PHOTOMETRY OF VARIABLE STARS FROM DOME A, ANTARCTICA: RESULTS FROM THE 2010 OBSERVING SEASON

Lingzhi Wang^{1,2,3,4}, Lucas M. Macri,², Lifan Wang^{2,3,5}, Michael C. B. Ashley⁶, Xiangqun Cui^{3,7}, Long-Long Feng^{3,5}, Xuefei Gong^{3,7}, Jon S. Lawrence^{6,8}, Qiang Liu^{3,4}, Daniel Luong-Van⁶, Carl R. Pennypacker⁹, Zhaohui Shang^{3,10}, John W. V. Storey⁶, Huigen Yang^{3,11}, Ji Yang^{3,5}, Xiangyan Yuan^{3,7}, Donald G. York¹², Xu Zhou^{3,4}, ZHENXI ZHU^{3,5} & ZONGHONG ZHU^{1,5}

Accepted for publication in the Astronomical Journal

ABSTRACT

We present results from a season of observations with the Chinese Small Telescope ARray (CSTAR), obtained over 183 days of the 2010 Antarctic winter. We carried out high-cadence time-series aperture photometry of 9,125 stars with $i \lesssim 15.3$ mag located in a 23 square-degree region centered on the south celestial pole.

We identified 188 variable stars, including 67 new objects relative to our 2008 observations, thanks to broader synoptic coverage, a deeper magnitude limit and a larger field of view.

We used the photometric data set to derive site statistics from Dome A. Based on two years of observations, we find that extinction due to clouds at this site is less than 0.1 and 0.4 mag during 45% and 75% of the dark time, respectively.

Subject headings: site testing – stars: variable: general

1. INTRODUCTION

Synoptic (time-series) astronomy has undergone a dramatic transformation over the past decade thanks to advances in imaging and computer technology. Many highimpact discoveries have taken place, such as transiting exoplanets (Charbonneau et al. 2000) and the detection of supernovae mere hours after explosion (Nugent et al. 2011). These and other astrophysical problems benefit from long, continuous and stable time-series photometry, which until recently could only be achieved from space or via coordinated observations by a world-wide telescope network. The former alternative is expensive, while the latter is fraught with calibration issues, variable weather across the sites, and is highly labor intensive.

One region on Earth – the Antarctic Plateau – offers an excellent alternative to the aforementioned options by providing a combination of extended periods of dark time, high altitude, low precipitable water vapor, extremely low temperatures and a very stable atmosphere

¹ Department of Astronomy, Beijing Normal University, Beijing,

Chinese Center for Antarctic Astronomy, Nanjing, China

Current email address: wanglingzhi@bao.ac.cn

with greatly reduced scintillation noise (Kenyon et al. 2006). These conditions enable new or extended observation windows in the infrared and sub-milimeter regions of the electromagnetic spectrum, as well as improved conditions at optical and other wavelengths. The resulting gains in sensitivity and photometric precision over the best temperate sites can reach several orders of magnitude (Storey 2005, 2007, 2009; see also Tables 2 & 4 and Figures 7-11 in Burton 2010). The long "winter night" that occurs at these latitudes and the minimal daily change in elevation for any given source make the performance of a polar site equivalent to that of a sixsite network at temperate latitudes (Mosser & Aristidi 2007). Some disadvantages include the reduced fraction of the celestial sphere that can be observed, prolonged twilight, and possibility of aurorae.

According to metereological studies carried out by Saunders et al. (2009, 2010), the region surrounding Dome A (elevation: 4,093 meters above mean sea level) in the Antarctic plateau is likely the best astronomical site on Earth. In order to further investigate the conditions at this promising site, we developed an observatory capable of year-round operations called PLATO (Ashley et al. 2010; Luong-Van et al. 2010; Yang et al. 2009; Lawrence et al. 2009; Lawrence et al. 2008; Hengst et al. 2008; Lawrence et al. 2006), and a quad-telescope called CSTAR (the Chinese Small Telescope ARray, Yuan et al. 2008; Zhou et al. 2010b). The observatory is part of the Chinese Kunlun station, located at Dome A.

Several papers were written based on a large amount of high-quality photometric data obtained during the 2008 Antarctic winter: Zou et al. (2010) undertook a variety of sky brightness, transparency and photometric monitoring observations; Zhou et al. (2010a) published a photometric catalog of $\sim 10,000$ stars; and Wang et al. (2011) presented the first catalog of variable stars in the CSTAR field of view.

² Mitchell Institute for Fundamental Physics & Astronomy, Department of Physics & Astronomy, Texas A&M University, College Station, TX, USA

⁴ National Astronomical Observatory of China, Academy of Sciences, Beijing, China 5 Purple Mountain Observatory, Chinese Academy of Sciences,

Nanjing, China

⁶ School of Physics, University of New South Wales, NSW, Australia

Nanjing Institute of Astronomical Optics and Technology, Nanjing, China

Australian Astronomical Observatory, NSW, Australia

⁹ Center for Astrophysics, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Tianjin Normal University, Tianjin, China

¹¹ Polar Research Institute of China, Pudong, Shanghai, China 12 Department of Astronomy and Astrophysics and Enrico Fermi Institute, University of Chicago, Chicago, IL, USA

This paper presents an analysis of the data acquired by the CSTAR#3 telescope during the 2010 Antarctic winter season. §2 briefly describes the observations and data reduction; §3 describes the steps followed to obtain high-precision time-series photometry of the brightest 9,125 stars with well-sampled light curves; §4 discusses the variable stars we discovered and §5 contains our conclusions.

2. OBSERVATIONS AND DATA REDUCTION

2.1. Observations

Observations were carried out using the same CSTAR telescope (unit #3) which we described in detail in Wang et al. (2011). Briefly, it is a Schmidt-Cassegrain wide-field telescope with a pupil entrance aperture of 145 mm, a Sloan *i*-band filter, and a $1K \times 1K$ frame-transfer CCD with a plate scale of 15.7"/ pix, giving a field of view 4.5° on a side. The telescope and camera have no moving parts, to allow for robust operation in the extreme conditions of the Antarctic winter. Therefore, the field of view is centered on the South Celestial Pole (SCP), which lies $\sim 9^{\circ}$ from the zenith at this site, and exposures are short (20-40s) to prevent star trails. The SCP field probes the inner halo of the Milky Way ($l = 303^{\circ}, b = -27^{\circ}$) and has moderate extinction ($A_i = 0.31$ mag, Schlafly & Finkbeiner 2011).

Scientifically-useful images were acquired from 2010 March 29 to 2010 September 27. Table 1 lists the number of images and total integration time per month and Table 2 lists the different integration times used throughout the observing season. More than 338,000 images (equivalent to over 360 GB of data) were collected with a total integration time of 2,553 hours.

2.2. Data Reduction

The preliminary data reduction for raw science frames involved bias subtraction, flat fielding, correction for variations in sky background, fringe pattern subtraction and bad pixel masking. We used the same bias frame from our previous paper, which was created during instrument testing in China. We generated a sky flat by median-combining 2,700 frames with high sky level (> 10,000 ADU) taken throughout the observing season during twilight conditions (Sun elevation angle between 0 and -10°). Prior to combining the images, we masked any stars present in the individual frames using a detection threshold of 2σ , as well as regions within 10 pixels of any pixel close to saturation (defined as >25,000 ADU).

Approximately 35% of the bias-subtracted and flatfielded images showed low-frequency sky background variations with an amplitude of $\sim 3\%$ of the mean value, which we subtracted by the following method. We divided each image into 1,024 square sections (32 pixels on a side) and computed the mean and standard deviation of the sky value in each section using the procedure implemented in DAOPHOT (Stetson 1987). We did not use any sections with sky values above 20,000 or below 0 ADU, or those with standard deviations that exceeded 300 ADU. Those properties are typical of very crowded regions of an image, or indicate the presence of a very bright star, so we replaced the sky value of those sections with the median value of their nearest ten neighbors. We

TABLE 1 Log of observations

Month 2010	# images	Total exp. time (hr)
March	1587	17.6
April	31110	345.7
May	39651	405.8
June	69509	579.2
July	97310	631.1
August	73088	406.0
September	30098	167.2
Total	342353	2552.6

TABLE 2 Exposure times

Start	End	Exp. (s)	#
date	date		images
2010-03-29	2010-05-26	40	59843
2010-05-26	2010-07-13	30	114577
2010-07-13	2010-09-27	20	167933

generated a full-resolution background model frame by fitting the 1,024 sky values using a thin-plate spline. We calculated the standard deviation of sky values before and after model subtraction; if the reduction in the scatter was less than a factor of 2, we reduced the section size to 16 pixels on a side and repeated the procedure.

The background-subtracted images exhibited a fringe pattern, which is commonly encountered in CCD images obtained at near-infrared wavelengths (for a review, see Howell 2012). We created a fringe correction frame and removed this instrumental signature from our images following these steps. First, we selected 1,500 images taken each month with the lowest sky levels during dark time (Sun elevation angle below -18°) and 1,500 images taken during twilight. This yielded 7 sets of images obtained during twilight and 5 sets acquired during dark time (April to August). The motivation behind creating the two different sets was to check for variations in fringe amplitude as a function of Sun elevation angle.

Next, we removed stars by masking any pixel lying more than 2σ above the sky level. We combined the frames in each of the 12 sets by sorting the un-masked pixels at each (x,y) position, discarding the lowest 10 values (where the fringe pattern was too low to be useful), and averaging the next 50 values. The fringe pattern had an average peak-to-peak amplitude of 2% of the mean sky value, with no statistically significant variation as a function of time or Sun elevation angle. Therefore, we generated the final fringe frame by taking the minimum pixel value at each location among the 12 sets (to further ensure that no stellar sources were included). The fringe pattern was subtracted from individual frames by iteratively scaling the correction image until the sky background exhibited the lowest r.m.s. value.

3. PHOTOMETRY

3.1. Frame Selection and Photometry

We carried out initial photometric measurements on the debiased, flattened, sky-subtracted and fringecorrected images using the same pipeline and procedures

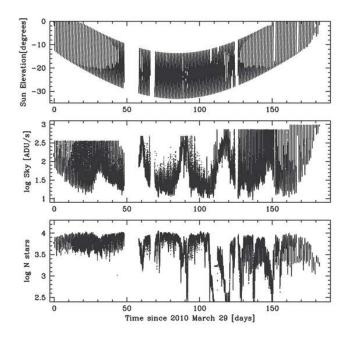


FIG. 1.— Time-series plots of Sun elevation angle (top panel), sky brightness level (middle panel), and number of stars detected in each image (bottom panel).

described in Wang et al. (2011), which we briefly summarize here. Given the extremely undersampled nature of the images, we performed aperture photometry using DAOPHOT Stetson (1987). We set the aperture radius to 2.5 pixels (equivalent to 39.3") and the sky annulus extended from 4 to 7 pixels (equivalent to 62.8-109.9"). The detection threshold was set to 5σ above the sky background, which typically corresponded to $i \sim 14$ mag.

Figure 1 displays the Sun elevation angle (top panel), sky background in ADU s⁻¹ (middle panel), and number of stars detected (bottom panel) for each image as a function of time since 2010 March 29. The sky background shows a clear monthly pattern related to the lunar phase. During most of the winter season, the data acquisition system was programmed to stop when the sky level exceeded 14,600 ADU; this limit was raised to 19,400 after 2010 Sep 7. We initially selected frames with Sun elevation angle below 0° and more than 1,500 stars. These criteria were met by 85.5% (289,343) of all the images acquired during the Antarctic winter. A period of bad weather and ice buildup on the top cover of the instrument during the month of July resulted in the rejection of \sim 35,000 images (equivalent to 8 days of operations).

The selected images have a median sky level of 32 ADU s⁻¹, equivalent to a median sky background of $i = 19.8 \text{ mag/}\square''$. This value is identical to the value derived by Zou et al. (2010) and similar to our previous determination of 19.6 mag/ \square'' (Wang et al. 2011). Note that all these estimates include contributions from moonlight. The darkest sky background measured during the season (on clear moonless nights) was $i \sim 20.9 \text{ mag/}\square''$. The median value of the number of stars detected in an individual frame is 8,600, higher than the corresponding value of 7,500 from the 2008 observations. We attribute this increase to the subtraction of sky background variations described in § 2.2, which enabled the detection of

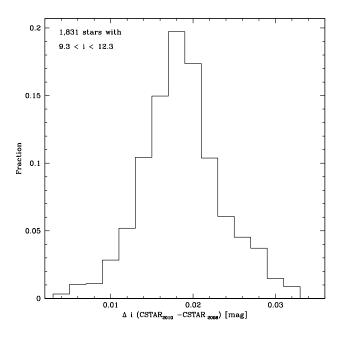


Fig. 2.— Comparison of the mean instrumental magnitudes of bright stars in common between the 2008 and 2010 CSTAR observations.

fainter stars at a fixed threshold.

We used the initial photometry to register all frames using DAOMATCH and DAOMASTER and created a reference image (hereafter, "master frame") with $4\times$ finer spatial sampling. We followed the same procedure described in our previous paper, this time based on 2,580 high-quality images obtained during 2010 June 13. We carried out aperture photometry on the master frame using the same parameters listed above and detected approximately 155,000 stars, reaching a depth of $i\sim20.9$ mag. Additionally, we performed point-spread function photometry that, despite its lower quality due to the undersampled nature of the images, enabled us to estimate the relative magnitudes of stars with overlapping apertures.

3.2. Photometric corrections

We performed all the photometric corrections described in detail in Wang et al. (2011), which included: exposure time normalization, zeropoint correction, sigma rescaling, residual flat fielding, time calibration, masking of satellite trails and saturated regions, spike filtering, and magnitude calibration. We will only discuss the details of magnitude and time calibration since the rest of the procedures were identical to our previous work.

We performed the magnitude calibration by matching the mean instrumental magnitudes of 1,831 stars with 9.3 $\leq i \leq$ 12.3 mag in common between our 2010 and 2008 master frames. Since the mean instrumental magnitudes of each season are referenced to individual images obtained under the best observing conditions (in terms of sky background and number of stars) we would expect them to reflect photometric conditions and therefore have very similar zeropoints. Indeed, we found a zeropoint offset of only 0.018 \pm 0.005 mag as shown in Fig. 2. We transformed the instrumental magnitudes to

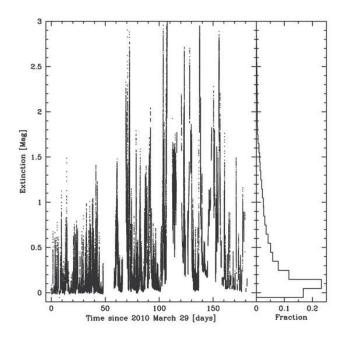


Fig. 3.— Left panel: time series plots of differential extinction, right panel: distribution of differential extinction.

the Sloan photometric system by applying the offset of 7.45 ± 0.04 mag previously derived in §3.2 of Wang et al. (2011). That offset was based on the comparison of our photometry with the i synthetic magnitudes derived by Ofek (2008) using the Tycho catalog, which carries an additional systematic uncertainty of 0.02 mag.

Figure 3 shows a time series and a histogram of differential extinction values, based on the photometry procedures described above. We find that extinction due to clouds in the i band at Dome A is less than 0.4 mag during 70% of the dark time, and less that 0.1 mag during 40% of the dark time. These values are similar to those previously derived for the 2008 Antarctic winter season (80% and 50%, respectively, from Wang et al. 2011).

The computer associated with the CSTAR#3 telescope has a GPS receiver to maintain time synchronization, and this time was to be distributed to computers controlling the other CSTAR telescopes (including the one used for these observations). However, there was a communication problem between the computers throughout the entire observation period, which led to a drift in the time stamp of the FITS images. §4.3 of Zhou et al. (2010a) contains details of the time calibration for the 2008 data; we carried out a similar procedure for the 2010 data as explained below.

We performed the time calibration in three steps. First, we identified two bright stars located very close to R.A.=0h and measured the angle (with respect to the x-axis) of a line extending from the SCP to their positions. We calculated the difference between the measured angle and the one predicted from the time in the FITS headers, and fit a fourth-order polynomial to solve for the time drift. The smallest dispersion was obtained by fitting two different polynomials for the data acquired before and after 2010 June 17. The total clock drift over 6 months amounted to \sim 190 seconds as seen in Fig. 4. Next, we used 19 entries in a log (obtained for engineering pur-

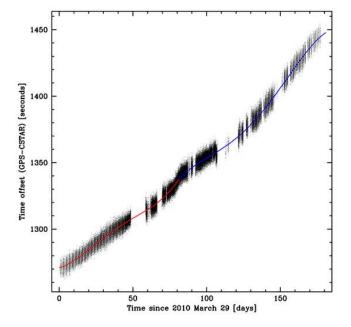


Fig. 4.— Drift between true local time and computer time, fitted by two fourth-order polynomials.

poses throughout the season) that listed the time offset between the CSTAR#3 computer and another computer at Dome A which had maintained GPS synchronization. While these data points were not sufficient to solve for the time drift, they served to transform our relative measurements into an absolute reference frame. We obtained an offset of 1337.5 ± 1.6 s. Lastly, we applied a transformation to the heliocentric reference frame.

We later checked the derived time offset by performing a cross-correlation of the light curves of 33 bright, high-amplitude, periodic variables (such as eclipsing binaries and RR Lyraes) that we had previously detected in Wang et al. (2011). We used the latest implementation of the Phase Dispersion Minimization algorithm (Stellingwerf 1978, 2011), which can robustly handle large gaps in the time series and combines all light curve "segments" to determine a common period. Using this approach, we found a consistent (but less precise) offset of 1270 ± 245 s.

4. VARIABLE STARS IN THE CSTAR FIELD

While the primary goal of CSTAR observations is to characterize the observing conditions at Dome A, the rapid cadence of image acquisition and the long duration of the winter night make this a relatively unique data set for studying variable stars and searching for extrasolar planets via the transit method. We used several complementary techniques (described below) to identify variables among the selected stars, since no single approach is sensitive to all types of stellar variability. Some of the methods we used are only sensitive to periodic variability. Most of the algorithms we used are available as part of the VARTOOLS light curve analysis program of Hartman et al. (2008).

Having already characterized the observing conditions at the site based on all the "dark time" data, we restricted our variable-star analysis to the images obtained

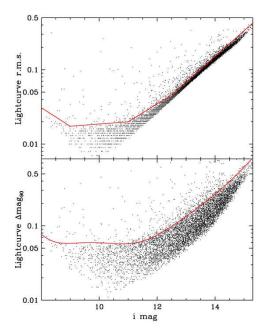


Fig. 5.— r.m.s. (top) and 90%-ile magnitude range (bottom) of the lightcurves of 9,125 selected stars with sufficient synoptic coverage (see text for details).

under the best observing conditions, which we defined as a sky background below 100 ADU s $^{-1}$ and an extinction ≤ 0.5 mag. These criteria were met by 169,500 frames (the "science-quality" sample), corresponding to about 60.9% of the previously selected set of images. Among the rejected images, 3.7% failed to provide a reliable coordinate transformation with respect to the reference frame.

We initially selected the brightest 20,000 stars in the master frame (corresponding to a depth of $i\sim15.3$ mag) for time-series aperture photometry. Once the measurements were carried out, we restricted our analysis to 9,125 objects with valid measurements in at least 20% of the individual science-quality frames (or in 20% of all possible 3,000s time segments) in order to ensure sufficient synoptic coverage. This restriction implies a maximum declination limit of $-87^{\circ}13'$ for objects in the sample, which we will later use when comparing our variable star statistics with previous studies.

We complemented the search for variables with information obtained from the PSF photometry previously carried out on the master frame, which had a $4\times$ finer pixel scale and represented a 24-hour average stellar flux. For each object of interest, we calculated the fraction of contaminating flux contributed all other stars located closer than a certain distance: the aperture radius (39.3''), the inner edge of the sky annulus (62.8''), and the outer edge of the sky annulus (109.9''). We refer to these three fluxes hereafter as "close", "medium" and "far" respectively.

4.1. Search for variability

The first phase of our search for variable stars was aimed at identifying objects with statistically significant variations in magnitude that did not necessarily display a periodic behavior during our observations – including

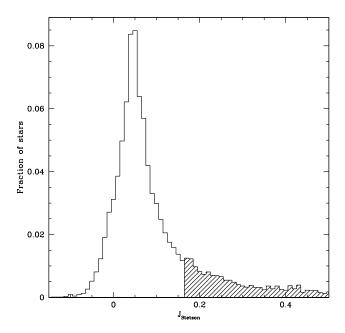


Fig. 6.— Variability statistic J (Stetson 1996) for 9,125 selected stars with sufficient synoptic coverage (see text for details).

objects such as Miras, other very long-period variables and irregular variables. We used a combination of three metrics to separate constant from variable stars, as detailed below.

We calculated the r.m.s. and the magnitude range spanned by 90% of data points (hereafter, Δi_{90}) of the light curves of all stars. We determined upper 2σ envelopes for both quantities as a function of magnitude, shown with red lines in Fig. 5. Stars lying above both envelopes were flagged as possible variables for further analysis. The upturn in both envelopes for i < 9 mag is probably due to a combination of factors, including the onset of non-linearity in the detector and the dearth of truly constant stars in this magnitude range within our field. The Besançon model of the Galaxy (Robin et al. 2003) predicts that post-main sequence stars (which are very likely to exhibit variability, see Henry et al. 2000) will outnumber main-sequence objects by a ratio of 7 to 1 at this magnitude.

The lowest light curve r.m.s. values (7 mmag) are found at $i \sim 10$ mag, reaching within a factor of 5 of the expected scatter due to scintillation (Young 1967) for our telescope at Dome A. Given the large number of individual measurements in our photometry, bright (i < 13.5 mag) stars lying below both envelopes have statistical uncertainties in their mean magnitudes below 2×10^{-4} mag. As discussed in §3.2 and in Wang et al. (2011), the overall uncertainty of the photometry is dominated by the statistical (± 0.04 mag) and systematic (± 0.02 mag) uncertainties of the calibration procedure.

Next, we computed the Welch-Stetson variability index J (§2 of Stetson 1996), including the usual rescaling of the reported DAOPHOT magnitude errors (Udalski et al. 1994; Kaluzny et al. 1998). The result of this analysis is shown in Fig. 6; as expected for the J statistic, there is a gaussian distribution of values with a

mean value close to zero (corresponding to stars with no significant variability), and a one-sided tail (towards positive values) of candidate variable stars. We determined a mean value of $J=0.049\pm0.038$ by fitting a Gaussian function to all objects with |J|<0.3, and flagged stars with $J\geq0.164$ (equivalent to a $+3\sigma$ selection) for further inspection.

We combined the r.m.s., Δi_{90} and J criteria listed above to select 44 variable stars. In addition to passing all 3 variability criteria, the selected objects were also restricted to have contaminating fluxes from nearby companions in the "medium" and "far" apertures below 11.5% and 23% of the total flux, respectively. These limits may have resulted in the rejection of some bona fide aperiodic variables or transient events, but they serve to eliminate false positives from our sample.

4.2. Search for periodic variability

The J statistic was designed to be sensitive to statistically significant photometric variability between neighboring data points, and is well suited to detect continuously-varying objects such as pulsating stars (Miras, Cepheids, RR Lyrae, δ Scuti, etc.) or contact binaries. It is not particularly sensitive to detached eclipsing binaries (where the variation is restricted to a very small fraction of the phase) or to objects where the variation only becomes statistically significant after phasing many cycles (such as transiting exoplanets or very low amplitude pulsators). Similarly, the other two metrics used in the first phase of the search for variables (light curve r.m.s. and Δi_{90}) lack sensitivity to small-scale periodic variations. Therefore, we searched for *periodic* variability among the stars that had failed one or more of the previous selection criteria using two of the techniques described in detail in Wang et al. (2011): the Lomb-Scargle method (Lomb 1976; Scargle 1982, hereafter LS) and the "box fitting algorithm" of Kovács et al. (2002, hereafter

Given the design of the CSTAR system, stars describe daily circular tracks through the CCD. This can lead to spurious detections of periodicity due to small residual flat-field variations. Fortunately, these false positives are easily identified and discarded because the variations occur at frequencies close (0.5-3%) to 1 cycle per sidereal day and their (sub-)harmonics. We considered an object to have significant periodic variability if the period determined by VARTOOLS (based on either the LS or the BLS technique) had a SNR> 30 and lied outside of the excluded frequencies. We imposed a minimal restriction on contaminating flux for this search, removing 2\% of objects where the contaminating flux from other stars in the "close" aperture exceeded 40% of the total. The search for periodic variables can tolerate substantially larger contamination from neighbors for several reasons: very close neighbors (within the instrumental PSF or the measurement aperture) can only decrease the amplitude of the variation but cannot result in a false positive, and future observations can be used to identify which of the confused stars is the actual variable; stars outside the measurement aperture but within the outer sky annulus may produce noisier measurements but the long span of our observations still yields high-quality binned light curves that satisfy the requirement on the SNR of the period determination; any companions that somehow induce a spurious periodic variation will do so at frequencies of 1 cycle/day or one of its harmonics and those have already been removed from consideration.

We detected an additional 136 variables using the LS technique and a further 8 variables using the BLS technique. These algorithms were also applied to the variables previously selected in §4.1 and 16 of those objects were found to exhibit a significant periodicity. The initial periods were refined using the Period04 program (Lenz & Breger 2005) and the Phase Dispersion Minimization algorithm (Stellingwerf 1978, 2011).

Approximately two thirds of the periodic variables exhibit a highly regular variation both in terms of period and amplitude (e.g., eclipsing binaries, normal RR Lyraes), a few have a long-term modulation in amplitude (e.g., Blazhko RR Lyraes), and about one third show variations at multiple frequencies. In the latter two cases, we based our analysis in the most significant period.

4.3. Properties of variable stars

Table 3 lists the properties of all detected variables. Column 1 has the 2010 CSTAR ID (a letter n is added at the beginning to avoid confusion with 2008 CSTAR IDs from our previous work); column 2 lists the 2008 CSTAR ID from (Wang et al. 2011), if applicable; column 3 presents the ID from the Guide Star Catalog. version 2.3.2 (GSC2.3), when available; columns 4 and 5 give the right ascension and declination; column 6 contains the mean i-band magnitude; column 7 lists the 90% range of the i-band light curve; column 8 has the J value; column 9 lists the most significant period (when applicable); column 10 specifies the technique used to find the period; column 11 gives the first time of minimum light contained in our observations (listed only for the periodic variables); column 12 contains a tentative classification of the variable type, when possible; column 13 has additional information, including previous identification of the variables by the All-Sky Automated Survey (Pojmanski 2005, ASAS,) or inclusion in the General Catalogue of Variable Stars (GCVS, Samus et al. 2009). Representative light curves of periodic variables are shown in Fig. 7, while two-season light curves of selected long-term variables are plotted in Fig. 8. Detailed finding charts including light curve plots for all variables are available through the Chinese Virtual Observatory¹⁴. All light curve data is also available through this site.

We detected a total of 188 variables in the 2010 CSTAR data, consisting of 67 new objects and 121 stars in common with Wang et al. (2011). We did not recover 36 objects classified as variables in our previous paper for the following reasons: 10 did not have enough data points, 7 were blended, and 19 did not meet the selection criteria adopted in this paper. The new variables detected in this study relative to our previous work were made possible by the deeper magnitude limit and slightly larger field of view ($\delta < -87^{\circ}13'$) of the 2010 observations, which were respectively due to better sky subtraction and improved alignment of the center of the field with the SCP.

Thanks to the greater depth and synoptic coverage of our observations, we obtained a $\sim 4\times$ increase in the number of variables with $\delta < -87^{\circ}13'$ relative to

¹⁴ http://casdc.china-vo.org/data/cstar

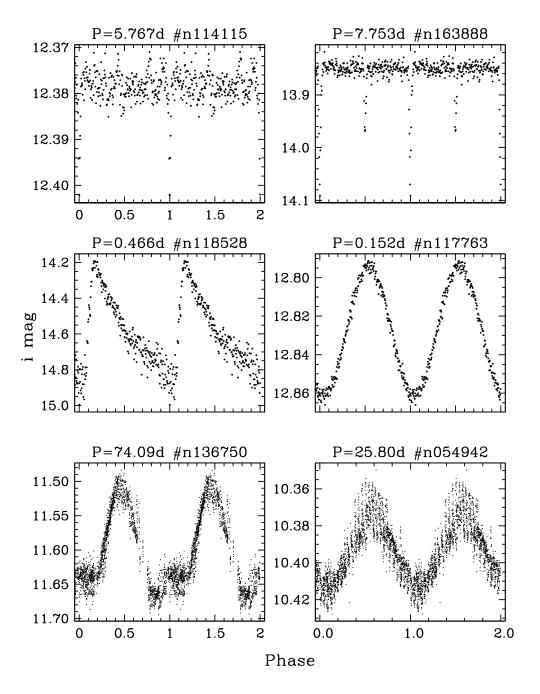


Fig. 7.— Phased light curves of six newly detected periodic variable stars. The periods and 2010 CSTAR IDs are given above each panel. Top row: transiting exoplanet candidate and detached eclipsing binary; middle row: RR Lyrae and δ Scuti; bottom row: multi-periodic variables phased at the most significant period.

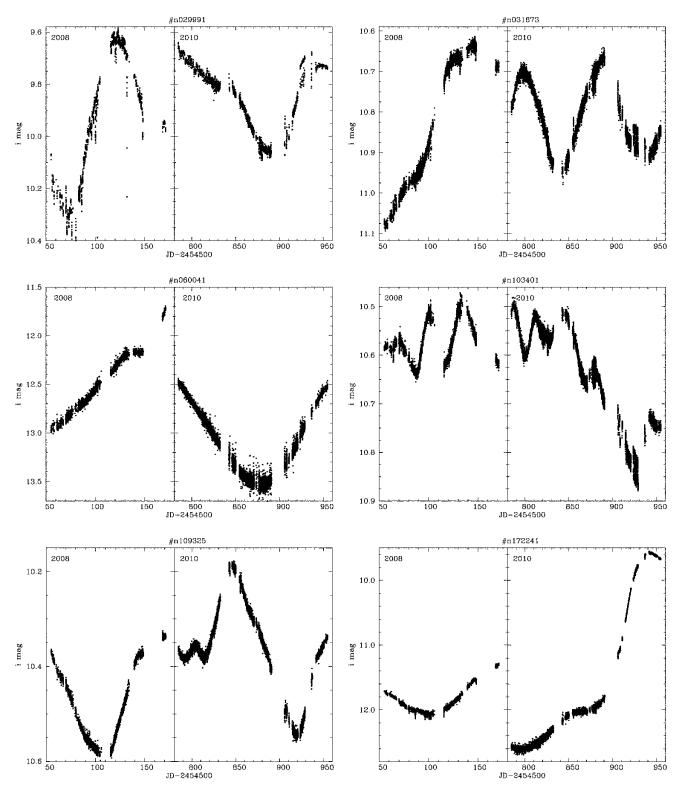


Fig. 8.— Two-year light curves (left: 2008; right: 2010) for variables with long-term trends.

TABLE 3 Variable stars

The column The	VARIABLE STARS												
10012403 1001707 \$74000031 123-12-12 1-37-20-20-20 1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0		ID				i	Δi_{90}	J	Period		T_0^3	${ m Class}^4$	${ m Note^5}$
1012546 SY900006 114-63-67 - 76-72-75-91 SY90006 SY9006 SY90006 SY9006 SY90006	2010	2008	GSC	(J200	$(0.0)^1$	(m	ag)		(d)	$\rm Src^2$			
1012546 SY900006 114-63-67 - 76-72-75-91 SY90006 SY9006 SY90006 SY9006 SY90006	n010320		S742000016	12:04:48.75	-87:23:06.0	8.79	0.18	9.68				IR	A
0015705 003907 003907 003908	n012443			12:32:42.91					0.338544	$_{\rm LS}$		EC	A
0016257 003697 \$75200001 1208119 8-735:99 8-735:99 11:56 0.08 0.65 19.081678 LS													
0.015050 0.00880													
1017731 001463 SYM0006151 13212466 -8739484 244 0.10 0.06 0.58 0.669362 LS 785.7944 ED 1017751 0.702068 S74000401 3121546 -8739463 7.00 0.16 3.11 5.788360 LS 786.5006 ED 10125458 10125406 0.00171 SYM000602 0.10125458 -8739463 7.00 1.00 0.71 1.00 0.75 1.00 0.75 1.00 0.70 1.00 0.70 0.70 1.00 0.70 0													A
0.028505 S. 724.000440 S. 745.00060 S. 745.													
0029977 0029977 0029977 0029977 0029977 002999 002997 002997 002999 002997 002997 002997 002997 002997 002997 002997 002999 002997 002999 002997 00299													
0025731 009652 S7420001420 009529.779													Α.
0.025734 0.09952 \$742000182 124:33:067 -8753:30.9													
0.027042													
0028073 011709 5742000246 124144.27 87559.28.5 11.37 0.07 0.77 2.951167 LS 785.7149 PR PR 0028236 101709 5742000266 12235.82 885014.5 12.02 0.02 0.90 0.852910 LS 786.9435 PS 0029919 013255 5747000377 14545.23 7857210.5 0.987 0.03 0.41 0.03													
n0299044 \$742000186 13:28:28.82 = 87:53:09.92 9.52 0.04 1.86 11:54:653 LS MP n020000 03:13:00 \$8379000226 10:25:53.99 = 87:53:40.8 9.83 0.07 1.40 20.978:237 LS MP n031373 01:13:08 \$8374000753 10:03:10:03 57:53:00.0 9.87 0.07 1.40 20.978:237 LS 785.23:23 DS n031373 01:30:08 47:10:08 27:55:10:02 10:81 0.25 5.38 95:147:196 LS MP n044888 016:33 \$72:20:03 85:10:02 -88:11:171:176 1.37 0.03 0.47 0.17:20:11 LS MP n037305 018708 \$37:20:00:00 40:23:23:24 83:23:28 61:26:01 20:20:25 57:25:24 BS n039373 020:43:65 \$37:20:00 \$37:20:00 \$40:33:28 \$8:72:28:40 \$2:20:10 10:23:20:25 \$78:20:24 B				12:41:44.27							787.1734		
000008 013140 S3Y000037											786.9435		
0.031040 0.31440 0.379000236 0.25:53:99 -87:55:40.8 9.83 0.07 1.40 0.2078:237 LS MP 0.031343 0.14115 ST47000634 14:290.63 -87:55:06.2 10.81 0.25 5.38 95:147196 LS MP 0.031610 0.1495 S3Y000039 10:490.065 -88:05:17.2 12.30 0.12 0.65 19:218473 LS MP 0.035474 ST47007170 15:95:55 -87:57:55.91 9.09 0.08 2.89 1.59				13:28:28.82									Α.
0.031433													A
0.031673 0.14368 S3YM000073 0.00310.79 ~875.19.06.2 10.81 0.25 5.38 95.147196 LS MP													
0031880 014495 S3Y90000319 10490.065 —88.02:17.2 12.30 0.12 0.65 19.218473 LS MP 0034884 016886 F472003158 12.9140.622 —88.111.76 13.74 0.30 0.47 0.17261 LS 785.203 DS 0037305 018708 S3YN000617 05.902.02.8 —87.28:36.6 12.60 0.23 0.76 61.305131 LS MP 0039064 020256 57.2000064 13.23.93.92 68.81604.31 12.64 0.42 1.35 2.5107.02 LS 786.754 ES ES 0040305 0.839900067 10.1012.1 88.2332.89 9.21 0.06 1.73 17.086312 LS 78.79603 EA 0145656 0.3379000612 13.23.93 13.83 11.89 0.22 2.11 0.65 71.654313 BLS 78.79.003 EB 0045656 025460 37.2000672 14.205.204 88.14.33.4 12.65 0.08 0.25 <td></td>													
0.037474 0.037474 0.1509.55.59	n031801	014495	S3Y9000339	10:49:00.65	-88:02:17.2	12.30	0.12	0.65	19.218473	LS		MP	
n0393057 018708 S3YN000619 09.02:20.82 -87:37:41.0 12.38 0.09 0.76 61:30:5131 LS MP n039664 20256 8742000641 13:23:49:26 -88:16:04.3 12.66 0.42 1.53 2.510726 LS 786:9545 ES A n042221 0.83 83Y9000527 10:01:21:80 -88:13:30.8 11.89 0.22 2.51 0.652314 LS 785:79:63 EC A n043406 874000632 839900852 78:39:90:23 12:21 0.10 0.26 7.16:6431 BLS 785:70:93 EC A n045666 874000681 12:29:34:38 -88:29:59:0 11.49 0.05 0.32 17:25:6627 S MP n045666 8742000671 14:25:55:28 88:34:16:10 17.7 0.03 3.79 18:25:10 S 78:50:08 EC A n045661 02:26:40 8742000661 12:25:56:28 88									0.176214	LS	785.2034		
n039647 n039664 620256 87400051 08403328 8-87:28:38:6 12.66 0.23 0.76 61:30:5131 LS MP n040035 n040055 0.20256 874000051 11:52:51.12 -88:32:32.9 9.21 0.06 1.73 17:086312 LS MP n04221 n04366 0.23614 874000632 0.33940.85 -87:39:02.3 12:1 0.10 0.26 7.16:6431 BLS 787:9603 ED n044666 n04566 0.23614 8742000682 12:09:34:88 88:29:50.0 11:14 0.05 0.32 17:26:627 LS MP n045656 0.539900612 10:32:32:73 -88:25:50.6 13:73 0.14 0.09 3.535402 BLS 785:50.8 ED n047552 026640 8742000671 12:25:50.48 88:34:34.1 10:77 0.03 0.37 9.972472 LS MP n047552 026640 83YB000671 12:25:50.48 88:34:53.1 13:77 0.14 0.072472 12:88 88:34:43													
n039664 202526 8742000504 13:23:49:26 -88:16:04.3 12.46 0.42 1.53 2:510726 LS 78:95:45 ES A n042221 022489 83Y9000627 10:52:51.12 -88:32:89.9 9.21 0.06 1.133 17:08:61341 LS 785:70:43 EC A n043566 0.23614 8742000632 12:93:43.88 -88:29:59.0 11.49 0.05 0.32 17:256627 LS MP n045656 8742000672 14:20:52.04 -88:14:33.4 12:65 0.08 0.25 0.400924 LS 785:5108 ED n045656 8742000672 14:20:52.04 -88:14:51.4 17.77 0.03 0.379 17:87 LS 785:508 EC n045651 0.26640 83YB000429 11:17:00.40 -88:35:36.4 9.11 0.13 2.066699 LS 786:554 ED n044284 0.26222 83YB0000429 11:17:00.40 -88:33:56.4 1													
mol40035													A
m043496													
n0445666 C33614 S742000638 12:09:34:38 -88:29:50.0 11.49 0.05 0.32 17:25667 LS MP n045666 \$742000672 14:20:52.04 -88:14:33.4 12.65 0.08 0.25 0.40094 LS 78:52:228 EC n045611 025846 \$742000671 14:25:39.12 -88:34:11.6 10.77 0.03 0.37 9.972472 LS MP n047562 026640 \$374000020 9:58:36.02 -88:34:54.1 13:77 0.14 0.07 9.618211 LS 78:78:700 PR n047660 026730 \$374000015 61:17:04:06.48 -88:38:02.5 13:55 0.25 0.38 48:18:779 LS LT A n051910 030353 \$374000015 68:39:30:40 -88:38:30:25 13:55 0.38 48:18:18 MP A n052325 \$74200075 \$3748000225 9:29:39:44 -88:39:94 12:29:09<	n042221	022489	S3Y9000527	10:01:21.80	-88:13:30.8	11.89	0.22	2.51	0.652314	LS	785.7043	EC	A
n044666 S379000612 10.32.32.73 -88.125.02.6 13.73 0.14 0.09 3.535402 BLS 788.51.08 ED n0456981 742000675 12.05.20.4 -88.14.11.6 10.77 0.03 0.37 9.972472 LS 785.222.8 EC n047552 026640 S3YB000429 11.17.00.40 -88.35.36.4 9.37 0.38 10.24 9.972472 LS 786.258.4 ED n047660 026730 S3YB000429 11.517.00.40 -88.35.36.4 9.37 0.38 10.24 9.618211 LS 786.258.4 ED n054946 028221 S3YB000436 11.04.66.48 -88.38.92.5 13.55 0.25 0.38 4.81 1.87 1.88.899.2 PR n052190 30335 S3YA0000315 31.74 -87.46.35.4 8.35 0.09 0.55.76 IR A.G n054284 0378000458 10.04.91 4.88.49.52.6 10.39 0.05 1.27											787.9603		
n0456566 not5656 S742000672 14:20:52.04 -88:14:33.4 12:65 0.08 0.25 0.40924 LS 785:2228 EC n046511 025446 S742000671 14:25:39.12 -88:34:11.61 10.77 0.04 0.07 9:618211 LS 78.7800 PR n047656 026640 83.78000202 9:58:36.02 -88:23:59.9 12.89 0.11 0.13 2.06699 LS 78.62584 ED n049466 028221 83.78000202 9:58:36.02 -88:23:59.9 12.89 0.11 0.13 2.06699 LS 78.62584 ED n050944 029379 87.4E000029 15:57:05.68 -87:30:05.41 11.93 0.15 0.99 1.553117 LS MP A n052124 032007 8374000025 09:23:30.14 -88:30:64.1 12.87 0.09 0.15 1.08425 LS MP A n05424 032544 83740000458 10:04:44.17 -88:49:62.5 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
n045983 025440 S742000656 12:12:56:28 —88:34:11.6 10.77 0.03 0.37 9.972472 LS MP n047552 026640 S3720000429 11:17:00.40 —88:35:36.4 9.37 0.38 10:24 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
n045511 025846 S742000671 14:25:39.12 -88:14:54.1 13.77 0.14 0.07 9.618211 LS 788.7800 PR n047552 026640 S3YB000020 09:58:36.02 -88:35:59.9 12.89 0.11 0.13 2.066699 LS 786.2584 ED n04946 029379 S74E000029 15:57:05.68 -87:30:05.4 11.93 0.15 0.99 1.553117 LS MP A n052120 030353 S3YB00045 08:39:40.45 -88:38:02.5 11.93 0.15 0.99 1.553117 LS MP A n052120 030353 S3YB00025 08:39:40.45 -88:03:19.4 12.87 0.09 0.15 1.048425 LS 785.9799 PR n052325 S74E000072 09:29:39.14 -88:30:06.4 11.78 0.12 0.98 0.612163 LS 785.9790 RL A,G n054284 032007 S3YB000425 10:440.34 -88:40:25.5 9.06 0.04 1.41 0.09208 LS 785.2723 PR n057617 034724 S3YB000482 10:01:18.94 -88:43:68 10.08 0.06 1.44 10.92508 LS 785.2723 PR n0577725 034724 S3YB000482 10:01:18.94 -88:43:36.8 10.08 0.10 0.234 43:205800 LS MP A n0576789 S3YB000482 10:01:18.94 -88:33:43.7 12.13 0.61 5.88 0.646577 LS 785.6753 RL A n058656 035468 S3YB000243 09:03:59.29 -88:33:07.6 11.40 0.07 0.21 0.252251 LS 785.0505 ES n0506064 036699 S74300001 14:29:04.38 -88:33:47 12.13 0.61 5.88 0.646577 LS 785.6753 RL A n058656 035468 S3YB00020 15:25:11.74 -88:26:33.0 12.41 0.07 0.21 0.252251 LS 785.6753 RL A n058656 035468 S3YB00020 15:25:11.74 -88:26:33.0 12.41 0.07 0.21 0.252251 LS 785.6753 RL A n060666 036939 S74300020 15:25:11.74 -88:23:14.9 12.82 0.05 0.05 7.376734 LS 785.020 ES A n060666 036939 S74300020 15:25:11.74 -88:23:14.9 12.82 0.05 0.05 0.05 7.376734 LS 785.200 ES A n060666 0.3668 S3YB00025 15:59:17.54 -88:00:42.5 11.74 0.07 0.21 0.252251 LS 785.2555 PR n060666 0.3668 S3YB00025 0.59:17.54 -88:00:42.5 11.74 0.07 0.21 0.252251 L													
n047666													
n049496								10.24					A
no50944													
n052190 030353 S3YA000615 08:39:40.45 -88:03:19.4 12.87 0.09 0.15 1.048425 LS 785,9799 PR n054284 032007 S3YB000225 19:29:39:14 -88:30:06.4 11.78 0.12 0.98 0.621863 LS 785.5950 RL A,G n054942 032544 S3YB000312 11:48:09.42 -88:49:52.6 10.39 0.05 1.27 25.795462 LS MP n057617 034669 S743000094 13:50:03.38 -88:46:13.2 10.08 0.06 1.4 11:617192 LS MP n057725 034724 S3YB000318 11:19:13:27 -88:63:40.8 12.74 0.10 0.19 1.862438 LS MP n058002 034997 S743000311 14:29:04.38 -88:33:43.7 12:13 0.61 5.88 0.646577 LS 785.6753 RL A n059543 036162 S3YB000345 88:86:63.63 0.12.41													A
n052325 S74E000072 15:44:44.17 -87:46:35.4 8.35 0.09 5.76 IR n054942 032007 S3YB000225 09:29:39:14 -88:30:06.4 11.78 0.12 0.98 0.621863 LS 785.5950 RL A,G n054942 032544 S3YB000312 11:48:09.42 -88:49:52.5 10.08 0.06 1.27 25:795462 LS MP n057617 034629 S7430000482 10:04:40.3 -88:46:13.2 10.08 0.06 1.04 1.01:16:19.2 S MP A n057759 034724 S3YB000318 11:19:13:27 -88:34:43:68 10.08 0.06 0.19 18:62:38 LS MP A n058656 035468 S3YB0000318 11:19:13:27 -88:34:43:68 10.08 0.06 1.9 18:62:38 LS MP A n058656 035468 S3YB0000311 14:29:04:38 -88:38:43.7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>A</td></t<>													A
n054284 032007 S3YB000225 09:29:39.14 -88:30:06.4 11.78 0.12 0.98 0.621863 LS 785:5950 RL A,G n054942 032544 S3Y8000312 11:48:09.42 -88:49:52.6 10.39 0.05 1.27 25:795462 LS MP n057617 034669 S743000094 13:50:03.38 -88:46:13.2 10.08 0.06 1.40 15:167192 LS MP n057759 S3Y8000318 11:19:13.27 -88:34:36.8 10.08 0.10 2.34 43:205800 LS MP n05802 03497 S743000311 14:29:04.38 -88:34:36.8 12.74 0.10 0.19 1.862438 LS MP n058450 035468 S3YA000613 08:08:46.28 -88:09:02.0 13.86 0.17 0.09 0.822773 BLS 786.0553 PR n060661 0369543 36:36 5743000153 15:35:01.14 -88:34:14.9 <td></td>													
n054942 032544 \$33Y8000312 11:48:09.42 -88:49:52.6 10.39 0.05 1.27 25,795:462 LS MP n057617 034669 \$743000994 13:50:03:38 -88:46:25.5 9.06 0.04 1.41 0.092508 LS 785.2723 PR n057725 034724 \$37Y800482 10:01:18.94 -88:34:08.8 10.08 0.10 2.34 43.205800 LS MP n057789 \$378000318 11:19:13.27 -88:33:40.8 10.09 1.862438 LS MP n058020 34997 \$743000311 14:29:04.38 -88:38:34.7 12.11 0.07 0.21 0.258295 LS 785.6753 RL A n0586442 \$378000613 08:53:46.28 -88:00:02.0 13.86 0.17 0.99 0.822773 BLS 786.0550 ED n059543 036162 \$37800013 15:35:01.14 -88:16:11.9 13.16 0.95 7.376734													A.G
n057617 034669 S743000094 13:50:03.38 -88:46:13.2 10.08 0.06 1.40 15:167192 LS MP n057725 034724 S3YB000482 10:01:18.94 -88:44:36.8 10.08 0.10 2.34 43.205800 LS MP A n058002 034997 S743000311 14:29:04.38 -88:38:43.7 12:13 0.61 5.88 0.646577 LS 785.6753 RL A n058422 S3YB000613 08:53:45.85 -88:26:33.0 12.41 0.07 0.21 0.258295 LS 785.6753 RL A n058656 035468 S3YB000243 09:03:59:29 -88:33:07.6 11.40 0.20 1.18 0.873357 LS 785.2335 PR n060566 036939 S743000155 15:35:01.14 -88:23:14.9 12.82 0.05 0.05 7.376734 LS 785.7479 PR n060567 037016 S743000155 15:25:11.74				11:48:09.42	-88:49:52.6		0.05					MP	,
n057725 034724 S3YB000482 10:01:18:94 -88:44:36.8 10:08 0.10 2.34 43:205800 LS MP n057789 S3Y8000311 14:29:04:38 -88:53:40.8 12:74 0.10 0.19 1.862438 LS MP n058020 034997 S743000311 14:29:04:38 -88:38:43.7 12:13 0.61 5.88 0.646577 LS 785:6753 RL A n058642 S3YB000199 08:53:45.85 -88:26:33.0 12.41 0.07 0.21 0.258295 LS 785:2335 PR n059543 036162 S3YB000243 09:03:59:29 -88:30:07.6 11.40 0.20 1.18 0.873857 LS 785.2020 ES A n060560 036939 S743000153 15:25:11.74 -88:23:14.9 12.82 0.05 0.05 7.376734 LS 785.7479 PR n060749 S741000025 15:59:17:54 -88:04:25											785.2723		
n057789 S3Y8000318 11:19:13:27 -88:53:40.8 12.74 0.10 0.19 1.862438 LS MP n058002 034997 S743000311 14:29:04:38 -88:38:43.7 12.13 0.61 5.88 0.646577 LS 785.6753 RL A n058442 S3YB000199 08:53:45.85 -88:00:02.0 13.86 0.17 0.09 0.822773 BLS 785.0050 ED n059543 036162 S3YB000243 09:03:59:29 -88:33:07.6 11.40 0.20 1.18 0.873857 LS 785.2020 ES A n060041 036526 S743000153 15:35:01.14 -88:16:11.9 13.16 0.95 4.98 LT IT 14:00.00 0.00 12:82 0.05 7.376734 LS 785.7479 PR n060667 037016 S74300016 15:28:41.36 -88:14:40 13.63 0.15 0.05 7.376734 LS 785.7479 PR<													
n058002 034997 S743000311 14:29:04.38 -88:38:43.7 12.13 0.61 5.88 0.646577 LS 785.6753 RL A n058656 035468 S3YA000613 08:53:45.85 -88:26:33.0 12.41 0.07 0.21 0.258295 LS 785.2335 PR n059543 036162 S3YB000243 09:03:59.29 -88:33:07.6 11.40 0.20 1.18 0.873857 LS 785.2020 ES A n060566 036939 \$743000153 15:35:01.14 -88:16:11.9 13.16 0.95 4.98 LT LT n060667 037016 \$743000186 15:28:41.36 -88:21:44.0 13.63 0.15 0.10 0.157962 LS 785.7479 PR n060789 \$741000025 15:59:17.54 -88:04:25.1 14.23 0.26 0.03 6.853790 LS 785.7479 PR n062519 038580 \$348000346 1													A
n058442 S3YB000199 08:53:45.85 -88:26:33.0 12.41 0.07 0.21 0.258295 LS 785.2335 PR n059543 036162 S3YB000243 09:03:59.29 -88:33:07.6 11.40 0.20 1.18 0.873857 LS 785.2020 ES A n060041 036526 S743000153 15:35:01.14 -88:16:11.9 13.16 0.95 4.98 LT n060667 037016 S743000186 15:28:41.36 -88:21:44.0 13.63 0.15 0.10 0.157962 LS 785.3571 PR n060789 S741000025 15:59:17.54 -88:00:42.5 14.23 0.26 0.03 6.853790 LS 789.0467 ED n062144 038255 S743000115 13:53:18.49 -88:59:54.1 11.78 0.05 0.21 5.745575 LS 787.1325 PR n062696 S741000340 16:07:56.96 -87:59:09.7 11.98 <td></td> <td>A</td>													A
n058656 035468 S3YA000613 08:08:46.28 -88:00:02.0 13.86 0.17 0.09 0.822773 BLS 786:0050 ED n059543 036162 S3YB000243 09:03:59.29 -88:33:07.6 11.40 0.20 1.18 0.873857 LS 785.2020 ES A n060566 036939 S743000200 15:25:11.74 -88:16:11.9 13.16 0.95 4.98 LT n060667 037016 S743000186 15:28:41.36 -88:21:44.0 13.63 0.15 0.10 0.157962 LS 785.3571 PR n060789 S74100025 15:59:17.54 -88:00:42.5 14.23 0.26 0.03 6.853790 LS 789.0467 ED n062144 038255 S743000115 13:53:18.49 -88:54:14.6 12.87 0.47 2.17 0.266903 LS 785.2929 EC A n062540 03863 S3YB000253 08:46:12.64 -88:33:42.9 12.00<	0 7 0 4 4 0		O-7	00 50 15 05	00 00 00 0	40 44	~ ~ =	0.01	0.050005	T (1		DD	
n060041 036526 S743000153 15:35:01.14 -88:16:11.9 13.16 0.95 4.98 LT n060566 036939 S743000200 15:25:11.74 -88:23:14.9 12.82 0.05 0.05 7.376734 LS 785.7479 PR n060789 S741000025 15:59:17.54 -88:00:42.5 14.23 0.26 0.03 6.853790 LS 789.0467 ED n062144 038255 S743000115 13:53:18.49 -88:54:14.6 12.87 0.47 2.17 0.266903 LS 785.2922 EC A n062519 038580 S3Y8000346 10:50:11.96 -88:59:54.1 11.78 0.05 0.21 5.745575 LS 787.1325 PR n062640 03863 S3YB000346 16:07:56.96 -87:59:09.7 11.98 0.08 0.31 1.185502 LS 785.2965 EC A n062696 S740000340 16:07:56.96 -87:59:04.7 11.94 <td>n058656</td> <td>035468</td> <td>S3YA000613</td> <td>08:08:46.28</td> <td>-88:00:02.0</td> <td>13.86</td> <td>0.17</td> <td></td> <td>0.822773</td> <td>BLS</td> <td>786.0050</td> <td>ED</td> <td></td>	n058656	035468	S3YA000613	08:08:46.28	-88:00:02.0	13.86	0.17		0.822773	BLS	786.0050	ED	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										LS			A
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
n062144 038255 S743000115 13:53:18.49 -88:54:14.6 12.87 0.47 2.17 0.266903 LS 785.2292 EC A n062519 038580 S3Y8000346 10:50:11.96 -88:59:54.1 11.78 0.05 0.21 5.745575 LS 787.1325 PR n062640 038663 S3Y8000253 08:46:12.64 -88:33:42.9 12.00 0.44 5.22 0.267127 LS 785.2565 EC A n062696 S741000340 16:07:56.96 -87:59:09.7 11.98 0.08 0.31 1.185502 LS 785.2992 PR n062743 039541 S740000060 12:36:24.67 -89:04:02.7 10.97 0.04 0.46 25:161758 LS MP n064731 040351 S3YA000660 08:02:26.52 -88:14:26.1 13.34 0.11 0.13 0.285606 LS 785.4430 PR n066680 S3YL000291 07:14:42.32 -87:22:25.0													
n062519 038580 S3Y8000346 10:50:11.96 -88:59:54.1 11.78 0.05 0.21 5.745575 LS 787.1325 PR n062640 038663 S3YB000253 08:46:12.64 -88:33:42.9 12.00 0.44 5.22 0.267127 LS 785.2565 EC A n062894 S74000057 12:30:49:10 -89:02:45.7 11.94 0.03 0.06 25:125450 LS 787.7145 PR n063743 039541 S740000060 12:36:24.67 -89:04:40:27 10.97 0.04 0.46 25:161758 LS 787.7145 PR n064731 040351 S3YA000660 08:02:26.52 -88:14:26.1 13.34 0.11 0.13 0.285606 LS 785.4430 PR n066137 S74E000575 16:31:36.82 -87:40:07.7 12.11 0.09 0.27 5.388951 LS 790.4191 ED n066932 S743000330 15:21:39.34 -88:41:59.3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>A</td></t<>													A
n062696 S741000340 16:07:56.96 -87:59:09.7 11.98 0.08 0.31 1.185502 LS 785.2992 PR n062884 S740000057 12:30:49.10 -89:02:45.7 11.94 0.03 0.06 25.125450 LS 787.7145 PR n063743 039541 S74000060 12:36:24.67 -89:04:02.7 10.97 0.04 0.46 25.161758 LS MP n064731 040351 S3YA000660 08:02:26.52 -88:14:26.1 13.34 0.11 0.13 0.285606 LS 785.4430 PR n065137 S74E000575 16:31:36.82 -87:40:07.7 12.11 0.09 0.27 5.388951 LS 790.4191 ED n066932 S743000330 15:21:39.34 -88:41:59.3 13.00 0.06 0.07 20.753202 LS 785.2020 PR n068660 043618 S3YB009275 08:17:16.96 -88:37:29.5 14.00 0.	n062519	038580	S3Y8000346	10:50:11.96	-88:59:54.1	11.78	0.05	0.21	5.745575	LS	787.1325	PR	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													A
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
n065137 S74E000575 16:31:36.82 -87:40:07.7 12.11 0.09 0.27 5.388951 LS 790.4191 ED n066680 S3YL000291 07:14:42.32 -87:22:25.0 11.37 0.07 0.49 IR n066932 S743000330 15:21:39.34 -88:41:59.3 13.00 0.06 0.07 20.753202 LS 785.2020 PR n068660 043618 S3YB009826 08:40:28.89 -88:47:00.4 13.72 0.33 0.26 13.024607 LS 794.0587 ES n069025 043885 S3YB000275 08:17:16.96 -88:37:29.5 14.00 0.17 0.09 9.386448 LS 785.9529 PR n070113 044751 S740000101 13:01:29.04 -89:13:47.0 13.21 0.11 0.14 6.422671 LS 786.7969 PR n073013 047176 S3YA000320 07:07:52.74 -87:51:19.7 12.81 0.15 0.													
n066680 S3YL000291 07:14:42.32 -87:22:25.0 11.37 0.07 0.49 IR n066932 S743000330 15:21:39.34 -88:41:59.3 13.00 0.06 0.07 20.753202 LS 785.2020 PR n068660 043618 S3YB009826 08:40:28.89 -88:47:00.4 13.72 0.33 0.26 13.024607 LS 794.0587 ES n069025 043885 S3YB000275 08:17:16.96 -88:37:29.5 14.00 0.17 0.09 9.386448 LS 785.9529 PR n070113 044751 S740000101 13:01:29.04 -89:13:47.0 13.21 0.11 0.14 6.422671 LS 787.0902 PR n073013 047176 S3YA000320 07:12:14.54 -87:51:19.7 12.81 0.15 0.42 2.643748 LS 785.4483 PR n076976 050375 S3YB013754 07:39:17.11 -88:40:41.7 13.46 0.10 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
n068660 043618 S3YB009826 08:40:28.89 -88:47:00.4 13.72 0.33 0.26 13.024607 LS 794.0587 ES n069025 043885 S3YB000275 08:17:16.96 -88:37:29.5 14.00 0.17 0.09 9.386448 LS 785.9529 PR n070113 044751 S740000101 13:01:29.04 -89:13:47.0 13.21 0.11 0.14 6.422671 LS 787.0902 PR n073013 047176 S3YA000181 07:12:14.54 -87:51:19.7 12.81 0.15 0.42 2.643748 LS 786.7776 PR n076289 S3YA000320 07:07:52.74 -88:02:11.4 12.94 0.10 0.13 0.789882 LS 785.4483 PR n076976 050375 S3YB013754 07:39:17.11 -88:40:41.7 13.46 0.10 0.06 1.441150 LS 785.6660 PR n077512 050773 S74E000469 17:10:42.44 -87:30:09.3 10.52 0.06 1.12 3.292027 LS MP <td>n066680</td> <td></td> <td>S3YL000291</td> <td>07:14:42.32</td> <td>-87:22:25.0</td> <td>11.37</td> <td></td> <td>0.49</td> <td></td> <td></td> <td></td> <td>IR</td> <td></td>	n066680		S3YL000291	07:14:42.32	-87:22:25.0	11.37		0.49				IR	
n069025 043885 S3YB000275 08:17:16.96 -88:37:29.5 14.00 0.17 0.09 9.386448 LS 785.9529 PR n070113 044751 S740000101 13:01:29.04 -89:13:47.0 13.21 0.11 0.14 6.422671 LS 787.0902 PR n073013 047176 S3YA000181 07:12:14.54 -87:51:19.7 12.81 0.15 0.42 2.643748 LS 786.7776 PR n076289 S3YA000320 07:07:52.74 -88:02:11.4 12.94 0.10 0.13 0.789882 LS 785.4483 PR n076976 050375 S3YB013754 07:39:17.11 -88:40:41.7 13.46 0.10 0.06 1.441150 LS 785.6660 PR n077512 050773 S74E000469 17:10:42.44 -87:30:09.3 10.52 0.06 1.12 3.292027 LS MP													
n070113 044751 S740000101 13:01:29.04 -89:13:47.0 13.21 0.11 0.14 6.422671 LS 787.0902 PR n073013 047176 S3YA000181 07:12:14.54 -87:51:19.7 12.81 0.15 0.42 2.643748 LS 786.7776 PR n076289 S3YA000320 07:07:52.74 -88:02:11.4 12.94 0.10 0.13 0.789882 LS 785.4483 PR n076976 050375 S3YB013754 07:39:17.11 -88:40:41.7 13.46 0.10 0.06 1.441150 LS 785.6660 PR n077512 050773 S74E000469 17:10:42.44 -87:30:09.3 10.52 0.06 1.12 3.292027 LS MP													
n073013 047176 S3YA000181 07:12:14.54 -87:51:19.7 12.81 0.15 0.42 2.643748 LS 786.7776 PR n076289 S3YA000320 07:07:52.74 -88:02:11.4 12.94 0.10 0.13 0.789882 LS 785.4483 PR n076976 050375 S3YB013754 07:39:17.11 -88:40:41.7 13.46 0.10 0.06 1.441150 LS 785.6660 PR n077512 050773 S74E000469 17:10:42.44 -87:30:09.3 10.52 0.06 1.12 3.292027 LS MP													
n076289 S3YA000320 07:07:52.74 -88:02:11.4 12.94 0.10 0.13 0.789882 LS 785.4483 PR n076976 050375 S3YB013754 07:39:17.11 -88:40:41.7 13.46 0.10 0.06 1.441150 LS 785.6660 PR n077512 050773 S74E000469 17:10:42.44 -87:30:09.3 10.52 0.06 1.12 3.292027 LS MP													
n076976 050375 S3YB013754 07:39:17.11 -88:40:41.7 13.46 0.10 0.06 1.441150 LS 785.6660 PR n077512 050773 S74E000469 17:10:42.44 -87:30:09.3 10.52 0.06 1.12 3.292027 LS MP													
n077512 050773 S74E000469 17:10:42.44 -87:30:09.3 10.52 0.06 1.12 3.292027 LS MP													
n078642 S3Y8000239 08:51:51.07 -89:15:21.3 12.27 0.05 0.09 3.481819 LS 785.5641 PR	n077512		S74E000469	17:10:42.44	-87:30:09.3	10.52	0.06	1.12	3.292027	LS		MP	
	n078642		S3Y8000239	08:51:51.07	-89:15:21.3	12.27	0.05	0.09	3.481819	LS	785.5641	PR	

TABLE 3 — Continued

	ID		R.A.	Dec.	i	Δi_{90}	J	Period		T_0^3	Class ⁴	Note ⁵
2010	2008	GSC	(J200	$(00.0)^1$	(m	ag)		(d)	$\rm Src^2$	(d)		
n080090	052891	S741000155	17:13:18.69	-87:42:28.6	9.44	0.17	8.41	59.365516	LS		MP	A
n080626		S743000493	16:37:09.46	-88:43:24.2	11.29	0.04	0.23	35.753464	LS		MP	
n080649		S3YA000502	07:01:38.41	-88:17:02.9	9.60	0.05	1.52	23.466222	LS		MP	
n080770	053446	S3Y8000220	08:05:03.24	-89:07:54.3	12.95	0.13	0.20	1.071988	LS	786.1217	PR	
n080929	053570	S743000460	16:44:10.40	-88:38:19.9	11.02	0.03	0.26	19.967817	LS	• • •	MP	
n081202 n083000	053783	S3Y8000272 S3Y8007194	09:44:14.75 09:23:04.69	-89:28:17.6 $-89:29:38.8$	$10.48 \\ 13.77$	$0.02 \\ 0.23$	$0.18 \\ 0.25$	$16.047868 \\ 0.124657$	LS LS	785.2675	MP PR	
n083359	055495	S3Y8000078	07:43:54.49	-89:07:37.3	12.52	0.23 0.39	1.45	0.124037 0.797910	LS	785.8882	EC	A
n084427	055455	S3Y8000109	07:54:37.65	-89:15:40.9	9.75	0.08	1.67	0.737310			IR	п
n085632	057344	S741000539	17:13:42.52	-88:24:52.5	11.09	0.09	1.60	20.106163	LS		MP	
n086263	057775	S3YA000492	06:40:47.15	-88:15:21.3	11.73	0.39	4.71	0.438659	LS	785.4511	EC	A
n088489		S3YA016263	06:31:32.66	-88:11:38.1	12.81	0.09	0.13	0.240723	LS	785.4360	PR	
n088653	059811	S3YA000336	06:28:42.76	-88:02:41.7	12.35	0.12	0.23	7.254001	LS	787.3637	ED	
n090586	061353	S740000342	17:15:45.51	-89:00:42.8	10.78	0.02	0.18	0.022641	LS	785.2130	PR	
n090919	061658	S741000489	17:36:45.98	-88:14:10.5	11.31	0.03	0.24	0.076166	LS	785.2522	PR	
n091083	061740	S740000322	17:23:25.05	-88:53:37.3	9.99	0.07	2.20	34.479083	LS	705 9176	MP	
n091084 n092211	$061783 \\ 062683$	S740000308 S3Y8000165	17:25:37.17 07:46:18.25	-88:49:50.3 $-89:40:00.7$	13.83 10.27	$0.35 \\ 0.04$	$0.35 \\ 0.75$	0.188993 15.857866	LS LS	785.3176	DS MP	
n092211 n094368	064380	S3YA000248	06:10:28.12	-89:40:00.7 $-87:53:32.9$	10.27 14.20	$0.04 \\ 0.24$	$0.75 \\ 0.03$	2.307363	LS	785.2020	PR	
n095083	064944	S741000460	17:51:13.16	-88:09:48.8	10.65	0.24 0.05	0.96	30.763139	LS		MP	
n095145	065072	S740000301	17:47:26.35	-88:46:07.9	11.87	0.05	0.18	0.620534	LS	785.6897	PR	
n096554	066196	S740000469	17:05:16.14	-89:51:43.8	9.67	0.04	1.06	26.623757	LS		MP	
n097049		S740012990	17.55.19.53	-89:07:43.2	14.97	0.56	0.14	0.348088	LS	785.2424	PR	
n097333	066775	S741000378	17:59:00.73	-88:01:32.9	11.76	0.18	1.86	38.853950	LS		MP	
n099251	068276	SA9S000144	18:22:33.29	-89:36:22.9	11.39	0.03	0.20	2.835357	LS	786.8351	PR	
n099286	068308	S0SG000353	05:50:34.20	-89:06:46.2	12.94	0.08	0.10	0.798947	LS	785.3570	PR	
n100083	068908	SA9U000383	18:08:15.09	-88:18:02.9	10.83	0.03	0.33	2.842765	LS		MP	
n101873	070680	S0SH000511 SA9S000413	05:43:48.57 $22:05:02.55$	-88:32:56.9 $-89:52:06.7$	12.75	$0.12 \\ 0.21$	$0.22 \\ 0.56$	0.646457 1.988474	LS LS	785.3882 787.1308	$_{\mathrm{ES}}^{\mathrm{PR}}$	
n102304 n102641	070000	S0SH000215	05:47:08.05	-87:51:00.2	$13.05 \\ 10.23$	0.21 0.05	1.21	0.606546	LS	785.4046	GD	
n103401	071571	S0SH000333	05:43:19.93	-88:04:04.3	10.25 10.65	0.32	6.76	0.000540			LT	A
n104524	072350	SA9V000050	18:30:57.87	-88:43:17.5	9.86	0.04	0.57	9.925551	BLS	788.2407	TR	
n104943	072730	SA9U000438	18:29:03.93	-88:32:31.9	13.32	0.51	1.85	0.573044	LS	785.7601	RL	A
n105244		S0SG000150	00:20:19.58	-89:48:38.0	9.43	0.04	1.22	10.923423	LS		MP	
n108372		SA9S000233	20:34:48.30	-89:34:03.2	12.81	0.07	0.12	2.371811	LS	785.4818	PR	
n109325	076135	SA9S000115	19:53:21.15	-89:22:46.5	10.37	0.33	8.00				IR	
n110028	076723	SA9V000063	19:00:22.60	-88:47:53.7	10.88	0.21	4.41			• • •	IR	
n110665	077190	S0SH000448	05:15:49.62	-88:17:51.5	10.21	0.04	0.92	11.462763	LS	705 9105	MP	
n111158	077508	SA9S000404	22:53:06.46	-89:38:40.9	14.07	0.36	0.09	0.133318 1.679604	LS	785.3185 785.5144	PR PR	
n111246 n112440	077594 078549	SA9V000067 S0SH000321	19:08:12.87 05:15:49.03	-88:49:18.5 $-88:04:23.5$	$10.06 \\ 13.12$	$0.02 \\ 0.16$	$0.48 \\ 0.42$	5.389812	LS LS	787.9077	PR	
n112440	078773	SA9V000073	19:17:53.08	-88:51:11.2	11.81	0.10	0.42	0.372068	LS	785.2474	EC	
n113158		SA9S000043	19:33:21.70	-89:00:22.9	8.67	0.17	2.29				IR	A
n113486	079397	SA9S000068	19:48:57.10	-89:07:14.3	10.86	0.02	0.21	4.842585	LS	788.1947	PR	
n114115		S0SG000229	03:01:17.31	-89:24:30.2	12.38	0.05	0.08	5.767268	BLS	785.6845	TR	
n115348	080934	SA9U000331	18:58:35.51	-88:12:55.2	11.72	0.24	2.83	62.185489	LS		MP	
n116034		S0SH000139	05:12:14.90	-87:44:42.1	8.43	0.13	8.84				IR	A
n116344	081723	SA9U000071	18:48:23.75	-87:43:16.4	11.49	0.07	0.67	0.841671	LS	785.5572	GD	
n116380	081749	C A OV 1000074	19:11:53.61	-88:27:14.9	10.31	0.03	0.54	88.385466	LS		MP	
n116491	081845	SA9V000074 S0SG000129	19:38:27.80	-88:50:55.9		0.10	0.09		LS	785.3202		
n116918 n117549	082180	S0SG000129 S0SG000213	00:29:58.19 02:55:59.73	-89:30:20.3 $-89:17:48.2$	$11.24 \\ 12.48$	$0.02 \\ 0.06$	$0.15 \\ 0.11$	$0.152825 \\ 0.721620$	LS LS	785.3478 785.4964	DS PR	
n117763		SA9U000396	19:13:28.77	-88:21:56.0	12.48 12.84	0.00	$0.11 \\ 0.27$	0.721020 0.151852	LS	785.2020	DS	
n118098	083110	S0SG000226	02:11:02.80	-89:22:50.3	10.27	0.12	0.43	6.623027	LS		MP	
n118528		SA9S000384	23:35:11.99	-89:27:51.8	14.78	1.23	0.86	0.465790	$\widetilde{\mathrm{LS}}$	785.3995	RL	G
n118992		SA9S000200	21:24:11.87	-89:17:56.5	14.69	0.52	0.15	0.233625	LS	785.2898	$_{\mathrm{DS}}$	
n119729	084344	SA9S000371	23:01:30.03	-89:25:01.5	13.96	0.18	0.07	2.927708	BLS	786.0597	PR	
n121493	085719	S0SG000178	03:08:19.12	-89:06:32.2	12.20	0.06	0.18	17.205471	LS		MP	
n122451	086480	S0SJ000306	03:44:10.88	-88:52:09.5	11.19	0.03	0.22	21.496218	LS		MP	
n122836	 087084	SAA5000323	19:02:33.97	-87:35:30.2 $-89:03:50.3$	8.86	0.07	2.42	1.857642	 T S	 786 7030	IR FD	
$ \begin{array}{r} & \text{n}123187 \\ & \text{n}123522 \end{array} $	087084	SA9S000168 SA9U000336	20:57:31.47 19:27:57.26	-89:03:50.3 $-88:13:26.2$	$12.36 \\ 8.80$	$0.33 \\ 0.32$	$0.76 \\ 17.60$		LS	786.7030	ED IR	A
n123522 n123706	087501	S0SG000092	01:23:01.27	-89:17:09.4	13.60	0.32 0.20	0.12	0.193489	LS	785.3819	DS	Л
n123780	087548	S0SH000485	04:20:11.85	-88:25:03.5	12.63	$0.20 \\ 0.12$	$0.12 \\ 0.61$	0.193489 0.197741	LS	785.2566	DS	
n124517	088142	S0SG000093	00:52:40.76	-89:17:32.4	13.84	0.38	0.41	0.292944	LS	785.3965	EC	
n126026	089391	SA9U000387	19:43:40.77	-88:19:20.7	13.49	0.08	0.04	0.136874	$\widetilde{\mathrm{LS}}$	785.3534	\overline{PR}	
n128266		S0SJ000248	03:37:18.58	-88:38:51.4	9.47	0.04	0.95	7.957924	LS		MP	
n130449		S0SG000064	00:24:32.27	-89:08:48.5	12.69	0.08	0.16	4.314518	LS	789.0505	PR	
n131494	093873	SA9S000300	22:17:44.44	-89:01:38.1	9.45	0.10	4.05				IR	
n132580	094793	S0SU000407	04:36:31.02	-87:28:03.3	10.97	0.09	1.50	0.617076	LS	785.5155	PR	
n132830		S0SH031178	04:00:54.92	-88:09:59.6	14.40	0.25	-0.00	0.159051	BLS	785.2264	PR	
n133214	006404	S0SJ000325	02:03:09.66	-88:55:31.4	12.04	0.04	0.13	0.444790	LS	785.3150 785.3416	PR	٨
n134610 n134728	096404	SAA5000420 S0SJ014770	19:43:05.07 03:14:01.11	-87:46:52.4 $-88:32:53.1$	$14.13 \\ 14.42$	$0.81 \\ 0.39$	$\frac{1.38}{0.07}$	0.581666 1.209346	LS LS	785.3416 785.8792	$_{ m ED}^{ m RL}$	A
n135670	097230	SA9U000295	20:02:18.84	-88:02:50.0	12.08	0.39 0.10	$0.07 \\ 0.21$	9.548319	LS	789.9965	ED	
11100010	55.250	21100000000	20.02.10.04	22.02.00.0	12.00	0.10	V.21	0.010010				

TABLE 3 — Continued

	ID		R.A.	Dec.	i	Δi_{90}	J	Period		T_0^3	${ m Class}^4$	${ m Note}^5$
2010	2008	GSC	(J200	$(0.0)^1$	(m	ag)		(d)	$\rm Src^2$	(d)		
n136750	098092	S0SH000022	03:54:41.13	-88:02:50.6	11.61	0.16	2.12	74.090207	LS		MP	A
n137559	098719	SAA5000417	19:50:26.13	-87:44:50.7	12.86	0.25	1.07	0.416436	LS	785.3327	EC	
n138555	099529	S0SG000018	00:31:15.83	-88:55:17.9	10.80	0.03	0.27	9.422044	LS		MP	
n140799		S0SJ016907	02:29:57.18	-88:34:35.3	14.32	0.22	-0.01	2.852904	LS	787.3254	PR	
n142023		S0SH031869	03:31:30.30	-88:04:24.4	14.45	0.34	0.07	0.722102	LS	785.7695	$_{\rm ES}$	
n142074		SA9V000177	21:19:45.21	-88:28:17.7	13.39	0.16	0.21	43.638939	LS		MP	
n142981		S0SJ000161	02:41:54.21	-88:26:02.9	10.98	0.04	0.47	11.204593	LS		MP	
n145245		S0SJ000052	00:56:07.00	-88:42:17.9	11.36	0.04	0.25	7.994425	LS		MP	
n145960		S0SJ000031	01:51:34.69	-88:33:26.9	12.01	0.06	0.27	10.882430	LS		MP	
n148233	107478	SAA5000503	20:28:30.07	-87:46:16.5	11.81	0.17	0.89	2.192580	LS	786.0746	ED	
n148619		SA9V011956	22:28:21.41	-88:31:41.0	14.34	0.22	0.01	3.817432	LS	788.6046	PR	
n149414		S0SJ000002	03:00:33.53	-88:02:59.2	10.13	0.86	29.50				LT	A,G
n150808		SA9T000439	23:03:39.20	-88:32:14.0	10.34	0.10	2.92				IR	A
n152437	110801	S0SI000269	02:42:27.87	-88:04:22.5	9.46	0.13	4.84	44.303305	LS		MP	A
n153006	111298	S0SI000438	02:12:56.05	-88:13:52.5	10.03	0.04	1.11	12.116866	LS		MP	
n156482		SA9T000422	23:57:27.17	-88:24:54.5	12.44	0.06	0.11	6.198528	LS	788.5551	ED	
n157627		S0SV000431	03:10:59.88	-87:35:38.1	10.61	0.08	1.16				IR	
n159243		S0SI000372	00:00:50.89	-88:19:41.9	9.44	0.04	1.12	0.114436	LS	785.2310	PR	
n160137	117654	S0ST000503	02:18:11.67	-87:56:11.2	10.57	0.09	1.68	22.012562	LS		MP	
n161425	118705	S0SI033411	00:53:26.68	-88:12:41.4	13.40	0.09	0.06	3.535402	BLS	786.7269	TR	
n162294	119488	S0SI000329	00:08:43.43	-88:13:48.4	10.07	0.11	3.59				IR	
n163148	120188	S0SI000289	00:55:45.92	-88:09:11.0	11.18	0.06	0.53	10.923423	LS		MP	
n163888		SA9T000268	22:46:01.56	-88:04:59.2	13.88	0.24	0.09	7.752665	LS	787.3176	ED	
n164527	121369	SA9T000310	23:15:35.46	-88:07:33.8	10.78	0.05	0.75	24.945468	LS		MP	
n167071		SAA6000049	21:52:26.36	-87:44:20.6	10.59	0.05	0.82	10.560170	LS		MP	
n167300		SAA7000327	21:12:08.31	-87:24:25.1	9.17	0.08	2.21	0.166200	LS		MP	
n167522	123934	SA9T000282	23:52:30.36	-88:03:49.5	13.94	0.14	0.04	0.122034	LS	785.2471	PR	
n167944		S0SV012740	02:52:25.60	-87:20:21.5	13.66	1.03	5.74				LT	
n168446	124666	SAA6000034	21:47:16.29	-87:39:06.6	12.84	0.62	3.88	0.458059	LS	785.5620	RL	A
n171256		SA9T000182	23:16:45.97	-87:54:16.6	11.95	0.07	0.29	8.754028	LS		MP	
n172241	127850	S0SI014387	00:00:52.46	-87:54:27.3	11.38	2.91	61.18				LT	G
n173163		SAA6000447	22:12:01.66	-87:37:04.2	9.57	0.07	2.75				IR	~
n176396		SAA6000447	22:17:33.93	-87:31:44.4	10.71	0.06	0.79				IR	
n177534	131919	S0SI000101	00:01:16.84	-87:44:02.9	11.99	0.09	0.13	9.458450	LS	791.1664	ED	
n180169	133742	SAA6000366	22:37:07.30	-87:28:49.9	11.62	0.49	3.59	0.848393	LS	785.5973	EC	A
n181332	100142	SA9T00064	23:30:39.10	-87:35:14.8	8.63	0.10	4.51	0.040000			IR	A
n805954	005954	S742000078	12:39:58.23	-87:41:37.2	9.78	0.10	$\frac{4.31}{2.49}$				IR	11
n863059	063059	S3Y8000125	06:49:54.20	-89:21:58.8	9.51	0.05	$\frac{2.43}{2.01}$				IR	
n897790	097790	SA9V000415	22:23:40.80	-88:53:42.9	9.77	0.03	0.78	0.521773	LS	785.6966	GD	
11091190	091190	D119 (000410	22.20.40.00	00.00.42.9	9.11	0.00	0.10	0.021113	LO	100.0000	GD.	

Note. — [1]: from GSC2.3 except for #n116380 (based on CSTAR master image) [2]: [LS], Lomb-Scargle method; [BLS], box-fitting algorithm. [3]: Epoch of primary eclipse or minimum light in JD-2454500. [4]: Classes: [DS]: δ Scuti; [EC/ED/ES]: eclipsing binary (contact, detached, semi-detached); [GD]: γ Doradus; [IR]: irregular; [LT]: long-term variation; [MP]: multi-periodic; [PR]: unclassified periodic; [RL]: RR Lyrae; [TR]: transit-like eclipse; [5]: [A]: in ASAS catalog; [G]: in GCVS.

previous surveys. For example, our observations reach $i\sim15.3$ mag while the previous study of this area of the sky by ASAS reached a limiting magnitude of $V\sim14.5$ mag (equivalent to $i\sim13-14.5$ mag depending on spectral type). We recovered 35 of the 46 previously-known variables in our field; 5 were saturated, 3 were strongly blended and 3 did not meet our minimum requirement for synoptic coverage.

Our observations found significant variability or periodicity for 2.1% of the stars in the sample. This variable star fraction is in good agreement with the expectation for a survey like ours with a photometric precision limit of ~ 0.02 mag (see Fig. 9 of Tonry et al. 2005). Among the 44 variables selected by the analysis of §4.1, which did not discriminate by type of variability, 11% are strictly periodic (eclipsing binaries, RR Lyraes, etc.) while an additional 25% exhibit multi-periodic behavior and the the remaining 64% have no significant periodicity.

Table 4 lists statistics for the different types of objects we detected based on both searches (§4.1 and §4.2). The variable types are consistent with expectations for a red-sensitive survey directed towards a halo

field. For example, nearly half of all variables exhibit low-amplitude/multi-periodic or long-term/irregular pulsations typical of RGB or AGB stars. 90% of the variables of these types present in our sample have i<12 mag, and according to the Besançon model of the Galaxy (Robin et al. 2003) post-main sequence stars dominate the stellar population of our field in that magnitude range. The regular pulsators that we have been able to classify based on light curve shape or period are also post-main sequence or Population II objects, such as RR Lyrae or δ Scuti stars. In contrast, the eclipsing binaries and unclassified periodic variables have a broader distribution in magnitude, as expected for a mix of evolved and main sequence objects.

TABLE 4 DISTRIBUTION OF VARIABLE STAR TYPES

Variable Type	N	%
Multi-periodic Unclassified periodic Eclipsing binaries	57 47 35	30.3 25.0 18.6
Irregular/long-term δ Sct RR Lyr γ Dor	28 8 7 3	14.9 4.3 3.7 1.6
Transit-like	3	1.6

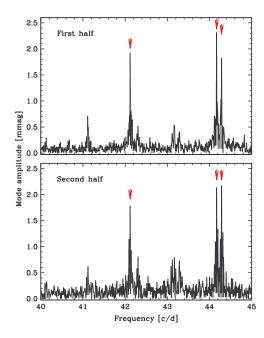


Fig. 9.— Fourier spectrum of CSTAR #n090586 derived using the Period04 program, based on data obtained during the first (top) and second (bottom) half of the 2010 season. Three significant peaks (at $f_i=44.288,\,44.169,\,{\rm and}\,42.121$ cycles ${\rm d}^{-1})$ are detected with varying amplitudes, which exhibit significant changes $(4-11\sigma)$ relative to the 2008 season. See text for details.

We combined the two years of CSTAR photometry (from the 2008 and 2010 Antarctic winters) to search for changes in the observed properties of the variables. The very fast periodic variable #n090586 exhibited the same three significant frequencies first seen in the 2008 observations (see Fig. 17 of Wang et al. 2011), but the amplitude of each component exhibited significant temporal variations relative to the that season (at the -3.8, 7.8 and 11.4σ level, respectively). A comparison of the first and two halves of the 2010 data (Fig. 9) also shows a significant (-3.9σ) variation for one of the frequencies. We plan further research on this object using a fast-pulsating stellar model.

The 2010 light curve of CSTAR#n057725 (P =43.2 d), originally discovered by the ASAS project (Pojmanski 2005) and classified as a fundamental-mode δ Cephei variable, showed a dramatic change relative to 2008 as seen in Fig. 10. The Cepheid-like variability seen in the 2008 data (top-left panel), which already showed indications of a change in amplitude, decreased even further and developed a secondary peak in the 2010 data (top-right panel). Furthermore, eclipse-like events can now be seen at two distinct phases of the pulsation (bottom panels) separated by half of the period with depths of ~ 0.07 and ~ 0.03 mag. The V-band ASAS light curve, spanning more than a decade, also shows secular variations in pulsation amplitude. The ASAS classification of this object is very unlikely; at i = 10.1 mag, a 43-day Cepheid would lie ~ 17 kpc away and nearly 8 kpc above the Galactic plane, an extremely improbable location for an $\sim 11 M_{\odot}$ star. It is more likely that this object consists of a Population II pulsator, such as an RV Tauri or the Galactic equivalent of an OGLE smallamplitude variable red giant (Soszynski et al. 2004) in a

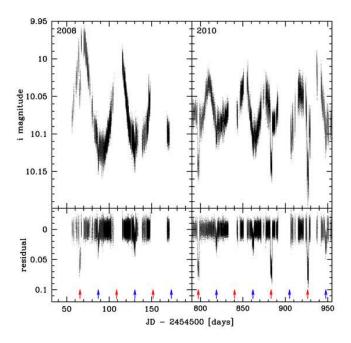


Fig. 10.— Light curve of CSTAR#n057725, showing the slow reduction in Cepheid-like pulsation amplitude during the 2008 season has been replaced by a more complex variability in 2010. Eclipse-like events seem to be present at two distinct phases indicated with red and blue arrows, respectively.

binary system. We plan to undertake additional observations to investigate the nature of this system.

5. CONCLUSIONS AND SUMMARY

We have presented the analysis of high-cadence synoptic observations of 23 square degrees centered on the south celestial pole, conducted with the CSTAR#3 telescope at Dome A during 183 days of the 2010 Antarctic winter season. 86% of all frames obtained at a sun elevation angle below 0° yielded useful data. We measured a median sky background of 19.8 mag / \Box " over all moon phases and determined that the extinction is below 0.1 mag for 40% of the time (0.4 mag for 70% of the time). All these values are consistent with the site statistics derived from the 2008 season, and reinforce the promise of the Antarctic Plateau for future astronomical work.

We carried out time-series aperture photometry of 9,125 stars with i < 15.3 mag. We detected 188 variable stars, including 67 new objects not included in our previous work thanks to a slightly larger field of view and a deeper magnitude limit. This represents a $\sim 4 \times$ increase in the number of variable stars relative to previous surveys of the same region of the sky. We plan follow-up multi-wavelength photometry and high-resolution spectroscopy in the near future of the most interesting variables, such as detached eclipsing binaries and the candidate transiting exoplanets.

Given the coarse pixel scale of our images and our use of aperture photometry, the search for (non-periodic) variable stars was limited to objects with low levels of crowding. This could mitigated by the use of difference imaging techniques in future analyses. The apparent circular motion of stars in the field of view, due to the fixed nature of the telescope and camera, prevented the detection of periodic variability at frequencies close to one sidereal day (and its harmonics) despite the absence of a day/night cycle and the long duration of the observations. Future surveys conducted from Antarctica would greatly benefit from instruments with improved angular resolution, a finer pixel scale, and the ability to track. The recently-deployed AST3 telescopes (Cui et al. 2008) meets all these criteria and should greatly expand our synoptic capabilities in the polar regions.

Lingzhi Wang acknowledges support by: BaiRen program of the Chinese Academy of Sciences (034031001); the National Natural Science Foundation of China under the Distinguished Young Scholar grant 10825313 and grants 11073005 & 11303041; the Ministry of Science and Technology National Basic Science Program (Project 973) under grant number 2012CB821804; the Excellent Doctoral Dissertation of Beijing Normal University Engagement Fund; and a Young Researcher Grant of the National Astronomical Observatories, Chinese Academy of Sciences.

Lucas Macri and Lifan Wang acknowledge support by the Department of Physics & Astronomy at Texas A&M University through faculty startup funds and the Mitchell-Heep-Munnerlyn Endowed Career Enhancement Professorship in Physics or Astronomy.

This work was supported by the Chinese PANDA International Polar Year project, NSFC-CAS joint key program through grant number 10778706, CAS main direction program through grant number KJCX2-YW-T08, and by the Chinese Polar Environment Comprehensive Investigation & Assessment Programmes (CHINARE). The authors deeply appreciate the great efforts made by the 24-28th Dome A expedition teams who provided invaluable assistance to the astronomers that set up and maintained the CSTAR telescope and the PLATO system. PLATO was supported by the Australian Research Council and the Australian Antarctic Division. Iridium communications were provided by the US National Science Foundation and the US Antarctic Program.

Facility: Dome A: CSTAR

REFERENCES

Ashley, M. C. B., Allen, G., Bonner, C. S., Bradley, S. G., Cui, X., Everett, J. R., Feng, L., Gong, X., Hengst, S., Hu, J., Jiang, Z., Kulesa, C. A., Lawrence, J. S., Li, Y., Luong-Van, D. M., McCaughrean, M. J., Moore, A. M., Pennypacker, C., Qin, W., Riddle, R., Shang, Z., Storey, J. W. V., Sun, B., Suntzeff, N., Tothill, N. F. H., Travouillon, T., Walker, C. K., Wang, L., Yan, J., Yang, H., York, D. G., Yuan, X., Zhang, X., Zhang, Z., Zhou, X., & Zhu, Z. 2010, Highlights of Astronomy, 15, 627 Burton, M. G. 2010, A&A Rev., 18, 417

Charbonneau, D., Brown, T. M., Latham, D. W., & Mayor, M. 2000, ApJ, 529, L45

Cui, X., Yuan, X., & Gong, X. 2008, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7012, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series

Hartman, J. D., Gaudi, B. S., Holman, M. J., McLeod, B. A. Stanek, K. Z., Barranco, J. A., Pinsonneault, M. H., & Kalirai, J. S. 2008, ApJ, 675, 1254

Hengst, S., Allen, G. R., Ashley, M. C. B., Everett, J. R., Lawrence, J. S., Luong-Van, D. M., & Storey, J. W. V. 2008, in Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, Vol. 7012, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference

Henry, G. W., Fekel, F. C., Henry, S. M., & Hall, D. S. 2000, ApJS, 130, 201

Howell, S. B. 2012, PASP, 124, 263

(SPIE) Conference Series

Kaluzny, J., Stanek, K. Z., Krockenberger, M., Sasselov, D. D., Tonry, J. L., & Mateo, M. 1998, AJ, 115, 1016

Kenyon, S. L., Lawrence, J. S., Ashley, M. C. B., Storey J. W. V., Tokovinin, A., & Fossat, E. 2006, PASP, 118, 924 Kovács, G., Zucker, S., & Mazeh, T. 2002, A&A, 391, 369

Lawrence, J. S., Allen, G. R., Ashley, M. C. B., Bonner, C. Bradley, S., Cui, X., Everett, J. R., Feng, L., Gong, X., Hengst, S., Hu, J., Jiang, Z., Kulesa, C. A., Li, Y., Luong-Van, D., Moore, A. M., Pennypacker, C., Qin, W., Riddle, R., Shang, Z., Storey, J. W. V., Sun, B., Suntzeff, N., Tothill, N. F. H., Travouillon, T., Walker, C. K., Wang, L., Yan, J., Yang, J. Yang, H., York, D., Yuan, X., Zhang, X. G., Zhang, Z., Zhou, X., & Zhu, Z. 2008, in Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference,

Vol. 7012, Society of Photo-Optical Instrumentation Engineers

Lawrence, J. S., Ashley, M. C. B., Burton, M. G., Cui, X., Everett, J. R., Indermuehle, B. T., Kenyon, S. L., Luong-Van, D., Moore, A. M., Storey, J. W. V., Tokovinin, A., Travouillon, T., Pennypacker, C., Wang, L., & York, D. 2006, in Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, Vol. 6267, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series

Lawrence, J. S., Ashley, M. C. B., Hengst, S., Luong-Van, D. M., Storey, J. W. V., Yang, H., Zhou, X., & Zhu, Z. 2009, Rev Sci Instrum, 80, 064501

Lenz, P. & Breger, M. 2005, Communications in Asteroseismology, 146, 53

Lomb, N. R. 1976, Ap&SS, 39, 447

Luong-Van, D. M., Ashley, M. C. B., Cui, X., Everett, J. R., Feng, L., Gong, X., Hengst, S., Lawrence, J. S., Storey, J. W. V., Wang, L., Yang, H., Yang, J., Zhou, X., & Zhu, Z. 2010, in Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, Vol. 7733 Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series

Mosser, B. & Aristidi, E. 2007, PASP, 119, 127

Nugent, P. E., Sullivan, M., Cenko, S. B., Thomas, R. C., Kasen, D., Howell, D. A., Bersier, D., Bloom, J. S., Kulkarni, S. R., Kandrashoff, M. T., Filippenko, A. V., Silverman, J. M., Marcy, G. W., Howard, A. W., Isaacson, H. T., Maguire, K., Suzuki, N., Tarlton, J. E., Pan, Y.-C., Bildsten, L., Fulton, B. J., Parrent, J. T., Sand, D., Podsiadlowski, P., Bianco, F. B., Dilday, B., Graham, M. L., Lyman, J., James, P., Kasliwal, M. M., Law, N. M., Quimby, R. M., Hook, I. M., Walker, E. S., Mazzali, P., Pian, E., Ofek, E. O., Gal-Yam, A., & Poznanski, D. 2011, Nature, 480, 344

Ofek, E. O. 2008, PASP, 120, 1128

Pojmanski, G. 2005, VizieR On-line Data Catalog: J/other/AcA/50.177. Originally published in: Acta Astronomica, 50, 177 (2001)

Robin, A. C., Reylé, C., Derrière, S., & Picaud, S. 2003, A&A, 409, 523

Samus, N. N., Durlevich, O. V., & et al. 2009, VizieR Online Data Catalog, 10, 2025

Saunders, W., Lawrence, J. S., Storey, J. W. V., Ashley, M. C. B., Kato, S., Minnis, P., Winker, D. M., Liu, G., & Kulesa, C. 2009, PASP, 121, 976 Saunders, W., Lawrence, J. S., Storey, J. W. V., Ashley,

M. C. B., Kato, S., Minnis, P., Winker, D. M., Liu, G., & Kulesa, C. 2010, in EAS Publications Series, Vol. 40, EAS Publications Series, ed. L. Spinoglio & N. Epchtein, 89–96 Scargle, J. D. 1982, ApJ, 263, 835

Schlafly, E. F. & Finkbeiner, D. P. 2011, ApJ, 737, 103 Soszynski, I., Udalski, A., Kubiak, M., Szymanski, M., Pietrzynski, G., Zebrun, K., Szewczyk, O., & Wyrzykowski, L. 2004, Acta Astronomica, 54, 129

Stellingwerf, R. F. 1978, ApJ, 224, 953

Stellingwerf, R. F. 2011, in RR Lyrae Stars, Metal-Poor Stars, and the Galaxy, ed. A. McWilliam, 47

Stetson, P. B. 1987, PASP, 99, 191

—. 1996, PASP, 108, 851

Storey, J. W. 2009, Assoc Asia Pac Phys Soc Bull, 19, 4

Storey, J. W. V. 2005, Antarctic Science, 17, 555—. 2007, Chinese Astron. Astrophys., 31, 98

Tonry, J. L., Howell, S. B., Everett, M. E., Rodney, S. A., Willman, M., & VanOutryve, C. 2005, PASP, 117, 281

Udalski, A., Szymanski, M., Stanek, K. Z., Kaluzny, J., Kubiak, M., Mateo, M., Krzeminski, W., Paczynski, B., & Venkat, R. 1994, Acta Astronomica, 44, 165

Wang, L., Macri, L. M., Krisciunas, K., Wang, L., Ashley, M. C. B., Cui, X., Feng, L.-L., Gong, X., Lawrence, J. S., Liu, Q., Luong-Van, D., Pennypacker, C. R., Shang, Z., Storey, J. W. V., Yang, H., Yang, J., Yuan, X., York, D. G., Zhou, X., Zhu, Z., & Zhu, Z. 2011, AJ, 142, 155

Yang, H., Allen, G., Ashley, M. C. B., Bonner, C. S., Bradley, S.,
Cui, X., Everett, J. R., Feng, L., Gong, X., Hengst, S., Hu, J.,
Jiang, Z., Kulesa, C. A., Lawrence, J. S., Li, Y., Luong-Van,
D., McCaughrean, M. J., Moore, A. M., Pennypacker, C., Qin,
W., Riddle, R., Shang, Z., Storey, J. W. V., Sun, B., Suntzeff,
N., Tothill, N. F. H., Travouillon, T., Walker, C. K., Wang, L.,
Yan, J., Yang, J., York, D., Yuan, X., Zhang, X., Zhang, Z.,
Zhou, X., & Zhu, Z. 2009, PASP, 121, 174

Young, A. T. 1967, AJ, 72, 747

Yuan, X., Cui, X., Liu, G., Zhai, F., Gong, X., Zhang, R., Xia, L., Hu, J., Lawrence, J. S., Yan, J., Storey, J. W. V., Wang, L., Feng, L., Ashley, M. C. B., Zhou, X., Jiang, Z., & Zhu, Z. 2008, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7012, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series

Zhou, X., Fan, Z., Jiang, Z., Ashley, M. C. B., Cui, X., Feng, L., Gong, X., Hu, J., Kulesa, C. A., Lawrence, J. S., Liu, G., Luong-Van, D. M., Ma, J., Moore, A. M., Qin, W., Shang, Z., Storey, J. W. V., Sun, B., Travouillon, T., Walker, C. K., Wang, J., Wang, L., Wu, J., Wu, Z., Xia, L., Yan, J., Yang, J., Yang, H., Yuan, X., York, D., Zhang, Z., & Zhu, Z. 2010a, PASP, 122, 347

Zhou, X., Wu, Z., Jiang, Z., Cui, X., Feng, L., Gong, X., Hu, J., Li, Q., Liu, G., Ma, J., Wang, J., Wang, L., Wu, J., Xia, L., Yan, J., Yuan, X., Zhai, F., Zhang, R., & Zhu, Z. 2010b, Research in Astronomy and Astrophysics, 10, 279

Zou, H., Zhou, X., Jiang, Z., Ashley, M. C. B., Cui, X., Feng, L., Gong, X., Hu, J., Kulesa, C. A., Lawrence, J. S., Liu, G., Luong-Van, D. M., Ma, J., Moore, A. M., Pennypacker, C. R., Qin, W., Shang, Z., Storey, J. W. V., Sun, B., Travouillon, T., Walker, C. K., Wang, J., Wang, L., Wu, J., Wu, Z., Xia, L., Yan, J., Yang, J., Yang, H., Yao, Y., Yuan, X., York, D. G., Zhang, Z., & Zhu, Z. 2010, AJ, 140, 602