems
of equations that describe the corrections to Ricci-flatness implied by the o 3 terms in the
string effective action. We obtain a general implicit solution of the corrected first-order
equations, and then we solve them explicitly in a perturbative approach. We show how
they lead to non-singular modifications of the original Ricci-flat metrics. The perturbative
analysis is valid provided that the string scale V&' is small compared with the scale-size L
of the Calabi-Yau metric. This scale size is characterised by the size of the bolt at short
distance.

Our analysis can easily be extended to include corrections at order higher than o’ 3,
provided that one knows the relevant terms in the string effective action. In fact the nature
of the possible higher-order terms is restricted severely by the fact that they must satisfy
certain universality conditions, and so although not much is known from direct string or
sigma-model computations, it is possible to make natural conjectures for the structure
of such contributions. This was discussed in detail in [J], where viable corrections at all
orders in o were proposed. Using these terms, we analyse the associated corrections to
the various cohomogeneity-one Kahler metrics enumerated above.

The paper begins with a discussion of a/ corrections in string theory in section Pl We
derive the explicit results for corrections to six-dimensional cohomogeneity-one metrics in
section [, and to eight-dimensional metrics in section [} In section f] we derive results for
the contributions to the Euler numbers for the various Calabi-Yau manifolds that come
both from the volume integral of the Euler integrand, and also from the boundary terms



that must be included for non-compact manifolds. In the concluding Discussion section [
we comment on the relations of our work to other a’ correction schemes found in the
literature and to a proposed cosmological application of the R* corrections. In the final
Appendices we summarise results by Chern on the structure of the boundary contributions
to the Euler number.

2. o corrections in string theory

At leading order in string loops and o, the effective actions in string theory coincide with
type IIA, type IIB or type I supergravities. At higher order, these effective actions are
corrected by terms that involve higher derivatives, and higher powers of curvature and
field strengths.

Of particular interest are corrections in the type IIA and type IIB string effective
actions that are uncovered by studying multi-particle graviton and graviton/dilaton scat-
tering. The leading such corrections in graviton scattering, revealed by four-particle am-
plitudes, imply the existence of terms in the effective action at order o’ 3, associated with
quartic invariants built from the Riemann tensor. The structure of these terms was discov-
ered in early papers on superstrings [, and a first analysis of their implications for Calabi-
Yau compactifications in string theory was carried out in [f]. The results at first appeared
to exhibit puzzling discrepancies in relation to beta-function calculations for sigma-model
in Kihler background geometries [f], [J], but a closer study of the quartic-curvature terms
from string theory showed that the two approaches were in agreement [f.

The superinvariant structure of the quartic curvature corrections is closely related to
that of the ultraviolet counterterms generally anticipated at the three loop order in D =
4 supergravity theories or at corresponding lower orders in higher-dimensional theories.
These are known for minimal N = 1, D = 4 supergravity in component form [g] where
the full nonlinear structure can be written using off-shell N = 1 tensor calculus [P] or in
superspace [[(]. For the N = 8 maximally extended theory (for which no off-shell formalism
exists), the structure is known at the quartic order in fields [[], [J). The N = 8 quartic
counterterm is the dimensional reduction of the D = 11 M-theory quartic correction,
which also corresponds to the type ITA string theory one-loop correction [[L3]. The full
supersymmetric nonlinear structure of the D = 11 and D = 10 quartic corrections is very
complicated and remains an unresolved issue, exacerbated by the absence of an off-shell
formalism for the maximally supersymmetric theories. A Noether component-field program
for supersymmetric construction of the quartic invariants was launched in [[4, [5]. Beyond
the leading order, however, one has to begin to iteratively correct the supersymmetry
transformations as well; the current state of play for this incomplete program is reviewed
in [Ig]. A related issue is the debate on the implications of the quartic corrections to the
structure of D-brane backgrounds in refs. [[7, [[§]. The full component-field construction of
the quartic corrections is quite complicated, and we will not be concerned with the general
case in the present paper. Instead, we will concentrate on the structure of the corrections
as applied to Kéhler manifolds without form-field fluxes. This is a more tractable problem,

and we shall see that it sheds some light on the general construction.



One of the outcomes of the analysis of o’ 3 corrections was that a Ricci-flat Kihler
Calabi-Yau metric that solves the internal Einstein equations at leading order ceases to
satisfy the equations when the o’ 3 terms are present. This was shown in beta-function
calculations in [, [[9], and in string-scattering calculations in [f]. The nature of the cor-
rections is relatively mild, in the sense that they imply a distortion of the internal metric
under which, for a suitable choice of variables, it remains kdhlerian, but with the Ricci ten-
sor deformed away from zero in a manner that leaves its cohomology class unchanged. It
seems, therefore, that one can treat the corrections as perturbations that smoothly deform
the metric away from Ricci flatness, provided that one considers a compactification whose
scale size is appreciably larger than the string length scale v/

In this paper, we shall focus principally on some explicit calculations exploring the
effect of the /> correction terms at tree level in string theory. It is useful, therefore, to
begin by summarising the detailed form of these terms.

In a four-point graviton scattering calculation performed at string tree level in the
light-cone gauge, one finds interactions whose covariant description is provided by the
contribution

L=—cd®e Y, (2.1)

in the effective action, where ¢ is a constant,

YVO = 6_4 $41718 $J1T8 Riligjljz A Ri7isj7j8 , (2.2)
and the t-tensor is defined by
tilmis Milig - Miﬂ'g = 24MZ] Mjk ng Mﬁi - 6(sz Mji)Q (23)

for an arbitrary antisymmetric tensor Mj,,.

Further information about the quartic-curvature terms comes from considering dila-
ton/graviton scattering amplitudes, which imply that the total contribution to the effective
action must involve a quartic curvature invariant that vanishes in Ricci-flat Kéhler back-
grounds. This implies that, still in light-cone gauge, the contribution (R.1]) is augmented

to give
L=—ca®e 2y, (2.4)
where 1.
Y = 64 ES NS Rigiggigo -+ Riviggrgs = Yo T Y1+ Y2 (25)
and o o 1. ..
fivis _ givis 56“"'28- (2.6)

In (R.H) we are following the notation of [ff], in writing the contributions associated with
0, 1 and 2 e-tensor factors as Yy, Y1 and Y5 respectively.
The expression Y in (R.H) can be written in terms of a path integral over SO(8) fermion

zero modes, in the form [f]

Y = / a1, g exp(Rijre v, T Y YT yR) . (2.7)



It was shown in [f]] that the variation of Y, specialised after variation to the case of a
Ricci-flat Kéhler background, gives

where here, and in all subsequent formulae, we define
V:=J’V;, (2.9)
where J;; is the Kéhler form, and S3 is given by
S3 = Raped R Ref™ — 2Ryepq R%Y R4 (2.10)

The expression given in (B.5) does not immediately allow itself to be re-expressed in a
ten-dimensionally covariant fashion, since it makes explicit use of the eight-index e-tensor
of the transverse eight-dimensional space in the light-cone gauge. The product of two
€ tensors in Y5 can be replaced by antisymmetrised products of Kronecker deltas, thus
allowing a covariant extension to ten dimensions, but the term Y; linear in € admits no
direct covariant extension. This problem was studied in [B R0], and a ten-dimensionally
covariant lagrangian was obtained. Since it is important for our later purposes, we shall
review the construction of the ten-dimensionally covariant lagrangian here, and clarify some
of the issues involved.

After straightforward combinatoric manipulations, one finds that the term Yp, defined
in (B.9), is a combination of quartic Riemann-tensor invariants given by:

3
Yy = E(XO +2X7 +16X9 — 16X35 + 32X — 8X7). (2.11)
Here, we define the quartic Riemann tensor invariants X, ..., X7, as

_ bed 2
Xo = (Rapea R™)7,

— baasb. bsa1b
Xl = Ra1b1a2b2 R220358 Ra3b3a4b4 RAaPam ’

_ b b b b
X2 = Ra1a2b1 2 Ra2a362 3 Ra3a4b3 4 Ra4alb4 ! )

_ b2 paiaz. b b asaqs b
X3 - Ra1a2b1 2R ! 2b2 BRa3a4b3 4R 3 4b4 17

R baas
azbz {lag a4 s

_ baasb. braab
X5 - Ra1a4a3b3 Rd2 20303 Ralblbgb4 Ra2 a4 47

— aza3bab, b asal b
X6 = Ra1a2b1b2 R 20437278 Ra3a4b4 ! R 4 1b3 4,

_ b1 b b3b.
X7 - Ralagblbg Ra3a4 192 Ra2a3bgb4 Ra4a1 304 . (212)

Xy = Ra1b1b2b4 Ralbsa4b4 Ra2b1

Using the cyclic identity for the Riemann tensor, we have
4X44+4X5 —4Xg — X7 =0. (213)

The term Y5 is proportional to the eight-dimensional Euler integrand FEg, generalised
to arbitrary dimension:
Y, = 3847 Eg, (2.14)



with
105

(4m)*
We find that the exact expression for Y5 is given by

By =

Rayas [a1a2 Raga, ™ Rasae™ " Razas aras] (2.15)
Yo=Y+ ¥ 4V, (2.16)

3
= 1—6(X0 +2X7 4+ 16X — 16X35 — 32X, + 32X5) ,

Y = 6Rab (4RacdeRbf 9 Refog + 2Ra Recng Ra™ — Ro“ Ry py Rae! g) n

S
I

o 6Rapes Rea! RO R 412 Rgen R (R“R = R R 112R% R Ry Ry™
- ;RabcdR“deRe FRY — 24R 4y R*“R" R, — 6R o R* ReqR™

Y2(2) =R <RabcdRcdefRefab _ 2RacbdRcedeeafb _ RabcdRabceRde +
3 3 1
+ gRRabcdRabcd + 6Rapea R“R* + 4R, R R." — §RRabR“b + 1—6R3> . (2.17)

Of course the terms that are of quadratic or higher order in the Ricci tensor or Ricci
scalar are in any case irrelevant here, since even after variation with respect to the metric,
their contributions will still vanish at order o (since we can impose the zero’th-order Ricci-
flat Kahler background equations on these corrections that carry an explicit o’ 3 factor, after
varying to derive the equations of motion). However, terms linear in the Ricci tensor or
Ricci scalar will contribute to the equations of motion at this order, since the variations of
the Ricci terms will themselves give non-vanishing contributions. Thus we just need

)

Y = 6R™ <4Racde Ryl 49 Repeg + 2R0s® Reeng Ra™ — Ry Ryepy Rao! 9) .

YQ(Q) =R (RabcdRCdefRefab - 2Racbd Rcedf Reafb) + <218)

where the ellipses represent terms of quadratic or higher order in the Ricci tensor or scalar,
which can be neglected in the present discussion.

Some comment is appropriate on why it is convenient to retain at least some terms
involving the Ricci tensor and Ricci scalar. Such terms can of course be adjusted by field
redefinitions that cause terms proportional to the leading (a’)? field equations to mix with
the quartic corrections. One could decide to use such field redefinitions to eliminate the
Ricci tensor and Ricci scalar terms retained in (R.18)); one could also proceed further and
decide to extract all the Ricci terms from the curvatures in YQ(O), retaining only Weyl tensors
in the place of the curvatures. Different choices of this sort correspond to different choices
of field renormalisations. Our choice to retain the terms in (PR.1§) will have the virtue of

LOur grouping of terms in Y5 is as follows. Y2(°) denotes the terms involving only uncontracted Riemann
tensors; Y2(2) denotes all terms involving at least one Ricci scalar; and YQ(I) denotes the remainder, namely
terms without Ricci scalars and with at least one Ricci tensor.



allowing us to preserve the Kéhler structure of the internal manifold. We will return to
the matter of field redefinitions in the discussion section, in which we compare our results
to those of [P].

Another related issue is that of renormalisation-scheme dependence of sigma-model
beta functions. As discussed in [2], the coefficients of terms in L that are linear in the Ricci
scalar (these reside in Y,” in our description) are not determined within sigma-model beta
function calculations, since they produce contributions to the equations of motion that are
absorbable by redefinitions of the sigma-model scalar fields. To see this more clearly, recall
that what one calculates directly from the sigma model are the renormalisation group beta
functions, which are taken to give effective field equations for the massless modes when set
to zero. The effect of an actively-viewed general coordinate transformation with parameter
Vi on the metric is dg;; = V(;V}). Moreover, terms in the variation of the effective action
proportional to g;; should correspond to the dilaton beta function BT, ). Thus, since
the variation of /—gRW gives contributions to the gravitational equation of the form
ViV,W — gijVQW plus terms containing R;;, these contributions can be absorbed into
coordinate-transformations of the metric and dilaton. Such terms are scheme-dependent
from the sigma-model point of view, and can be changed by changes of regularisation and
subtraction procedure. Nonetheless, having chosen a specific renormalisation scheme, the
coefficients of terms linear in the Ricci scalar do have significance. By contrast, the terms
linear in the Ricci tensor (residing in Yz(l) in our description) are not subject to these
scheme-dependent ambiguities.

Let us now look at the Y7 term, which does not admit an obvious generalisation to a
fully ten-dimensionally covariant expression whilst maintaining all of the necessary features
that its exhibits in special backgrounds. This issue was explored in detail in [B], where it
was noted that by a topological property of Kéhler manifolds the integral of Y7 could be
replaced by the integral of —2Y2(2). In this paper, we observe that in an eight-dimensional
Ricci-flat Kéhler background, Y7 can in fact be be directly expressed as

Yy = —2Y," . (2.19)

This can be seen by noting that, viewed as 8-forms, we have

3 1 - g
Yi =6tr0* — S (r 0%)?%, Yy = R Q12...Q"s (2.20)

where O, = %Rabmn dx™ A dx". Now in a Kéhler metric, with Kéahler form J;;, we have
Gil.uz‘s = 105:][“@2 e ']i7l'8
after substituting this into the expression for Y3, and using J,eJpq ©°¢ = O, then the

|- After straightforward combinatoric manipulations, we find that

terms in Ya where there is no contraction of the form J,, ©% (i.e. the terms where there is
no contraction of the Riemann tensor to give a Ricci tensor) are given by

—3tre* + %(tr@Q)z. (2.21)

In other words, we have the result that (R.19) holds in an eight-dimensional Ricci-flat
Kéhler background. (The effect of Y7 in correcting special-holonomy backgrounds with
flux in M-theory was considered in [RJ].)



Based on the topological argument mentioned above, it was therefore conjectured
in [ff] that the appropriate ten-dimensionally covariant generalisation of the light-cone
lagrangian (.5) at o3 order should be given by

L=—ca®e(Yy-Ys). (2.22)

Our observation in eq. (R.19) lends further support to this proposal. However, it is really
only by performing a variation of (R.22) explicitly that one can give a complete verification,
since (R.22) was obtained by the potentially hazardous procedure of substituting the Ricci-
flat K&hler background condition into the lagrangian, prior to its variation.

The full lagrangian, up to this order, should take the form

L=+/—ge ?(R+4(d¢)* — ca’® ), (2.23)
where @ is a ten-dimensionally covariant function whose variation @Q;; = 0Q/ 8¢ gives
Qij = V; Vj 5(3) s (2.24)

when specialised to a Ricci-flat Ké&hler background. (We are allowed to employ the leading-
order Ricci-flat Kahler background equations here, after the variation, since there is already
an explicit o 3 factor in the term involving ).) The dilaton and Einstein equations following

from (.23) give
R+ 406 — 4(8¢)% —ca*Q = 0,
Rij +2V,V; 6 —ca® Qs — % <R + 406 — 4(9¢)% — ca’® Q) gi; =0.  (2.25)

Specialising to a Ricci-flat Kahler background and substituting the former into the latter
equation in the o’ 3 terms as discussed above, gives

Taking the trace of this, substituting into the dilaton equation and neglecting the term
(0¢)?, since it would be of order o’ 6 gives

O <2¢ +ea Sg) —0, (2.27)
so we can take [24]
¢ = —%co/?’ Ss. (2.28)
Finally, (B.26) then implies that we have
Rij = ca” (ViV; + V;V;) 55 (2.29)

Since this is the desired result, it therefore remains to establish that indeed we can take ()
to be given by
Q=Y Y, (2.30)

as proposed in [ff] and in agreement with (p.22).



As was noted in [}, and as is evident from (R.11]) and (R.17), the Riemann tensor
structure appearing in the effective action (R.22) is much simpler than that found in each
individual term in the Y’s; the full expression in (R.22) is given by

L=e¢% /=g [R +4(09)% — ca”® (12(Xg — X5) = YV — V)| (2.31)

A convenient way to establish that (P.22) gives the desired form of the equation of
motion (R.29) is first to address a slightly different problem, in which one considers the
beta function for a pure N = 2 supersymmetric sigma model without a dilaton. In this
case without a dilaton in the model, the vanishing of the beta function at the four-loop
level gives rise once again to the condition (P.29). One can ask whether there exists an
action for this beta-function equation, and if so, how it relates to the desired string-theory
action discussed above. Let us write the beta-function lagrangian as

Lo=+g(R—caP). (2.32)
A natural ansatz for P is to take
P=Yy-Y" +a1 ¥y’ +cYy?”, (2.33)

where ¢; and ¢y are constants to be determined. (By contrast, the coefficient of YQ(O) is
determined by the requirement that P should vanish in a Ricci-flat Kéahler background.) As
we have already mentioned, ¢; and co can be adjusted by field redefinitions. Nonetheless, if
one wants the specific Kéhler-preserving structure of the corrected Einstein equation given
in (£.29), then ¢; and ¢z are determined uniquely.

This problem of finding an action that produces the sigma-model beta function as its
equation of motion was studied in [0]. Here, we shall not perform an explicit variation
of (B.32), but rather we shall make use of special cases of cohomogeneity-one metrics
that admit Ricci-flat Kéahler solutions in order to determine the coefficients c¢; and cs
in (2.33) by requiring consistency with (R.29). We can do this by simply substituting the
general cohomogeneity-one metric into (R.32) and then obtaining equations of motion by

varying the metric functions.?

The calculations must be performed for eight-dimensional
Kahler metrics in order to pin down fully the structure of the lagrangian. In practice, the
calculations are of a sufficient degree of complexity that a computer is helpful.

We have carried out this procedure for many of the metric examples discussed in the
later sections of the paper, and we find universal results for the two coeflicients ¢; and co,

namely ¢; = —1, ¢ = —2. Thus we conclude that the lagrangian (R.32), with

P=Yy-Y" - vV —2v,® (2.34)

2This is a valid procedure provided that one substitutes the most general form of metric invariant under
the isometries of the homogeneous level surfaces. Such a shortcut to obtaining a consistent truncation has
also been employed in ref. [@



gives rise to the N = 2 sigma-model beta function.? In particular, note that the variation
of (R.32) gives
1 3
Rz‘j — §Rgij — CO/ Pz‘j = 0, (2.35)

where Pjj = §P/dg", and we have used the fact that P itself vanishes in the Ricci-flat
Kéhler background. Since R;; = ca’® (ViV; 4+ V;V3) Ss, it follows that

Py =V;V; S35+ V;V; 53 =S5 9;5. (2.36)

Having determined the variation of P in (£:34)), we can now go back to the tree-
level string effective lagrangian (P-23) including the dilaton, where @Q is given by (P.30).
Comparing (.30) and (R.34), we see that

Q=P+Y?. (2.37)
The relevant terms in YQ(Q) (i.e. those linear in R) are given by Y2(2) =RS3+---. Using
R = (Rij — VZVJ- + 9ij D) 5gij s (2.38)

it follows that the variation of Y2(2), in a Ricci-flat Kéhler background, gives

5Y,?
59227» =-V;V;S3+0S3 ;. (2.39)
Hence, from (R.34), it follows that
Qij = V;V; 53 (2.40)

Thus we have verified that taking @ to be given by (R.30)) does indeed give the correct
string effective lagrangian.

Finally, we shall make a remark about the structure of the terms proportional to g;;
coming from the variation of the lagrangians we have been considering. These terms are
of significance because they should be absent in the metric beta function for the N = 2
sigma model. The calculation is slightly subtle, since not only do such terms arise from
the obvious source d,/g/ dgi = —%\/ﬁ gij, but also from the variation of metrics in R;; and
R in YQ(I) and Y2(2) respectively. In fact one finds

5,0 1

Kkl

:Ds3gij+"' , (241)

where the ellipses represent the terms not proportional to g;;, and S;; is defined by Yz(l) =
R S;; (see (21§)). Onme can show that in a Ricci-flat background V,;V; S¥ = —20 9;,

(3

and hence this explains the g;; term in 6P/ 8¢ in (2.3§), and the absence of the gij terms
in 6Q/5g" in (BAT).

3In [E], the lagrangian L, = \/g[R—ca’® (Yo —Y;" — Y, " — %Y;z))] is obtained. Evidently, therefore,
the scheme employed in [@} differs from ours, for which the coefficients ¢1 and ¢z in () are uniquely
defined by the fact that in a Kéhler background we have (P.29).
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3. Killing spinors, integrability conditions and field equations

As we discussed in section [}, the equations of motion for the internal Calabi-Yau manifold
K in a (Minkowski)s x K¢ solution in string theory receive non-vanishing corrections at
orders o/> and above. These are of the form

Ray = (VoVi + V(NI;) S, (3.1)
where as usual V; = J,,° Vb,
S = Z "8, (3.2)
n=3

and from this point onwards, we shall choose units where constant ¢ appearing in (.1])
and subsequent formulae in section P is set to unity. Here S, are certain invariants built
from products of n Riemann tensors. Multiplying (B.T]) by Ji7, we can recast it in terms
of differential forms as

0o=4ddS, (3.3)

where the Ricci-form ¢ is defined by

1
Oab = §Rabcd JCd = ch Ra07 (34)

and d f = 0sf e*. Note that we therefore have

d=0+4+08, d=-i(0-29), (3.5)

where 9 and O are the holomorphic and anti-holomorphic exterior derivative operators.
Thus (@) is equivalent to o = 2i 005, showing that the right-hand side can be viewed as
a cohomologically trivial (1,1) deformation of the leading-order Ricci-flat condition.

Equations (B.1)) or (B.3) define a deformation from Ricci-flatness in which the Kéhler
structure is preserved. In fact the solution will also continue to be supersymmetric. It was
shown in [P4] that a Kihler metric satisfying (B.1)) admits Killing spinors that satisfy the
modified equation

i
Van + 5 (0a5)n =0, (3.6)
where Vi = dn + tw,, T% 0. In fact (B.f) can be written as
i
Vn+§(d5)77:0, (3.7)
whose integrability condition (V + 1 (dS))%n =0 is
1 ab i
10a I n+50n=0. (3.8)

Writing this in components, %Rabcd [ed 77—1—% 0ap 1 = 0, and multiplying by I'“, it is manifest
that the integrability condition is satisfied, by virtue of the holomorphicity condition

Lyn=—-ilyn. (3.9)
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We shall make use of these observations about the existence of Killing spinors in the
following subsections, where we study the effect of the right-hand side of (B.1]) in deforming
previously-known complete Ricci-flat Kahler metrics. Specifically, from the existence of the
Killing spinors we shall be able to derive first-order systems of differential equations for the
perturbed metrics, and hence to construct explicit solutions at order o 3 We shall apply
the technique to three types of six-dimensional Ricci-flat Kéhler starting points, namely
the resolved conifold, the deformed conifold, and the R? bundles over S% x S2 or CP?.

When we construct fully explicit perturbative solutions, we shall focus first on the
term S3 in (B.d), corresponding to order o’ 3. This is the cubic curvature invariant, given in
(2.10), that arises in the type ITA and IIB string theories. We shall also consider corrections
at higher order in o/, namely o/t and o/°. Candidate terms at these, and all higher orders,
that satisfy the highly-restrictive universality conditions were conjectured in [f].*

The universality conditions arise from the fact that, in a sigma-model beta-function
calculation, since Kahler or hyper-Kahler target-space background are but specialisations
of generic riemannian backgrounds, it follows that the known special forms of the beta-
functions in Kéhler or hyper-Kéhler backgrounds must be expressible in terms of purely
riemannian quantities. Thus, specifically, the known form of the beta function in a Ricci-
flat Kahler background, Bu ~ (Vo Vy + J,° Jpd V.Vg4) S, must be expressible in purely
riemannian terms, i.e. without the use of the complex structure J,°. Similarly, since the
beta-function is known to vanish in hyper-Kéhler backgrounds, the riemannian expression
must have the property of vanishing under this specialisation.

The universality conditions apply similarly to the o’ corrected Killing spinor conditions,
since these should ultimately have an origin in vanishing gravitino conditions d¢g, = 0.
Indeed, partial results for the corrected gravitino transformation have been derived in
D =11 and D = 10 supergravities via a Noether supersymmetrisation procedure for the
quartic corrections to the action [[[f. Conversely, one can use the universality conditions
as a guide to finding the structures of correction terms. We observe that the universality
properties of S allow the corrected Killing spinor condition (B.6)) to be written without the
use of complex structures.

There are in fact two different such forms, equivalent when evaluated on Ricci-flat
Kihler spaces: one with a I'ypppgrs structure [R4] and one with a Iy, structure [[J]. The
six-I" form is

Vin — %VsRirklRStmnR”qu‘klm”pqn =0, (3.10)

plus terms that vanish for the leading-order Ricci-flat Kéahler solution. The two-I" form is
Vit — 6V Ripua RS RyP, T = 0. (3.11)

The equivalence of the two forms for Ricci-flat Kéahler spaces is established by dualising
Tiiig = —%eil___iﬁjkl“gl“fk, picking I'gn = n and using Jj;; JkiJmnJpq = erijklmnpq and

4Once one considers corrections beyond 0(0/5) the discussion becomes considerably more complicated,
because now one can no longer simply impose the zero’th-order Ricci-flat Kéhler background equations
on the variations of the correction terms in the lagrangian. This is because the curvature of the true
solution itself has O(a’”) deviations from its zero’th-order form, and these deviations therefore make O(a’®)
contributions to the variations of the corrections that carry explicit factors of o' and above.
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(I'ij + I's;)n = 2iJi5, which follows from the Killing spinor holomorphicity condition (B.9).
Using the hat-flipping rules to eliminate the complex structures and dropping Ricci tensor
terms, one obtains the equivalence of the two forms (B.10), (B.11). This equivalence for
Ricci-flat Kéhler spaces illustrates that the full D = 10 or D = 11 expression could be
a mixture of various forms that become equivalent when evaluated on Ricci-flat Kéahler
spaces; this impression is borne out by the partial results in [[L6].

From a geometrical point of view, the two-I" form (B.I1) is noteworthy because it shows
that the o’ corrections can be viewed as requiring a connection with torsion in the Killing
spinor connection, with respect to which one simply has V{*'n = 0. In order to preserve
the Kéhler hat-flipping rule Rz‘jki = —-R
remain hermitean, V§°"J;, = 0.

ik this corrected connection with torsion must

In the next sections, we will use the corrected Killing equation (B.6) to work out

explicitly the changes to a set of non-compact Calabi-Yau manifolds.

4. Explicit non-compact Calabi-Yau examples in D =6

4.1 Corrections to the resolved conifold

To describe the metric on the resolved and deformed conifolds, it is convenient to introduce
the left-invariant 1-forms o; and ¥; for two copies of SU(2). These satisfy

1 1
do; = —§€ijk0'j/\0'k, d¥; = _ieijk Ej/\Ek. (4.1)
We write the metric on the resolved conifold as
dsg = dt* + a® (X7 + X3) + b7 (07 + 03) + ¢ (83 — 03)°, (4.2)

and choose the natural vielbein basis
L =dt, et=a%,, =a%y, =boy, e=boy, S =c(X3—03), (43

where a, b and ¢ are functions of t. The principal orbits are T5! = (5% x §3)/U(1), the
denominator corresponding to the diagonal U(1) with left-invariant 1-form (X3 + o03).

The torsion-free spin connection is easily calculated. It is convenient to present it by
giving the Lorentz-covariant exterior derivative V = d+ iwab I'® that acts on spinors, with
vielbein components V, defined by V = e V,:

Vo = do,
a c a c
Vi=di—o-Tor— 75T, Vo =dy— o Too+ 515,
b c b c
V3 =ds oy Los + 75 Tas s Vy=dy oy o4 = 73 I35
¢ ? —a? b? — c?
Vs =ds — —T T T'sq. 4.4
5 57 5,105 + 1o 12 + T2 3 (4.4)
(There are also additional terms W™ = w§ir® = —1(X3 + o3) which lie outside the

S3 x 83)/U(1) coset. These project out in the coset construction. See [R6] for a further
discussion.)
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After calculating the curvature from the spin connection, one finds that the Ricci tensor

is given by
2 20 ¢
Ry =—————- ,
a b ¢
a a* 2ab aée 1
R = R = —n———— — — — —
1 22 a a® ab ac a? 2a*’
b be 2ab 1 &
Ran — Rug — —2 — 2 _2¢ «av ., *_ <&
BTIUMTTL TR be ab b2 2p17
¢ 2ac 2bc 22
Reyg = ——————+—+—. 4.5
5 c ac be = 2a*  2b% (4.5)
The corrected equations of motion (B.1]) for the system are therefore given by
.G 2 - 2 .
R00:R55:S+ES, R11=R22:;S, R33:R44=?S, (4.6)

where the Ricci tensor is given by (f.5)).

The system of first-order equations that govern the Ricci-flat resolved conifold itself
can easily be derived from (J£.4), by requiring the existence of a covariantly-constant spinor,
satisfying V,n = 0. We can see by inspection that a spinor with constant components, and
satisfying the projection conditions

Losn =T1on=—-Tun=in (4.7)

will be covariantly-constant provided that the first-order equations

C : & 02 02

1= —— b= —— = 14— 4+ — 4.8

T T 2% T3z T (4.8)
hold. We can also see that if 1 is normalised so that fm = 1, then the relation Jg,; =
—in g n gives the Kéhler form,

J=ened +el ne? —eBnet. (4.9)
It is evident from (B.6]) that if we now turn on the right-hand side in (B.I]), the previous
Killing-spinor equations will receive a modification only in the “5” direction, i.e.

Van =0, 0<a<4,

V577—%577:0. (4.10)

We can immediately see, therefore, that the previous first-order equations for the Ricci-flat
case, given in ([.§), will be modified to become
c . c ? c?

—%, —%, —cS. (411)

o

It should be emphasised that these are exact equations, valid for any function S(t). In
other words, for any S the first-order equations (f.11]) imply that that the metric (J.2)) will
satisfy the modified Einstein equations ({.6)). Note that analogous first-order equations
were obtained by a different method, and in a different scheme, in [f].
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To solve the modified first-order equations, it is convenient to introduce a new radial
coordinate p, defined by dt = —c~!dp. The first-order equations (f.11)) become

1 1 1 c c
/ / / !
e b = — = - — - — _cS 4.12
“ T 9 2b’ CTCT 22 T (4.12)
where a prime denotes a derivative with respect to p. The functions a and b can be easily

solved, giving

ad=p+0, bV =p+i3, (4.13)
and solving for ¢ we find
2 2 o5 [P 2 12 28()
= c /0 a(z)b(z)e dx . (4.14)

If S were an externally-specified source term, then this would represent an exact solution
to the modified Einstein equations (@) It should, however, be emphasised that in the
present paper we are taking S to be given by the higher-order corrections to the string
effective action, and so S itself is a function of the curvature, and hence a function of a, b,
c and their derivatives. In this context, therefore, ([.14)) is an integro-differential equation,
which in principle determines c.

We can give an explicit solution by linearising the system. Thus we send S — €5,
write

c=c(l+ef), (4.15)
and now work only to first order in €. (Note that since the a and b equations in (}..12)
do not involve S, their solutions, given in ([.13), remain unchanged by the perturbation.)
Substituting ([.15) into (JE12)), we find that f can be solved explicitly, to give
2P =
T a2

f (4.16)

Here S denotes the curvature invariant appearing in (B-2), evaluated in the unperturbed
Ricci-flat metric (i.e. in terms of a and b and the unperturbed metric function ¢). The
function P is defined by

_ B p 9 9 =
P(p)—/o a(x)*b(x)* S(z)dx . (4.17)

If we consider the specific example of the n = 3 term in (B.2), we may note that,
being the Euler integrand in six dimensions (modulo Ricci tensor terms that vanish in the
background), /g Ss given in (R.10) is expressible (locally) as a total derivative. In the
coordinate gauge we are using here, we therefore have

- 1 dP
== —. 4.18
2T a202 dp (4.18)
An algebraic computer calculation shows that P is given by
Pk 18a? b? (a® + b?) & 4 12(a® + %) & — 3(3a? + b?)(3b% + a?) & (4.19)

a* b ’

where k is an arbitrary constant.
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The Ricci-flat resolved conifold solution [R5] is given by setting ¢; = 0 in ([L13)), and
evaluating ¢ by setting S = 0 in (f14). There is an S? bolt at p = 0, and the metric
approaches the cone over Th! at large p. We have

2 2 2 o p(2p+306)
t=p, B=p4, @=LLT) 4.20
p p 300+ ) (4.20)
where we have replaced £ by £. We obtain a regular solution for f, which remains finite
for 0 < p < oo, by choosing k = —9 in (f.19). This gives

p_ P2 (p +20%)(7p% + 21p 2 + 18¢%)
B 9Ip +£2)° ’
o At (5p% + 18p (2 + 18¢%)

Sy = 3= B . (4.21)

From (4.16) we find

2p (21p* 4 147p3 02 + 3912 (4 + 4T1p (5 4 216¢%)
9(2p + 302)(p+ £2)7 ’

and so in the linearised level the perturbed solution is given by (J15), (f20) and (E29),

where now ¢ = o/* /£5.

f= (4.22)

The function f is non-singular in the entire coordinate range 0 < p < oco. At large p

we have 2
7 7
— 4. 4.2
f=35 -9zt (4.23)
while at small p we have
16p  790p?

It is clear from this that the regularity of the metric on the S? bolt at p = 0 is unaffected
by the perturbation. Of course since we are working only to first-order in perturbations, it
is necessary that the parameter of the perturbation expansion be small compared to unity.
The relevant dimensionless small parameter is o’/¢?, since ¢ sets the scale size of the bolt
where the curvature of the original metric reaches its maximum, at p = 0. In fact one can
see from ({.22) that |f| reaches its maximum at about p ~ 0.23¢2, with | f|max being about
1.2¢75. Thus if o/ /¢? is sufficiently small that the first-order perturbation approximation
is a good one, then the perturbed solution will be non-singular everywhere.

If one looks at the cone over T'h!, corresponding to setting the scale-size ¢ of the
resolved conifold to zero, then ostensibly ([.21)) implies that S3 vanishes, suggesting that
the cone metric itself receives no modification from the corrections at order a'>. However,
this is somewhat misleading since, as can be seen from ([E21)), S5 reaches the value 8/¢°
on the bolt in the resolved conifold, and thus it diverges in the limit £ — 0. Thus the
assumption that o//£? is everywhere small is violated if one takes the £ — 0 cone limit. If
{ is set equal to zero, Ss is still divergent at the apex of the cone, now with a delta-function
behaviour. Thus again it is strictly-speaking invalid to restrict attention to only the a’?
corrections in this case.
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It is worth remarking that the local vanishing of S3 for the six-dimensional cone
metric is an immediate consequence of the fact that Ss is the bulk Euler integrand for
six-dimensional Ricci-flat metrics and hence fooo S3 75 dr must be a finite number. (The
boundary contributions are discussed in appendix B]) A generic cubic invariant formed
from the Riemann tensor will have a ¢/r® power-law behaviour in the six-dimensional cone
metric, but the specific invariant in S3 must have ¢ = 0 since otherwise fooo S 15 dr would
be divergent.

In terms of the comoving coordinate ¢, the functions a, b and ¢ have the following

small-distance and large-distance behaviour:

t—0:
b (Y )
2 72 306 ) 2 ’
t2 13 o®\ ¢
bzf(“@‘(@‘%)e—ﬁ”)’
e L (1_<i_&’3>ﬁ+...>
2 18 36 02 ’
t — 00 :

.o b (1_3_f2+%_ (&HM) @+...>
V6 2t2 8t 80 56 t ’
bzi<1+3_g2+%_<@+w>ﬁ+...>
NG 2t2 84 80 506 ) 6 ’
4 13 6
c:ét<1—%+35—6<3+(z—6>%+--->. (4.25)
4.2 Corrections to the deformed conifold

The deformed conifold is a second resolution of the conifold metric, which has the topology
of an R3 bundle over S3. It can be written in the cohomogeneity-one form

1 1 1
dsg = dt* + ZGQ [(01 = %1)% + (02 + 22)° + ZbQ [(02 = 32)* + (01 + 1) + ZCQ (33 —03)°,

(4.26)
for which we choose the vielbein basis
1 1
e =dt, e'= 5(1(01 -3, €= —§a(02 + ),
1 1 1
e3 = §b(02 — %), et= 5()(01 +3), €= 50(23 +03). (4.27)

The torsion-free spin connection is then summarised in the vielbein components of the
Lorentz-covariant exterior derivative V = d + iwab Iy, which we find to be

Vo = do,
a 1 a 1
Vi=di — —Top + zAT35, Vo=dy— —To2+ zATy5,
2a 2 2a 2
b 1 b 1
=dys — —Tog3— =BT =dy— —19g4s— =BT
V3 3= 5pL0s— 5B, Vi=dy o 104 = 5B s,
¢ 1
Vs = ds — %F% + §C(F13 +T'o4), (4.28)
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where 2 2 2 2 2 2 2 2 2
Azt b p bl L _caob (4.29)
2abc 2abc 2abc

There are additional terms w$§'™® = W = —1(X3+073) that lie outside the (S3x.S)/ U(1)
coset, and project to zero, as discussed in [Rf]. The Ricci curvature is found to be [P§]

Roo——%—z_é_f7

a b c .
R11:Rgzz_g_z_z_%_%+a4_b‘;a_2;;1;4b202,
Rs33 R44__%_Z_z_%bb_%+b4_a‘;a_2[c)‘;c_g4a2cz,
R55:_§_%b—%+%' (4.30)

It is evident from (f£.28) that a spinor i will be covariantly constant if it has constant

components, satisfying the projection conditions

Poinp = —I'ssm, Loan = —T'usn, (4.31)
provided that the first-order equations
a=-aA, b=-bB, ¢é=-2C (4.32)

hold. These are the first-order equations whose solution yields the Ricci-flat deformed
conifold metric. The Kéahler form is given by J,; = —in 'y 1, which gives

J=—e"Nedtel ned +e2 net. (4.33)

If we now consider the corrected equation (B.I]), then from (B.6) we see that only
the component V5 receives a modification, namely the addition of %S, implying that the

corrected first-order equations become

a=-aA, b=-bB, ¢=-2¢C—-cS, (4.34)

where A, B and C are again given by (f.29). If these equations are satisfied, then the

A

metric (J£26) will satisfy the modified Einstein equations (B.1]), which are

2 S, (4.35)

. C 2a -
Roo=R55=S+ES, Rn:RQz:;S, Rs3=R44=b

where the Ricci tensor is given by ({.30]).
Defining u = ab and v = a/b, and introducing a new radial variable r such that
dt = cdr, the first-order equations ({£.34]) become

9 d

1
V4P —-1=0, u =%, - —v—-=45=0, (4.36)
C u v
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where a prime denotes a derivative with respect to r. From these we can solve to obtain

T
v = cothr, ud = / e~ 2% sinh? 2z du (4.37)
0
and hence
1
a? = ue” cothr, b? = ue’ tanhr, c= e~ sinh 2r . (4.38)
V3u

As in the case of the resolved conifold, if S were an externally-specified function then this
would represent an exact solution of the corrected first-order equations, and hence of the
corrected Einstein equations (B.1]). In our case S is itself an invariant constructed from the

Riemann tensor, and so ([.3§) is an integro-differential equation.

Working to linear order in the perturbations, we can send S — .5, and write
a=a(l+ef), b=b(l+¢f), c=c(l+eg), (4.39)

where the barred variables denote the metric functions in the unperturbed Ricci-flat de-
formed conifold, and we work to linear order in €. In fact the Ricci-flat deformed conifold
solution is given by

_ 1
a=LlRY% (cothr)'/2, b=¢RYS (tanhr)'/?, &= 7 ¢ R™Y/3 sinh 2r (4.40)
where r is related to t by dt = ¢dr, and
1 .
R= g(smh dr —4r). (4.41)

Substituting (1.39) into ([£.3§), we now find that the functions f and g are given by

P 2P

Here S denotes the curvature invariant appearing in (B-2), evaluated in the unperturbed
Ricci-flat metric. The function P is then defined as

Plr) = /0 " i a(2)? B()? o(x)2 S(x). (4.43)

If we take the special case of the n = 3 term in (@), then, as we noted earlier, we can
express /g S3 as a total derivative. In fact /g is nothing but a® b? ¢? times angular factors
that are independent of the radial variable, and we find that in this case we have

P = 96a®b*>cC [4A%* B®> + (A + B)? C?], (4.44)

where A, B and C are defined in ([£29). Of course one should replace a, b and ¢ by their
unperturbed expressions (the barred variables) when substituting into ({.42).
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Substituting the explicit expressions ([L40)) into the first-order solution, we find that
at short distance the perturbed metric functions have the expansion

_ 1152 \ [, = 3(125 — 55296¢) 2
—9l/33-1/6p (14 2 1 .
a 3 + 95 ¢ _ + 1250 + )
_ 1152 \ [ (125 +497664¢) r3
—91/35-1/6p (14 22272 _ 4.4
b 371+ 55 € _r 3750 + ; (4.45)
_ 1152 \ [, 2(125 — 124416¢) r?
—91/33=1/6p (1 1 e
c 3 + %5 € + 625 + )

where ¢ = o/ /5 here. At large distance, we find the perturbed metric functions have the
expansion

2 —
a=2"23¢e3" [1 ooy 2T A EOIE } ,

18
2 9—24 5120
h— 272/36637" |:1 + 672T + 7"1;— 9 6747" + .. :| ’ (446)
¢ = 21/3371/2 57 [1 _ 9= 247"1; PL20e ar } :

We see that the effect of including the perturbation is to keep the metric regular near the
53 bolt at r = 0, and provided the scale size £ is large enough compared to v/a/, the metric
will be regular for all . Note, however, that the scale of the metric is modified by a factor
(14 11520/ /(25¢5)) at short distance. There was no analogous modification to the scale
size of the resolved conifold in section [[.1]

4.3 Corrections to the line bundle over 52 x 52

The metric ansatz ([.) for the resolved conifold also encompasses a different complete
Ricci-flat metric, with a different topology. It corresponds to a situation where the principal
orbits degenerate to an S?x S? bolt rather than an S? bolt. The first-order equations remain
the same as in ([[.§), with the same modified form ([L.1]) when the higher-order corrections
are turned on. In fact the solutions now correspond simply to taking both ¢ and ¢5 to be
non-zero in ([.13), so that neither a nor b vanishes as p approaches zero. The Ricci-flat
solution is then given by [R6]
o p(20° +3(6 +03) p+ 603 63)

2 2 2 2
a” =p+ 7, b* =p+ 45, ¢t = . 4.47
1 2 30+ B0+ B) 47

The topology of the principal orbits is changed also; one finds that regularity of the metric
at p = 0 implies that the period of the U(1) fibre coordinate over S? x S? is now half of its
value in the 75! orbits of the resolved conifold case, and so now the principal orbits are
TY'/Z,. The metric with ¢1 = f5 was first given in B4, BY]. For ¢y # {5, the metric was
given in [R]] in a different coordinate system.

The analysis of the corrected solutions for this R? bundle over S? x §? is very similar
to that for the resolved conifold in section 1l The only difference in the construction of
the linearly-perturbed solution is that now the constant & in (§.19) must be set to zero, in
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order to obtain a perturbed solution that is regular at p = 0. The expressions for P and S3
are now rather complicated rational functions of p, which we shall not present explicitly.
They are easily constructed by substituting (E.47) into (E19) and (E18). They are both
finite everywhere, with asymptotic forms

L8106 - B

9 9p2 o
- 2047 — 12)? 05 4+ 05) — 10402 03 (03 + 02
Sy = 0(152) _68(67 +65) 0612(1+ 2)+ (4.48)
9p 9p
at large distance, and
_ 362+ 02)p  6(150% + 2602 (2 + 1504) p?
P=""eg - ik L
162 162
2 42 4 22 | gph
5, = BE+B) 200+ 1666+98)p (4.49)
685 505
162 162

at short distance. Likewise the expression for f given by ({.16]) is quite involved, and so
we shall just present its asymptotic forms explicitly here. It is finite everywhere, and at

large distance we now find

88  44(02 + ¢
88 UG+ |

f= 33 P (4.50)

At small distance, we find

. 120961 + 1662 63+ 963) p _ 6(8TE0 + 21141 65 + 21143 65 + 8745) p*

(4.51)
0305 (365

It is evident from these expressions that both ¢; and ¢5 must be non-vanishing for
these perturbed solutions to be regular. In particular, this means that one cannot simply
obtain the modified solution for the resolved conifold by just setting £; = 0 in the modified
solution for the R? bundle over S? x S2. This is understandable, since we found that it
was necessary to choose k = 0 rather then k¥ = —9 in ({.19) in order to obtain a regular
modified solution for the R? bundle over S? x S2.

A special case for the R? bundle over S? x S? is when ¢; = {5, implying that the
S? x S? is itself an Einstein metric. The Ricci-flat solution is then encompassed in the
results of [R7, Bg]. Since the functions in the perturbed solution become much simpler in
this case, we shall present them explicitly here. Setting £1 = 5 = £, we find

p_ 88 8% 64"
9 3(p )3 9(p+ )Y
. 8(° 64018
SR PE TR PR 2
;e 88 40(° 640" 64018

T3P 3+ P8 3PP (prer
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In the comoving frame, the functions a = b and ¢ have the following short-distance
and large-distance behaviours:

a=1/ <1+£_<1_M>ﬁ+...>
402 96 ¢6 A ’
1 27223\ 2
c=t <1_<§_T>€_2+>,
oo (i (A ety L
/6 5 506 ) 16 :

1 144 176a/3\ ¢
c:§t<1_?<3_75>t_6+-..>. (4.53)

4.4 Corrections to the line bundle over CP?

t

)

A final explicit Calabi-Yau example is provided by using the same construction as for the

R? bundle over the Einstein metric on S? x S2, except that we now replace the S? x S? by

the Fubini-Study metric on CP?, with the same value for the cosmological constant. The

Ricci-flat metric on the R? bundle over CP? is again a special case of results in B7, BY.
The metric can be written as

ds = di* + 6a® dS3 + ¢ (dz + A)? | (4.54)

where d¥2 is the Fubini-Study metric on CP?, with its canonical normalisation R;; = 6gij,
and dA is proportional to its Kihler form. We have included the factor of 6 in the d¥%2
term in (f.54)) to scale the CP? metric to one with R;; = gi;, which is the same as we had
for the S? x S? base metric in section .3, The Fubini-Study metric, and the potential A,
can be written as [B(]

1 1
dzi = de? + 1 sin? ¢ (0% + 0'%) + 1 sin? ¢ COSQ£O'?2’ ,
3
A= —§sin2503, (4.55)

where o; are the left-invariant 1-forms of SU(2). It is straightforward to verify that the
metric (£.54) is Ricci-flat if the first-order equations

62
= - = 1+ — 4.56
a é +— (4.56)

hold. As expected, these are the same as those for the R? bundle over S? x S? with a = b.
In terms of a new radial variable p such that dt = —c ™! dp, the solution is again given by
o 2p(p*+3pl?+ 30

2 2
=p+ = . 4.
a”=p+ 07, c ( 72 (4.57)

The regularity of the metric at small p implies that the U(1) fibre coordinate z should
have period Az = 27, rather than the Az = 67 that would be required for S°, and so the
principal orbits are S°/Zs.
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Although the construction of the Ricci-flat Kéhler metric is closely parallel to the
case where the base is S? x §? rather than CP?, and the solution involves identical metric
functions a and ¢, we find that the effect of the a'3 corrections is significantly different. The
essential point is that the Riemann tensor for this R2 bundle over CP? is different from that
for the R? bundle over S? x S2, since the Riemann tensors of the four-dimensional bases
are different, and hence the functional forms of the Riemann-tensor invariants S differ in
the two cases.

The modified first-order equations are of the identical form to (), with b = a;

1 1 c
r_ = - _ 8 4.58
d=1, d=1- e (4.5%)
and so for the deformed solution we find
2 p
a?=p+0%, ? = — e 29 / a(z)* e®@ dy (4.59)
a 0
Perturbatively, we send S — ¢S, and write ¢ = ¢ (1 + ¢ f), finding
2P _ P
f:ﬁ—S, P:/O a(x)* S(z)dx, (4.60)

precisely analogously to (JL16). However, now we find that P is given by

B 7244_6 2 32 374
sz_c(a cgc—i—c)’ (4.61)
a

rather than ([.19). In fact S3 itself now has a much simpler form too, and is given simply

by _
- 1 dP;  8c¢(2a® — 3¢2)3
G, _Lad ) 4.62
3 a4 dp a8 ( )
The function f is now given by

64 6446 64012 64018
f= s T G 2\9 2\12 (4.63)
3p+6)°  3p+6)° 3+ (p+7)
It again has the property of vanishing at p = 0 and p = oo, but it differs in detail from the
result for f in ([E53) for the case of the R? bundle over R2.

In terms of the comoving coordinate ¢, the function a and ¢ have the following be-

haviour:

~
]

a:g<1+ﬁ+<_l+y>ﬁ+...>

402 96 (6 04 ’
- <1+<_1+M> ﬁ+...>
3 (8 02 ’

t - 108  4608a/3 Y\ ¢ N
a = — I — J— oo
NG 5 5¢6 16 ’

1 432 1843203\ (6
=Zt(1 T ) ) 4.64
03<+(5+£6)t6+) (4.64)
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4.5 Corrections beyond o’ 3 order

Candidate correction terms at orders o/* and above, consistent with the highly-restrictive
conditions of universality, were proposed in [B]. They are given by (B.1) and (B-2), with

k k k -2 k k k
Sp =Ry 1,2 " Ry, 2% R, o RMFL_9n=2R 72 k2 p v ks R k(4 65)

n n

® one can still use the Ricci-flat background for

Clearly, up to and including order o’
calculating S,,, as we did for S3. Interestingly, all the S, vanish for the conifold itself,
leading us to conjecture that the conifold does not receive any higher-order corrections.
The vanishing of S,, for the conifold is non-trivial; it requires the precise relative values of

the coefficients of the two terms in ([f.65) that were conjectured in [f].

Resolved conifold. For the resolved conifold, we have

404 (14p* + 86p° £2 + 209p2 £* + 246p (5 + 123¢8)
Sy = : (4.66)
27(p + (2)10

5 _ 4004 (328 + 27795 02 + 1032p* £* + 214003 16 + 264502 £ + 1890p £1° + 630012)
o 243(p + £2)13 ’

The corresponding correction to the function c is given by
c=c(l+aBf+d fi+a®f5+--), (4.67)

where f was given in the previous subsection, and f4 and f5 are given by

fi = =l x
4718902 (p + 2)10 (2p + 302)

X <403p7 + 403000 2 4 18135p° ¢* + 47576p* 16 + +78554p° 8 + 81760p2 ¢10 +

+ 49854p 012 + 13776£14> ,

2p
IST1L0A (p 1 2)8 (2p + 32)

fs =
X (120047p10 + 1560611p" £2 4 93636665 £* + 34333442p" (¢ +
+ 85661125p° £852736265° £1° 4- 198033000p* £12 + 185217340p3 £ +
+ 120208550p% 16 4+ 49191450p £1® + 9702000620> , (4.68)

Thus we see that the higher-order corrections up to o' all vanish at p = 0 and p = co.

At small p, the function ¢ takes the form

1603 (1 2 4 2460/ ¢ + 81¢*
c(l—i— 60 (1750a% + 2460/ £ + 8 )p+0(p2)>,

o2 (4.69)

CcC =

whilst at large p it takes the form

7 4030/ 1200472
= 3 -3 —4
c=¢ <1+o/ <§+189€2+ IS711 )p +0(p )>. (4.70)
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It is interesting to note that the coefficient of a given power of p in these expansions receives
corrections at each of the higher orders in o’. In the asymptotic region, it is instructive
to write the functions a, b and ¢ in terms of a comoving ¢ coordinate, in order to compare
the asymptotic deviations of the resolved conifold and the higher-order-corrected resolved
conifold from the cone metric itself. These functions are given by

t 302 1504 /207 504 3224 15366016
“= Cﬁ?(l_'§¥5+'8ti (80 R R V7T “66_4>t_6+”'>’
t 302 15¢*  [657 504 3224 15366016
b:'?3<1 PERRT <80£6 I R VTV 5£4>tﬁP'>’
1 604 108 2016 12896 2841504
= ¢t(1—-—+ 64 13 Mp=2  ZOFIOUR 54 =6 4 )
c 3t< m <5£ g + 3% ol + 3465 ol 7+

(4.71)

Thus we see that the higher-order corrections modify the asymptotic behaviour in a rather
mild fashion, and in particular, they are highly normalisable at large distances. It is
interesting to note that purely on dimensional grounds, one might have expected that Sj
could lead to corrections of the form

#176 logt, (4.72)

and in fact had the relative coefficient between the two terms in S3 given in (R.10) been
different, such a term would indeed arise. Thus specific features of the actual higher-order

corrections lead to the systematic absence of structures in the series expansions.

Deformed conifold. For the deformed conifold, the explicit expressions for Sy and Sj
are rather complicated, and we shall not present them in detail. The upshot is that the
higher-order corrections have effects very similar to the o’ correction in modifying the
small and large distance behaviour. To see this, we note that at small distances, Ss3, Sy
and S5 are similar:

3456
= 2472
Ss3 o — (-5 + +--4),
149766'/3 5
176025662/3

whilst at large distances they all vanish. Clearly the leading order correction terms at
large distance or at small distance will be determined by the small distance behaviour for
the S,,, which in this case are all of the same form. It follows that the corrections to the
deformed conifold have the same structure as those for the a3 correction, which we have
already discussed.

U(1) bundle over S? x S2. For the generic solution, the situation is rather similar, but
the structure of the solution is too complex to present here. We shall present only the case
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with ¢; = 5 = £, i.e., the case considered in [R7, B§]. We have

g, _ 64 32012 N 26242
LT+ )7 3(p+ )0 T 9(p+ £2)16
160¢6 320012 320018 89599¢30
S5 = + + (4.74)

Np+2)8  27(p+ )1 " 9(p+ )1 " 27(p+ )2
The corresponding f4 and f5 are given by

6192 6192  45536/5 3040012 2624018 2624024

h=onwm o T 7 1t 300 T 308 T g
6292(r + £2)
9146 (r2 4+ r 02 4+ 04) 7
112488 112488 96452006 3065600012 841608
fs = 52 T 5+ 8 + T T 14
187r2 ¢ 187r r 5049r 153r
89600¢%*  89600¢39 112488 (4.75)
153717 27720 18746 (12 4+ 142 + ¢4)’ :

where r = p? + ¢2. Again, the higher-order corrections vanish for both p = 0 and p = oo.
However, the corrections have more importance than in the previous conifold example. In
particular, this is the case if we look at the large-distance behaviour. Using the comoving
t coordinate, we have

t 108 6336 1337472 24297408/
0 =b= <1+< 05 _ o — O/4£—2_704>t—6+m>,

NG 5 5 455 935¢4
1 432 . 25344 5349888 97189632
=2t (1 ——56 SOOEE 13 UORIOPY 4 5_2 iy 15! 5_4 t_G o)
¢c=3 < + < 5 + 5@ + IR + o35 @ +

Thus we see that, in this case, the next-to-leading order terms in the conifold expansion
are modified by higher-order corrections.

U(1) bundle over CP?. In this case, the high-order correction sources S; and Sj are
rather simple; they are given by

164X* 2800.X°
Sy = S =" 4.76
1T g8 5T 27410 (4.76)
where X = (2a? — 3¢%)/a?. Tt follows straightforwardly that
2624 (3 3 305 302 3% 130 3(r + 12
fa= (6— AT 7 T 13~ 7,16 6 2( 2 : 1 >’ (4.77)
117 \&br 7 r r r r 06 (r2 4 02r 4 04)
b= 89600 ( 3 36 N 3012 318 302 17430 3(r +£2) )
ST 49 \p5 T8 T I T T r20 A2 (P24 2+ 04))
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where r = p — ¢2. In terms of the comoving coordinate ¢, the functions a and f have the
following behaviour

t 0 :
W s <1+ﬁ+ (—1+ 32a/3 N 52480’ N 224000/5> ﬁ+_“>
402 96 6 08 010 /4 '
o (1 N (_ 1 N 25603 N 41984/ N 17920000/5> * )
3 08 08 8110 Iz ’
t— o0

Y ot <1 < 108 46083 B 1889280/ B 430080a'5> o L >

V6 5 506 658 17¢10 16 ’
_ lt (1 N (_ 432 N 1843203 N 7557120/ N 17203200/5> @ .._)4.78)

3 5 6 6508 17010 t6

5. Explicit non-compact Calabi-Yau examples in D =8

In this section, we investigate the effects of o/ 3 and higher corrections on the various explicit
examples of eight-dimensional non-compact Ricci-flat Kéhler metrics of cohomogeneity one.
These include the cases where the principal orbits are U(1) bundles over S? x S? x S2,
S2 x CP? or CP?, and the eight-dimensional Stenzel metric, for which the principal orbits
are SO(5)/SO(3).

5.1 U(1) bundles over 5% x 52 x 52

We shall represent these metrics in terms of three sets of left-invariant 1-forms for the
group SU(2), denoted by o, 3; and v;. The eight-dimensional metric is then given by

ds% = dt® + a? (O’% + O’%) + b2 (E% + E%) (yl + VQ) +g (03 + X3 + y3)2 . (5.1)
We introduce the natural vielbein basis

eV = dt, el =aoy, e =aoy, e3=bY, et =b3,,

ed =cuy, S =cuvy, e' =g(o3+ S5+ 13). (5.2)

Note that the two combinations L1 = o3 — v3 and L9 = X3 — v3 lie outside the coset.
The torsion-free spin connection can be summarised in the expression for the spinor-
covariant exterior derivative V=¢e*V, =d + %wab rab,
Vo = do,

a
Vi :dl__2 F(n——g2 Po7, v2=Ci2——1102+ F17,
a 4a

2b
Vs = ds—%ro5—

b b
Vs =d3— 5Tz — 4b2 Ly7, Vi=dy— bF04 + 05 4b Ls7,

g
—T Ve =d ——F
12 67 6 6 06+4

g g 1 1 g 1
Ve —dr— LT+ (L - =) T+ ) T+ (L -2 ). 53
T T9g T <4a2 69> 12 <4b2 69> 3 <402 69> % (53)

sz,
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(There are also extra contributions w3 = £(Ly — 2L1), wH™ = (L1 — 2Ly), wE™ =
%(Ll + Ls), involving the two directions outside the coset; these project out as discussed
in [24].)

It is easily seen that we can find two Killing spinors n satisfying V1 = 0 which imply
the first-order bosonic equations

200 =2bb=2cé=g, g:l—%f <%+bi2+ci2> (5.4)
The spinors n have constant components, and satisfy the projection conditions
Fion=T3un=Tsn=—-Torn. (5.5)
The Kéhler form can be written as J,, = —in e 7, and is given by
J=ene?+e3net+ePnel —elnel. (5.6)

The first-order equations that arise as integrability conditions for the modified Killing-
spinor equation (B.6]) are easily seen to be given by

. g ; g . g . g g g -

_ g h= 2L =< =1 S. 5.7

T2 %’ T 2 22 22 222 Y (5.7)

As in the previous examples, one can easily verify that if these equations are satisfied then

the Einstein equations Ry, = V. VS + V5V S are satisfied, where as usual Vi = J.b V.

These second-order equations are

. 2 - 2 . 2 .
Roo=R77=S+§5, R11=R22=;5, R33=R44=?S, R55:R66:?Sa
(5.8)
where the Ricci tensor is given by
2 20 2
Rg=-—-2-=2_9
a b c g
a a2 2ab 2¢ ag 2a%— g2
Rif = Ry — 2 & 240 ~ac 49 24 79
1 22 a a®> ab ac ag+ 2a*
b b 2ab  2b¢ by 202 — g2
Rys=Ry—-—-—->-——-———— — — 4 —————
8= = T T T he bg 2
¢ 2 2bé g 22— g2
Reir — Rpp — 2 & =24¢c ¢ 9,2 79
o 66 c ¢ ac be cg+ 2ct
g 29 (a b ¢y 1,1 1 1
Rip=-2 (2020 vo2 (=4 =42 ). 5.9
77 g g <a+b+c>+2‘q a4+b4+c4 (5.9)

Introducing a new radial variable p such that dp = gdt, it is easily seen that the
solution to the modified first-order equations (b.7) is given by

> =p+6, V=p+l, F=p+i3,
2 _ P .
g = YRR 25/ a*(z) b (z) A (x) 5@ dz . (5.10)
0

As in our previous examples, this result is exact, and it is explicit (up to quadratures) if S

is a given externally-specified function.
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Our present interest is in the case where S is some higher-order correction term coming
from string theory, as in the discussion of the previous sections. We again therefore make a
linearised approximation, in which the quantity S is expressed in terms of the background
Riemann tensors of the original Ricci-flat equations. Sending S — ¢S5, and writing
g=3g(1+e¢f), where f is the expression for f at zero’th order in ¢, we therefore find, up
to linearised order, that the metric functions are given by

a’ =p+0i, V=p+43, F=p+13,
2P -
f3 = a2 b2 02 f2 - Y (511)
where
p
sz/ a*(x) b?(z) A (z) S(x) dx (5.12)
0

and the quantities P and S are evaluated in the zero’th-order Ricci-flat background.

The general structure with ¢; not equal is rather complicated to present. We shall give
explicit results only for the case with ¢; = £. First let us consider the simplest case with
¢ = 0, where the metric is just the cone over the U(1) bundle over S? x §% x §2. Unlike
the six-dimensional conifold, where S3 vanishes locally (because, as we discussed, it is the
six-dimensional Euler integrand), here it is non-vanishing and is given by S3 = 3/p3. It
follows that the perturbation function f3 is given by f3 = 9¢/p>. This raises the possibility
that the string higher-order corrections might have the effect of resolving the singularity
of the cone metric itself.

For ¢ # 0, the perturbation function f3 is given by

105 N 153¢8 N 90016 4950 48 N 48(r — £%)
r3 2r7 rlil 2r15 (r+02) A (r2 4047

f3= (5.13)

where r = p — ¢2. In the comoving ¢ coordinate, the asymptotic behaviour of the metric

functions is

t—0:
4 ¢ 3 189\ . _, L 12726 5
T T\ TR 9T e T T ’
t— o0
t 4608¢  2048(¢% — 19202 €2)
a = 1 — + + e R
2/2 5t6 7t8
1 18432¢  12288(¢8 — 192¢%¢)
=—t (1 - ). 14
9=1 < M 7 * (5.14)

Note that at large distances, the higher-order corrections modify terms occurring before
the next-to-leading order terms of the uncorrected expansion. This is because, unlike in
six dimensions, the integral of Ss diverges at large distance in eight dimensions.
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5.2 U(1) bundle over S? x CP?

When b = a, we can replace the S% x S? with the metric for CP?. The metric ansatz now
becomes

2
ds® = dt* + a*dx3 + ¢* dQ3 + f? <dz - gsin2§03 + A) : (5.15)

where dA = Q,), and dX? is given by ({.55). At the zero'th order, the solutions for a, ¢
and f are identical to that of the previous case. However, since the Riemann tensor for
52 x 82 is different from that for CP?, it follows that the o/ correction term S; is different
in this case from the S2? x §? x S2 case. For simplicity, we shall only present the result
when the constants are chosen so that a = ¢ = \/p + ¢2. For the cone metric (i.e. £ = 0)
we now find S3 = 1/r3 instead of 3/r3 for the S? x S2 x 52 case. It follows that there are
differences in the higher-order corrections, but they are qualitatively the same.

For ¢ # 0, we find that

99  165¢8 9006 4950 48 48(r — £?)
s + 2r7 + P s A (4 02) * 0(r2 + 04”7
where again r = p — ¢2. Thus structurally, the correction terms are the same as those for

the U(1) bundle over S% x S2 x S2, but the detailed coefficients are rather different, In the
comoving frame, at small distance ¢, a and f are given by

f3 =

(5.16)

t—0:
. t2 3 157\ 4 . L 1256¢) 5
a = _ R P f— J— _ oo
0 \326 P I 22 8 ’
t— o0
t 1536¢  2048(¢% — 19202 €2)
a=—=(1- + o)
22 5t6 78
1 6144e  12288(¢8 — 192¢2 ¢)
=—t(1 — . 5.17
971 ( LT Tt * ) (5.17)

5.3 U(1) bundle over CP?

When a = b = ¢, we can replace S2 x §? x S? with CP3. There are two convenient ways
to write the CP? metric. One way is to use the recursive expression for the Fubini-Study
metric d¥3, on CP™ in terms of the Fubini-Study metric d%3, , on CP"~!, which was
derived in [B1]:

d¥3, = da® +sin® ad¥3, o +sin?a cos® a (dr + B)?, (5.18)

where dB = 2J,_1, and J,_; is the Kihler form of CP"~!. For each n, d¥2 denotes the
canonically-normalised Fubini-Study metric, with R;; = 2(n + 1) g;5. Thus before taking
the O(a’) corrections into account, first-order equations for the metric

dsg = dt* + 8a* dXE + ¢* (dz + A)? (5.19)
will be the same as those for the S2 x S2 x S? base given in section f.1, with @ = b = ¢. The
Kéhler form for the CP™ metric (B.18) is given by J,, = 3dA, where A = sin? o (dr+ B) [BI].
Using (5.1§) the metric on CP? can be written in terms of the CP? metric ({.55), with

A= —%Sin2503.
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An alternative construction for the CP"™ metrics can be given by introducing left-
invariant 1-forms L for the group SU(n + 1), where 0 < A < n, Ly4 =0, and dL,” =
iLA% A LcP. Writing A = (0,4), where 1 < i < n, we can obtain a vielbein for the coset
CP" = SU(n+ 1)/ U(n) by taking just the subset Lo’ and L;° of the left-invariant 1-forms,
i.e. by modding out by the SU(n) 1-forms L;7 and U(1) 1-form L. In a real basis, we can
define

1 -1 4
e =5 (Lo' + LY),, €= 5 (Lo’ = LY. (5.20)
i
The spin connection and curvature 2-forms for CP" are therefore given by
= (L - L — L8y — S+ Ly
W@'j—wij—i(i_j), w;z = Lo ij_i(i“’j)a
@ij:(%;;:ei/\ej—i—ei/\ej, @ZE:ei/\ej—i—ej/\ei—i—Qek/\ekéij, (5.21)

and the Kahler form is i
J=¢e Ne'. (5.22)

Thus we see that R;; = 2(n + 1)4;;, and hence the metric d¥3, = e'e’ + € el is the
canonically-normalised Fubini-Study metric on CP".

Using either of the above constructions, it is a straightforward matter to calculate the
curvature for the metric (5.19)), and hence to show that the cubic Riemann tensor invariant
is given in this case by
495(a? — 2¢7)°
- 2012

Clearly, the cone of the U(1) bundle over CP3, corresponding to a = v/2g¢, is locally

S3 (5.23)

Euclidean since the principal orbits are locally the round S7, and hence locally the curvature
and all higher-order corrections vanish. If £ # 0, we have

b 90 N 9043 N 90016 495¢*0 45  45(r —1?)
573 r7 ril 2715 (r+02)  A(r2+04)’

(5.24)

where r = p — ¢2. Since now S3 is normalisable, the correction is very different from the
previous ones. In the comoving frame, a and g have the asymptotic forms

—€+ﬁ 3 UT5e) Ly (L 246N 5
T T 3288 T 16 97 22~ o8 ’

t 2048(¢8 — 18042 €2)
= 1+ +-0 ),
2v/2 718
1 12288(¢8 + 3002 ¢)

t

o

a

(5.25)

5.4 Stenzel metrics; SO(5)/SO(3) orbits

We shall closely follow the notation of [R6] for writing the cohomogeneity-one metrics with
SO(n +2)/SO(n) principal orbits:

ds? = dt* + a* o? + 0267 + 22, (5.26)
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where 3 <7 <n+ 2,

g; = le‘ s 5’2 = LQZ‘ s V= L12 s (527)
and the L 4p with 1 < A < n are the left-invariant 1-forms of the group SO(n+2), satisfying
dLap = Lac N Lo, with Lag = —Lpa. We choose the natural orthonormal basis

eV =dt, ¢ =ao;, eE:b&i, D =cuv. (5.28)

We take e = v and & = o0; as a vielbein basis €® for the sphere S"*1 = SO(n +
2)/SO(n + 1). A simple calculation shows that the torsion-free spin connection is given
by wo;i = —04, w;j = —L;j, and hence that the curvature 2-forms for the metric ds? =
etet = ai2 + 12 are given by O, = e® A e’. This proves that d52 is the metric on
the unit (n + 1)-sphere. Thus the SO(n + 2)/SO(n) principal orbits in (§.26) can be
viewed as S™ fibres over a (squashed) S™*! base, with &; being 1-forms on the S™ fi-
bres.?

Calculating the torsion-free spin connection for (b.2§), one finds that the spinor co-
variant exterior derivative is given by

Vo = do,
a 1
b1
Vi =d; — 5 L5 Bl
¢ 1
Vo =dy— 5 Tog+ 50T, (5.29)
where
2 _p2_ 2 B2 — g2 — 2 2 _ 42 2
Azu, BE#, c=0"4=" (5.30)
2abc 2abc 2abc
(There are also additional terms wf]’»‘tra = w%’.‘tra = —L;; that lie outside the coset, and that

project to zero [2g].)
It is evident from these first-order equations that there is a solution whose short-
distance behaviour (near ¢t = 0) takes the form

ds? = dt* + 1252 + a3 (0? +1?). (5.31)

This is precisely the short-distance behaviour of the Stenzel metrics [6], which are complete
and non-singular. It is clear from (5.31)) that the metric 2 on the S™ fibres must describe
a sphere of unit radius, in view of the regularity at ¢ = 0. Thus we can conclude that the
principal SO(n + 2)/SO(n) orbits in the Stenzel metrics have a volume given by

Vol(SO(n +2)/SO(n)) = / v Ao n ][ 6: = Vol(s™) Vol(s™) . (5.32)

5The roles of the o; and the &; are symmetrical in this description, and they could be interchanged.
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Since the volume of the unit n-sphere is Vol(S™) = 2x(»*1/2 /T'((n 4 1)/2), it follows that
the volumes of the principal orbits in the Stenzel metrics are given by

SO(TL+2) 2n+2 7.rnJrl
V01< S00n) ): - (5.33)

We shall make use of this result later, when calculating the contributions of the volume
and boundary terms in the expression for the Euler number.
Specialising to D = 8 (i.e. n = 3), the Ricci tensor is given by [R6]

Rmz—éé—§§_§’
a b c .
- ket -

As in the previous examples, we can read off from the covariant exterior deriva-
tive (5.29) the first-order integrability conditions for the existence of covariantly-constant
spinors Vn = 0, giving

a=—-ad, b=-bB, ¢=-3¢C, (5.35)
where the spinors have constant components and satisfy the projection conditions
FCoin+1Tgn=0. (5.36)
The Kéhler form can be written as Ju, = —i7l g 7, giving
J=—e"ned +eine. (5.37)

The integrability conditions for the modified Killing spinor equation (B.6) are then

easily seen to be

a=—aA, b=—-bB, ¢=-3cC—cS. (5.38)

As in the previous cases, one can verify that if these equations are satisfied, then the
metric satisfies the modified Einstein equations Ry, = V,VpS + V3V S. Explicitly, these
equations are

2b

R00:R66:S+gsa R,‘j:;aS(sij, RE:—S&

b Y (539)

where the Ricci tensor is given by (f.34).

The first-order equations (p.3§) can be solved by defining u = ab, v = a/b and intro-
ducing a new radial variable r such that dt = cdr. The first-order equations become

;9 d 3

3

/ 2 1 !

—1=0 = — - — = S =0 5.40
vt , u =c, c+2 2(v+v )+ , ( )
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leading to the solution
s
1
v = cothr, ut = / e~29@) (sinh 22)3 du , ="e 2y 3 (sinh2r)®.  (5.41)
0

In our perturbative discussion, we can solve explicitly for the linearised deformations
by sending S — .5, and writing

a(l+ef), b=b(l+¢f), c=c(l+eg), (5.42)

a

where the barred quantities denote the zero’th-order Ricci-flat expressions. These are given

by [Bd]
a? = RY* cothr, b = RY* tanhr, & = ER_BM (sinh 2r)? | (5.43)

where 3
= 5(2 + cosh 2r) sinh?r. (5.44)

Solving for f and g at linearised order in €, we then find

P 3P
f:_W7 QZW—Sv (5.45)

where

_ " 3 3 2
P’::jé o (2) b () () S() dx (5.46)

and the quantities P and S are evaluated using the Riemann tensor in the undeformed
Ricci-flat background.
For the o? corrections, we find that f3 and g3 are given by
3 37
80314 ¢e2"
f3 = 15 X
(1 + 621“)11 (1 + 4621“ + 64T)Z

X (272488 + 434591 cosh 2r + 225766 cosh 4r + 78287 cosh 67 + 18120 cosh 8r +

+ 2697 cosh 107 + 234 cosh 127 + 9 cosh 14’F> ,

16027
g3 = ¢ x (5.47)

15
31/3(1 + e2r)15 (1 + 4e2r + 64T)Z

X (9352650—|— 13111232 cosh 2r+3993140 cosh 4r —415614 cosh 6r — 835680 cosh 8r —

—343762 cosh 10r — 77940 cosh 127 — 10581 cosh 14r —810 cosh 167 — 27 cosh 187") ,

In the comoving coordinate ¢, the metric functions a, b and ¢ behave in the following way
at small distances

1 28023/8 1
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B 1 2806\ ,
ST )H...),

9
L, 28029 23/8 1 3080¢\

and at large distances, they behaves as

3 4 2\ 80 [2\'?
=/t (1+=(2 A t716/3 £ 512e¢70 + ...
¢ \/; ( +3<3> 351 <3> ottt ]

3 4 (2\¥3 80 (/23
b “tl1-2(2 Ay i t710/3 1 512e¢70 4 -

8 ( 3<3> 351 \ 3 ol T

3 320 /2\/?
=t <1+m <§> 1673 —20486t_6+--~>. (5.49)

5.5 Corrections beyond o’ 3 order

The calculation for higher-order corrections up to order a’® is straightforward, but the
results are rather complicated to present in detail. We shall only list the large and small
distance behaviour in the comoving coordinate system.

U(1) bundle over S? x 52 x S2. As in the previous case, we only consider the simplest
case with a = b = ¢. We just give the large and small distance behaviour. For r — 0, we

have

198002 105600/ 2335200/°\ p

(6 /8 ¢10
21018a 153312/ 41609200/°\ p? -
T T T m )n (5.50)
For r — oo, we have
90 690 3(1399 + 48log(p/f?))a™  987520a/%\ 18 .
/= 3 I 16¢8 273010 ) pt (5:51)

U(1) bundle over S? x CP%. In this case, the higher-order correction to the function s
is given by (assuming the simple case a = ¢)

£6 /8 ¢10
<20886o/3 N 4147168/ N 374246800/5> p?

G E Vi gt (5.52)

18840/ 952960/ 62981600/5

For r — oo, we have

3a/3 <87o/3 38173 + 6568 log(p/£?))a’ N 87980800/5) A

3 oot 144/8 2457010 ) pt

; (5.53)

f=
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U(1) bundle over CP?. In this case, the correction is easy to obtain, since we have
4950/ X3 42450/ X! 6 — 1491450/° X0
- 2a5 B 4a8 7 o 8al0 ’
where X = (a? — 2¢g?)/a®. The perturbation function f is given by
f = 450" <33 - 2_678 - 261116 + _1154 T A 1 o T %15(7;_ 624) )
r r r 2r H(r+02) 1A (r2 4 04)

4245 (1 08 g6 2 432 49715 -

16 “ <74+78+m+ﬁ6‘70> 56 ¢~
y (i +i +@ T N e 2 _2r+ 0% >

By 5 9 13l 21 r2 B (r+02) B(r2404))7

where r = p — (2.

Sy Sy (5.54)

X

Stenzel metric. The structure in this case is again rather complex. We shall only present
Ss3, S4 and S5, which are given by

45
80e2"

S = T BUA(L + €27)15 (1 + 4e2r + eir)15/4 x

X <51096822 + 82052992 cosh 2r 4+ 43709116 cosh 4r + 16111758 cosh 67 +
+ 4256544 cosh 8r + 823522 cosh 10r + 117252 cosh 127 + 12021 cosh 14r +
+ 810 cosh 167 + 27 cosh 187")

1
— X
37748736 cosh? 7 (2 + cosh 2r)5

X <1912969150222 + 3256894409584 cosh 27 + 2031561604552 cosh 4r +

+ 949210599696 cosh 61 4 339746197983 cosh 8r + 94849519304 cosh 10r +
+ 20896666964 cosh 121 4 3648186232 cosh 14r + 501788290 cosh 167 +

+ 53212824 cosh 187 + 4135140 cosh 20r + 210600 cosh 22r + 5265 cosh 247“)

75
160e 2" "
T 933/4 (1 + €2)25 (1 4 42 + e4r)25/4

S5 =

X <3192260095227860 + 5621631779278675 cosh 2r 4 3857631050654430 cosh 47 +

+ 2088920390620110 cosh 67 + 906177970153450 cosh 8r +

+ 319423127230328 cosh 107 + 92531981651010 cosh 12r +

+ 22191184070115 cosh 14r 4 4418078655500 cosh 167 +

+ 728378998045 cosh 18r + 98534694870 cosh 20r +

+ 10738276020 cosh 22r + 912024630 cosh 24r + 56882790 cosh 261 +

+ 2320650 cosh 287 + 46413 cosh 30r> . (5.55)

From these, it is straightforward to find the perturbation functions f and g, given in (p.45).
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6. Discussion

In this paper, we have shown how the preservation of supersymmetry on BPS backgrounds
such as non-compact Calabi-Yau spaces can be used to obtain explicit expressions for the
string-theory-derived o’ corrections to these backgrounds. The corrected Killing spinor
conditions are the key to this. Even in the absence of a full knowledge of the supersym-
metric structure of the o/ corrections, these Killing spinor conditions can be deduced from
the requirement that the corrected bosonic effective field equations appear as integrability
conditions for them. It is to be hoped that these corrected conditions may illuminate the
problem of supersymmetrising the string-theory corrections, and in particular the impor-
tant quartic curvature corrections arising at order o’ 3, for which partial results have been
given in [[4, [[3, [q].

For Kahler manifolds, the scheme adopted in this paper has the virtue of preserving
the Kahler structure, although the Ricci-flatness of the space is necessarily lost, since the
deformed space develops a new U(1) factor in its holonomy. At the same time, the dilaton
¢ acquires corrections as given in eq. (R.2§). This latter point is of little significance, since
it can clearly be reset at order o’ 3 by defining a new dilaton ¢ that is related to ¢ by

o=0¢+ %a’?’ Ss. (6.1)

A consequence of this redefinition is merely to change the specific form of the o’ 3 corrections
in the effective lagrangian. One of these changes is a modification of the coefficient of
YQ(Q) in (R.31)). Moreover, as noted previously, this coefficient can be adjusted by field
redefinitions in a sigma-model calculation of the effective action. If one wants to avoid
altering this coefficient, one can achieve this end by making a compensating transformation
of the metric; for example by sending g, — Gap With

~ _ 1.3

Jab = €75 % ggp (6.2)
at the same time as ¢ — (]3 The change in the Ricci tensor under a Weyl transformation
9ab — Jab = eQUgab in a space of dimension D is

Rab = Rgp — (D - Q)Vavbo' - (D - 1)(D - 2)va0vba - Dggab7 (6'3)

so, setting D = 10 and keeping terms only to order o’ 3, the corrected Einstein equation (B.1])
becomes

- S O
Rz‘j = 0/3 <V;V553 — gDSg gl]) (6.4)

in the conformally-related metric. The price to be paid for doing this is that the metric g;;
is no longer kahlerian.

A similar type of field redefinition, but expressible in terms of a purely six-dimensional
Weyl scaling, takes one from the Kahler-preserving scheme employed in this paper to the
scheme used in [f]. From a geometrical point of view, a scheme that preserves the Kéhler
structure of the metric is appealing; schemes that do not preserve the Ké&hler structure
would appear to have a more ad hoc character, although this is clearly a matter of taste.
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The technique for obtaining explicit expressions for o’ corrections to internal manifolds
employed in this paper extends naturally to D = 7 manifolds with G2 holonomy. This is
discussed separately in ref. [BJ].

6.1 Cosmological applications

A main reason for interest in string corrections to the geometry of non-compact Calabi-Yau
manifolds is that these spaces can serve as non-compact transverse spaces for brane con-
figurations that may be of relevance to string or M-theory cosmology. This is a developing
subject, and it is not the purpose of this paper to survey the cosmological applications in
depth. We may illustrate, however, some potential physical applications in reference to the
(DGP) proposal for “localised” gravity on a brane embedded within a higher-dimensional
non-compact space [B4]. One proposal [B3 for realising the DGP scenario in a string-
theoretic context involves precisely the R* corrections that are the subject of the present
paper. The virtue of having explicit formulas for such corrections to non-compact Calabi-
Yau manifolds, at least in the relatively simple cases treated in the previous sections, is
that one can test some of these ideas for cosmological applications.

As we have seen, the general structure of the relevant terms in the ten-dimensional

effective action, including o’ corrections, is given by
GV = e (R +4(89)? + o (Yo — YQ)) , (6.5)

where (Yy — Y2) is given by (R.31).

In [Bg], it was asserted that if one plugs into this action an ansatz for the small
fluctuations around a (Minkowski), x (Calabi-Yau)s background, then one would obtain an
action of the form

I =M, /\/—g}?dmeer /\/_—ng%, (6.6)

where
Miy=g26, M;=xg"°47, (6.7)

s

in which ¢, = v/ is the string length scale, and x is the Euler number of the non-compact
Calabi-Yau manifold.

There are a number of problems with this proposal, however, both on mathematical
and on on physical grounds. We deal first with the mathematical problems.

Firstly, in [B5] a different metric ansatz was plugged into the original Einstein-Hilbert
term as compared to the o/ 3 correction term in order to obtain eq. (p.6). In particular,
the four-dimensional components of the ten-dimensional metric were allowed to depend on
the Calabi-Yau coordinates y in the original o/ 0 Einstein-Hilbert term, but not in the term
coming from the o’ 3 corrections. As we one can see from any of the explicit examples given
in the previous sections, the neglect of y-dependence in the o' corrections is not justified,
since the second derivatives with respect to y that would in this way be omitted are large
near the resolving “bolt”. Thus, treating the second term in (B.6]) as if it arose simply from
a transverse-space ¢ function would not appear to be a good approximation to the true
consequences of the o 3 corrections.
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Secondly, we note that it is not true that an expansion about a Calabi-Yau background
of the string R* correction (R.17) yields simply the Einstein-Hilbert action times the D = 6
Euler number y. What does happen, as shown in eq. (A.19) of appendix J] is that the
variation of the effective action contains the Ricci tensor times the D = 6 volume Euler
integrand FEg. So the discussion would need to be carried out in terms of the field equations
and not in terms of the effective action if the scenario for localised gravity arising from
R* corrections were to have a chance. Note also, as discussed in appendix Bl that the
D = 6 Euler number y is not simply given by an integral of the volume Euler density Fg,
because for non-compact manifolds the integral expression for the Euler number contains
also boundary terms. Accordingly, even if one were to consider an averaging procedure of
integrating the D = 10 effective equations over a section of spacetime containing the peak
values of Fjg, this still would not properly yield the Euler number of the transverse space.

Moreover, even if one were to overlook the above difficulties, the effective equations
would still not be of the correct form. If one substitutes an ansatz for the small-fluctuations
about a Calabi-Yau background into the a’-corrected ten-dimensional equations of motion
and then projects into the D = 4 spacetime hypersurface directions, one obtains gravi-
tational terms of the general form R, — cao/ 3 JA%W Es(y), where (p,v) correspond to the
D = 4 spacetime directions. However, one needs to recognise that, despite these index
projections, the Ricci tensors here are still components of the full D = 10 Ricci tensor, not
the lower dimensional D = 4 Ricci tensor as desired for the DGP scenario.

On physical grounds, there would also appear to be a basic difficulty with this proposal
for obtaining localised gravity from the R* corrections. The basis of the DGP idea is to
have the coefficient of the Einstein term on the spacetime hypersurface be much larger
than that in the D = 10 bulk. This could be achieved by having x in (B.6) be of order 1024
with the string coupling constant g taking a value of order 10~%; this would correspond to
a D = 10 mass scale M7y ~ 1TeV. This would make the DGP crossover scale r. between
D = 4 gravitational behaviour and D = 10 gravitational behaviour to occur at about the
cosmoligical horizon scale 7, ~ 10?8cm. The obvious difficulty with this is that it relies on
making the second term in a perturbation expansion strongly dominate over the first term.
There is then no reason why yet higher-order terms in o’ involving higher-derivative terms
such as S, in eq. ({.65) should not be even more dominant: making x so large would be
completely outside the scope of perturbation theory.

While these problems with the cosmological applications of the R* corrections as pro-
posed in [BY] make for serious difficulties with the localisation scenario, the question remains
an important one and deserves further careful investigation. In any case, braneworld ge-
ometries involving non-compact transverse dimensions are of more general cosmological
interest and the present corrected non-compact Calabi-Yau spaces should be relevant to
their investigation.
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A. Topological invariants and the curvatura integra

The Euler number of a compact manifold M of (even) dimension n = 2p is given by
integrating the n form

_ 1 bi--ayb
U = WEGI 1ap b@albl /\"'/\@apbp, (Al)
where Oy = dwgp + W€ A wep 18 the curvature 2-form; y = fM V. The n-form ¥ can be
rewritten as W = E,, /g d"x, where the “Euler integrand” FE, is given by

(2p — 1!

B =y

Raa [a102 Raga, ** - Ranqanan_lan] . (A.2)
In a non-compact manifold, the Euler number is not given just by the volume integral
of the Euler integrand; there is also a boundary term that must be included [B2]:

X:/qu/aM@, (A.3)

where in n = 2p dimensions the curvatura integra ® is an (n — 1)-form constructed from
the Riemann curvature and the second fundamental form of the boundary. It is shown
in [BY] that if u® denotes the unit outward-pointing vector normal to the boundary, then
® is given by

1 = g—m
= (2m)P mZ::o m! (2p — 2m — D! D(m) (A.4)
where
P(m) = tbr-bn—amorerdicmdm g g, A NGy AOpg A AOe,a, - (A.5)

The second fundamental form is defined by
0, = Dug = dug + wap u’ . (A.6)

In the case of metrics ds? = dt? + d5%(t), which includes all our examples in sections
and fJ, the unit vector normal to the boundary at ¢ = ¢ is just given by u = 9/9t, and so
we shall have ug = 1, u; = 0 for ¢ > 1. Thus we have

9020, Gi:—wm, ’LZl (A?)
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and ([A.§) gives

Doy = TG NO; A O AOp A Oy
CI)(l) = ¢ktm 0; N 0]' A O A Opp,
(I)(Q) = ¢ktm 0; N @jk A Oy, - (Ag)

In eight dimensions, the corresponding expressions are given by

1 1 1 1 1
® =107 705 20 T 3520 T 5% T %) (A.10)

with

Do) = €FMPION 05 N O A Oy A Oy A Oy A,

D(y) = €THPLONO; N O A Oy A Oy A Oy,

Do) = €KLY N 0; N O A Oy N Oy

D3y = 7HMPLG; N O A Opry A Opg . (A.11)

It is interesting to note that if we vary the metric g4 in Eg then those terms linear in
R, are given by

1
0Es = — Eg Rap 69, (A.12)
4dT
where Ejg is precisely the Euler integrand of six dimensions (including all Ricci-tensor
terms),
15
Po = (4m)3 Raya, laraz Raga, R%GG%%] : (A.13)

The cubic curvature invariant Ss given in (R.1(]) is proportional, modulo terms involv-
ing the Ricci tensor, to the Euler integrand E§ in six dimensions. The exact expression for
Ejg, including all Ricci terms, is

15

— ala asa. asa
Fe = M?Ralw[ " Ragay ™ Ragag™” 6],

Ss 1

b d bed bed
W + m (_24Rabcd R, R* + 3R Rpeq R 4+ 24R*°* Ry Rpg +

+16R,% Ry R.* — 12R Ry R™ + R3). (A.14)

Thus we see that when evaluated in the Ricci-flat unperturbed Calabi-Yau metric, we shall
have

1 . ~ o
09673 /MS3\/§dx:X:(X_:)7 where ::/E)M(I). (A.15)

Here Z is the contribution to the Euler number from the surface term in (A.3). Thus the
quantity X that results from integrating S3 over a non-compact Calabi-Yau manifold is
neither the Euler number nor is it a topological invariant.
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B. Euler numbers from curvature integrals

In appendix [A], we reviewed some standard material on the calculation of the Euler number
in terms of integrals over quantities formed from the curvature of the metrics. Because
the manifolds M that we are studying here are non-compact, it is necessary to include
the contributions not only of the usual volume term in the Euler integrand, but also a
contribution coming from the boundary 0M that one can introduce in order to compactify
the manifold. The Euler number is then given by

X:/)m+/ o, (B.1)
My O My

where M denotes the compact manifold introduced by cutting off the n-dimensional non-
compact manifold M with a boundary dM,. The answer is, of course, independent of
any smooth deformation of OMj. It is useful to introduce the notation M to denote the
limiting case where the boundary is pushed out all the way to infinity. The n-form W is
the usual Euler form, and the (n — 1)-form @ is the curvatura integra that is constructed
in [@], which supplies the boundary term.

It is now a mechanical exercise to calculate the contributions given in (B.]) to the
Euler number for each of the manifolds we have considered here. Considering first the

six-dimensional cases in section [, we find

14 40 14 40
Resolved Conifold : /\Il:—, / d=— X==+—==2,
M 27 oM 27 271 27
4 4 4 4
Deformed Conifold : / \I':——O, / <I>:—0, X:——O+—0:0’

2 2
R? bundle over 5% x 52 : /\Il 88 / (I):—O, X:§+—O:4,
M OM 27 27 27

R? bundle over CP? : /
M

=13 / =1, y=24lo3 @2

3 OM 3 3 3
where the boundary is taken to be at ¢ = tg, in the limit where ¢ty — oo. These results
are all consistent with expectation. The resolved conifold is an R* bundle over S?, whose
Euler number is the same as that for a direct product R* x S2, giving y = 1 x 2 = 2. The
deformed conifold is an R? bundle over S3, giving x = 1 x 0 = 0. The R? bundles over
52 % 8% and CP? give y =1x2x2=4 and y = 1 x 3 = 3 respectively.

It should be noted that even in a case such as the deformed conifold, which has zero
Euler number, the volume integral of the Euler integrand Fg is non-zero.

We now turn to the eight-dimensional metrics that we considered in section ] For
these, we find

111 17
RQbundleoverSQXSQXSQ:/ = / ¢ =—, X =38,
15 17
R?* bundle over 5% x 52 : /\I’:—, / ¢ =—, X =4,
M 8 oM 8
1
R2bundleoverS2xCP2:/ :@, / @:8—7 X =6,
v 128 onr 128
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R* bundle over CP? : / U = 1 , / o = g, X =3,
" 64 o 64
) 5 15 1
R* bundle over CP” : V=— o =—, x=4. (B.3)
M 4 oM 4

Again, these Euler numbers accord with one’s expectations, since the Euler number for a
fibre R™ over a base B is just given by the Euler number of B, and we know that x(S?) = 2,
X(CP?) = 3 and x(CP?) = 4.

Note that although one customarily tends to evaluate the volume and boundary contri-
butions to the Euler number by choosing a boundary surface that is pushed out to infinity,
as in our results presented above, the boundary can equally well be chosen to be at any
radius. We have explicitly verified for all the six-dimensional and eight-dimensional ex-
amples listed above that one indeed gets the identical results for [ v ¥+ /. on @ when the
bounding surface is taken to be at any radius r¢. This provides a useful check that the
computations of W and ®, which are quite involved, are indeed correct.

An interesting limiting choice for the radius of the bounding surface is to take it to
lie at rg = 0; i.e. at the origin, on the base B of the R" fibre bundle over B. In this case,
there is no contribution at all from the volume integral [ u ¥, and the entire contribution
to the Euler number comes from the boundary term |, an Py with @ evaluated at r = 0.
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