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Abstract

The classical cross section for low energy absorption of the RR-
scalar by a stack of noncommutative D3-branes in the large NS B-field
limit is calculated. In the spirit of AdS/CFT correspondence, this cross
section is related to two point function of a certain operator in noncom-
mutative Yang-Mills theory. Compared at the same gauge coupling,
the result agrees with that of obtained from ordinary D3-branes. This
is consistent with the expectation that ordinary and noncommutative
Yang-Mills theories are equivalent below the noncommutativity scale,
but it is a nontrivial prediction above this scale.
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Theories on noncommutative spaces arise naturally in string-M theory. In [1], the

system of parallel D-branes has been reinterpreted as a quantum space [2]. DLCQ

of M-theory with nonzero background three-form field along the null compactified

direction has been argued to have matrix theory description of the gauge theory on

noncommutative torus [3]. It has been shown in [4] that the D-brane world volume

theories are noncommutative at a certain limit of the compactification moduli. Ap-

plying Dirac’s constrained quantization method to open strings in the presence of NS

two-form (B) field, the spacetime coordinates of open string end points have been

shown not to commute [5][6]. Recently, by a direct string theoretic analysis, it has

been shown in [7] that noncommutativity in the effective action is natural in the pres-

ence of constant background B-field.

A particularly interesting example of all these is the noncommutative Yang-Mills

theory (NCYM) in four dimensions. The spectrum of IIB theory in the presence of

D3-branes on constant B-field consists of open and closed string excitations coupled

together. However, it is possible to take a low energy limit and scale some param-

eters such that the closed string modes decouple [7]. The resulting theory of open

string modes turn out to be the NCYM. In [8][9], a supergravity background has

been proposed to be dual to this system. This background can be obtained by first

constructing a solution which has nontrivial B-field dependence and then taking the

decoupling limit of [7]. Closed string two point scattering amplitudes in the presence

of B-field have been calculated and shown to be consistent with the ones encoded in

the gravity solution [11]. In [10], the solution has been shown to have holographic

features. Some properties of the NCYM have also been studied using its gravity dual

[9][12][13].

In this paper we will consider the process of classical low energy absorption of the

RR-scalar by noncommutative D3-branes in the large B-field limit. In the spirit of

AdS/CFT correspondence, the cross section calculated from the gravity side is related

to discontinuity of two point function of a certain operator in the dual NCYM [20].

This operator can be deduced from the coupling of the scalar to the D-brane world

volume effective action [14]. The fluctuations turn out to be non-minimally coupled

to background geometry. However, the coupling of RR-scalar to the effective world

volume theory is relatively simple which may help one to identify the operator in

NCYM. In calculating the absorption cross section, we will work with the D3-brane

solution of [9] before taking the decoupling limit. As discussed in the context of ordi-

2



nary D3-branes in [21], the decoupling limit identifies the so called throat region with

a certain limit 2 of the world volume theory. On the other hand, a large B-field is also

encountered in the decoupling limit considered in [7] 3, which means that the dual

theory is ”close” to its throat limit. For previous work on cross section calculations

on black-brane backgrounds see, for instance, [15]-[22].

The type IIB supergravity action in the string frame can be written as

SIIB =
1

2κ210

∫

dx10
√−g(e−2φ[R+ 4(∂φ)2 − 3

4
(∂B2)

2]

−1

2
(∂C)2 − 3

4
(∂C2 − C∂B2)

2 − 5

6
F (C4)

2 − ǫ10
48
C4∂C2∂B2 + ...) (1)

where ∂B2 = ∂[µBνλ] etc., F (C4) = ∂C4 + 3/4(B2∂C2 −C2∂B2), and the self duality

of F (C4) is imposed at the level of field equations. Specifically B2 denotes the NS two-

form field and C is the RR-scalar. The solution corresponding to noncommutative

D3-branes is given by [9],

ds2 = f−1/2[−dt2 + dx21 + h(dx23 + dx24)] + f1/2[dr2 + r2dΩ2
5], (2)

B23 =
sin θ

cos θ
f−1h, e2φ = g2sh, ∂(C2)01r =

1

gs
sin θ∂rf

−1, (3)

F (C4)0123r =
1

gs
cos θh∂f−1, (4)

where gs is the asymptotic value of the string coupling constant, and the functions f

and h are given by

f = 1 +
R4

r4
, h =

f

sin2 θ + cos2 θf
. (5)

The solution is asymptotically flat and there is a horizon at r = 0. The near horizon

geometry is AdS5 × S5. The mass per unit volume of (2) in string frame can be

calculated to be

M =
2π3R4

κ210g
2
s

, (6)

which is remarkably independent of θ. Note that the asymptotic value of B-field is

tan θ.

2The conformal limit in the case of ordinary D3-branes.
3In taking the decoupling limit one keeps B fixed and let α′ go to zero which corresponds

to a very large B-field for finite (but small) α′.
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From (1), the fluctuations of the RR-scalar on this background obeys

∇2C =
3

2
(∂B2)

2C, (7)

and thus couple to the background geometry non-minimally. We note that the con-

traction (∂B2)(∂C2) is zero. Respecting the translational invariance, we will assume

that C does not depend on the spatial coordinates of D3-branes. Separating the time

dependence and considering a spherically symmetric fluctuation (s-wave), which is

supposed to give the dominant contribution to cross section, we write

C = e−iwtφ(r). (8)

Following from (7), φ obeys

(hr5)−1 d

dr
(hr5

d

dr
φ) + ω2fφ− 16 sin2 θ cos2 θR8

r10
f−3h2φ = 0. (9)

Since this equation does not appear to be analytically solvable, following previous

work, we try to find an approximate solution by matching three different regions dic-

tated by the structure of the functions f and h. Low energy scattering is characterized

by ω
√
α′ ≪ 1 and the α′ corrections to background is suppressed when

√
α′/R ≪ 1.

Consistent with these two restrictions, we will consider the double scaling limit of

[18] and assume ωR≪ 1. Large B-field corresponds to cos θ ≪ 1 and we will further

analyze the case where cos θ ∼ ωR.

Region I: r ≫ R

In this region f ∼ h ∼ 1. Defining ρ = ωr and φ = ρ−5/2ψ, (9) simplifies as
(

d2

dρ2
− 15

4ρ2
+ 1− 16 sin2 θ cos2 θ(ωR)8

ρ10

)

ψ = 0. (10)

Since ρ ≫ ωR, the last term in this equation is negligible compared to the second

one. Ignoring this term, (10) can be solved in terms of Bessel and Neumann functions

which in turn gives

φ = a1 ρ−2J2(ρ) + a2 ρ−2N2(ρ), (11)

where a1 and a2 are constants.

Region II: R ≫ r ≫ R
√
cos θ

In this region f and h can be approximated as f ∼ h ∼ R4/r4. Using this form and

defining φ = ρ−1/2χ, (9) becomes
(

d2

dρ2
+

1

4ρ2
+

(ωR)4

ρ4
− 16 sin2 θ cos2 θ(ωR)4

ρ6

)

χ = 0. (12)
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In region II, ωR≫ ρ≫ ωR
√
cos θ and in that interval; the third term can be ignored

compared to the fourth one (with the assumption cos θ ∼ ωR), and the fourth term is

always very small with respect to the second one. Therefore, χ approximately obeys

d2

dρ2
χ+

1

4ρ2
χ = 0. (13)

Two solutions of this equation are ρ1/2 and ρ1/2 ln ρ, and thus

φ = b1 + b2 ln ρ, (14)

where b1 and b2 are constants.

Region III: R
√
cos θ ≫ r

In this region f ∼ R4/r4 and h ∼ 1/ cos2 θ. Defining z = ωR
√
cos θ/ρ and φ = z3/2Z,

equation (9) can be approximated to,

(

d2

dz2
− 15

4z2
+

(ωR)2

cos θ
− 16

sin2 θ

z6

)

Z = 0. (15)

In region III, z ≫ 1 and thus the last term can be ignored compared to the second

one. Dropping this term, two solutions of Z can be found to be z1/2J2(zωR/
√
cos θ)

and z1/2N2(zωR/
√
cos θ). This gives

φ = c1 ρ−2J2

(

(ωR)2

ρ

)

+ c2 ρ−2N2

(

(ωR)2

ρ

)

, (16)

where c1 and c2 are constants.

Matching the solutions:

In matching the solutions in different regions, we will use the small argument expan-

sion of the Bessel and Neumann functions

J2(x) ∼ x2

8
,

N2(x) ∼ −4

πx2
(1 +

x2

4
) +

1

4π
x2(lnx+ c), (17)

where c is a constant. Close to the horizon, we want only an ingoing wave which

implies

c1 = −i c2. (18)

The overall normalization of φ can be fixed by imposing c1 = i(ωR)4. To be able to

match the solution (16) to region II, we consider its behavior when ρ ∼ ωR
√
cos θ.

5



Assuming cos θ ∼ ωR, the arguments of the Bessel and Neumann functions in (16)

are small in this range and thus we can use the expansion (17). We see that there is

no term in this expansion to be matched by ln ρ of region II, therefore, we should set

b2 = 0. The dominant contribution of the rest of the terms when ρ ∼ ωR
√
cos θ is

the constant 4/π, which fixes b1 as

b1 =
4

π
. (19)

To match (11) to region II, we will consider its behavior when ρ ∼ ωR. The

arguments of Bessel and Neumann functions in (11) are also small in this range. The

leading contributions of their expansions are a1/8 and (−4a2)/(πρ
4), respectively. To

be able to match these to (14), one should set

a2 = 0, a1 =
32

π
. (20)

Combining these, we obtain the following functions in three regions

φI =
32

π
ρ−2J2(ρ),

φII =
4

π
,

φIII = i(ωR)4ρ−2

[

J2

(

(ωR)2

ρ

)

+ iN2

(

(ωR)2

ρ

)]

, (21)

which smoothly overlaps and give an approximate solution to (9)4. To calculate the

cross section one should compare the incoming flux at the horizon with the incoming

flux at the infinity. At this stage, we recognize that the same functions appear in

[18] in the solutions of the massless wave equation on ordinary D3-brane background.

The cross section corresponding to the solution (21) can be read from [18] to be

σabs =
π4

8
ω3R8. (22)

We now try to rewrite σabs in terms of the gauge coupling constant g̃YM of NCYM.

The solution (2) can be shown to preserve 1/2 supersymmetries of the theory.

This can easily be seen by nothing that (2) is related to ordinary D3-brane solution

by a chain of T-duality transformations (namely, first a T-duality along x3, then a

rotation by an angle θ along the x2 − x3 plane, and then another T-duality along

4To ensure that φ can be differentiated twice, one has to let b2 = O(ωR) and a2 =
O((ωR)5), instead of setting them to zero. To zeroth order in ωR, this modification does
not change the main result (22).
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x3) and T-duality respects supersymmetry when the Killing spinor is independent of

the direction of the duality [23]. From a world-sheet point of view, one can also see

that the parallel D3-branes on constant, invertible, B-field backgrounds also preserve

1/2 supersymmetries since boundary conditions identify the left moving supercur-

rents with the right moving ones. This is consistent with the identification of this

configuration with the gravity solution. Due to this BPS property, the noncommuta-

tive D3-brane tension, when calculated from an effective action point of view, should

be equal to the mass per unit volume (6). We will now carry out this effective field

theory calculation to fix the value of R.

The Dirac-Born-Infeld action corresponding to a noncommutative D3-brane can

be written as

SDBI = T3

∫

d4σ
√

− det(ĝ + B̂), (23)

where σi are coordinates on the D3 brane, T3 is the ordinary D3-brane tension when

B = 0, ĝ and B̂ are pull-backs of flat Minkowski metric ηµν and constant B-field Bµν ,

respectively,

ĝij = ∂iX
µ∂jX

νηµν , (24)

B̂ij = ∂iX
µ∂jX

νBµν . (25)

From SDBI , one can calculate the conjugate momentum densities to coordinate fields

Xµ as

Pµ =
δSDBI

δ∂τXµ
, (26)

where τ is the world volume time coordinate.

The tension T̃3 of a noncommutative D3-brane can be defined as the energy density

corresponding to a flat, non-exited brane. This can be described in a physical gauge

by Xi = σi, Xα = const. For such a brane, (26) gives

Pµ = T3

√

− det(ηij +Bij) δ
0
µ, (27)

which corresponds to the momentum density of a massive object with zero velocity.

The energy per unit volume of such an object can be read from P0 component of the

momentum. This gives the tension for a noncommutative D3-brane as

T̃3 = T3

√

− det(ηij +Bij). (28)
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Note that the ordinary D3-brane tension and the 10-dimensional gravitational cou-

pling constant are

T3 =
1

(2π)3α′2gs
, 2κ210 = (2π)7α′4. (29)

In the solution (2), B-field is a rank 2 matrix. Using (28) and (29) we obtain,

T̃3 =
1

(2π)3α′2gs cos θ
. (30)

The total energy of N -coincident D3-branes is given by NT̃3 which should be equal

to (6). This gives the parameter R as5

R4 =
4πα′2gsN

cos θ
. (31)

On the other hand the gauge coupling constant g̃YM of NCYM, can be read from [7]

to be

g̃2YM = 2πgs

√

− det(ηij +Bij),

=
2πgs
cos θ

. (32)

Note that for θ = 0, this gives the well known relation between the ordinary Yang-

Mills and string coupling constants. Combining (32) with (31), the cross section (22)

can be rewritten in terms of g̃YM as

σabs =
π4

2
ω3α′4N2g̃4YM . (33)

Remarkably, all θ dependence is hidden in g̃YM . The classical cross section for low

energy absorption of RR-scalar by ordinary D3-branes (which is identical to massless

scalar absorption) has been calculated in [18] and the result is (33) in which g̃YM

is replaced with the gauge coupling gYM of ordinary Yang-Mills theory. Comparing

NCYM with the ordinary Yang-Mills at the same coupling

g̃YM = gYM , (34)

the result of [18] exactly agrees with (33).

As previously noted, (33) is related to discontinuity of the cut in the two point

function of a certain operator in NCYM. The discontinuity in momentum space is
5 Exactly the same expression for R is given in [9].
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evaluated at p2 = ω2. Since ω
√
α′ ≪ 1, (33) is valid below the string scale. On

the other hand, since the noncommutativity (NC) scale is roughly given by
√
α′ cos θ

(see, for instance, [7]) and cos θ ≪ 1, NC scale is also below the string scale. Be-

low the NC scale, ordinary Yang-Mills theory is a good approximation to NCYM,

and the equivalence of cross sections is consistent with this fact. Between NC and

string scales, (33) is a nontrivial prediction for NCYM. We note that, (33) is the first

term in an expansion in the parameter (ωR), which in NCYM corresponds to per-

turbing field theory by higher and higher dimensional operators and a loop expansion.

The corresponding operators in dual theories can be deduced from the coupling of

the scalars at hand to the effective world volume theories. For the ordinary Yang-Mills

theory, leading order coupling of RR-scalar to the world volume is

ǫijklC Tr Fij Fkl. (35)

The classical cross section for the absorption of RR-scalar by ordinary D3-branes has

been shown to agree with a tree level world volume calculation which involves the

above coupling [19]. This indicates (with a non-renormalization theorem) that the

leading term of the corresponding operator in the dual theory is ǫijkl Tr Fij Fkl.

Naturally, one may try to identify the coupling of RR-scalar to a noncommuta-

tive D3-brane world volume. As discussed in [7], it is very convenient to write the

effective action in terms of the noncommutative gauge fields and open string parame-

ters. When expressed in these variables, the effective action in the presence of B-field

can be deduced form the ordinary one. From (35), the coupling of RR-scalar to the

noncommutative D3-brane world volume can be written as

ǫijklC ∗ TrF̂ij ∗ F̂kl, (36)

where F̂ is the noncommutative gauge field strength, ǫ-tensor and raising of indices

refer to open string metric and ∗-product is defined by

(f ∗ g)(x) = e
1

2
θij ∂

χi
∂

ηj f(x+ χ)g(x+ η)|χ=η=0. (37)

The open string metric and noncommutativity parameter θij is fixed in terms of the

background Minkowski metric and B-field [7]. This indicates that the leading order

term of the operator in the NCYM is ǫijkl Tr F̂ij ∗ F̂kl. However, this term is not

gauge invariant unless it is integrated over noncommuting directions.
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Although it brakes the translational invariance, it is interesting to consider the

effects of adding non-zero momentum along the noncommuting directions x2 and x3.

For this, one modifies (8) as

C = e−iwtei
~k.~xφ(r), (38)

where ~k.~x = k2x2 + k3x3. Due to this modification, (9) picks up an extra term to the

left hand side which is

− k2fh−1φ, (39)

where k2 = k22 + k23. It is easy to see that perturbative scattering requires ω > k.

In regions II and III, this term can be neglected compared to another term in (9),

namely ω2fφ, since h ≫ 1 in these regions and ω > k. On the other hand, in region

I, φI is modified as

φI =
32

π
(sρ)−2J2(sρ), (40)

where the parameter s is

s =

√

1− k2

ω2
. (41)

The flux at infinity calculated from the modified φI is changed by a factor of 1/s4

and thus

σabs(k) = s4σabs(0). (42)

For ordinary D3-branes, this factor can be calculated to be s8 which seems to imply

a disagreement for dual theories. However, we note that it is difficult to give a world

volume interpretation to cross sections when s 6= 0. For instance, following [18], the

factor of s8 cannot be obtained by a world volume scattering calculation for ordinary

D3-branes. Furthermore, due to the fact that the corresponding operator in dual

Yang-Mills theory is also a scalar operator, the two point function of this operator

can only depend on p2 and the discontinuity in the complex plane can only depend on

ω2 (or may be with a slight modification on (ω2−k2)) which is not consistent with the

factor s8. We believe that the broken translational invariance ruins the connection

between cross sections and the two point functions, and is responsible for these dis-

agreements. Finally, it is also worth to mention that the wave equation for minimally

coupled scalars can be solved exactly in Einstein frame and the cross sections agree

to all orders when k = 0 [24].

One may try to repeat same calculations for noncommutative M5-branes using

the solution given in [9]. For ordinary M5-branes, the traceless metric perturbations
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polarized along the 5-branes have been shown to obey minimally coupled scalar equa-

tions [19]. One can easily show that this is also true for noncommutative M5-branes.

Furthermore, the massless scalar equation on noncommutative M5-branes turns out

to be the same with the one on the ordinary M5 branes. Therefore, the classical cross

sections corresponding to absorption of traceless metric perturbations polarized along

the 5-branes are identical for both type of branes.

Note added for the hep-th version: After the submission of the present paper to

the net, we received [24] and [25], which also consider scalar absorption by noncommu-

tative D3-branes. In [24], the authors claim that to see effects of noncommutativity

one should consider waves propagating along noncommuting directions on the brane.

However, as discussed above, interpretation of this from a world volume theory point

of view is not clear. In [25], the authors claim that in the B → ∞, i.e. θ → π/2,

limit the noncommutativity effects are turned on, and in this limit the RR-scalar is

nonpropagating. But, as shown in [7], even in the presence of constant and finite B-

field, noncommutativity in the effective field theory is inevitable. On the other hand,

taking B → ∞ limit is a delicate issue. For instance, to make contact with string

theory, the parameter R should be fixed as in (31) and thus diverges at θ = π/2.

To avoid such infinities, one should scale other parameters in a suitable way and this

gives the geometry found in [9]. Therefore, contrary what is claimed in [25], the NS

3-form and the RR 5-form field strengths are not zero at θ = π/2 . Beside that,

even for the solution in which NS 3-form and RR 5-form field strengths are zero, one

can still introduce fluctuations of these fields. In either case, it can be shown that

RR-scalar is not necessarily nonpropagating when θ = π/2.
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