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Salt preferences of honey bee water foragers

Pierre W. Lau** and James C. Nieh

ABSTRACT

The importance of dietary salt may explain why bees are often
observed collecting brackish water, a habit that may expose them
to harmful xenobiotics. However, the individual salt preferences of
water-collecting bees were not known. We measured the proboscis
extension reflex (PER) response of Apis mellifera water foragers to
0-10% wi/w solutions of Na, Mg and K, ions that provide essential
nutrients. We also tested phosphate, which can deter foraging.
Bees exhibited significant preferences, with the most PER responses
for 1.5-3% Na and 1.5% Mg. However, K and phosphate were
largely aversive and elicited PER responses only for the lowest
concentrations, suggesting a way to deter bees from visiting
contaminated water. We then analyzed the salt content of water
sources that bees collected in urban and semi-urban environments.
Bees collected water with a wide range of salt concentrations, but most
collected water sources had relatively low salt concentrations, with the
exception of seawater and swimming pools, which had >0.6% Na. The
high levels of PER responsiveness elicited by 1.5-3% Na may explain
why bees are willing to collect such salty water. Interestingly, bees
exhibited high individual variation in salt preferences: individual
identity accounted for 32% of variation in PER responses. Salt
specialization may therefore occur in water foragers.

KEY WORDS: Apis mellifera, Water foraging, PER,
Sodium preference, Salt concentration

INTRODUCTION
Honey bees collect water for multiple reasons: colony temperature
regulation (Kiihnholz and Seeley, 1997), metabolic needs (Louw
and Hadley, 1985) and larval food (Nicolson, 2009). In honey bees,
sodium, magnesium and potassium are essential for developing
larvae (Herbert et al., 1978), and salts obtained from water may
therefore be an essential part of the brood food provided by nurse
bees (Brodschneider and Crailsheim, 2010). In general, insects such
as bees can obtain salt from multiple sources: human tears, carrion,
feces or brackish water (Abrol et al., 2012; Baumgartner and
Roubik, 1989; Bénziger et al., 2009; Ferry and Corbet, 1996).
Honey bees seem to prefer agricultural or urban water runoff,
perhaps because it is common and contains salts (Butler, 1940;
Hooper, 1932). However, these preferences are poorly understood.
Butler (1940) showed that honey bees have strong group-foraging
preferences for water with specific salt concentrations. Because
foraging bees exhibit social facilitation, they are attracted to the
presence of other bees (Avargues-Weber et al., 2015), and thus it is
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difficult to disentangle group foraging preferences from individual
preferences. Since Butler (1940), there has been little progress in
understanding the salt preferences of water foragers. Research with
nectar foragers has shown that a sufficiently high salt concentration is
a punishing stimulus (Abramson, 1986; Bhagavan and Smith, 1997,
Letzkus et al., 2006), and that nectar foragers can be repelled by
higher concentrations of potassium and phosphate in nectar (Afik
et al., 2006; Hagler, 1990; Waller et al., 1972). However, the salt
preferences of individual water foragers are not known.

Understanding these salt preferences is important for
understanding honey bee biology and, potentially, for developing
salt additives to deter bees from collecting agricultural water with
harmful xenobiotics. Honey bees are essential for the pollination of
many crops (Klein et al., 2007), but the widespread use of agricultural
toxins and pesticides can decrease honey bee health (Blacquiere
etal., 22012; Desneux et al., 2007; Goulson et al., 2015). Honey bee
pesticide exposure is typically thought to occur through nectar and
pollen consumption, but pesticides also occur in agricultural runoff
(Goulson, 2013; Sanchez-Bayo and Goka, 2014), and the application
of systemic pesticides by watering plant roots can result in high water-
borne pesticide concentrations (Johnson and Pettis, 2014; Phillips and
Bode, 2004; Samson-Robert et al., 2014). Bees collecting such runoff
water place themselves and their colonies at risk.

Our goal was therefore to study individual salt preferences in
honey bee water foragers and determine which concentrations are
attractive and aversive. We used the proboscis extension reflex
(PER) assay, which is widely used to study bee sucrose response
thresholds and has successfully elucidated multiple aspects of
individual and colony behavior (Page, 2013). In this assay, the
investigator taps the bee’s antennae, which are rich in salt and sugar
receptors (de Brito Sanchez et al., 2014). The bee reflexively
extends its proboscis to drink if the concentration is acceptable. We
tested the PER response of water foragers to different concentrations
of NaCl, MgCl,, KCl and Na,HPO, (phosphate) because Na, Mg
and K are key bee nutrients (Herbert et al., 1978) and because
phosphate can repel nectar foragers (Afik et al., 2006). In addition,
we analyzed the salt concentrations of water sources that honey bees
collected in urban and semi-urban settings to determine salt
concentrations in bee-collected water.

MATERIALS AND METHODS

Study site and colonies

Between April 2012 and June 2013, we performed the PER
experiment with 12 healthy colonies of Apis mellifera ligustica
Spinola 1806 reared from packages at the UC San Diego Biological
Field Station (BFS: 32°53’13"N, 117°13'48"W) in La Jolla, CA,
USA. In total, we used 163 bees from 12 colonies to test the effect of
salt concentration presentation order (Fig. 1) and 628 bees from 10
colonies to test bee salt preferences (Fig. 2).

PER measurements of honey bee salt preferences
We tested honey bee PER responsiveness to different salts. To
obtain water foragers, we placed a grooved plate feeder (design of
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Fig. 1. Effect of the order of NaCl concentration presentation on the

proboscis extension reflex (PER). A value of 1 indicates all bees exhibited
PER. Data are means+1 s.e.m. Different letters indicate significant differences
(uppercase letters for start-high concentrations and lowercase letters for start-
low concentrations, Tukey HSD tests, P<0.05, N=163 bees from 12 colonies).

Von Frisch, 1967) containing tapwater at the entrance of each
colony. Deionized water and distilled water do not contain salts. We
therefore chose tapwater as a realistic, standardized water source for
bees. Chemical analysis showed that this tapwater contained the
following salts: Na (0.0104%), Mg (0.0027%), K (0.0006%) and
phosphate (0%). These concentrations are roughly similar to salt
concentrations in freshwater sources that bees collected (see below).
Guard bees did not tolerate non-nestmates foraging for water, and
this allowed us to determine bee colony origin. Bees collecting
water were captured in vials and brought back to the lab, where they
were anesthetized at 0°C until their movements significantly
decreased (1-2 min). Anesthetized bees were placed in a standard
PER harness: a strip of duct tape that restrained the bee inside a
3.7 cm longx 15 mm wide stainless steel tube. This harness allowed
bees to move their mouthparts and antennae (Giurfa and Sandoz,
2012). The anesthetized bees then recovered for 20 min in a 30°C
incubator, followed by 10 min at room temperature (21°C).

To test the PER, we simultaneously stimulated both antennae for
3 s with a microcapillary pipette dipped into the test solution. We
took care to ensure that no solution or residue built up on the
antennae. We used a 2 min inter-trial interval between each test
(Page et al., 1998). For NaCl, we tested the effects of concentration
order (start-low versus start-high, Fig. 1). Based upon these results,
we used the start-high concentration order for all subsequent tests.
Like experiments that use the PER to measure bee sucrose response
thresholds (Page et al., 1998), our salt reward gradient thus went
from low reward to high reward. In sucrose response threshold
assays, nectar foragers are presented with a low reward, water, and
then with successively higher rewards, higher sucrose
concentrations (Page et al., 1998). For honey bees, high salt
concentrations provide a low reward because bees are attracted to
low salt concentrations and are repelled by high salt concentrations
(Butler, 1940).

Test solutions contained different concentrations of NaCl,
MgCl,, KCl or Na,HPO,; (ACS reagent grade compounds,
>99.8% purity, Fisher Chemical) in distilled water. We used the
following concentrations of each salt: (1) 0%, 0.03%, 0.05%, 0.1%,
0.3%, 0.5%, 1%, 1.5% and 3% NaCl to test for the effect of

concentration order (Fig. 1); (2) 0%, 0.05%, 0.4%, 0.75%, 1.5%,
6% and 10% of all salts for the full-range tests (Fig. 2A); and (3)
ranges individually tailored for bee PER responses to each salt
concentration: NaCl (0-3%), MgCl, (0-6%), and KCI and
Na,HPO,4 (0-1.5%, Fig. 2B). These concentrations are all much
lower than NaCl concentrations used as training punishment in
nectar foragers: 35.7% (Abramson, 1986) and 17.53% (Bhagavan
and Smith, 1997). All salt concentrations are given as w/w.

We did not provide a pure water stimulus between each salt test.
Sucrose PER assays sometimes include a water stimulus between
successive sucrose presentations. This water stimulus controls for
increased sensitization or habituation to repeated sucrose
stimulations because nectar foragers should not exhibit PER
responses to a pure water stimulus (Page et al., 1998). However,
in our experiment, we tested the PER response of water foragers to
water with different concentrations of salts. Pure water could
therefore have provided a reward, not a neutral control stimulus,
particularly for salts (K and phosphate) that elicited a largely
aversive response at nearly all concentrations. We consequently
adopted the protocol of some PER experiments with sucrose
solutions (Decourtye et al., 2004; Eiri and Nieh, 2012; Lambin
et al., 2001) and did not intersperse pure water presentations
between test solution presentations.

Responses were categorized as 1 (proboscis fully extended
beyond the mouthparts) or 0 (no proboscis extension). Bees were
kept in tubes for approximately 20—25 min during testing. After
testing, bees were painted with red enamel on the thorax and
released to ensure that we did not pseudoreplicate by using the same
bee in subsequent trials. Each day, we ran either two or three sets of
10 bees between 09:00 h and 16:00 h.

Water collection

Because the salinity of water sources may change over time, we only
took water samples when bees were actively collecting water,
defined as a bee inserting its proboscis into water for more than 10 s,
often showing rhythmic abdominal contractions that characterize
fluid imbibing.

To maximize water collection, we involved citizen scientists from
alocal beekeeping group. All water collectors were trained in how to
collect samples and, with each sample, were required to submit a
written behavioral description and a photo of a bee actively
collecting water at the time of water collection. Samples without
these written descriptions and photos were not analyzed. We
collected samples in clean 50 ml conical plastic centrifuge tubes
(Falcon, model no. 352070), rinsing each tube three times with the
sampled water before collecting the final sample, which we froze
until analysis. Collectors also recorded the type of water source and
the GPS coordinates or the nearest cross-street location (Fig. 3).
Samples were analyzed by the Oklahoma State University Soil,
Water, and Forage Analytical Laboratory for Na, Mg, K and total
phosphate with inductively coupled plasma-atomic emission
spectroscopy (ICP-AES) (Murray et al., 2000).

We classified water sources into seven categories. Natural sources
consisted of (1) streams, (2) natural perennial ponds and (3) beach
saltwater. Man-made sources consisted of (4) irrigation (leaking
spigots, sprinkler heads, or temporary pools of water resulting from
irrigation), (5) swimming pools, and artificial ponds that fell into
two distinct size groups: (6) large artificial ponds and (7) small
‘ponds’ in vessels (bird baths, small ornamental waterfalls and
fountains). Large ponds were always inset into the ground, where
they received runoff water from irrigation sprinklers and rain. Small
ponds were always elevated above the ground, were all <1 m in
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Fig. 2. Mean PER responses to different salt
solutions. (A) In the full concentration range tests, all
bees received the same concentration of each salt.
(B) In the finer concentration range tests, we tested a
more limited range of concentrations, tailored to each
salt, to obtain more detailed information on PER
responses. Data are means+1 s.e.m. Different letters
show significant differences (Tukey HSD tests,
P<0.05, N=628 bees from 10 colonies). All other
concentrations were intermediate. If no letters are
shown in a plot, there were no significant pairwise PER
response differences between concentrations.
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diameter, and contained water that was subject to higher rates of
evaporation because it was in a shallow vessel (a bird bath) or in a
small fountain that constantly recirculated water over a broad surface
area. More water samples were collected from urban and semi-urban
sites; however, 36% of our water samples came from natural water
sources.

Statistics

We used repeated-measures ANOVA with a REML algorithm to
determine the effect of concentration order on bee PER responses
with salt concentration as a continuous fixed effect and bee identity
and colony as random effects. We used the same analysis method to
determine the effect of salt type (fixed effect) and salt concentration
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(continuous fixed effect) on bee PER responses (bee and colony
identity were random effects). To determine the significance of bee
identity on PER responses to the full salt concentration ranges, we
also ran a model with bee identity as a fixed effect. We then tested
responses to each salt separately, using a one-way repeated measures
ANOVA and Tukey’s honestly significant difference (HSD) tests to
make pairwise comparisons (concentration coded as an ordinal
fixed effect). These analyses used data gathered on bees tested with
the same concentrations of each salt. Finer scale salt preferences
were analyzed with one-way repeated measures ANOVA models for
each salt. We did not use an overall ANOVA on these data because
different concentrations were used for different salts. We used JMP
v10.0 statistical software.
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Fig. 3. Sources of water collected by honey bees. Samples were obtained
from the locations shown for analysis.

RESULTS

Effect of concentration order

We presented bees with a series of Na concentrations and measured
their PER responses. There was a significant effect of concentration
order (start-low versus start-high) on NaCl preferences (order effect:
F1551=26.54, P<0.001). There was also a significant effect of
concentration (Fg1477=4.19, P<0.001) and the interaction
orderxconcentration (Fg 1477,=13.24, P<0.0001), with colony
accounting for 15% of model variance. The start-low bees showed
a steadily declining response with increasing concentration and a
slight potential peak at 0.1-0.3% NaCl, whereas the start-high bees
showed a true response peak at 0.3% (Fig. 1). In terms of bee
preferences, the two treatments therefore yielded roughly similar
results, a peak at approximately 0.3% NaCl. However, beginning
the series with a high salt concentration revealed bee preferences
more clearly (Fig. 1). For start-high bees, PER responses for 0.3%
NaCl were significantly higher than those for 0.03% NaCl (lowest
PER response, Tukey’s HSD, P<0.05). PER responses to 0.3%
NaCl were not significantly different from responses to 1.5% NaCl
(Tukey HSD, P>0.05), matching bee preferences in our subsequent
tests.

Full salt concentration range

Bees exhibited different preferences for different salts. Thus, there
were significant effects of salt type (F32,5=4.22, P=0.000),
concentration (£ 1667=51.63, P<0.0001), and the interaction salt
typexconcentration (Fs 1667=12.34, P<0.0001). The significant
interaction is shown in the different PER response curves for each
ion (Fig. 2A). There was substantial variation between bees (32.1%
of model variance) but relatively little variation between colonies
(0.4% of model variance). There were strong individual differences
in salt preferences (Fs56.241=4.02, P<0.0001).

We then examined the effect of each salt type (Fig. 2A). Mean bee
PER responses were significantly higher for 1.5% NaCl, 1.5%
MgCl,, and 0.4% and 0.75% Na,HPO, than for a concentration that
elicited the lowest PER response (concentration effects F 495>5.17,
P<0.0001, Tukey’s HSD tests, P<0.05). For KCl, bee PER
responses were significantly higher for concentrations of 0-1.5%
(excluding 0.75%, concentration effect: Fg49,=5.26, P<0.0001,
Tukey’s HSD test, P<0.05).
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Fig. 4. Chemical content of water collected by honey bees. The mean
percentage (1 s.e.m.) is shown. Because of the highly elevated
concentrations of Na, Mg and K in seawater, we show this information above
the bars for seawater. Significant differences are indicated with different letters.
Gray bars indicate man-made water sources.

The 10% concentrations generally elicited the fewest PER
responses: 10% MgCl,, KCl and Na,HPO, resulted in
significantly lower PER responses (Tukey’s HSD tests, P<0.05).
Somewhat surprisingly, bees tolerated a 10% NaCl solution
(Fig. 2B).

Finer salt concentration ranges

Different salts elicited PER responses that peaked at different
concentrations (Fig. 2A). We therefore tested bee responses to a
more limited range of salt concentrations that were tailored to bee
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PER responses (Fig. 2B). There were significant overall effects of
concentration for NaCl (Fg39,=3.42, P=0.0008), MgCl,
(F7’687:7.85, P<00001) and KCI (F6,228:3-37a P:00033) The
only significant pairwise differences (Tukey’s HSD test, P<0.05)
occurred for MgCl,, between 0.03% and 1.5% (higher PER for
1.5%, as in the full concentration range test). There was no
significant effect of Na,HPO, (Fg324=0.65, P=0.69) over the
concentration range 0—1.5%.

Salt concentrations in water that bees collected

We analyzed water collected by bees from 36 sites in San Diego and
Los Angeles Counties (Fig. 3) from June 2012 to June 2013. In all
analyses, internal control ICP-AES standards showed negligible
levels of each ion (0.0 ppm). There was a significant effect of water
type on the concentration of Na (Fg,0=43.0, P<0.0001), Mg
(F6.20=5.79, P=0.0005) and K (F29=9.08, P<0.0001), but not on
the concentration of phosphate (Fg29=1.67, P=0.16). As expected,
seawater (0.93%) and swimming pool water (0.6%) contained
higher sodium concentrations than all other water sources (Tukey
HSD, P<0.05; Fig. 4). For Mg and K, only seawater had
significantly elevated ion levels compared with all other water
sources (Tukey HSD, P<0.05; Fig. 4).

DISCUSSION

Honey bees are known to collect and, in some cases, prefer ‘dirty
water’ that contains salts (Butler, 1940). Understanding these
preferences has practical importance because such water can contain
harmful xenobiotics such as pesticides. Using the classic PER assay,
we found differences in the responses of water foragers to the tested
salts. Overall, mean PER responses to NaCl and MgCl, were 22%
higher than for Na,HPO, and KCI. In general, water foragers
exhibited the fewest responses to 10% salt concentrations. However,
water foragers demonstrated tolerance to a far wider range of Na
concentrations than to other ions, perhaps explaining why honey
bees can collect seawater. The concentrations that elicited the most
PER responses varied somewhat depending upon the range of
concentrations tested (Fig. 2). The optimal salt concentrations were
1.5% for NaCl and MgCl,, 0—1.5% for KCIl and 0.4-0.75% for
Na,HPO, (Fig. 2A). The analysis of finer salt concentration ranges
yielded similarly shaped PER curves (Fig. 2B), though fewer
significant pairwise differences because we did not include the
generally aversive 10% concentration.

Responses to each salt

Bees exhibited the most PER responses for intermediate
concentrations of sodium and magnesium, corresponding to the
attraction found by Butler (1940). Using group-foraging
experiments, Butler (1940) showed that bees had a preference for
0.15%, 0.07% and 0.29% NaCl over distilled water (maximum
tested concentration of 0.58% NaCl). In our study (Table 1), bees
were least responsive to 0.05% NaCl but exhibited the most PER
responses to 1.5% NaCl (full-range tests; Fig. 2A). Like Butler
(1940), we found responsiveness at 0.3% NaCl, but bees continued
to respond at higher concentrations than he tested (Fig. 2).

Butler (1940) also tested MgCl, concentrations up to 0.92% and
found that honey bees preferred distilled water regardless of the
MgCl, concentration. In our study, there was a higher response to
1.5% MgCl, than for distilled water.

For potassium and phosphate, water foragers exhibited the
most PER responses for the lowest concentrations, corresponding
to the aversion demonstrated by Butler (1940). For KCI, bees
showed a diminished response above 1.5% (Fig. 2A). Similarly,
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Table 1. Review of the published concentration ranges of salt ions that
attracted or repulsed bees in honey and in water and nectar visited by

bees
Concentration (% w/w)

Salts Acceptance Rejection

Na 0.0019"@ nectar 0.0054"9 nectar
0.00752 honey 0.0059"9 honey
0.0079" honey 0.0130%* nectar
0.0093% nectar 0-0.05° water
0.0226* nectar 0.58%¢ water
0.04 water 3.59%" water
0.05° water 17.53"%" water
0.07 swimming pool
0.15%¢ water
0.39%9 water
0.58" water
1.5° water
2.34%" water

Mg <0.0005"® nectar 0.0024%® nectar
0.007 swimming pool 0.0188"¢ nectar
0.0090? honey 0.0205"9 honey
0.012 water 0.95°% water
0.0185" honey 10° water
0.06°¢ water
1.5° water

K 0.00075°° water 0.0659> nectar
0.005 swimming pool 0.15-0.75"" nectar
0.0325"° honey 0.36-1.30*" nectar
0.06 water 0.3768"° honey
0.1480% honey 0.3946"9 nectar
0.21°9 water 0.42-0.89" nectar
0-1.5° water 0.53-0.69"% nectar

1.66% water
10° water
Phosphate 2-343 (x10~°) water 0.0511"9 nectar

0.0652"9 honey
1.42%9 water
10° water

11-48 (x10~°) swimming pool
0-1.5° water

0.0019"? nectar

0.0047"? honey

Concentration ranges are from minimum to maximum. Swimming pool water
has higher ion concentrations and is separately denoted. Data from the present
study are in bold.

"Afik et al. (2008); 2McLellan (1975); *Waller et al. (1972); “Nicolson and
W.-Worswick (1990); °Butler (1940); ®*Hooper (1932); "de Brito Sanchez et al.
(2014); 8de Brito Sanchez et al. (2005); °Abramson et al. (2013); '°Bhagavan
and Smith (1997); "'Waller (1972); "Waller et al. (1976); "*Hagler (1990).
@Non-avocado and non-onion nectar; Ponion nectar; °PER assay (this paper);
dwater feeder dishes; ®salt solutions applied to bee tarsomeres; PER assay;
9avocado nectar and honey; Nchoice between NaCl and sucrose; isugar
solution with K added.

Butler (1940) tested KI up to 1.66% and found a decreasing
preference as KI concentration increased. Nectar foragers are
known to avoid nectar with high levels of potassium (Afik et al.,
2006; Hagler, 1990). For example, nectar foragers are reluctant to
forage on onion nectar, which has up to 1.3% potassium (Table 1;
see also Waller et al., 1972). Our water forager preferences
(rejection >1.5% K) are similar to the preferences exhibited by
nectar foragers for sugar solutions with added potassium
(Table 1).

Butler (1940) reported that almost no bees visited a 1.42%
solution of Na,HPOy, (the only concentration he tested). We found
that PER responses declined for concentrations above 0.75%
Na,HPO,4. Natural concentrations of phosphate are far lower
(maximum of 0.05% in avocado nectar; Table 1; see also Afik
et al., 2006).
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Water sources visited by bees

Surprisingly, there is little published information on the water
sources collected by honey bees. Baum et al. (2011) observed honey
bees collecting water from swimming pools in Tucson, AZ, USA.
Beekeepers (personal communications) have witnessed bees
collecting seawater, although these observations have not
previously been published. In Southern California, an arid region,
we found that bees visited a wide range of water sources. If we
exclude swimming pools (salts deliberately added) and seawater
(naturally quite salty), we found that bees collected water, on
average, with 0.013% Na, 0.003% Mg, 0.001% K and 0.00003%
phosphate, far lower than the values that elicit maximal attraction
(Butler, 1940) or PER responses. Seawater that bees collected
(0.93% Na, 0.11% Mg, 0.05% K and 0.00001% phosphate)
contained more Na than group-foragers preferred (Butler, 1940), but
contained salt concentrations that individually elicited high average
PER responses (Fig. 2). Our results may help explain why bees
collect seawater, particularly if given limited alternatives.

It is possible to categorize the water sources that bees visited in
different ways, but this would not have changed our results. The
only two sources that showed significant differences were seawater
and swimming pool water (Fig. 4). For total phosphate, there were
no significant differences, although irrigation, artificial pond and
swimming pool water had the highest levels measured.

A bigger dataset on water sources visited by bees is desirable.
However, we were surprised, given the large number of enthusiastic
volunteers over 1 year, to have only obtained 36 samples. The
relative infrequency of water foraging may play a role. In many
cases, we were told of water sources that bees were observed
collecting, but upon arriving, found no bees collecting water, even
over several hours of observation. It would be valuable to continue
collecting data on such water sources, but an experimental approach
testing bee salt concentration choices is more feasible.

Deterrence

Potassium and phosphate at higher concentrations could deter
water collection by bees. Given concerns about eutrophication
(Schoumans et al., 2014), adding potassium to water-delivered
pesticides may be a better alternative than adding phosphate.
Determining an effective concentration requires field tests, but
multiple studies (Table 1) show that nectar foragers will avoid a
wide range of potassium concentrations in sugar water (0.15-10%)
and are reluctant to collect nectar from avocado (Afik et al., 2006)
and onion blossoms (Waller et al., 1972) with high potassium
content. A blend such as Mg and K may also be a more effective
deterrent to water foragers than a single salt. However, bees may
continue to collect less-favored water if it is the only source
available (Fig. 4).

Individual salt preferences

The relationship of bee PER responses to different salt solutions and
actual foraging preferences should be examined in future studies.
Water collection has a genetic basis (Kryger et al., 2000). We
hypothesize that, like sucrose response thresholds (Page et al.,
1998), salt preferences will also have a genetic basis that could lead
to foraging specializations. In our study, bee identity accounted for
a significant (P<0.0001) and substantial 32% of model variance.
We assayed salt preferences of bees that foraged at a low-salt
water source, but some foragers may exhibit specializations for
higher salt concentrations. PER assays of salt preferences may
therefore be a useful tool for exploring this neglected aspect of
honey bee foraging.
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