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Vorticity of IGM Velocity Field on Large Scales
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ABSTRACT

We investigate the vorticity of the IGM velocity field on large scales with

cosmological hydrodynamic simulation of the concordance model of ΛCDM. We

show that the vorticity field is significantly increasing with time as it can effec-

tively be generated by shocks and complex structures in the IGM. Therefore, the

vorticity field is an effective tool to reveal the nonlinear behavior of the IGM,

especially the formation and evolution of turbulence in the IGM. We find that

the vorticity field does not follow the filaments and sheets structures of under-

lying dark matter density field and shows highly non-Gaussian and intermittent

features. The power spectrum of the vorticity field is then used to measure the

development of turbulence in Fourier space. We show that the relation between

the power spectra of vorticity and velocity fields is perfectly in agreement with the

prediction of a fully developed homogeneous and isotropic turbulence in the scale

range from 0.2 to about 3h−1 Mpc at z ∼ 0. This indicates that cosmic baryonic

field is in the state of fully developed turbulence on scales less than about 3 h−1

Mpc. The random field of the turbulent fluid yields turbulent pressure to prevent

the gravitational collapsing of the IGM. The vorticity and turbulent pressure are

strong inside and even outside of high density regions. In IGM regions with 10

times mean overdensity, the turbulent pressure can be on an average equivalent

to the thermal pressure of the baryonic gas with a temperature of 1.0 × 105

K. Thus, the fully developed turbulence would prevent the baryons in the IGM

from falling into the gravitational well of dark matter halos. Moreover, turbu-

lent pressure essentially is dynamical and non-thermal, which makes it different

from pre-heating mechanism as it does not affect the thermal state and ionizing

process of hydrogen in the IGM.

Subject headings: cosmology: theory - intergalactic medium - large-scale struc-

ture of the universe - methods: numerical
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1. Introduction

Gravity is curl-free in nature, therefore it is unable to trigger vorticity within the velocity

field of a cosmic flow. On the linear order of cosmological perturbation theory, the vorticity

will inevitably decay due to the expansion of the universe. The linear velocity fields of the

cosmic flow should be irrotational. In the nonlinear regime of clustering, vorticity can be

generated in the collisionless dark matter field when multi-streaming occurs at shell crossing

(Binney, 1974, Pichon & Bernardeau, 1999). However, there is no way to directly map

the vorticity of the dark matter field to the baryon field, most of which is the intergalactic

medium (IGM).

In the context of fluid dynamics, vorticity can be generated if the gradient of the mass

density and the pressure gradient of cosmic flow are not aligned (Landau & Lifshitz 1987).

Namely, vorticity results from the complex structures of fluid flow like curved shocks. Re-

cently, it has been revealed that in the nonlinear regime, the cosmic baryon fluid at low

redshift does contain such complex structures (e.g. He et al 2004). Therefore, one expects

that vorticity would be present and evolve extensively in the cosmic baryonic field. The

vorticity of the intracluster medium (ICM) has been studied in topics related to possible

mechanism of generating magnetic field of galaxies or clusters (Davis & Widrow 2000; Ryu,

et al 2008). Although these works show that the vorticity can form in the ICM, the formation

and evolution of vorticity in the IGM is still unknown.

In addition, no studies have been done on the relation between vorticity and turbulence

in a cosmic baryon fluid. Actually, vortices generally are considered a fundamental ingredient

of turbulence and the fluctuations of the vorticity field is an important indicator to describe

the turbulence of fluid (e.g. Batchelor, 1959, Schmidt 2007). On the other hand, the study

of the turbulence of cosmic fluid on large scales has seen a lot of progress in recent years.

The fluctuations of the velocity field of the baryon fluid beyond the Jeans length is shown to

be extremely well described by the She-Leveque (SL) scaling (He, et al 2006), which is the

generalized scaling of the classical Kolmogorov’s 5/3-law of fully developed turbulence (She

& Leveque 1994). The non-Gaussian features of the density field in baryon flows are found to

be in good agreement with the log-Poisson cascade (Liu & Fang 2008), which characterizes

statistically the hierarchical structure in fully developed turbulence (Dubrulle 1994; She &

Waymire 1995; Benzi et al. 1996). Observationally, the intermittence of Lyα transmitted

flux of QSO absorption spectrum can also be well explained in terms of log-Poisson hierarchy

cascade(Lu et al. 2009). These results suggest that the dynamical behavior of the IGM is

similar to a fully developed turbulence in inertial ranges. Therefore, it would be worthwhile

to investigate the vorticity fields of the turbulent cosmic fluid.

An important problem related to the vorticity fields of a turbulent fluid is the impact
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of the turbulent pressure on the clustering of cosmic fluid. It is well known that the random

velocity field of a turbulent fluid will play a similar role as thermal pressure and prevent

the gravitational collapse in such a fluid (Chandrasekhar, 1951; Bonazzola et al. 1992). In

the ICM, this effect has been studied with hydrodynamic simulations (Dolag et al 2005;

Iapichino & Niemeyer 2008; Cassano 2009, and reference therein). However, in these works

the turbulent pressure is directly identified with the RMS baryon velocity. This identification

may be reasonable for the ICM; however, it would be a poor relation on scales larger than

clusters, as the RMS baryon velocity cannot separate the velocity fluctuations due to bulk

motion from that of turbulence. Obviously, the bulk motion is not going to prevent gravita-

tional collapsing. Since the dynamical equation of vorticity is free from gravity, the vorticity

field provides an effective method to pick up the velocity fluctuations within a turbulent

flow. The power spectrum of the vorticity field yields a measurement on the scale of velocity

fluctuations where turbulence is fully developed. Using this method, we can estimate the

turbulent pressure in the IGM and hence study its effect on gravitational clustering.

We will investigate these problems with cosmological hydrodynamic simulation samples

of the concordance model of ΛCDM. In §2, we present the equations governing the dynamics

of vorticity and rate of strain field. §3 gives a brief description of the cosmological hydrody-

namic simulation of the ΛCDM model. In §4 we discuss the statistical properties of vorticity

on large scales. The nonthermal pressure of turbulent fluid and its effects on clustering of the

IGM are addressed in §5. We summarize the basic results of the paper and give concluding

remarks in §6. Mathematical equations are given in the Appendix.

2. Theoretical Background

2.1. Dynamical Equation of Vorticity

The dynamics of a fluid is conventionally governed by a set of equations for velocity

and density fields vi(t, r), ρ(t, r) (Appendix §A.1). An alternative way is to replace the

velocity field by their spatial derivatives ∂ivj . The velocity derivative tensor ∂ivj can be

decomposed into a symmetric component Sij = (1/2)(∂ivj + ∂jvi) and an antisymmetric

component (1/2)(∂ivj − ∂jvi)(Landau & Lifshitz 1987). The former is the rate of strain and

the latter is the vorticity vector ωi = ǫijk∂jvk, or ~ω = ∇ × v, where ǫijk is the Levi-Civita

antisymmetric symbol. For a cosmic baryon fluid (IGM), the dynamical equation of vorticity

~ω can be derived from the Euler equation as (Appendix §A.1 and §A.2)

D~ω

Dt
≡ ∂t~ω +

1

a
v · ∇~ω =

1

a
(S · ~ω − d~ω +

1

ρ2
∇ρ×∇p− ȧ~ω), (1)
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where p is the pressure of the IGM, a(t) is the cosmic factor, d = ∂ivi is the divergence of

the velocity field, and the vector [S · ~ω]i = Sijωj . Defining a scalar field as ω ≡ |~ω|, the
dynamical equation of ω is then

Dω

Dt
≡ ∂tω +

1

a
v · ∇ω =

1

a

[

αω − dω +
1

ρ2
~ξ · (∇ρ×∇p)− ȧω

]

, (2)

where ~ξ = ~ω/ω, and α = ~ξ · (~ξ · ∇)v.

An essential feature of both eqs.(1) and (2) is that they are free from the gravity of

mass fields, therefore, the gravitational field of both dark matter and the IGM cannot be a

source of the vorticity. Obviously, in the linear regime, only the last term of eqs.(1) and (2)

survives. This term is from the cosmic expansion, and makes the vorticity decaying as a−1.

Thus, the vorticity of the IGM is reasonably negligible in the linear regime.

Equations (1) and (2) show that if the initial vorticity is zero, the vorticity will stay at

zero in the nonlinear regime, provided that the term (1/ρ2)∇ρ×∇p is zero. This term, called

baroclinity, characterizes the degree to which the gradient of pressure, ∇p, is not parallel to

the gradient of density, ∇ρ.

If the pressure of a baryon gas is a single-variable function of density, e.g. there exists

a determined relation for the equation of state p = p(ρ), the vector ∇p would be parallel

to ∇ρ, and then (1/ρ2)∇ρ × ∇p = 0. Therefore, vorticity cannot be generated even in

the nonlinear regime until the single-variable function or determined relation for p = p(ρ)

is violated. Physically, once multi-streaming and turbulent flows have developed, complex

structures, like curved shocks, will lead to a deviation of the direction of ∇p from that of

∇ρ. In this case, the ρ − p relation cannot be simply given by an single-variable function

equation as p = p(ρ) (He et al 2004) and the baroclinity will no longer be zero.

The term S · ~ω on the right hand side of eq.(1) accounts for stretch of vortices drived

by strain. The vorticity will be either amplified or attenuated by this term. Actually, this

point can be easily seen with eq.(2). If the coefficient α is larger than zero, i.e. ~ξ is in the

direction of the eigenvector of tensor ∂jvi with positive eigenvalue, the vorticity will grow at

the rate of αω. Otherwise it would be attenuated. The term −dω stands for expansion or

contraction of vortices caused by the compressibility of baryon. Since divergence d = ∂jvj
is generally negative in regions of clustering, the term −dω will lead to an amplification of

vorticity in overdense regions.
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2.2. Vorticity Effect on IGM Clustering

The effect of vorticity on the IGM clustering can be seen from the dynamic equation of

divergence d, which is an indicator of clustering. The equation reads (Appendix §A.3)

Dd

Dt
≡ ∂td+

1

a
v · ∇d (3)

=
1

a

[

1

2
ω2 − SijSij −

1

ρ
∇2p +

1

ρ2
(∇ρ) · (∇p)− 4πG

a
(ρtot − ρ0)− ȧd

]

,

where ρtot is the total mass density including both CDM and baryon and ρ0 is its mean

value. A negative d corresponds to a convergent flow (clustering), while a positive d means

a divergent flow. As in the equation (2) for vorticity, there is a term −ȧd coming from the

cosmic expansion that leads to dilution of d. However, different from eqs.(1) and (2), the

gravity effect −4πG(ρtot − ρ0)/a, ρ0 acts as a source term in the divergence equation. This

term leads to clustering in regions with ρtot > ρ0, and anti-clustering for ρtot < ρ0.

The term (∇ρ) · (∇p)/ρ2 will be nonzero even when the IGM is barotropic, or the

density-pressure relation is a power law p ∝ ργ and γ > 0. The ratio of this term to the

gravity is roughly ∼ (tinfall/tsound)
2, where tinfall ∼ (Gρ)−1/2, and tsound ∼ l/cs with the

typical scale of density variation l ∼ (∇ρ/ρ)−1 and the speed of sound cs ∼ (∇p/∇ρ)1/2

. The value of this ratio defines roughly the Jeans criterion for gravitational instability.

In addition, the pressure term −∇2p is compatible with (∇ρ) · (∇p)/ρ2 and is likely to be

positive in overdense clustering regions. Hence, these two terms are from thermal pressure

to resist upon gravitational collapse.

Finally, we examine the effect of the first two terms, the strain SijSij and the vorticity
1
2
ω2, on the right hand side of eq.(3). For simplicity, we consider an incompressible fluid in

the absence of gravity. In this case, eq.(3) simplifies to

∇2p = −ρ

(

SijSij −
1

2
ω2

)

. (4)

This is a typical Poisson equation for a scalar field of the pressure p. Taking the similarity

with the field equations in electrostatics, the term on the right hand side of eq.(4), Q =

ρ[SijSij − 1/2ω2], mimics the ”charge” of a pressure field. A positive ”charge” produces an

attraction force that tends to drive overdense charge halos while a negative ”charge” yields

a repulsive force that smear out the charge accumulation. Back to the IGM flow, Q plays

the role of nonthermal pressure of turbulence (Chandrasekhar 1951, a, b; Bonnazzola et al

1987). In regions with Q < 0, the turbulent pressure will prevent the IGM clustering. The

sign of Q is actually determined by levels to which the turbulence has developed(§5.2).
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3. Numerical Method

To model the flow patterns of the IGM and dark matter fields, we use the WIGEON

code, which is a cosmological hydrodynamic/N-body code based on the fifth-order WENO

(weighted essentially non-oscillatory) scheme (Feng et al. 2004). The WENO scheme uses the

idea of adaptive stencils in the reconstruction procedure based on the local smoothness of the

numerical solution to automatically achieve high order accuracy and non-oscillatory property

near discontinuities. Specifically, WENO adopts a convex combination of all the candidate

stencils, each being assigned a nonlinear weight which depends on the local smoothness of

the numerical solution based on that stencil (Shu, 1998, 1999). For more details, one can

refer to Appendix A.4.

The WENO scheme has been successfully applied to hydrodynamic problems containing

turbulence (Zhang et al 2008), shocks and complex structures, such as shock-vortex interac-

tion (Zhang et al 2009), interacting blast waves (Liang & Chen 1999; Balsara & Shu 2000),

Rayleigh-Taylor instability (Shi, Zhang & Shu 2003). The WENO scheme has also been used

to simulate astrophysical flows, including stellar atmospheres (del Zanna, Velli & Londrillo

1998), high Reynolds number compressible flows with supernova (Zhang et al. 2003), and

high Mach number astrophysical jets (Carrillo et al. 2003). In the context of cosmological

applications, the WENO scheme has been proved to be especially adept at handling the

Burgers’ equation, a simplification of Navier-Stokes equation,typically for modeling shocks

and turbulent flows (Shu 1999). This code has also been successfully applied to reveal the

turbulence behavior of the IGM (He et al 2006, Liu & Fang 2008, Lu et al 2009).

We evolve the simulation in the concordance model of a LCDM universe specified by the

cosmological parameters (Ωm,ΩΛ, h, σ8,Ωb, ns, zre) = (0.274, 0.726, 0.705, 0.812, 0.0456, 0.96, 11.0)

(Komatsu et al., 2009). The simulation is performed in a periodic cubic box of size of 25 h−1

Mpc with a 5123 grid and an equal number of dark matter particles, which have mass reso-

lutions 1.04× 107M⊙. To test the convergence, we also run a low-resolution simulation with

a 2563 grid and an equal number of dark matter particles in the same box. Radiative cooling

and heating are modeled using the primordial composition (X = 0.76, y = 0.24) and calcu-

lated as in Theuns et al.(1998). A uniform UV background of ionizing photons is switched

on at zre. Processes such as star formation and feedback due to stars, galaxies and active

galactic nuclei(AGN) are not included in our simulation. The simulations start at redshift

z = 99, and the snapshots are outputted at redshifts z = 11.0, 6.0, 4.0, 3.0, 2.0, 1.0, 0.5, 0.0.

The tensor ∂ivj of samples is then calculated by using a four-point finite-difference

approximation at the same grid that is used in the simulation. For example, the partial
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derivatives of ∂yvx at grid l, m, n is given by

∂yvx(l, m, n) =
2

3
[vx(l, m+1, n)− vx(l, m− 1, n)]− 1

12
[vx(l, m+2, n)− vx(l, m− 2, n)]. (5)

Once all the partial derivatives of three velocity components are generated, one can produce

the fields of vorticity and the rate of strain of these samples.

4. Basic Properties of the IGM Vorticity

4.1. Configuration of the Vorticity Fields

Fig. 1.— 3-D distribution of density fields of dark matter(left) and baryon(right) in a periodic

box size of 25h−1 Mpc with a 5123 grid.

Figure 1 visualizes 3-D density distributions of the dark matter (left) and the baryon

(right) respectively. Figure 2 gives the 3-D distributions of scalar field ωt,t is the cosmic

time, at redshifts z = 4, 2 and 0. The dimensionless quantity ωt is to characterize the

typical number of eddy turnovers of vorticity within the cosmic time. Figure 2 shows a

strong evolution of the intensity of vorticity with redshifts. The vorticity has not been well

developed until redshifts z ∼ 4, but becomes significant at z ∼ 2 which marks approximately

the onset of shocks and complex structures developed on the cosmic scales, and matches with



– 8 –

the typical formation history of dark matter halos of galactic clusters (e.g. Bahcall & Fan

1998).

Fig. 2.— 3-D distribution of dimensionless scalar field ωt that refers to the number of

turnovers of vortices within the cosmic time, where t is the cosmic time, at redshifts z = 4

(left), 2 (middle) and 0 (right).

The density fields (Figure 1) display the typical sheets-filaments-knot structures on the

cosmic scale. However, the spatial configuration of the vorticity field looks quite different:

it does not show any sheet-like or filamentary structure, instead, looks like clouds with the

comparable sizes of clusters. Although the vorticity field is not associated with the fine

structures of the underlying density fields, the cloudy structures are most likely to occur

around overdense regions on large scales, and thus the vorticity field can be used to pick up

the coherent structures. These features can be more clearly illustrated by 2-D distributions

of ωt and vector projection of ~ω shown in Figure 3, where a slide of 25× 25× 0.1 h−3 Mpc3

is taken. The distribution of ~ω shows a similar spatial pattern as the scalar quantity ωt.

It is recalled that, in a incompressible fluid, the evolution of vorticity is driven domi-

nantly by the amplification of the strain rate term S·~ω [eq.(1)], which tends to stretch the vor-

tical motion (Tanaka, & Kida, 1993; Constantin et al 1995) and produce filamentary(tubes)

and/or sheetlike structure in the vorticity field (e.g. She et al 1990). As mentioned in §2.2,
the strongest stretching is in the direction of ~ξ, which is parallel to the eigenvector of tensor

∂jvi with large positive eigenvalue. This mechanism distorts the vorticity field and forms a

tube-like network in the spatial configuration.

The IGM, however, is compressible as a fluid. The amplification due to the strain rate

S · ~ω will be largely canceled by the term −dω [eq.(2)], which results in a strong attenua-

tion of vorticity in the direction parallel to the eigenvector of the tensor ∂jvi with positive

eigenvalues. Consequently, the vector field ~ω does not show any clear sheetlike-filamentary
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Fig. 3.— Vorticity in a slide of 25× 25× 0.1 h−3Mpc3. The top two plots give vector fields

of ~ω against background of baryon density(top left) and dark matter density(top right). The

bottom left plot presents ωt in this slide while the baroclinity field is given by the bottom

right panel.
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structure.

Since vorticity is mostly attributed to the baroclinity (1/ρ2)∇ρ ×∇p, the distribution

of vorticity should be determined by the distribution of baroclinity. In figure 3, we also

present the baroclinity field in the same slide as that of ωt. Clearly, both of them show alike

structures. It is noted that, similar to the vorticity, the baroclinity can be strong even at

low density regions, as shocks and complex structures can be formed there (He et al 2004).

Nevertheless, there does not exist a linear mapping between the ωt and the baroclinity.

This is because the term |αω − dω| is sometimes comparable with the baroclinity |(1/ρ2)~ξ ·
(∇ρ×∇p)|. Figure 4 gives a cell-by-cell comparison between |αω− dω| and |(1/ρ2)~ξ · (∇ρ×
∇p)|. In average, the intensity of these two sources are almost of the same order. Thus, the

amplification and stretching by the rate-of-strain and divergence cannot be ignored. It leads

to the mapping between the ωt and the baroclinity field deviating from a linear one.

Fig. 4.— A cell by cell comparison between the term |αω − dω|, accounting for stretch in

addition to expansion or contraction of vortices, and baroclinity |(1/ρ2)~ξ · (∇ρ×∇p)|, source
of vorticity, at redshift z = 0.
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Fig. 5.— The probability distribution function (PDF) of vorticity ~ωi at redshifts z = 4

(square), z = 2 (triangle) and z = 0 (cross).The solid line gives a log-normal fitting result

for z = 0.

4.2. PDF of the Vorticity Fields

We calculate the probability distribution function (PDF) of the three components of the

vector field ~ωi at redshifts z = 4, 2, 0. Giving that the vorticity field is isotropic, the PDFs

of its three components ~ωi, i = x, y, z should be statistically identical, which is justified in

our samples. We take an average over these three components at these redshifts and give the

results in Figure 5. The PDF at present epoch exhibits a long tail, and can be approximately

fitted by a log-normal distribution as

p(ωt)d(ωt) =
1

ωt
√
2πσ2

exp

[

−1

2

(

lnωt− µ

σ

)2
]

d(ωt) (6)

where the variance σ = 0.98, µ = 0.37, which implies that the vorticity field is intermittent,

i.e. the probabilities of forming big vortical structures are much larger than Gaussian fields.

It shows that the PDF of vorticity fields has been always non-Gaussian since redshift

z ∼ 4, which is remarkably different from the velocity field of the IGM. The PDF of the

velocity and pairwise velocity fields of dark matter and the IGM are Gaussian at high

redshifts, corresponding to the linear phase of evolution (Yang, et al 2001). The evolution

of the IGM vorticity field does not undergo a linear and Gaussian phase over cosmic times,

since the vorticity can only be produced via nonlinear evolution. In this sense, the vorticity

field is more effective than the velocity field to track the nonlinear evolution of the IGM.

Another interesting feature indicated in Figure 5 is that the PDF at high redshifts is

approximately of exponential, and evolves into log-normal distribution at later phase. Thus,
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the PDF at different redshifts cannot be converted to each other by a scaling transformation.

It implies that the turbulence experiences a strong nonlinear evolution, which will be revisited

in next subsection.

4.3. Power Spectra of Velocity and Vorticity Fields

In a statistically homogeneous fluid, one can define the spectrum tensors Φij(k) and

Ωij(k) as the Fourier counterparts of the two-point correlation tensors of velocity 〈vi(x+ r)vj(x)〉
and vorticity 〈ωi(x+ r)ωj(x)〉,

Φij(k) =
1

(2π)3

∫

〈vi(x+ r)vj(x)〉e−ik·rdr (7)

Ωij(k) =
1

(2π)3

∫

〈ωi(x+ r)ωj(x)〉e−ik·rdr. (8)

respectively, where 〈...〉 denotes average over spatial coordinates x.

For a homogeneous turbulence, we have (Batchelor, 1959)

Ωij(k) = [δijk
2 − kikj]Φll(k)− k2Φij(k), (9)

and hence,

Ωii(k) = k2Φii(k). (10)

The power spectra of velocity and vorticity fields are defined respectively as

Pv(k) =

∫

1

2
Φii(k)δ(|k| − k)dk; Pω(k) =

∫

1

2
Ωii(k)δ(|k| − k)dk. (11)

Combining eqs. (10) and (11) yields

Pω(k) = k2Pv(k). (12)

This relation is an important property of homogeneous turbulence (Batchelor, 1959), and

can be used to measure the developed level of turbulence. If the velocity and vorticity fields

of a fluid satisfy the relation given by eq.(12), it should be in the state of fully developed

homogeneous turbulence. Otherwise, it would be less developed.

Figure 6 compares the power spectra Pω(k) with k2Pv(k) at z = 4 (top left), 2 (top

right) and 0 (bottom left), respectively. It shows that at high redshift z = 4, the power

spectrum Pω(k) is much less than k2Pv(k) at almost all scales, which means that not all,

actually only a small part, of the fluctuations of velocity field can be related to the random
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Fig. 6.— The power spectra Pω(k) and k2Pv(k) at redshifts z = 4 (top left), 2 (top right ) and

0 (bottom left) from 5123 simulation. The bottom right plot gives a resolution comparison

of these two terms at redshift z = 0.
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field of vorticity, and the turbulence is less developed by that time. While evolving to redshift

z ∼ 2, the turbulence is developed starting from the small scale 0.2h−1 Mpc and up to 0.8h−1

Mpc. At the present time, z = 0, the turbulence is fully developed and extended to the scale

3h−1Mpc, the typical scale of a cluster. The deviations of Pω(k) from k2Pv(k) on scales

less than 0.2 h−1 Mpc are probably due to the energy dissipation of turbulence to thermal

energy, or the virialization, on small scales. A panel of these two terms in the simulation run

of lower resolution, 2563, is also presented in Fig. 6 and provides a convergence test of the

resolution effect. It shows that the resolution does affect the lower end of turbulent scale as

a result of dissipation. However, the turbulence on large scale is resolution converged.

Figure 6 also shows that the variance of velocity field on large scales is remarkably

larger than that of vorticity field, especially at high redshifts. It indicates that the variance

on large scales is not from the turbulent motion of the IGM and probably from bulk motion,

which is due mainly to the falling into gravitational well. Therefore, to identify the variance

of a velocity field as the signature of turbulence (e.g. Iapichino & Niemeyer 2008) may

be questionable even on scales of clusters, as they generally contain many substructures at

redshifts less than 2.

We can also explore the evolution of turbulence with the spectrum of mean kinetic

energy density E(k) defined by
∫

∞

0
E(k)dk = 1/2〈ρ(r)v2(r)〉. The energy spectra E(k) at

redshifts z = 4, 2 and 0 are shown in Figure 7. The energy spectra can be approximately

fitted by a power law k−α with α = 1 in the scale range of 0.15 - 3 h−1 Mpc for z = 2 and

0.15 - 10 h−1 Mpc for z = 0. These scale ranges are larger than that given by the power

spectrum of velocity and vorticity. This is probably because the turbulent flow is strong in

high density areas. Figure 7 shows that the energy spectrum becomes very steep at scales

less than 0.15 h−1 Mpc because of the dissipation on small scales. The energy spectrum at

z = 4 cannot be fitted with the power law of k−1. It indicates that turbulence has not yet

developed by then. Turbulence is effective at transferring kinetic energy on large scales to

small one. Therefore, it leads to the power spectrum at z < 4 to be more flat than that of

z = 4.

5. Effects of Turbulent IGM on Structure Formation

5.1. Non-thermal Pressure

An early attempt of including the effect of turbulent motions into gravitational collaps-

ing processes was made by Chandrasekhar (1951). In his quantitative theory, he investigated

the effect of micro turbulence in the subsonic regime. If turbulence is statistically homo-
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Fig. 7.— The power spectrum of kinetic energy(solid line) at redshifts z = 4 (left), 2 (middle)

and 0 (right). A power law k−1 (dashed line) is used to fit the power spectrum.

geneous, it will contribute an extra pressure ptub = ρ〈v2〉 on large scales. In the linear

regime, Chandrasekhar derived a dispersion relation by introducing an effective sound speed

c2s,eff = c2s + (1/3)〈v2〉 where 〈v2〉 is the rms velocity dispersion due to turbulent motion.

Obviously, the turbulence will slow down, or even halt the gravitational collapsing.

Chandrasekhar’s result had been improved by a more elaborate investigation (Bonazzola

et al. 1992) , in which the scale dependence of the turbulent energy was taken account in

the analysis of system instability. Actually, the gravitational instability on a scale R will

not be affected by fluctuation modes with wavelengths larger than R, and the fluctuation of

velocity on the scales k < 2π/R do not contribute to the turbulent pressure for resisting on

gravitational collapsing on scales that larger than R. Quantitatively, the turbulent pressure

on the scale R can be estimated by (Bonazzola et al 1987)

ptur(kR) =

∫ kmax

kR

E(k)dk, (13)

where E(k) is the turbulent power spectrum, kR = 2π/R, and kmax = 2π/ldiss is the wavenum-

ber corresponding to the minimal scale ldiss below which the turbulence decays due to energy
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dissipation or virialization.

According to the results presented in §4.3, the turbulence is fully developed on scales

from 0.2 h−1 Mpc up to 3 h−1 Mpc since redshift z ∼ 2. The direct outcome of the turbulence

on those scales is expected to alter significantly the hydrostatic equilibrium state of the IGM

or the process of structure formation. The turbulent pressure ptur(kR) as a function of kR
is shown in Figure 8, where ldiss = 0.2h−1Mpc inferred from the power spectrum analysis

in §4. 3. In practical calculation, since the energy spectrum E(k) declines fast beyond 0.2

h−1 Mpc (Fig. 7), one can take kmax going to infinity safely. Since we have approximately

E(k) ∝ k−1, ptur(kR) given by eq.(13) is weakly dependent on k. We also show the energy

spectra E(k) in Figure 8.

Using the power spectra measured in Figure 7, the turbulent pressure is estimated to

be 1.5× 10−17 g cm−1s−2 at z = 0. According to p/ρ = RT/µ, the effective temperature due

to turbulent pressure is about 1.0× 106 K in regions of mean overdensity and 1.0× 105 K in

regions of 10 time mean overdensity. Deduced from Lyα forests of quasars, the temperature

of IGM at ρb ≃ 1 − 10ρb,0 is about 2 × 104 K. Therefore, the nonthermal pressure of the

turbulent flow could be larger than the thermal pressure of the IGM.

Fig. 8.— The spectrum of turbulent pressure ptur(kmin), given by ptur(kmin) =
∫ kmax

kmin
E(k)dk,

at redshifts z = 2 (left) and z = 0 (right). The energy spectra E(k) are also shown in each

panel.

The scale-dependence of the turbulent pressure is very weak. A decrease of one order of

magnitude in scales from R = 3 to 0.3 h−1 Mpc can only lead to deceases in the pressure ptur
by a factor of 4. On the other hand, the mass m of a cluster is related to its scale radius rs
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approximately as m ∝ r3s (Cooray & Sheth, 2002). The gravitational potential of m halos at

rs is Gm/rs ∝ r2s . Therefore, the ratio of the turbulent pressure to the gravitational potential

at rs would be larger for clusters with smaller mass m. The effect of turbulent pressure on

gravitational collapsing of baryon gas would be more significant on smaller clusters.

Fig. 9.— The distribution of ln(ω2/2SijSij), which characterizes the net effect of turbulence

on clustering and positive value represents prevention , in a 2-D slide of 25 × 25 × 0.1h−3

Mpc3 at redshift z = 2 (left) and 0 (right).

5.2. Vorticity and the Growth Rate of Velocity Divergence

In the nonlinear regime of the IGM gravitational clustering, the dynamical effect of

turbulence can be estimated by eq.(3). Here, we are focusing on the first two terms from

vorticity and strain rate. As discussed in §2.2, the net effect on the clustering is determined

by the sign of quantity,

1

2
ω2 − SijSij =

1

2
[(∂ivj)(∂ivj)− 3(∂jvi)(∂ivj)]. (14)

For a Gaussian velocity field, we have 〈3(∂jvi)(∂ivj)〉 = 〈(∂ivj)(∂ivj)〉, and in average, the

net effect of velocity field in eq.(3) is statistically null. However, for a non-Gaussian velocity
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field, it can be either positive or negative, which is dependent on the property of the velocity

field.

In homogeneous and isotropic turbulence, as 〈(∂jvi)(∂ivj)〉 = 0 (Batchelor 1959), the

signs of Eq.(14) are always positive, which results in prevention of gravitational collapsing

in the IGM. Figure 9 plots the spatial distribution of ln(ω2/2SijSij) in the same simulation

slide as that used in Figure 3. Comparing Figure 9 with Figures 3 , we find that all those

cells with ln(ω2/2SijSij) > 0 are located in the clouds around density peaks, where the

vorticity is dominant. It provides a mechanism to prevent or slow down the IGM clustering

with respect to the underlying dark matter.

We search for cells with (1/2)ω2−SijSij > 0. At redshift z = 0, there is a fraction 7.6%

of volume, 16.6% of mass, with positive values of (1/2)ω2 − SijSij , while at redshift z = 2,

this volume fraction has decreased down to 2.6%. Thus, the effect of turbulence becomes

stronger to prevent the IGM clustering at lower redshifts.

Fig. 10.— Comparison of effects of turbulent pressure and thermal pressure on the divergence

d (eq.(3)), [1
2
ω2 − SijSij]/[

1
ρ
∇2p], to baryon density of randomly selected cells with 1

2
ω2 >

SijSij at redshift z = 0. Solid line gives the mean value of this ratio at every density bin.

Broken lines give the cumulative probability 20%,50%,70% and 90%, from bottom to up.

In order to compare the effects of turbulent pressure and thermal pressure on the di-

vergence d, we calculate the ratio of (1/2)ω2 − SijSij to −∇2p , taken from eq.(3), cell by

cell. The result is presented in Figure 10, in which the cells are randomly selected from
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those with 1
2
ω2 > SijSij in the whole simulation samples. We find that for most densities

nearly 30% of those cells with 1
2
ω2 > SijSij have a value of this ratio larger than 1 and

indicate that mean turbulent pressure dominates over thermal pressure in them. Obviously,

the dynamical prevention provided by turbulence could be comparable to that of thermal

pressure and even become dominate in a considerable fraction of the whole volume.

6. Discussions and Concluding Remarks

The relationship between the fields of vorticity and velocity is similar to the relationship

between the current of charge density and magnetic field, and thus, vorticity would be a

measurement of the coherent spatial structures of velocity field. Moreover, the dynamical

equation of vorticity is free from the gravitational field of dark matter and cosmic fluid.

These remarkable features are very useful to study the nonlinear behavior of cosmic baryon

fluid, especially the clustering behavior of the turbulent cosmic fluid in the gravitational field

of underlying dark matter.

We show that the vorticity field of baryonic matter is significantly increasing with time

when redshift z ≤ 2. It can be understood that vorticity is effectively generated by shocks

and complex structures of the baryon fluid, and then amplified by the rate-of-strain. At

redshift z = 4, the largest vorticity is only of the order of ωt ≃ 10, while it is ωt ≃ 102 at

present universe. The IGM vorticity field is non-Gaussian and intermittent at all redshifts.

The PDF of vorticity evolves from approximately exponential distributions at high redshifts

to a distribution with log-normal long tail at present epoch.

The spatial configuration of the vorticity field is found to be very different from that

of velocity and mass density. The distribution of vorticity does not follow the underlying

matter structures, such as filaments and sheets. It always shows 3-D cloudy structures

around gravitational collapsed regions, i.e. the knots in the filament-sheets structures. Even

in regions surrounding high density structures, vorticity can be strong because complex

structures, such as curved shocks and collision of shocks, are already formed around knots

at their early phase of formation. Vorticity would be more effective to reveal the clustering

behavior, which is overlooked by the mass density field in some way.

The fluctuations of vorticity field is useful to measure the development of a fully devel-

oped turbulence in the cosmic fluid. The relation between the power spectra of vorticity and

velocity provides a measurement on the scale of velocity fluctuations where turbulence is fully

developed. We find that the cosmic fluid is in the state of fully developed homogeneous and

isotropic turbulence in the scale range of 0.2h−1Mpc to 3.0h−1Mpc at present epoch. With
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this result, we calculate the turbulent pressure. It is of the order of 1.5×10−17 g cm−1s−2 at

z = 0 in average, which is equivalent to the thermal pressure of gas with mean cosmic baryon

density at temperature 1.0× 106 K. It tends to slow down the gravitational clustering of the

baryon fluid. Moreover, the spectrum of turbulence pressure is weakly dependent on scale

k, and then the effect of turbulent pressure would be relatively stronger on smaller objects.

The turbulent pressure may shed light on the problem of overcooling, i.e. the fraction of

cold gas and stars in regions of galaxies, galaxies groups and clusters given by ΛCDM sim-

ulations is significantly higher than the observed value at z ∼ 0 ( Nagai & Kravtsov, 2004,

Crain et al. 2007, Keres et al. 2009). A possible way to solve this problem is to assume

that the IGM undergo a pre-heating at low redshift (e.g. de Silva et al 2004). However, the

pre-heating model is strongly in contradiction with the observations of the low-redshift Lyα

forest of quasars, which cannot exist if the temperature of the IGM is ≥ 105 K. Galactic

winds is another mechanism proposed to suppress star formation in galaxies. Hydrody-

namic simulations, however, suggest that such feedback would be inefficient in galaxies with

Mgal ≥ 109M⊙(Mac Low & Ferrara 1999). Turbulent pressure essentially is dynamical and

nonthermal. It can play the similar role as thermal pressure to prevent the gravitational

clustering, while does not affect the thermal state and ionizing process of hydrogen in the

IGM. The turbulent IGM can remain a temperature of 104−5K and hence consistent with the

observation of Lyα forest. If the IGM is turbulent, the Lyα absorption lines will not only

show thermal broadening but also turbulent broadening. Observation of Lyα line widths

of HI and HeII indicates that the broadening of Lyα forest is partially given turbulence

broadening (Shull et al 2004, Zheng et al 2004, Liu et al 2006).

Vorticity enhances the transportation of mass, momentum and kinetic energy. The

cascade of vortical structures leads to transfer of kinetic energy of vortical motion from large

scales to small scales. The turbulence energy will further dissipate into thermal motion.

This processes will enhance efficiently the entropy production via the thermalization and

virialization. In addition, the turbulent motion can cause diffusive mixing of materials,

which tends to wipe out gradients in the distribution of chemical composition. The details

will be reported in the near future.
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A. The basic equations

A.1. Hydrodynamical equations for the IGM

The IGM is assumed to be an ideal fluid with polytropic index γ. The hydrodynamic

equations for the IGM in the expanding universe can be written in the following form

U̇ + ∂ifi[U ] = f(t, U) (A1)

where ∂i ≡ ∂/∂Xi (i = 1, 2, 3), Xi denote the proper coordinates, which are related to

comoving coordinates xi by Xi = a(t)xi, a(t) being the scale factor. The quantity U in

eq.(A1) contains five components as

U = (ρ, ρv, E) (A2)

where ρ is the comoving density of the IGM, v = {vi} (i = 1, 2, 3) are the peculiar velocity on

three axes, E = P/(γ−1)+ 1
2
ρv2 is the total energy per unit comoving volume, P = a3p, and

p is the pressure of the IGM. The quantities fi(U) in Eq.(A1) are given by the conservation

laws of mass, momentum and energy as

f1(U) = [ρv1, ρ(v1)
2 + P, ρv1v2, ρv1v3, v1(E + P )]

f2(U) = [ρv2, ρv1v2, ρ(v2)
2 + P, ρv2v3, v2(E + P )]

f3(U) = [ρv3, ρv1v3, ρv2v3, ρ(v3)
2 + P, v3(E + P )] (A3)

The ”force” term f(t, U) on the right hand side of Eq. (A1) is given by

f(t, U) = (0,− ȧ

a
ρv +

1

a
ρg,−2

ȧ

a
E +

1

a
ρv · g − Λrad). (A4)

The term of −(ȧ/a)ρv is from the expansion of the universe. The term of Λrad in Eq.(A4) is

given by the radiative heating-cooling of the baryon gas. The gravitational force g = −∇φ

is produced by the matter including CDM and baryon , given by

∇2φ =
4πG

a
ρ̄totδtot. (A5)

where the operator ∇ acts on the comoving coordinate x. δtot = [ρtot(x, t) − ρ̄tot]/ρ̄tot, and

ρtot is the total comoving mass density. Its mean value is ρ̄tot(t) = 1/6πGt2 ∝ a−3. The

gravitational potential φ is zero (or constant) when the density perturbation δtot = 0.
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A.2. Vorticity equation

Euler equation in comoving coordinates

∂tρvi +
1

a
(∂jρvjvi + ∂jδijP ) = − ȧ

a
ρvi +

1

a
ρgi, (A6)

or

ρ∂tvi + vi∂tρ+
1

a
(vi∂jρvi + ρvj∂jvi + ∂jδijP ) = − ȧ

a
ρvi +

1

a
ρgi, (A7)

,where ∂t ≡ ∂/∂t. Therefore

ρ∂tvi +
1

a
(ρvj∂jvi + ∂jδijP ) = − ȧ

a
ρvi +

1

a
ρgi, (A8)

or

∂jδijP∂tvi +
1

a
vj∂jvi = −1

a
(
1

ρ
∂jδijP + ȧvi − gi). (A9)

Using Levi Civita symbol

ǫijkǫilm = δjlδkm − δjmδkl (A10)

we have

vj∂jvi =
1

2
∂ivjvj − ǫijkvjωk, (A11)

where ωi = ǫijk∂
jvk is vorticity.

Taking operator of curl ǫijk∂
j on eq.(A9), we have term by term.

ǫijk∂
j∂tvk = ∂tǫijk∂

jvk = ∂tωi (A12)

ǫijk∂
jvl∂lvk = ǫijk∂

j 1

2
∂kvlvl − ǫijk∂

jǫklmvlωm (A13)

ǫijk∂
j 1

2
∂kvlvl = 0 (A14)

ǫijk∂
jǫklmvlωm = ǫkijǫklm∂

jvlωm = ∂mviωm − ∂lvlωi = ωm∂
mvi − ωi∂

lvl − vl∂
lωi (A15)

Therefore, we have vorticity equation as

∂tωi +
1

a
vl∂

lωi =
1

a
(ωm∂

mvi − ωi∂
lvl +

1

ρ2
ǫijk∂jρ∂kp− ȧωi). (A16)

Because ωi(∂
jvi − ∂ivj) = 0, we have

∂tωi +
1

a
vl∂

lωi =
1

a
(Sijωj − dωi +

1

ρ2
ǫijk∂jρ∂kp− ȧωi) (A17)
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where

Sij =
1

2
(∂jvi + ∂ivj) (A18)

and d = ∂ivi. In vector format

∂tω +
1

a
v · ∇ω =

1

a
(S · ω − dω +

1

ρ2
∇ρ×∇p− ȧω) (A19)

A.3. Equation of divergence

Taking operator ∂i on eq.(A9), we have term by term,

∂i∂tvi = ∂td (A20)

∂ivj∂jvi = vj∂j∂
ivi + (∂ivj)(∂jvi) = vj∂jd+ (∂ivj)(∂jvi) (A21)

Using

∂ivj =
1

2
(∂ivj + ∂jvi) +

1

2
(∂ivj − ∂jvi), (A22)

we have

(∂ivj)(∂jvi) = SijSij +
1

4
(∂ivj − ∂jvi)(∂

jvi − ∂ivj) = SijSij +
1

2
ǫijk∂jvkǫilm∂lvm. (A23)

Therefore, the equation of divergence is

∂td+
1

a
vl∂

ld =
1

a
(
1

2
ωiωi − SijSij −

1

ρ
∂i∂ip+

1

ρ2
∂jρ∂jp− ȧd− 4πG

a
(ρ− ρ0)). (A24)

or in vector format

∂td+
1

a
v · ∇d =

1

a
(
1

2
ω · ω − SijSij −

1

ρ
∇2p+

1

ρ2
(∇ρ) · (∇p)− ȧd− 4πG

a
(ρ− ρ0)). (A25)

A.4. A brief description of the numerical algorithm.

We use the fifth order finite difference WENO scheme (Jiang & Shu 2006) to demonstrate

the basic idea of the WENO methodology. The fifth order WENO finite difference spatial

discretization to a conservation law such as

ut + f(u)x + g(u)y + h(u)z = 0 (A26)
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approximates the derivatives, for example f(u)x, by a conservative difference

f(u)x|x=xj
≈ 1

∆x

(

f̂j+1/2 − f̂j−1/2

)

(A27)

along the x axis, with y and z fixed, where f̂j+1/2 is the numerical flux. g(u)y and h(u)z
are approximated in the same way. Hence finite difference methods have the same format

for one and several space dimensions, which is a major advantage. For the simplest case of

a scalar equation (A26) and if f ′(u) ≥ 0, the fifth order finite difference WENO scheme has

the flux given by

f̂j+1/2 = w1f̂
(1)
j+1/2 + w2f̂

(2)
j+1/2 + w3f̂

(3)
j+1/2 (A28)

where f̂
(i)
j+1/2 are three third order accurate fluxes on three different stencils given by

f̂
(1)
j+1/2 =

1

3
f(uj−2)−

7

6
f(uj−1) +

11

6
f(uj), (A29)

f̂
(2)
j+1/2 = −1

6
f(uj−1) +

5

6
f(uj) +

1

3
f(uj+1), (A30)

f̂
(3)
j+1/2 =

1

3
f(uj) +

5

6
f(uj+1)−

1

6
f(uj+2). (A31)

Notice that the combined stencil for the flux f̂j+1/2 is biased to the left, which is upwinding

for the positive wind direction due to the assumption f ′(u) ≥ 0. The key ingredient for the

success of WENO scheme relies on the design of the nonlinear weights wi, which are given

by

wi =
w̃i

∑3
k=1 w̃k

, w̃k =
γk

(ε+ βk)2
, (A32)

where the linear weights γk are chosen to yield fifth order accuracy when combining three

third order accurate fluxes, and are given by

γ1 =
1

10
, γ2 =

3

5
, γ3 =

3

10
; (A33)

the smoothness indicators βk are given by

β1 =
13

12
(f(uj−2)− 2f(uj−1) + f(uj))

2 +
1

4
(f(uj−2)− 4f(uj−1) + 3f(uj))

2 (A34)

β2 =
13

12
(f(uj−1)− 2f(uj) + f(uj+1))

2 +
1

4
(f(uj−1)− f(uj+1))

2 (A35)

β3 =
13

12
(f(uj)− 2f(uj+1) + f(uj+2))

2 +
1

4
(3f(uj)− 4f(uj+1) + f(uj+2))

2 , (A36)

and they measure how smooth the approximation based on a specific stencil is in the target

cell. Finally, ε is a parameter to avoid the denominator to become 0 and is usually taken
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as ε = 10−6 in the computation. There are no other parameters needed to be tuned by the

user in the WENO method.

Meanwhile, the time step in simulation is set to the minimum value among two time

scales. One is given by Courant condition as

∆tcfl ≤
CFL[a(t)∆x]

max(|v1 + cs, v2 + cs, v3 + cs)
, (A37)

where ∆x is the cell size, cs is the local sound speed, v1, v2, and v3 are fluid velocities, and

CFL is the Courant number, here CFL = 0.60. The other one is from cosmic expansion,

which requires that ∆a/a < 0.02 within a single time step.

The WENO scheme is proven to be uniformly fifth order accurate including at smooth

extrema, and this is verified numerically. Near discontinuities the scheme produces sharp

and non-oscillatory discontinuity transition. The approximation is self-similar. Namely,

when fully discretized with the Runge-Kutta methods, the scheme is invariant when the

spatial and time variables are scaled by the same factor. This is a major advantage for

approximating conservation laws which are invariant under such scaling.
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