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Abstract We discuss some new results concerning Gap Conjecture on group growth
and present a reduction of it (and its ∗-version) to several special classes of groups.
Namely we show that its validity for the classes of simple groups and residually finite
groups will imply the Gap Conjecture in full generality. A similar type reduction holds
if the Conjecture is valid for residually polycyclic groups and just-infinite groups. The
cases of residually solvable groups and right orderable groups are considered as well.

1 Introduction

Growth functions of finitely generated groups were introduced by Schvarz [37] and
independently by Milnor [29], and remain popular subject of geometric group theory.
Growth of a finitely generated group can be polynomial, exponential or intermedi-
ate between polynomial and exponential. The class of groups of polynomial growth
coincides with the class of virtually nilpotent groups as was conjectured by Mil-
nor and confirmed by Gromov [24]. Milnor’s problem on the existence of groups of
intermediate growth was solved by the author in [12,13], where for any prime p an
uncountable family of 2-generated torsion p-groups G(p)

ω with different types of inter-
mediate growth was constructed. Here ω is a parameter of construction taking values
in the space of infinite sequences over the alphabet on p + 1 letters. All groups G(p)

ω

satisfy the following lower bound on growth function
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114 R. Grigorchuk

γGω
(n) � e

√
n, (1.1)

where γG(n) denotes the growth function of a group G and � is a natural comparison
of growth functions (see the next section for definition). The inequality (1.1) just
indicates that growth of a group is not less than the growth of the function e

√
n .

All groups from families G(p)
ω are residually finite-p groups (i.e. are approximated

by finite p-groups). In [15] the author proved that the lower bound (1.1) is universal
for all residually finite-p groups and this fact has a straightforward generalization to
residually nilpotent groups, as it is indicated in [28].

The paper [13] also contains an example of a torsion free group of intermediate
growth, which happened to be right orderable group, as was shown in [19]. For this
group the lower bound (1.1) also holds.

In the ICM Kyoto paper [23] the author raised a question if the function e
√

n gives
a universal lower bound for all groups of intermediate growth. Moreover, later he
conjectured that indeed this is the case. The corresponding conjecture is now called
the Gap Conjecture on group growth. In this note we collect known facts related
to the Conjecture and present some new results. A recent paper [22] gives further
information about the history and developments around the notion of growth in group
theory.

The first part of the note is introductory. The second part begins with the case
of residually solvable groups where basically we present some of results of Wilson
from [40,42] and a consequence from them. Then we consider the case of right order-
able groups, and the final part contains two reductions of the Conjecture (and its
∗-version) to the classes of residually finite groups and simple groups (Theorem 7.4),
and to the class of just-infinite groups, modulo its correctness for residually polycyclic
groups (Theorem 7.3).

2 Preliminary facts

Let G be a finitely generated group with a system of generators A = {a1, a2, . . . , am}
(throughout the paper we consider only infinite finitely generated groups and only
finite systems of generators). The length |g| = |g|A of an element g ∈ G with respect
to A is the length n of the shortest presentation of g in the form

g = a±1
i1

a±1
i2

· · · a±1
in

,

where ai j are elements in A. It depends on the set of generators, but for any two
systems of generators A and B there is a constant C ∈ N such that the inequalities

|g|A ≤ C |g|B, |g|B ≤ C |g|A. (2.1)

hold.
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On the Gap Conjecture concerning group growth 115

The growth function of a group G with respect to the generating set A is the function

γ A
G (n) = ∣

∣{g ∈ G : |g|A ≤ n}∣∣,

where |E | denotes the cardinality of a set E, and n is a natural number.
If � = �(G, A) is the Cayley graph of a group G with respect to the generating

set A, then |g| is the combinatorial distance between vertices g and e (the identity
element in G), and γ A

G (n) counts the number of vertices at combinatorial distance≤ n
from e (i.e., it counts the number of elements in the ball of radius n with center at the
identity element).

It follows from (2.1) that growth functions γ A
G (n), γ B

G (n) satisfy the inequalities

γ A
G (n) ≤ γ B

G (Cn), γ B
G (n) ≤ γ A

G (Cn). (2.2)

The dependence of the growth function on generating set is inconvenience and it
is customary to avoid it by using the following trick. Two functions on the naturals
γ1 and γ2 are called equivalent (written γ1 ∼ γ2) if there is a constant C ∈ N such
that γ1(n) ≤ Cγ2(Cn), γ2(n) ≤ Cγ1(Cn) for all n ≥ 1. Then according to (2.2),
the growth functions constructed with respect to two different systems of generators
are equivalent. The class of equivalence [γ A

G ] of growth function is called degree of
growth, or rate of growth of G. It is an invariant not only up to isomorphism but also
up to weaker equivalence relation called quasi-isometry [8].

We will also consider a preoder 	 on the set of growth functions:

γ1(n) 	 γ2(n) (2.3)

if there is an integer C > 1 such that γ1(n) ≤ γ2(Cn) for all n ≥ 1. This converts the
setW of growth degrees of finitely generated groups into a partially ordered set. The
notation ≺ will be used in this article to indicate a strict inequality.

Let us remind some basic facts about growth rates that will be used in the paper.

• The power functions nα belong to different equivalence classes for differentα ≥ 0.
• The polynomial function Pd(n) = cdnd + · · · + c1n + c0, where cd �= 0 is
equivalent to the power function nd .

• All exponential functions λn, λ > 1 are equivalent and belong to the class [en].
• All functions of intermediate type enα

, 0 < α < 1 belong to different equivalence
classes.

This is not a complete list of rates of growth that a group may have. Much more is
provided in [12] and [3].

It is easy to see that growth of a group coincides with the growth of a subgroup
of finite index, and that growth of a group is not smaller than the growth of a finitely
generated subgroup or of a factor group. Since a group with m generators can be
presented as a quotient group of a free group of rank m, the growth of a finitely
generated group cannot be faster than exponential (i.e., it can not be superexponential).
Therefore we can split the growth types into three classes:
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116 R. Grigorchuk

• Polynomial growth. A group G has polynomial growth if there are constantsC > 0
and d > 0 such that γ (n) < Cnd for all n ≥ 1. Minimal d with this property is
called the degree of polynomial growth.

• Intermediate growth. A group G has intermediate growth if γ (n) grows faster than
any polynomial but slower than any exponent function λn, λ > 1 (i.e. γ (n) ≺ en).

• Exponential growth. A group G has exponential growth if γ (n) is equivalent to en .

The question on the existence of groups of intermediate growth was raised in 1968
by Milnor [30]. For many classes of groups (for instance for linear groups by Tits
alternative [38], or for solvable groups by the results of Milnor [31] and Wolf [43])
intermediate growth is impossible. Milnor’s question was answered by author in 1983
[10,12,20], where it was shown that there are uncountably many 2-generated torsion
groups of intermediate growth. Moreover, it was shown in [12,13,20] that for any
prime p a partially ordered set Wp of growth degrees of finitely generated torsion
p-groups contains uncountable chain and contains uncountable anti-chain. The imme-
diate consequence of this result is the existence of uncountably many quasi-isometry
equivalence classes of finitely generated groups (in fact 2-generated groups) [12].

Below we will use several times the following lemma [24, page 59].

Lemma 2.1 (Splitting lemma) Let G be a finitely generated group of polynomial
growth of degree d and H � G be a normal subgroup with quotient G/H being an
infinite cyclic group. Then H has polynomial growth of degree ≤ d − 1.

3 Gap Conjecture and its modifications

We will say that a group is virtually nilpotent (virtually solvable) if it contains nilpo-
tent (solvable) subgroup of finite index. It was observed around 1968 byMilnor, Wolf,
Hartly and Guivarc’h that a nilpotent group has polynomial growth and hence a virtu-
ally nilpotent group also has polynomial growth. In his remarkable paper [24], Gromov
established the converse.

Theorem 3.1 (Gromov 1981) If a finitely generated group G has polynomial growth,
then G contains a nilpotent subgroup of finite index.

In fact Gromov obtained stronger result about polynomial growth.

Theorem 3.2 For any positive integers d and k, there exist positive integers R, N and
q with the following property. If a group G with a fixed system of generators satisfies
the inequality γ (n) ≤ knd for n = 1, 2, . . . , R then G contains a nilpotent subgroup
H of index at most q and whose degree of nilpotence is at most N .

The above theorem implies existence of a function υ growing faster than any poly-
nomial and such that if γG ≺ υ, then growth of G is polynomial.

Indeed, taking a sequence {ki , di }∞i=1 with ki → ∞ and di → ∞when i → ∞ and
the corresponding sequence {Ri }∞i=1, whose existence follows from Theorem 3.2, one
can build a function υ(n) which coincides with the polynomial ki ndi on the interval
[Ri−1 + 1, Ri ] and separates polynomial growth from intermediate. Therefore there
is a Gap in the scale of rates of growth of finitely generated groups and a big problem

123



On the Gap Conjecture concerning group growth 117

is to find the optimal function (or at least to provide good lower and upper bounds
for it) which separates polynomial growth from intermediate. The best known result
in this direction is the function n(log log n)c

(c some positive constant) which appeared
recently in the paper of Shalom and Tao [36, Corollary 8.6].

The lower bound of the type e
√

n for all groups G(p)
ω of intermediate growth estab-

lished in [10,12,13,20] allowed the author to guess that equivalence class of function
e
√

n could be a good candidate for a “border” between polynomial and exponential
growth. This guess was further strengthened in 1988 when the author obtained the
result published in [15] (see Theorem 5.1). For the first time the Gap Conjecture was
formulated in the form of a question in 1991 (see [23]).

Conjecture 1 (Gap Conjecture) If the growth function γG(n) of a finitely generated
group G is strictly bounded from above by e

√
n (i.e. if γG(n) ≺ e

√
n), then growth of

G is polynomial.

The question of independent interest is whether there is a group, or more generally
a cancellative semigroup, with growth equivalent to e

√
n (for the role of cancellative

semigroups in growth business see [14]).
In [22] the author formulated a number of conjectures relevant to the main Con-

jecture discussed there and in this note. Let us recall some of them as they will play
some role in what follow.

Conjecture 2 (Gap Conjecture with parameter β, 0 < β < 1). If the growth function
γG(n) of a finitely generated group G is strictly bounded from above by enβ

(i.e. if
γ (n) ≺ enβ

) then the growth of G is polynomial.

Thus the Gap Conjecture with parameter 1/2 is just the Gap Conjecture 1. If β <

1/2 then the Gap Conjecture with parameter β is weaker than the Gap Conjecture,
and if β > 1/2 then it is stronger than the Gap Conjecture.

Conjecture 3 (Weak Gap Conjecture). There is a β, 0 < β < 1 such that if γG(n) ≺
enβ

then the Gap Conjecture with parameter β holds.

The gap type conjectures can be formulated for other asymptotic characteristics
of groups like return probabilities P(n)

e,e (e denotes the identity element) for a non
degenerate random walk on a group, Fölner function F(n), or spectral densityN (λ).

There is a close relation between them and the Gap Conjecture on growth, which was
mentioned in [22]. When writing this note the author realized that to understand better
the relation between different forms of the gap type conjectures it is useful to consider
in parallel to the Conjecture 2 [which we will denote C(β)] a stronger version of it,
which we will denote C∗(β):

Conjecture 4 (ConjectureC∗(β)) If a group C is not virtually nilpotent then γC (n) �
enβ

.

It is obvious that C∗(β) implies C(β) but the opposite is not clear. This is related
to the fact that there are groups with incomparable growths [12] as the set W of
rates of growth of finitely generated groups is not linear ordered. The motivation for
introducing a ∗-version of the Gap Conjecture will be more clear when a second note
[21] of the author is submitted to the arXiv.
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4 Growth and elementary amenable groups

Amenable groups were introduced by von Neumann in 1929 [39]. Now they play
extremely important role in many branches of mathematics. Let AG denote the class
of amenable groups. By a theorem of Adelson-Velskii [1], each finitely generated
group of subexponential growth belongs to the class AG. This class contains finite
groups and commutative groups and is closed under the following operations:

(1) taking a subgroup,
(2) taking a quotient group,
(3) extensions,
(4) unions (i.e. if for some net {α}, Gα ∈ AG and Gα ⊂ Gβ if α < β then

∪αGα ∈ AG).

Let EG be the class of elementary amenable groups i.e., the smallest class of
groups containing finite groups, commutative groups which is closed with respect to
the operations (1)–(4). For instance, virtually nilpotent and, more generally, virtually
solvable groups belong to the class EG. This concept defined by Day in [6] got further
development in the article [5] of Chou who suggested the following approach to study
of elementary amenable groups.

For each ordinalα define a subclass EGα of EG in the followingway. EG0 consists
of finite groups and commutative groups. If α is a limit ordinal then

EGα =
⋃

β	α

EGβ.

Further, EGα+1 is defined as as the class of groups which are extensions of groups
from set EGα by groups from the same set or are direct limits of a family of groups
from set EGα . It is known (and easy to check) that each of the classes EGα is closed
with respect to the operations (1) and (2) [5]. By the elementary complexity of a group
G ∈ EG we call the smallest α such that G ∈ EGα.

It was shown in [5] that class EG does not contain groups of intermediate growth,
groups of Burnside type (i.e. finitely generated infinite torsion groups), and finitely
generated infinite simple groups. A further study of elementary groups and its gener-
alizations was done by Osin [33].

A larger class SG of subexponentially amenable groups was (implicitly) introduced
in [9], and explicitly in [16], and studied in [7] and other papers.

A useful fact about groups of intermediate growth which we will use is due to
Rosset [35].

Theorem 4.1 If G is a finitely generated group which does not grow exponentially
and H is a normal subgroup such that G/H is solvable, then H is finitely generated.

We propose the following generalization of this result.

Theorem 4.2 Let G be a finitely generated group with no free subsemigroup on two
generators and let the quotient G/N be an elementary amenable group. Then the
kernel N is a finitely generated group.

The latter two statements and the chain of further statements of the same spirit that
appeared in the literature were initiated by the following lemma of Milnor [31]: if G
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On the Gap Conjecture concerning group growth 119

is a finitely generated group with subexponential growth, and if x, y ∈ G, then the
group generated by the set of conjugates y, xyx−1, x2yx−2, . . . is finitely generated.

Proof For the proof of the Theorem 4.2 we will apply induction on elementary com-
plexity α of the quotient group H = G/N . If complexity is 0 then the group is either
finite or abelian. In the first case N is finitely generated for obvious reason. In the
second case we apply the following statements from the paper of Longobardi and
Rhemtulla [27, Lemmas 1,2]. ��
Lemma 4.3 If G has no free subsemigroups, then for all a, b ∈ G the subgroup
〈abn

, n ∈ Z〉 is finitely generated.

Lemma 4.4 Let G be a finitely generated group. If N � G, G/N is cyclic, and
〈abn

, n ∈ Z〉 is finitely generated for all a, b ∈ G, then N is finitely generated.

Assume that the statement of the theorem is correct for quotients H = G/H with
complexity α ≤ β − 1 for some ordinal β, β ≥ 1. The group H, being finitely
generated, allows a short exact sequence

{1} → A → H → B → {1},

where A, B ∈ EGβ−1. Let ϕ : G → G/N be the canonical homomorphism and
M = ϕ−1(A).Then M is a normal subgroup inG andG/M � G/N/M/N � H/A �
B. By the inductive assumption M is finitely generated and has no free subsemigroup
on two generators. As M/N � A, again by induction, N is finitely generated and we
are done.

We will discuss just-infinite groups in detail in the last section. But let us prove now
a preliminary result which will be used later. Recall that a group is called just-infinite if
it is infinite, but every proper quotient is finite (i.e. every nontrivial normal subgroup is
of finite index). A group G is called hereditary just-infinite if it is residually finite and
every subgroup H < G of finite index (including G itself) is just infinite. Observe that
a subgroup of finite index of a hereditary just-infinite group is hereditary just-infinite.

We learned the following result from de Cournulier. A proof is provided here as
there is no one in the literature.

Theorem 4.5 Let G be a finitely generated hereditary just-infinite group, and suppose
that G belongs to the class EG of elementary amenable groups. Then G is isomorphic
either to the infinite cyclic group Z or to the infinite dihedral group D∞.

Proof If G ∈ EG0 then G is abelian and hence G � Z. Assume that the statement
is correct for all groups from classes EGα, α < β for some ordinal β. Let us prove
it for β. Assume G ∈ EGβ and β is smallest with this property. β can not be a limit
ordinal because G is finitely generated. Therefore G is the extension of a group A
by a group B = G/A, where A, B ∈ EGβ−1. In fact B is a finite group (as G is
just-infinite). As a subgroup of finite index in a hereditary just-infinite group, A is
hereditary just-infinite and moreover finitely generated (as a subgroup of finite index
in a finitely generated group). By inductive assumption A is isomorphic either to the
infinite cyclic group Z or to the infinite dihedral group D∞. In particular G has a
normal subgroup H of finite index isomorphic to Z.
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120 R. Grigorchuk

LetG act on H by conjugation. Thenweget a homomorphismψ : G → Aut (H) �
Z2. If ψ(G) = {1}, then H is a central subgroup. It is a standard fact in group theory
(see for instance [25, Proposition 2.4.4]) that if there is a central subgroup of finite
index inG then the commutator subgroupG ′ is finite. But asG is just-infinite,G ′ = {1}
and so G is abelian, hence G � Z in this case.

If ψ(G) = Aut (H) then N = kerψ is a centralizer CG(H) of H in G. Subgroup
N has index 2 in G, is just-infinite and hence by the same reason as above N ′ = {1},
so N is abelian. Being finitely generated and just infinite implies N � Z.

Let x ∈ G, x /∈ N . The element x acts on N by conjugation mapping each element
to its inverse. In particular, x−1(x2)x = x−2, so (x2)2 = 1. But x2 ∈ N . Since N is
torsion free x2 = 1. Therefore

G = 〈x, N 〉 = 〈x, y : x2 = 1, x−1yx = y−1〉 � D∞,

where y is a generator of N . ��

5 Gap Conjecture for residually solvable groups

Recall that a group G is said to be a residually finite-p group (sometimes also called
residually finite p-group) if it is approximated by finite p-groups, i.e., for any g ∈ G
there is a finite p-group H and a homomorphism φ : G → H with φ(g) �= 1. This
class is, of course, smaller than the class of residually finite groups, but it is pretty
large. For instance, Golod-Shafarevich groups, p-groups Gω from [12,13], and many
other groups belong to this class.

Theorem 5.1 [15] Let G be a finitely generated residually finite-p group. If γG(n) ≺
e
√

n then G has polynomial growth.

As was established by the author in a discussion with Lubotzky and Mann during
the conference on profinite groups in Oberwolfach in 1990, the same arguments as
given in [12] combined with the following lemma from [28].

Lemma 5.2 (Lemma 1.7, [28]) Let G be a finitely generated residually nilpotent
group. Assume that for every prime p the pro-p-closure G p̂ of G is p-adic analytic.
Then G is linear.

allows one to prove a stronger version of the above theorem (see the Remark after
Theorem 1.8 in [28]):

Theorem 5.3 Let G be a residually nilpotent finitely generated group. If γG(n) ≺ e
√

n

then G has polynomial growth.

To be linear means to be isomorphic to a subgroup of the linear group GLn(K)

for some field K. By Tits alternative [38] every finitely generated linear group either
contains a free subgroup on two generators or is virtually solvable. Hence the above
lemma immediately reduces Theorem 5.3 to Theorem 5.1.

The latter two theorems (where the first one is the corresponding statement from
[15] while the second one is a corrected form of what is stated in Remark on page
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On the Gap Conjecture concerning group growth 121

527 in [28]) show that Gap Conjecture C(1/2) holds for the class of residually finite-
p groups and more generally for the class of residually nilpotent groups. In fact,
arguments provided in [15,28] allow to prove stronger conjecture C∗(1/2) for these
classes of groups.

Let p be a prime and a(p)
n be the n-th coefficient of the power series given by

∞
∑

n=0

a(p)
n zn =

∞
∏

n=1

1 − z pn

1 − zn
.

Then the lower bound a(p)
n � e

√
n holds. Moreover if a group G is a residually finite-p

group and is not virtually nilpotent then for any system of generators A

γ A
G (n) ≥ a(p)

n , n = 1, 2, . . .

(see the relation (23) and Lemma 8 in [15]). Observe that the latter statement is valid
not only in the case when A is a system of elements that generate G as a group but
even in a more general case when A is a generating set for the group G considered
as a semigroup. In fact, growth function of any group is bounded from below by
a sequence of coefficients of Hilbert-Poincaré series of the universal p-enveloping
algebra of the restricted Lie p-algebra associated with the group using the factors of
the lower p-central series [15].

Theorem 1.8 from [28] contains an interesting approach to polynomial growth type
theorems in the case of residually nilpotent groups. Moreover, as is mentioned in [28]
in the remark after the theorem, the proof provided there yields the same conclusion

under a weaker assumption: γG(n) ≺ 22
√

log2 n
.

Surprisingly, in his first paper on the gap type problem [42] Wilson used a similar

upper bound γG(n) ≺ ee(1/2)
√
ln n

tomeasure size of a gap for residually solvable groups.
Wilson’s approach is quite different from those that were used before and is based on
exploring self-centralizing chief factors in finite solvable groups.

Recall that a chief factor of a group G is a (nontrivial) minimal normal subgroup
of some quotient G/N , and that L/M is a self-centralizing chief factor of a group
G if M is normal in G, L/M is a minimal normal subgroup of G/M, and L/M =
CG/M (L/M). One of the results in [42] is

Theorem 5.4 (Wilson) Let G be a residually solvable group of subexponential growth
whose finite self-centralizing chief factors all have rank at most k. Then G has a
residually nilpotent normal subgroup whose index is finite and bounded in terms of k
and γG(n).

If, in addition γG(n) ≺ e
√

n, then G has a nilpotent normal subgroup whose index
is finite and bounded in terms of k and γG(n).

The proof of this result is based on the following lemma the proof of which uses
ultraproducts.

Lemma 5.5 (Lemma 2.1, [42]) Let k be a positive integer and α : N → R+ a function
such that α(n)/n → 0 as n → ∞. Suppose that G is a finite solvable group having (i)
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a self-centralizing minimal normal subgroup V of rank at most k and (ii) a generating
set A such that γ A

G (n) ≤ eα(n) for all n. Then |G/V | is bounded in terms of k and α

alone.

One of the almost immediate corollaries of the technique developed in [42] are the
facts stated below in Theorems 5.6 and 5.7.

Recall that a group is called supersolvable if it has a finite normal descending
chain of subgroups with cyclic quotients. Every finitely generated nilpotent group is
supersolvable [34], and the symmetric group Sym(4) is the simplest example of a
solvable but not supersolvable group.

Theorem 5.6 The Gap Conjecture holds for residually supersolvable groups. More-
over, the conjecture C∗(1/2) holds for residually supersolvable groups.

Developing his technique and using the known facts about maximal primitive solv-
able subgroups of GLn(p) (p prime) Wilson in [40] proved that the Gap Conjecture
with parameter 1/6 holds for residually solvable groups. In fact what follows from
arguments in [42], combined with arguments from [15,28] and with what was written
above, can be formulated as

Theorem 5.7 The conjecture C∗(1/6) holds for residually solvable groups.

There is a hope that eventually the Gap Conjecture and its ∗-version will be proved
for residually solvable groups, or at least for residually polycyclic groups (which is
the same as to prove it for groups approximated by finite solvable groups, because
polycyclic groups are residually finite [34]). If the latter is done, then we will have
complete reduction of the Gap Conjecture to just-infinite groups (more on this in the
last section).

6 Gap Conjecture for right orderable groups

Recall that a group is called right orderable if there is a linear order on the set of its
elements invariant with respect to multiplication on the right. In a similar way are
defined left orderable groups. A group is bi-orderable (or totally orderable) if there
is a linear order invariant with respect to multiplication on the left and on the right.
Every right orderable group is left orderable and vise versa but there are right orderable
groupswhich are not totally orderable (see [26] for examples). Aswas shown byMachi
and the author the class of finitely generated right orderable groups of intermediate
growth is nonempty [19]. The corresponding group Ĝ was earlier constructed in [16] as
an example of a torsion free group of intermediate growth. It was implicitly observed
in [19] that the class of countable right orderable groups coincides with the class of
groups acting faithfully by homeomorphisms on the line R (or, what is the same, on
the interval [0, 1]). Recently Erschler and Bartholdi managed to compute the growth
of Ĝ which happens to be elog(n)nα0 where α0 = log 2/ log(2/ρ) ≈ 0.7674, and ρ is
the real root of the polynomial x3 + x2 + x − 2. The question if there exists a finitely
generated, totally orderable group of intermediate growth is still open.

The Gap Conjecture and it modifications stated in Sect. 3 are interesting problems
even for the class of right orderable groups. Our next result makes some contribution to
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On the Gap Conjecture concerning group growth 123

this topic. The result ofWilson combinedwith theorems ofMorris [32] andRosset [35]
can be used to prove the following statement.

Theorem 6.1 (i) The Gap Conjecture with parameter 1/6, and, moreover, the con-
jecture C∗(1/6) hold for right orderable groups.

(ii) The Gap Conjecture C(1/2) [or its ∗-version C∗(1/2)] holds for right orderable
groups if it [or its ∗-version C∗(1/2)] holds for residually polycyclic groups.

Proof (i) Let G be a finitely generated right orderable group with growth ≺ en1/6 . In
[32]Morris proved that every finitely generated right orderable amenable group is indi-
cable (i.e. can be mapped ontoZ). As by Adelson-Velskii theorem [1] a group of inter-
mediate growth is amenable, we conclude that the abelianization Gab = G/[G, G] is
infinite and hence has a decomposition Gab = G−

ab ⊕ G+
ab where G−

ab � Z
d , d ≥ 1

is a torsion free part of an abelian group and G+
ab is a torsion part. Let N � G be a

normal subgroup such that G/N = G−
ab. Since the commutator subgroup of a group is

a characteristic group and the torsion free part of abelian group also is a characteristic
subgroup we conclude that N is a characteristic subgroup of G. By Theorem 4.1 N is
a finitely generated group. Therefore we can proceed with N as we did with G. This
allows us to get a descending chain

G > G1 > G2 > · · · (6.1)

(whereG1 = N etc) of characteristic subgroupswith the property thatGi/Gi+1 � Z
di

if Gi+1 �= {1}, for some sequence di ∈ N, i = 1, 2, . . . .
If the chain (6.1) terminates after finitely many steps then G is solvable and by the

results of Milnor and Wolf [31,43] G is virtually nilpotent in this case.
Suppose that chain (6.1) is infinite and consider the intersection Gω = ⋂∞

i=1 Gi .

If Gω = {1}, then the group G is residually solvable (in fact residually polycyclic),
and, because of restriction on growth, by Theorem 5.7, G is virtually nilpotent and
hence has polynomial growth of some degree d. But this contradicts Splitting Lemma
2.1. Therefore Gω �= {1}. G/Gω is residually polycyclic, has growth not greater
than the growth of G and by previous argument is virtually nilpotent. If the degree
of polynomial growth of G/Gω is l then again by Splitting Lemma the length of the
chain (6.1) can not be larger than l, and we get a contradiction. The part (i) of the
theorem is proven.

Now the proof of part (ii) follows immediately. If we assume that G has growth
≺ e

√
n and that the Gap Conjecture holds for the class of residually polycyclic groups

then the arguments from previous part (i) are applicable in the same manner. The only
difference is that instead of Theorem 5.7 one should use the assumption that the Gap
Conjecture holds for residually polyciclic groups. The same argument works in the
case of conjecture C∗(1/2). ��

7 Gap Conjecture and just-infinite groups

There is a strong evidence based on considerations presented below that the Gap
Conjecture can be reduced to three classes of groups: simple groups, branch groups and
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hereditary just-infinite groups. These three types of groups appear in a natural partition
of the class of just-infinite groups into three subclasses described in Theorem 7.3. The
following statement is an easy application of Zorn’s lemma.

Proposition 7.1 Let G be a finitely generated infinite group. Then G has a just-infinite
quotient.

Corollary 7.2 LetP be a group theoretical property preserved under taking quotients.
If there is a finitely generated group satisfying the propertyP then there is a just-infinite
group satisfying this property.

Although the property of a group to have intermediate growth is not preservedwhen
passing to a quotient group (the image may have polynomial growth), by theorems
of Gromov [24] and Rosset [35], if the quotient G/H of a group G of intermediate
growth has polynomial growth then H is a finitely generated group (of intermediate
growth, as the extension of a virtually nilpotent group by a virtually nilpotent group
is an elementary amenable group and therefore can not have intermediate growth),
and one may look for a just-infinite quotient of H and iterate this process in order to
represent G as a consecutive extension of a chain of groups that are virtually nilpotent
or just-infinite groups. This observation was used in the previous section for the proof
of Theorem 6.1 and is the base of the arguments for Theorems 7.4 and 7.5.

Recall that hereditary just-infinite groups were already defined in Sect. 4. We call
a just infinite group near simple if it contains a subgroup of finite index which is a
direct product of finitely many copies of a simple group.

Branch groups are groups that have a faithful level transitive action on an infinite
spherically homogeneous rooted tree Tm̄ defined by a sequence {mn}∞n=1 of natural
numbers mn ≥ 2 (determining the branching number for vertices of level n) with the
property that the rigid stabilizer ristG(n) has finite index in G for each n ≥ 1.Here by
ristG(n) we mean a subgroup

∏

v∈Vn
ristG(vn) which is a product of rigid stabilizers

ristG(vn) of vertices vn taken over the set Vn of all vertices of level n, and ristG(v) is
a subgroup of G consisting of elements fixing the vertex v and acting trivially outside
the full subtree with the root at v. For a more detailed discussion of this notion see
[4,18]. This is a geometric definition. It follows immediately from the definition that
branch groups are infinite. The definition of an algebraically branch group can be found
in [4,17]. Every geometrically branch group is algebraically branch but not vice versa.
If G is algebraically branch then it has a quotient G/N which is geometrically branch.
The difference between two versions of the definitions is not large but still there is no
complete understanding how much the two classes differ (it is not clear what can be
said about the kernel N , it is believed that it should be central in G). For just-infinite
branch groups the algebraic and geometric definitions are equivalent. Not every branch
group is just-infinite, but every proper quotient of a branch group is virtually abelian
[18]. Therefore branch groups are “almost just-infinite” and most of known finitely
generated branch groups are just-infinite. Observe that a finitely generated virtually
nilpotent group is not branch. This follows for instance from the fact that a finitely
generated nilpotent group satisfies a minimal condition for normal subgroups while a
branch group not.
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The next theorem was derived by the author from a result of Wilson [41].

Theorem 7.3 [18] The class of just-infinite groups naturally splits into three sub-
classes: (B) branch just-infinite groups, (H) hereditary just-infinite groups, and (S)
near-simple just-infinite groups.

It is already known that there are finitely generated branch groups of intermediate
growth. For instance, groupsGω of intermediate growth from the articles [11,13] are of
this type. In fact, all known examples of groups of intermediate growth are of branch
type or are reconstructions on the base of groups of branch type. The question about
existence of amenable but non-elementary amenable hereditary just-infinite group
is still open (remind that by Theorem 4.5 the only elementary amenable hereditary
just-infinite groups are Z and D∞).

Problem 1 Are there finitely generated hereditary just-infinite groups of intermediate
growth?

Problem 2 Are there finitely generated simple groups of intermediate growth?

The next theorem is a straightforward corollary of the main result of Bajorska and
Makedonska from [2] (observe that it was not stated in [2]). Herewe suggest a different
proof which is adapted to the needs of the proof of the main Theorem 7.5.

Theorem 7.4 If the Gap Conjecture or conjecture C∗(1/2) holds for the classes of
residually finite groups and simple groups, then the corresponding conjecture holds
for the class of all groups.

Proof Assume that the Gap Conjecture is correct for residually finite groups and for
simple groups. Let G be a finitely generated group with growth≺ e

√
n .By Proposition

7.1 it has just-infinite quotient Ḡ = G/N , which belongs to one of the three types of
groups listed in the statement of the Theorem 7.3. The rate of growth of Ḡ is not greater
than the rate of growth of e

√
n . The group Ḡ can not be near simple because in this

case it will have a subgroup H of finite index with infinite finitely generated simple
quotient whose rate of growth is ≺ e

√
n . This is impossible as a virtually nilpotent

group can not be infinite simple.
The group Ḡ also can not be branch as branch groups are residually finite and

finitely generated virtually nilpotent groups are not branch. So we can assume that
Ḡ is hereditary just infinite and hence residually finite. Using the assumption of the
theoremwe conclude that Ḡ is virtually nilpotent, and therefore elementary amenable.
By Theorem 4.5 Ḡ is isomorphic either to the infinite cyclic group or to the infinite
dihedral group D∞. By Theorem 4.1 kernel N is finitely generated. As the rate of
growth of N is less than e

√
n we can apply to N the same arguments as for G in order

to get a surjective homomorphism either onto Z or onto D∞.

If G/N � Z, then we repeat the first step of the proof of Theorem 6.1 replacing
N by a finitely generated characteristic subgroup N1 � G with quotient G/N1 � Z

d1

for some d1 ≥ 1. If G/N1 � D∞ then we slightly modify the first step. Namely, in
this case G has indicable subgroup H of index 2. Let H1 be the intersection of groups
Hφ, φ ∈ Aut (G). As there are only finitely many subgroups of index 2 in G this
intersection involves only finitely many groups and H1 is a characteristic subgroup in
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G of finite index of type 2t for some t ∈ N. Moreover, G/H1 � Z
t
2 as the quotient

G/H1 is isomorphic to a subgroup of a direct product of finitely many copies of group
Z2 of order 2. The subgroup H1, being a subgroup of index 2t−1 in H, is indicable
and we can apply the argument of the first step of the proof of Theorem 6.1 getting a
finitely generated subgroup H2 � H1 characteristic in G with quotient H1/H2 � Z

d1

for some d1 ∈ N.

Let G1 � G be a subgroup N , H1 or H2 depending on the case. Proceed with G1 in
a similar fashion as we did with G, etc. We get a descending chain {Gi }i≥1 of finitely
generated subgroups characteristic in G. There are two possibilities.

(1) After finitely many steps we get a group Gi which is hereditary just-infinite and
elementary amenable, and hence infinite cyclic or D∞ (Theorem 4.5). In this case
G is polycyclic and we are done in view of the result of Milnor and Wolf on
growth of solvable groups.

(2) The process of construction of the chain of subgroups will continue forever. In
this case we get a chain with the property that Gi/Gi+1 is isomorphic either to
(i) Z

di , di ∈ N or to
(ii) Z

ti
2 , ti ∈ N. Moreover, each step of type (ii) is immediately followed by a step

of type (i).

Let us show that this is impossible. Let Gω be the intersection
⋂

i≥1 Gi . Then
G/Gω is residually polycyclic and hence residually finite as every polycyclic group is
residually finite [34]. Growth of G/Gω is less than e

√
n . Hence by the assumption of

the theorem the group G/Gω is virtually nilpotent with the rate of polynomial growth
of degree d for some d ∈ N. But this contradicts the splitting lemma as for infinitely
many i the quotients Gi/Gi+1 are isomorphic to Z

di . This proves the conjecture
C(1/2).

In the case of the conjecture C∗(1/2) we proceed in a similar fashion. Only at the
beginning we assume that the conjecture C∗(1/2) holds for residually finite groups
and for simple groups and that G is a finitely generated group of intermediate growth
whose growth does not satisfy inequality γ (n) � en1/2 . ��

Now we state and prove our main result.

Theorem 7.5 (i) If the Gap Conjecture with parameter 1/6 or its ∗-version C∗(1/6)
holds for just-infinite groups then the corresponding conjecture holds for all
groups.

(ii) If the Gap Conjecture or its ∗-version C∗(1/2) holds for residually polycyclic
groups and for just-infinite groups then the corresponding conjecture holds for
all groups.

Proof (i) The proof follows the same strategy as the proof of Theorem 7.4. Let G be
a finitely generated group with growth ≺ en1/6 . There can be two possibilities.

(1) G has a finite descending chain {Gi }k
i=1 of finitely generated characteristic in G

groups with consecutive quotients Gi/Gi+1 � Z
di or Gi/Gi+1 � Z

ti
2 , for i < k

and Gk = {1}. In this case G is polycyclic and hence virtually nilpotent
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(2) G has an infinite descending chain {Gi }∞i=1,with the property thatGi/Gi+1 � Z
di

or Gi/Gi+1 � Z
ti
2 , and if Gi/Gi+1 � Z

ti
2 then Gi+1/Gi+2 � Z

di+1 . The group

G/Gω, where Gω = ⋂

i≥1 Gi , is residually polycyclic with growth ≺ en1/6 .

Apply in this case the result of Wilson stated in Theorem 5.4 concluding that
G/Gω is virtually nilpotent which is impossible by the splitting lemma.

(ii) Proceed as in (i) with the only difference that in the subcase (2) we apply the
assumption that the Gap Conjecture holds for residually polycyclic groups to conclude
that this subcase is impossible.

These are arguments for C(1/2) version. The arguments for ∗-version C∗(1/2) are
similar. ��
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