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The large amounts of microarray data provide us a great opportunity to identify gene expres-
sion profiles (GEPs) in different tissues or disease states. Disease-specific biomarker genes 
likely share GEPs that are distinct in disease samples as compared with normal samples. 
The similarity of the GEPs may be evaluated by Pearson Correlation Coefficient (PCC) and 
the distinctness of GEPs may be assessed by Kolmogorov-Smirnov distance (KSD). In this 
study, we used the PCC and KSD metrics for GEPs to identify disease-specific (cancer-
specific) biomarkers. We first analyzed and compared GEPs using microarray datasets for 
smoking and lung cancer. We found that the number of genes with highly different GEPs 
between comparing groups in smoking dataset was much larger than that in lung cancer 
dataset; this observation was further verified when we compared GEPs in smoking dataset 
with prostate cancer datasets. Moreover, our Gene Ontology analysis revealed that the top 
ranked biomarker candidate genes for prostate cancer were highly enriched in molecular 
function categories such as ‘cytoskeletal protein binding’ and biological process categories 
such as ‘muscle contraction’. Finally, we used two genes, ACTC1 (encoding an actin sub-
unit) and HPN (encoding hepsin), to demonstrate the feasibility of diagnosing and monitoring 
prostate cancer using the expression intensity histograms of marker genes. In summary, our 
results suggested that this approach might prove promising and powerful for diagnosing and 
monitoring the patients who come to the clinic for screening or evaluation of a disease state 
including cancer.

Key words: Gene expression profile; Cancer biomarker; Pearson correlation coefficient; 
Kolmogorov-Smirnov distance; Cancer diagnosis and prognosis.

Introduction

DNA microarray experiments allow us to simultaneously examine the expres-
sion levels of many thousands of genes so that the effects of certain treatments, 
diseases, or developmental stages on gene expression can be detected (1-5). DNA 
microarrays have been widely applied in cancer research for better diagnosis and 
prediction of the disease states (6-8). Traditionally, most microarray studies aim 
to identify differentially expressed genes (DEGs) by comparing the average gene 
expression levels between two groups (e.g., the treated vs. control or cancer vs. 
non-cancer) based on statistical analysis such as Student t-test (9, 10) and SAM 
(11). To account for gene-specific fluctuations, SAM defines a statistic based on 
the ratio of the change of expression means (e.g., between two states) of a gene 
to the standard deviation in the data for that gene. Because SAM is based on 
the mean of the replicates, it can accurately predict the differentially expressed 
genes when the expressed intensities are very similar among the replicates in the 
same state. However, gene expression level of the samples in each state (e.g., 
normal or cancer group) may be very different. For example, for some genes, 
while the averages of the log2 expression intensities in two comparing groups are 
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close, the Pearson Correlation Coefficient (PCC) of the two 
comparing profile vectors could be close to 0 (i.e., no cor-
relation between the profiles) and the Kolmogorov-Smirnov 
distance (KSD) of comparing profile vectors could be close 
to 1 (the KSD maximum), indicating a large difference (dis-
tance) between the two comparing profiles. Thus, profile-
based metrics may be more appropriate in such analysis on 
identifying the biomarker genes with different expression 
profiles on two comparing groups (e.g., cancer vs. normal). 
Gene expression profiles from the samples in normal and 
diseased groups respectively can also be utilized to predict 
the disease state as described in this work. So far, the shape 
of the expression intensity distribution, or gene expression 
profiles (GEPs), from the samples of each comparison group 
are often ignored in this type of analysis.

In this study, we defined the GEP of a gene as the distri-
bution of the log2 values of its normalized expression sig-
nal intensities across the samples in the similarly studied 
microarrays. We hypothesized that the biomarker genes 
that distinguish cancer cells from normal cells might form 
distinct GEPs between comparison groups. GEPs are poten-
tially useful for a better prediction of clinical outcome.  
We applied Pearson Correlation Coefficient (PCC) and  
Kolmogorov-Smirnov Distance (KSD) to evaluate the simi-
larity and distance of two comparing GEPs respectively. The 
possible range is from 0 to 1 for KSD while the range is 
from -1 to 1 for PCC. As illustrated in Figure 1, although the 
means of the log2 (expression intensity) are similar in the two 
groups in comparison, differences in GEPs could be detected 
by high KSD and low PCC values. Therefore, GEP shapes 
could be compared by using KSD and PCC metrics. To dem-
onstrate the utility of GEP analysis, we used PCC and KSD 
methods to evaluate 14,902 human genes in the GDS534 

(12) and GDS2771 (13) datasets retrieved from Gene Expres-
sion Omnibus (GEO) database (14-16). These two datasets 
are based on the studies of gene changes caused by smoking 
(smoker vs. non-smoker, GDS534) and by cancer (lung can-
cer vs. non-cancer among smokers, GDS2771), respectively. 
We further analyzed more than 37 thousands of genes and 
expression sequence tags in other three datasets (GDS2545, 
GDS2546, GDS2547) (17) that were used in prostate cancer 
studies, to examine the robustness of discovering the corre-
sponding biomarker candidate genes.

One question that a physician or biomedical researcher often 
asks is “What is the likelihood that this patient may have this 
disease (cancer)?”. In response to this question, we described 
a method to predict the likelihood of a tissue sample being 
cancerous by measuring the sample’s gene expression of a 
set of proposed cancer biomarker genes. In this distribution-
based method, the prediction power is based on the prob-
ability density (histogram) of the biomarker’s expression 
intensity in different groups of populations (e.g., normal vs. 
cancer groups). When population information (in microar-
ray data) for a cancer type of interest becomes sufficiently 
accumulated and the pathological confirmation of the cancer 
class becomes relatively accurate, the power of our proposed 
method for predicting unknown sample’s disease state will 
be likely high. This application holds promise for the patients 
coming to the clinics for diagnosis and prognosis purposes.

Materials and Methods

Datasets

Datasets GDS534 (12), GDS2771 (13), and (GDS2545, 
GDS2546, GDS2547) (17) were obtained from the NCBI 

Figure 1: (a) Probability density histogram and (b) probability density line plot for a representative example comparing the GEPs of gene GPX2 in smoker 
and never-smoker samples from GDS534 dataset. Grey bar in (a) and thicker line in (b) represent smoker (mean log2(Expression Intensity) = 9.9). White bar 
in (a) and thinner line in (b) represent never-smoker (mean log2(Expression Intensity) = 7.9). In this example, the KSD was 0.96 and PCC was –0.02 between 
the two comparing GEPs in each plot.
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GEO database (14-16). GDS534 is from a smoking-related 
study; we compared current smoker vs. never smoker in this 
dataset. GDS2771 is from a lung cancer related study with 
two major groups of samples, i.e., lung cancer smokers vs. 
non-cancer smokers. The other three datasets (GDS2545, 
GDS2546, and GDS2547) are from the same study on pros-
tate cancer; they were produced by Affymetrix HG-U95A, 
HG-U95B, and HG-U95C array platforms in the same proj-
ect (17). All data in these three datasets were obtained by 
the same normalization procedure so genes are comparable 
between the sample groups. We compared the GEPs in two 
major groups of samples in these datasets, i.e., “normal pros-
tate cells” vs. “prostate tumor cells”.

GEP Construction and Biomarker Identification

The GEP of a gene is defined as the distribution of the log2 
values of normalized expression signal intensities across the 
samples in a set of studied arrays (e.g., in a group of inter-
est). This GEP may be represented by the probability density 
histogram plot based on the log2 intensity data as shown in 
Figure 1. Note that Figure 1 is to represent the probability 
density histogram, thus, the value on the Y-axis is probability 
density, not the frequency of the log2 (expression intensity) 
for each examined bin interval on the X-axis,  The total area 
under the histogram curve should be 1. By this presentation, 
the distributions of the gene expression intensities in two dif-
ferent groups of populations could be compared even with 
different sample size in each group. Histogram bin size could 
be estimated to be 2 according to the formula “R/(1 + log2N)” 
where R is the range of data (e.g., 0-16 in Figure 1a) and N 
is the sample size (18). We tested our prostate cancer predic-
tion (described below) with bin size 1, 2, or 3 and found the 
prediction results with bin size 1 or 2 were very similar and 
overall better than those with bin size 3 (data not shown). For 
better resolution on the plot, we decided to use a histogram 
bin size of 1 for the disease state predictions in our analysis 
of the prostate cancer datasets. 

We examined GEPs based on the different groups of interest 
in the disease-specific datasets. For GDS534, the GEPs for 
current-smoking and never-smoking groups were constructed 
respectively and then compared. For GDS2771, the GEPs for 
lung cancer and non-cancer groups among smokers were 
constructed respectively and then compared. For three pros-
tate cancer datasets (GDS2545, GDS2546, and GDS2547), 
the GEPs for prostate cancer and non-cancer groups were 
derived and compared. Strong candidates of biomarker genes 
correlating with phenotypic distinction are expected to have 
distinctive GEPs between the two comparing groups.

As what we recently proposed (19), group profile distinc-
tion for each gene can be systematically assessed using the  
Kolmogorov-Smirnov Distance (KSD) (20, 21) and Pearson 

Correlation Coefficient (PCC) (22, 23) computed between 
the two comparing GEPs based on the probability density 
histogram data. These measures were used to compare a 
gene’s GEP in one group to the same gene’s GEP obtained 
from the other group. The most promising group-specific bio-
marker candidate genes are expected to have large KSD and 
low PCC values between the two comparing GEPs, as seen  
in the upper left square of the KSD vs. PCC metric plot in 
Figure 2. The most promising group-specific biomarker can-
didate genes were thus selected with combined KSD and  
PCC cutoff values. The cutoff values may be chosen by differ-
ent ways, or arbitrarily, depending on datasets and investiga-
tor’s interest. In this study, we used cutoff values that allowed 
us to select approximately one to two hundred top ranked 
genes as candidate biomarkers (~0.5-1% of the total genes 
investigated in microarray). A better approach to identifying 
optimal cutoffs for the biomarker candidate genes may be 
developed in future. For example, we may perform permuta-
tion for each gene regarding PCC and KSD values. For PCC, 
the P-value may be calculated as the proportion of sampled 
permutations whose PCC value is less than the observed PCC 
value. For KSD, the P-value may be calculated as the propor-
tion of sampled permutations whose KSD value is larger than 
the observed KSD value. If we can find most genes in the 
upper left corner in the plot have both KSD and PCC P-values 
very small (e.g., <0.001), we may use this P-value to define 
the upper left corner. In this study, after the biomarker genes 
were selected, we may have a visual assessment of the GEP 
profile specificity between two comparing groups for a given 
gene, as the example of the plot shown in Figure 1b.

Prediction of Disease State

The GEP histograms of several biomarker genes (as a  
biomarker set) may be combined to predict the disease  
state of a patient. The likelihood of a gene being in a normal 
(or diseased) state may be predicted according to the prob-
ability density of the expressed gene intensity in the normal 
(or diseased) GEP histogram, as shown in Figure 1a. For 
this purpose, it prefers that the selected biomarker genes are 
graded, predominantly-on, or predominantly-off genes and 
the switch-like (bimodal) genes are not appropriate for pre-
diction due to their non-normal distribution, as described 
in our recent work (19). Graded genes can be expressed in 
rheostatic levels and states (24-26); predominantly-on genes 
are in activated high-expression states most of the time  
(27, 28); predominantly-off genes are in repressed low-
expression states most of the time (29, 30); switch-like 
bimodal genes can switch between repressed and activated 
states (31, 32). 

In practice, the tissue sample of a patient can be analyzed 
with microarray experiment followed by the same normal-
ization procedure as the one applied to the array data that 
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were used for the construction of GEP probability density 
histograms for the normal and diseased samples respectively. 
After this procedure, for each gene in the biomarker set, its 
normalized expression value in patient can be used to obtain 
a likelihood value based on the interval it belongs to (on the 

Figure 2: Metric plot of Kolmogorov-Smirnov Distance (KSD) vs. Pearson Correlation Coefficient (PCC) that was used to compare the GEPs of two oppos-
ing groups. Each dot on the plot represents a gene. (a) The plot for the genes studied in the GDS534 dataset. The GEPs between 34 current-smoker and  
23 never-smoker sample groups were compared. KSD > 0.5 and PCC < 0.6 were used to obtain 159 biomarker candidate genes in the upper left square of the 
plot. (b) The plot for the genes studied in the GDS2771 dataset. The GEPs between 97 lung cancer and 90 non-cancer sample groups were compared. KSD > 
0.3 and PCC < 0.85 were used to obtain 157 biomarker candidate genes in the upper left square of the plot. (c) The plot for the genes studied in the GDS2545, 
GDS2546, and GDS2547 datasets. The GEPs between prostate cancer and non-cancer sample groups were compared. KSD > 0.4 and PCC < 0.7 were used to 
obtain 230 biomarker candidate genes in the upper left square of the plot. Note the scale on Y-axis is different in (a) from (b-c).

X-axis) in the expression (probability density) histogram for 
normal tissues GEP (from normal individuals) and another 
likelihood value from diseased tissues GEP histogram (from 
patients with cancer). This step can be automated by prob-
ability density matrix representing the data for the histogram 
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(GO) term enrichment tests of the 159 biomarker candi-
dates using the WebGestalt program (33) revealed that the 
most enriched term is “oxidoreductase activity” under GO  
principle “molecular function” (P = 1.04 × 10–13, Table I).  
A number of cytochrome P450 xenobiotic polypeptides 
(CYP1A1, CYP1B1, CYP27A1, CYP2A13, CYP2W1, and 
CYP4F11) and several antioxidants were categorized in this 
GO category (Table I). It is possible that mutations in these 
proteins might switch the bronchial epithelial cell to malig-
nant state and subsequently cause lung cancer.

We used Ingenuity system (http://www.ingenuity.com/) to 
identify the perturbed pathways. For those biomarker can-
didate genes obtained from smoking versus non-smoking 
analysis, the most significantly enriched pathways were 
“Metabolism of Xenobiotics by Cytochrome P450” (P = 
6.36 × 10–9, Fisher’s exact test) and “NRF2-mediated  
Oxidative Stress Response” (P = 6.97 × 10–6, Fisher’s exact 
test). These results were consistent with what we expected 
because P450 is a well known protein for toxic chemical 
metabolism in human body while tobacco smoking contains 
miscellaneous chemical poisons such as acetone and nico-
tine. Oxidative stress was also found to be associated with 
smoking (34, 35). These results suggested that the candidate 
genes identified above might serve as useful biomarkers.

Biomarkers Candidate Genes for Lung Cancer

We studied the second dataset GDS2771 (13) that contained 
samples from lung cancer smokers and non-cancer smokers. 
This dataset may provide us important insights on what genes 
and how they trigger the lung cells to transform into cancer-
ous state among smokers. As seen in Figure 2b, the GEPs 
between lung cancer and non-cancer samples from smokers 
were mostly similar. They distributed in a small area near the 
bottom right corner of the plot, that is, with high PCC and 
low KSD values. This distribution is remarkably different 
from that observed in smoking data set (Figure 2a, note the 
different scale on the Y-axis). This may suggest that smoking 
has major effect on gene expression changes (e.g., GEPs), 
which overdominate the effect caused by cancer, as hundreds 
of poisons in cigarette burning might be toxic for cell devel-
opment and growth. To further examine those genes having 
different GEPs in two comparing groups (cancer vs non-
cancer smokers), we used relaxed cutoff values (KSD > 0.3 
and PCC < 0.85) in order to select about one to two hundreds 
of candidate genes. This process resulted in 157 genes for 
further consideration as candidate biomarkers between these 
two groups (Figure 2b).

For these 157 genes, we performed GO term enrichment 
tests. Interestingly, the most significant GO term is “response  
to DNA damage stimulus” (P = 1.39 × 10–4, Table I). DNA 
damage is one of the mechanisms for cellular response to  

described above. The likelihood ratio between cancer and 
normal states can be normalized to have a sum of 1. Finally, 
all the normalized likelihood values obtained from normal 
samples’ GEPs for the genes in the biomarker set were aver-
aged to obtain a value indicating how likely the patient’s 
tissue is in normal state. We can also take the average of 
all the normalized likelihood values obtained from cancer 
tissues’ GEPs for the genes in the  biomarker set to obtain 
another value that indicates how likely the patient’s tissue is 
in the cancer state. The ratio between these two calculated 
values may help a physician to assess how likely the patient 
is in normal or cancer state. In real practice, the biomarker 
set may include several disease-specific biomarker genes to 
increase the accuracy and confidence in the prediction of  
disease state. If it succeeds, the method will be promising 
and powerful for diagnostic and prognostic monitoring on 
individuals who visit the clinic for screening or evaluation of 
a specific cancer disease.

Results and Discussion

Biomarker Candidate Genes for the Changes Due to 
Smoking

Cigarette smoking is the major cause of lung cancer, which is 
a leading cause of cancer death. Spira et al., (12) had studied 
the effects of cigarette smoking on the airway transcriptome. 
We compared the GEPs derived from the current smokers 
and never-smokers in the dataset GDS534 retrieved from the 
GEO database using the KSD and PCC metrics described in 
“Materials and Methods”. We used the cutoffs of KSD > 0.5 
and PCC < 0.6. Figure 2a displays the 159 genes that satisfied 
these criteria. They were considered as biomarker candidate 
genes for smoking.

Among these biomarker candidates, the top ranked genes 
(i.e., closest to the upper left corner of the square in  
Figure 2a) were also identified as the most significant genes 
by conventional method by Spira et al., (12). For example, 
GPX2, CYP1B1, ALDH3A1, CEACAM6, CX3CL1, CA12, 
and SLIT1 were found as top ranked genes in both our  
study and Spira et al., Among these genes, GPX2 and 
ALDH3A1 function as antioxidants; CYP1B1 has xenobiotic 
function; CEACAM6 is a cell adhesion molecule and puta-
tive oncogene; CA12 is a putative oncogene; expressions 
for CX3CL1 and SLIT1 were both decreased; and SLIT1 is a 
putative tumor suppressor gene whose decreasing expression 
would cause tumor outgrowth.

According to Spira et al., (12), in general, genes whose 
expression increased in smokers tended to be involved in 
regulation of oxidant stress and glutathione metabolism,  
xenobiotic metabolism, and secretion. Our results con-
firmed this observation. For example,  our Gene Ontology 
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in vitro carcinogen exposure and it has been found to be 
associated with lung cancer risk (36).  

Molecular Association between Smoking and Lung Cancer

No overlap was found between the 159 biomarker candi-
date genes for smoking and 157 biomarker candidate genes 
for lung cancer. We further examined whether these genes  
share similar biological or subcellular function. We used the 
Fisher’s exact test implemented in the Ingenuity Pathway 
Analysis (IPA) to find the molecular networks enriched by 
a set of genes. By using Fisher’s exact P < 0.001, we found 
eight molecular networks enriched by the smoking bio-
marker candidate genes and seven networks enriched by  
the lung cancer biomarker candidate genes. Comparison of 
top functions of these molecular networks revealed some 
common features shared between smoking and lung cancer, 
such as “cancer”, “genetic disorder”, and “cell cycle”. For 
smoking, “drug metabolism” is the top function among the 
eight enriched networks, reflecting the molecular mechanism 
of these biomarker genes in cellular system. 

Figure 3 displays the most significant networks based on 
smoking and lung cancer biomarker genes, respectively. 
Interestingly, although no gene overlaps between these two 
sets, we found a common node, NF-kB, shared between 
these two networks (Figures 3a and b). Previous studies 
indicated NF-kB was frequently expressed in lung cancer 

(37), and smoking could activate NF-kB in human lym-
phocytes (38). Moreover, another gene, NFKBIA (NF-kB 
inhibitor, α), was identified as a biomarker candidate for 
smoking in our analysis of the GDS534 dataset. NFKBIA 
was down-regulated in the smoker group. Thus, it may 
potentially increase the risk to lung cancer by increasing  
the expression of NF-kB due to the down-regulation of 
NFKBIA caused by smoking. 

Biomarkers Candidate Genes for Prostate Cancer

To demonstrate the power and feasibility of our approach, 
we explored biomarker genes in another type of cancer. We 
obtained three prostate cancer-related datasets (GDS2545, 
GDS2546, and GDS2547) from the same study (17)  in the 
GEO database. For these three datasets, to identify the most 
distinctive biomarker genes that can be used to identify  
cancer tissue specifically, we combined the normal pros-
tate tissue and normal tissue adjacent to tumor as one group  
(i.e., normal sample) and the primary and metastatic pros-
tate tissues as another group (i.e., cancer sample). Using 
the same strategy and cutoff values KSD > 0.4 and PCC < 
0.7, we obtained 230 biomarker candidate genes for further 
analysis (Figure 2c). 

GO enrichment analysis revealed that the prostate bio-
marker candidate genes were highly enriched in structural 
molecular activities related to cytoskeleton and muscle 

Table I
Biomarker candidate genes highly enriched in specific Gene Ontology (GO) category.

Dataset* GO term†
No. of genes 

(P value) Gene symbols

GDS534 MF: oxidoreductase activity 32 (1.04 × 10–13) ADH7,AKR1B10,AKR1C1,AKR1C2,AKR1C3,ALDH3A1,BDH1, 
 CBR1,CBR3,CYP1A1,CYP1B1,CYP27A1,CYP2A13,CYP2W1, 
 CYP4F11, DHRS3,DUOX2,FMO2,GCLM,GPX2,HGD,HPGD,MAO 
 B,ME1,NQO1, PGD,PRDX1,PRODH,SEPX1,SOD1,TXN,TXNRD1

BP: electron transport 17 (2.67 × 10–8) ADH7,AKR1C1,AKR1C3,ALDH3A1,CYP1A1,CYP1B1,CYP27A1, 
 CYP2A13,CYP2W1,CYP4F11,DUOX2,FMO2,MAOB,NQO1,PGD, 
 TXN,TXNRD1

CC: vesicular fraction 9 (5.63 × 10–6) CYP1A1,CYP1B1,CYP2A13,CYP4F11,FMO2,UGT1A1,UGT1A3, 
 UGT1A6,UGT1A9

GDS2771 BP: response to DNA damage 
stimulus

9 (1.39 × 10–4) BTG2,CDK7,DCLRE1C,FANCF,GTF2H3,GTSE1,MLH1,MSH2, 
 USP1

CC: nuclear envelope-endoplasmic 
reticulum network

5 (1.48 × 10–3) BSCL2,DHCR7,EXT2,SLC33A1,SSR4

GDS2545-2547 MF: cytoskeletal protein binding 18 (4.37 × 10–8) ACTA1,CALD1,CAPG,CFL2,ENAH,FLNA,FLNC,KLHL5,MSN, 
 PARVA,PRNP,SMTN,SORBS1,SYNPO2,TNS1,TPM1,TPM2,VCL

BP: muscle contraction 10 (1.57 × 10–6) CALD1,DES,FXYD1,GJA1,KCNMB1,MYL9,PPP1R12B,SLMAP, 
 SMTN,TPM1

CC: cytoskeleton 27 (7.53 × 10–8) ACTA1,ACTC1,BICD1,CALD1,CAPG,CFL2,DES,DMN,ENAH,FLNA,  
 FLNC,KIF20A,KLHL5,KRT15,KRT5,MSN,MYL9,PARVA,PDLIM7, 
 PKP3,SGCB,SMTN,SORBS1,TNS1,TPM1,TPM2,VCL

*Datasets in which biomarker candidate genes were identified. GDS534 was used for “current-smokers vs. never-smokers”; GDS2771 was used for “lung 
cancer vs. non-cancer smokers”; GDS2545, GDS2546, and GDS2547 were used for prostate cancer analysis.
†Gene Ontology organization principles: Biological Process (BP), Molecular Function (MF), and Cellular Component (CC).
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contraction (Table I). Further, network/pathway 
analysis using the Ingenuity system revealed 
that the top pathway was “Actin Cytoskeleton 
Signaling” (P = 5.46 × 10–5, Fisher’s exact 
test). Interestingly, the association between actin 
cytoskeleton and prostate cancer (PCA) has been 
documented in literature. For example, Zhang  
et al., (33) found that ZNF185 (a candidate PCA 
biomarker found in this analysis), which was 
down regulated in prostate cancer, encodes a 
novel actin-cytoskeleton protein. Papakonstanti 
et al., (39) reported that the prostate cell line 
LNCaP had functional membrane testosterone 
receptors which could modify actin cytoskel-
eton and could increase the secretion of prostate 
specific antigen (PSA, a biomarker for prostate 
cancer). When we sorted the biomarker genes by 
PCC value, the ACTC1 gene, which encodes an 
actin subunit, was ranked the first (i.e., lowest  
PCC value) and HPN gene, which encodes  
hepsin and was previously found to be related 
to prostate cancer (40), was ranked the second. 
In the next section, we used these two genes as 
a biomarker set to explore how disease (cancer) 
states may be diagnosed and monitored.

Application of the Disease-specific Biomarker 
Genes for Cancer Diagnosis and Prognosis

As shown above, the disease-specific microarray 
study is likely to identify biomarker candidate genes 
that can distinguish the disease (cancer) group from 
normal group by using gene expression profiles. 
The top ranked biomarker genes may be applied to 
the disease-specific study to predict patient’s dis-
ease (cancer) state according to the gene expres-
sion levels of those biomarker genes. That is, when 
several biomarker genes are discovered as the indi-
cators for a disease (cancer state), the expression 
values of these genes in a new patient’s sample 
can be obtained and assessed for the diagnosis of 
the disease, monitoring the patient’s disease state, 
or even be evaluated on how seriously the patient 
has developed for this disease. We proposed three 
steps for this application. First, we use normalized 
array expression intensity to construct the prob-
ability density histograms (details in Materials and 
Methods) for the biomarker genes in normal sam-
ples and diseased (cancer) samples, respectively. 
Second, for a new patient with unknown disease 
state, his/her tissue sample is taken for microarray 
experiments followed by the same normalization 

Figure 3: Molecular networks enriched by the biomarker candidate genes identified from 
(a) smoker vs. non-smoker analysis in GDS534 dataset (Figure 2a) and (b) lung cancer vs. 
non-cancer analysis in GDS2771 dataset (Figure 2b). Yellow nodes represent biomarker 
genes we identified. A solid line indicates a physical interaction, a dashed line with an arrow 
indicates a regulation relationship, and a solid line with an arrow indicates both a physical 
interaction and a regulation relationship.
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and HPN) selected from prostate cancer studies using 
microarray data in GDS2545. First, we constructed proba-
bility density histogram for each of these two biomarker 
genes in normal and prostate cancer samples, respectively 
(Figure 4). For each gene, its distributions of histogram in 
normal and cancer samples were different (Figure 4). In the 
second step, to evaluate the prediction performance, each 
time we selected one sample in each group (i.e., with known 
disease state: normal or cancer) to test the likelihood of our 
prediction, assuming the disease status of the selected sam-
ple is unknown. In this prediction, we applied leave-one-out 
cross validation (LOOCV) method, i.e., the gene expression 
information of the sample under prediction was not included 
in the construction of the normal or cancer GEP. Then, each 
sample was predicted to be in a state (either cancerous or 

procedure as in the microarray studies used for probability 
density histogram construction. The normalized gene expres-
sion intensity of the new patient will be used to estimate its 
probability of the disease or normal state by comparing the 
probability density histogram constructed in step one. Third, 
when additional studies with similar designs for the same dis-
ease become available, we can combine the previous microar-
ray studies with the new datasets and construct a new version 
of the probability density histogram. This is an iterative 
approach, i.e., by repeating step one. We expect the prediction 
performance will be improved when more micro array data for 
the same disease are available.

Here, for demonstration purpose, we tested our proposed  
prediction approach by using two top ranked genes (ACTC1 

Figure 4: Probability density histograms for biomarker genes ACTC1 and HPN in normal and cancerous samples. The interval (bin size) on X-axis for  
histogram construction is 1. (a) GEP for gene ACTC1 in normal samples. (b): GEP for gene ACTC1 in cancer samples. (c) GEP for gene HPN in normal 
samples. (d) GEP for gene HPN in cancer samples.



Technology in Cancer Research & Treatment, Volume 9, Number 3, June 2010

Disease Biomarker Genes for Cancer Diagnosis and Prognosis 227

cancerous according to the prediction by ACTC1, HPN, and 
“ACTC1+HPN”, respectively. The prediction by both genes 
had slightly higher (cancer) true positive rate (67/90) than 
that by one gene’s prediction alone (66/90). When we had 
a more detailed check of the prediction results, we found a 
few samples were predicted to have different states by either 
ACTC1or HPN gene alone; however, when these two bio-
marker genes could give out the same disease state predic-
tion, the same prediction was always made by using both 
genes (ACTC1+HPN). 

Here, we described in more details two samples whose predic-
tion was opposite by using one gene alone (ACTC1 or HPN); 
but it gave out the correct prediction when both genes were 
used altogether. For example, GSM152946, a cancer sample 
in microarray GDS2545, was not predicted to be cancerous 
(i.e., cancer negative, denoted by “–” sign in Table III) by 
ACTC1, while correctly predicted by HPN. When both genes 
were recruited, it had the correct prediction (i.e., “+” in Table 
III). Similarly, GSM152973, another cancer sample, was not 
predicted cancerous by HPN, but was predicted cancerous 
by ACTC1 alone and also by both genes. These results sug-
gested that a combined set of biomarker genes may increase 
the prediction power. Each gene may utilize some positive 
information in the gene expression signals to help prediction. 
When more than one gene is used for the disease state pre-
diction, more informative signals might be included so that 
an overall prediction could be made. However, this is only a 
putative explanation, as more noise might also be included at 
the same time.

Bueno et al., (41) described a “3 ratio diagnostic test” on PCA 
diagnosis. They found a 90% accuracy of PCA diagnosis on 
the 20 test samples based on the “3 ratio diagnostic test” using 
the expression level ratios of C7-to-HPN, MEIS2-to-HPN, 
and FN1-to-HPN which were obtained by real-time quantita-

tive RT-PCR experiments. The datasets 
and algorithms used for prostate cancer 
diagnosis are different between Bueno  
et al., and ours. To have a comparable 
evaluation of these two methods, we 
first applied the “3 ratio diagnostic test” 
to predict the PCA cancer state of our 
171 samples in GDS2545 dataset which 
contained those four genes’ expression 
information. The accuracy turned out 
to be “70.2%” (120/171) by the “3 ratio 
diagnostic test”, which is lower than 
our method (e.g., “78.9%” (135/171) 
using gene pair ACTC1/HPN). Next, we 
applied the expression level ratio test in 
Bueno et al., to our gene pair “ACTC1/
HPN” to predict the PCA cancer state  
of the 171 samples in GDS2545 dataset. 

normal) based on the estimated likelihood. Specifically, for 
the selected sample, we calculated normalized gene expres-
sion intensity and then compared the normalize value to the 
corresponding probability density histogram constructed by 
using all sample (81 normal and 90 cancer samples, Figure 4) 
but excluding the sample under prediction. 

Table II shows the prediction procedures of one sample in each 
group. GSM152804 was the first sample in the normal group. 
When we used marker gene ACTC1, the log2(expression 
intensity) was 9.2. This corresponded to the probability den-
sity 0.19 in the histogram for normal samples and 0.04 in 
the histogram for cancer samples, respectively (Table II and 
Figure 4). The normalized probability density ratio between 
normal and cancer groups (N:C) was 0.808:0.192. This ratio 
indicated that there was strong likelihood of this sample to be 
normal. The similar likelihood was found by using marker 
gene HPN. Furthermore, when we combined both genes 
(ACTC1+HPN), we had N:C ratio 0.845:0.155. In summary, 
these two genes could serve as biomarkers to predict this 
sample to be normal. Similarly, we tested the first sample 
in the cancer group (GSM152931) in the original microarray 
sample dataset. Our results clearly indicated that these two 
genes could predict the cancer status of this sample (details 
in Table II). 

Table III summarized the prediction of each sample in nor-
mal and cancer group by predicting one sample each time 
using the leave-one-out cross validation method. Among 
the 81 normal samples, 65, 68, and 68 were predicted to be 
normal according to the prediction by ACTC1, HPN and 
“ACTC1+HPN”, respectively. The prediction by gene HPN 
alone is the same as that by using both genes, both of which 
had an 84% (cancer) true negative rate assuming the origi-
nal disease diagnosis in GDS2545 was accurate. Among 
the 90 cancer samples, 66, 66, and 67 were predicted to be 

Table II
Prediction of normal or diseased state on samples GSM152804 and GSM152931 in GDS2545 dataset.

Gene symbol log2(Expr)*

Probability density

Normal (N) Cancer (C) N:C Ratio†

Prediction of normal state for GSM152804 

ACTC1  9.2 0.19 0.04 4.21 (0.808:0.192)
HPN  8.7 0.41 0.06 7.40 (0.881:0.119)
ACTC1+HPN ** 5.45 (0.845:0.155)

Prediction of cancer state for GSM152931 

ACTC1  6.7 0.04 0.27 0.14 (0.121:0.879)
HPN 10.9 0.07 0.47 0.16 (0.136:0.864)
ACTC1+HPN ** 0.15 (0.128:0.872)

*log2(Expr): normalized log2(expression intensity).
†Normalized likelihood ratio between normal and cancer states (to have a total probability of 1).
**Prediction was based on both genes by taking the average of the normalized likelihood ratio values.
Note: Prediction was based on the histograms in Figure 4.
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Conclusion

In this study, we demonstrated that 
the biomarker candidate genes for 
disease-causal changes could be 
identified by the GEP comparisons 
between two groups of opposing 
samples (e.g., cancer vs. normal). 
Both KSD and PCC are useful met-
rics for GEP comparison to evaluate 
the distinctness (KSD) and similar-
ity (PCC) of the expression profiles. 
KSD vs. PCC metric plot may also 
provide an overview of the gene 
expression changes at the genome 
level in samples and be used to 
evaluate the magnitude of the dis-
tinctions between two comparing 
groups. We analyzed several real 
disease-related microarray gene 

expression datasets. We found that the number of genes with 
highly different GEPs between comparing groups in smoking 
dataset was much larger than that in lung cancer dataset; this 
observation was further verified when we compared GEPs in 
smoking dataset vs. prostate cancer datasets. We found that 
both genes in some gene pair, when utilized together, could 
effectively predict prostate cancer state. Although more 
work is needed, our results suggested that this approach 
might prove promising and powerful for diagnosing and 
monitoring the patients who come to the clinic for screening 
or evaluation of a disease state including cancer.
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