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A topic of great interest and debate concerns the source of order
and remarkable robustness observed in genetic regulatory net-
works. The study of the generic properties of Boolean networks
has proven to be useful for gaining insight into such phenomena.
The main focus, as regards ordered behavior in networks, has been
on canalizing functions, internal homogeneity or bias, and network
connectivity. Here we examine the role that certain classes of
Boolean functions that are closed under composition play in the
emergence of order in Boolean networks. The closure property
implies that any gene at any number of steps in the future is
guaranteed to be governed by a function from the same class. By
means of Derrida curves on random Boolean networks and perco-
lation simulations on square lattices, we demonstrate that net-
works constructed from functions belonging to these classes have
a tendency toward ordered behavior. Thus they are not overly
sensitive to initial conditions, and damage does not readily spread
throughout the network. In addition, the considered classes are
significantly larger than the class of canalizing functions as the
connectivity increases. The functions in these classes exhibit the
same kind of preference toward biased functions as do canalizing
functions, meaning that functions from this class are likely to be
biased. Finally, functions from this class have a natural way of
ensuring robustness against noise and perturbations, thus repre-
senting plausible evolutionarily selected candidates for regulatory
rules in genetic networks.

Mathematical and computational modeling is becoming
increasingly important for understanding the complex

dynamical interactions in genetic regulatory systems. In light of
recent development of high-throughput genomic technologies,
modeling efforts have the potential to move from theory into
practice. The understanding of the underlying mechanisms used
by genetic networks not only sets the stage for a systematic view
of physiology and pathophysiology but also carries tremendous
practical potential in the context of model inference from real
measurement data. Because the implications of the logic of
genetic networks are difficult to deduce solely by means of
experimental techniques, computational and mathematical
modeling play a vital role (1).

Since their inception in 1969 by Kauffman, random Boolean
networks (2–5) have been one of the most intensively studied
models of discrete dynamical systems, enjoying a sustained
interest from both the biology and physics communities. Con-
sidering their structural simplicity, these systems are capable of
displaying a remarkably rich variety of complex behaviors and
share many features of other dynamical system models. Analyt-
ical and numerical studies of the relationships between structural
organization and dynamical behavior of Boolean networks have
yielded important insights into the overall behavior of large
genetic networks (5), evolutionary principles (6–8), and the
development of chaos (9, 10).

Of particular interest are the relationships between local
properties of the network and its global behavior. Various
parameters specifying these local properties can be ‘‘tuned’’ such
that the network is operating in one of several different regimes.
In the ordered regime, the system behaves in a simple way, with

most of its components being frozen. In this regime, the transfer
of information between the components is impeded by large
walls of frozen components. In the chaotic regime, the system
behaves in the opposite way, with a perturbation of one com-
ponent propagating to many others in an avalanche-like manner,
with only a few isolated islands comprised of frozen components.
Thus, networks in the chaotic regime are very sensitive to initial
conditions and perturbations. The boundary between order and
chaos is called the complex regime or the critical phase, with the
networks undergoing a kind of phase transition (11). It is in this
regime that the networks are most evolvable. Kauffman (5) argues
that life must exist on the edge of chaos such that the networks
representing real genetic regulatory networks operate at or near
this critical phase. As Kauffman (12) puts it, ‘‘a living system must
first strike an internal compromise between malleability and sta-
bility. To survive in a variable environment, it must be stable to be
sure, but not so stable that it remains forever static.’’

A Boolean network contains n elements (genes) {x1, . . . , xn}.
Each gene xi � {0, 1} (i � 1, . . . , n) is a binary variable, the value
of which at time t � 1 is completely determined by the values of
some other genes xj1(i), xj2(i), . . . , xjki

�i� at time t by means of a
Boolean function fi:{0, 1}ki 3 {0, 1}. That is, there are ki genes
assigned to gene xi and the mapping jk:{1, . . . , n}3 {1, . . . , n},
k � 1, . . . , ki determines the ‘‘wiring’’ of gene xi. Thus, we can
write xi(t � 1) � fi(xj1(i)(t), xj2(i)(t), . . . , xjki

�i�(t)). All genes are
assumed to update synchronously in accordance with the func-
tions assigned to them, and this process is then repeated. In a
random Boolean network, the functions fi are selected randomly,
as are the genes used as its inputs.

Let us briefly consider several properties known to have
an impact on the mode of operation of Boolean networks. The
first two are the connectivity K and the function bias p. K �
n�1 �i�1

n ki is the mean number of input variables used by the
random Boolean functions fi. We will assume in the sequel that
ki � K for all i � 1, . . . , n. The bias p of a random function fi
is the probability that it takes on the value 1. If p � 0.5, then the
function is said to be unbiased. By varying these parameters, the
network can be made to undergo a phase transition. For
example, in the case of unbiased functions, the critical connec-
tivity is K � 2, meaning that for K � 2, we observe chaotic
behavior. In general, for a given bias p, the critical connectivity
is equal to Kc � [2p(1 � p)]�1 (ref. 13). Alternatively, by inverting
this equation, a critical bias pc can be found for an arbitrary
connectivity K. Strongly biased functions (when p is far away
from 0.5) are said to have a high degree of internal homogeneity
(8) and are associated with increased order in Boolean networks.

It has been known for quite some time that canalizing func-
tions play a role in preventing chaotic behavior (2, 5, 14, 15). A
canalizing function is one in which at least one of the input
variables is able to determine the value of the output of the
function regardless of the other variables. By increasing the
percentage of canalizing functions in a Boolean network, one can
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move closer toward the ordered regime and, depending on the
connectivity and the distribution of the number of canalizing
variables in the randomly chosen canalizing functions (16), cross
the phase-transition boundary. There is also strong evidence that
many control rules governing transcription of eukaryotic genes
are canalizing when viewed in the Boolean formalism (17).

Internal homogeneity (bias) and canalizing functions are, in
fact, quite related. It is known that canalizing functions ‘‘prefer’’
a high degree of internal homogeneity (14). Consider the
solid-line plots in Fig. 1 a and c. These plots show histograms of
the number of canalizing functions of K � 4 and 5 variables,
respectively, versus the number of ones in their truth tables.
Thus, for example, for K � 4, there are only 8 canalizing
functions (of 3,514) that have exactly 8 ones in their truth table.
The solid-line plots in Fig. 1 b and d show the probability that a
randomly generated Boolean function with bias p will be a
canalizing function (for K � 4 and 5, respectively). Again, it can
be seen that for p � 0.5 and K � 4, this probability is only
�0.0536 (see ref. 14 for details). This phenomenon lends support
to the observed role of canalizing functions in the formation of
ordered behavior.

Although it is known that the average connectivity in real
genetic networks, especially those of higher Metazoa, is consid-
erably higher than K � 2 (ref. 18), real genetic networks are
clearly not chaotic. Thus, a majority of regulatory functions must
either be biased or canalizing. Aldana et al. (19) recently posed
a profound question regarding canalizing functions. Although it
is known that the fraction of canalizing functions is very small as
K increases, how (and, we would like to add, why) did evolution
select them to act as genetic regulatory rules? The first answer
that comes to mind might be that evolution acted, by means of
selection, to produce regulatory functions that in their totality
would ensure that the overall behavior of the network is not
chaotic. We suggest that such a view is somewhat flawed. This
would be akin to designing a complex digital circuit to be highly
noise- and fault-tolerant by first designing the whole circuit so
that it produces the correct output, then testing to see how
noise-tolerant it really is, and if it is not, redesigning it again, and

repeating this process until a satisfactory circuit is produced. A
more reasonable and sustainable approach would be to develop
a systematic way to design noise tolerance from the bottom up,
for example by building in redundancy, exactly as von Neumann
(20) envisioned in 1956. Thus, the issue is not whether evolution
acted by means of random selection but what criteria or fitness
functions it used to arrive at canalizing rules. As Sawhill and
Kauffman (21) write, ‘‘canalization would be a natural way to
design in robustness against noise and uncertainty.’’ It thus
seems more plausible that evolution acted locally (at the level of
regulatory rules) to ensure robustness and reliability, whereas
global order came for free, exactly as Kauffman has been
asserting.

If canalizing functions indeed were found randomly and then
selected, then it must have been quite a difficult task for
evolution to find so few needles in such a large haystack. If a
different class of functions, much more abundant in number
than canalizing functions, could exhibit the same high fitness
in terms of robustness and globally ordered behavior, it would
have been much more likely for evolution to stumble on and
select it. This possibility serves as one of the motivations of this
article.

There is another issue, however. Canalizing functions, strictly
speaking, constitute a class of functions in the sense that a given
function either belongs or does not belong to this class. Biased
functions, on the other hand, do not constitute a class. That is,
because the definition of bias is a probabilistic one, given a bias
0 	 p 	 1, any Boolean function can still be generated with a
positive probability.¶ Thus, a p-biased random network, meaning
one with functions that are all chosen randomly with a bias p,
could potentially contain any Boolean function. Nonetheless,
p-biased random Boolean networks possess an interesting prop-
erty when the number, n, of genes is large, which is the case for
real genetic regulatory networks.

Consider a transition of the network from state x(t) to state
x(t � 1), where x � {0, 1}n is the state vector of genes. Clearly,
n Boolean functions are used to make this transition. The same
functions then are used again to move from state x(t � 1) to state
x(t � 2). This situation corresponds to the so-called quenched
network model, meaning that the randomly selected functions
are kept the same for the entire future operation of the network.
We then could ask the question: What Boolean functions will
take us directly from x(t) to x(t � 2)? In other words, what
Boolean functions will output x(t � 2) when the input is x(t)? The
answer, of course, is the composition of the Boolean functions
defining the network. That is, these Boolean functions them-
selves are used as input variables to the same Boolean functions.
Let us give a simple example for illustration.

Example: Suppose we have three genes, x1, x2, and x3. The
corresponding three Boolean functions are given by f 1

(1)(x1, x2,
x3) � x1x2, f 2

(1)(x1, x2, x3) � x1x3 � x2x3, and f 3
(1)(x1, x2, x3) � x2x3,

where addition represents disjunction and multiplication repre-
sents conjunction. The superscripts (1) signify that these are
one-step functions, meaning that they output x(t � 1) given x(t).
Let us compute the two-step functions,

f 1
�2��x1, x2, x3� � f 1

�1�� f 1
�1�, f 2

�1�, f 3
�1�� � f 1

�1�� f 2
�1�

� �x1x2���x1x3 � x2x3� � x1x2x3

f 2
�2��x1, x2, x3� � f 1

�1�� f 3
�1� � f 2

�1��f 3
�1� � x2x3

f 3
�2��x1, x2, x3� � f 2

�1�� f 3
�1� � x2x3,

¶We can generate a random Boolean function with bias p by flipping a p-biased coin 2n

times and thus filling in the truth table.

Fig. 1. (a and c) Subplots, with K � 4 and 5, respectively, show histograms of
the number of canalizing (solid line) and A2 � a2 (dashed line) functions versus
the number of ones in their truth tables. (b and d) Subplots, with K � 4 and 5,
respectively, show the probability that a randomly chosen Boolean function
with bias p is a canalizing (solid line) or A2 � a2 (dashed line) function.
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where we have skipped several straightforward algebraic
steps.�

When n 3 
, in the quenched model, with every step of the
network, each new composition of functions results with high
probability in a new Boolean function with even more inputs
(taken from time 0). Because more and more functions, which
were initially selected at random, are used to form the overall
composition function, the latter is also random. This insight was
used to propose the so-called annealed model (13), where at each
step of the network a completely new random function is selected
for each gene. It turns out that the quenched and annealed
models exhibit very similar dynamics of state transitions (5, 13).

It is fairly straightforward to show that within the annealed
approximation, if the one-step Boolean functions are random
p-biased functions, then the two-step Boolean functions are also
random p-biased functions. This is so because the functions at the
second step are chosen independently of the state of the network
after the first step. Clearly, by induction, this implies that
three-step functions and beyond are all p-biased as well. Thus, it
could be said that within the annealed approximation, p-biased
functions have a type of closure property in the sense that
compositions of p-biased random functions themselves are p-
biased random functions. The implication of this result is that in
an annealed random Boolean network consisting of p-biased
functions, the probability that any given gene is equal to 1 is
equal to p at every step of the network. The above p-biased
closure property approximately holds true for large n in the
quenched-model setting.

By contrast, the class of canalizing functions is not closed; that
is, a composition of canalizing functions is not necessarily a
canalizing function. This implies that a rule specifying a gene
value several steps into the future is not necessarily a canalizing
rule even if the network consists entirely of canalizing rules.
Kauffman (8) recognized this issue and wrote that the necessary
condition for such transitivity to hold is that ‘‘guaranteed values
[of inputs and outputs] must propagate down a connected forcing
structure.’’ In other words, the canalized value of one gene must
also be its canalizing value when that gene is used as a canalizing
variable in a function determining another gene. Thus, a second
motivation of this article is to arrive at a class of Boolean
functions that would be closed under composition analogously to
the similar property of p-biased annealed networks but without
requiring any additional assumptions such as the annealed
approximation.

Let us summarize. We are looking for a class of Boolean
functions such that:

1. it is much larger than the class of canalizing functions;
2. an abundance of functions from this class will tend to prevent

chaotic behavior in networks;
3. it will be ‘‘compatible’’ with internal homogeneity much in the

same way as are canalizing functions, meaning that functions
from this class are likely to be biased;

4. functions from this class will have a natural way to ensure
robustness against noise and uncertainty; and

5. it will be closed under the operation of composition, meaning
that functions specifying the network state an arbitrary
number of time steps into the future will also belong to this
class, in the usual quenched-model setting.

Post Classes
In 1921, the American mathematician Emil Post (22, 23) char-
acterized all classes of Boolean functions that are closed under
composition. Several well known classes of Boolean functions

such as monotone, linear, and self-dual functions fall into this
category. For example, it is relatively straightforward to show
that a composition of an arbitrary number of monotone Boolean
functions results in a monotone Boolean function. Of course, the
class of all Boolean functions is trivially a Post class as well.
However, the class that we will consider is of a somewhat more
mysterious nature.

To motivate the definition and make the connection with
canalizing functions, recall that a function f:{0,1}n3 {0,1} is said
to be canalizing if there exists an i � {1, . . . , n} and u,v � {0,1}
such that for all x1, . . . , xn � {0,1}, if xi � u then f(x1, . . . , xn) �
v. The input variable xi is called the canalizing variable with
canalizing value u and canalized value v. Equivalently, all vectors
x � {0,1}n for which f(x) � v� must have xi � u� . When u � v �
0, this condition reduces to the Post class,** which we will denote
as A
. Thus, A
 can be defined as follows.

Definition 1: A Boolean function f belongs to class A
 if all
vectors on which the function takes on the value 1 have a
common component equal to 1. Similarly, we define the Post
class a
 by replacing ones by zeros in the previous sentence.

For example, the function f(x1, x2, x3) � x1 � x2x3 belongs to
a
, because all the vectors on which the function is equal to 0,
namely (000), (001), and (010) have a common component equal
to 0 (the first one). In this example, the first variable is canalizing
and u � v � 1. In other words, if x1 � 1, then f(x1, x2, x3) � 1.
For simplicity, we will also say ‘‘f is a
.’’ If we denote the set of
canalizing functions by C, then it is clear from the above
definitions that A
 � a
 � C. The class A� is defined as follows.

Definition 2: A Boolean function f belongs to class A�, � � 2,
if any � vectors on which the function takes on the value 1 have
a common component equal to 1 (some of these � vectors may
be repeated). The class a� is defined by replacing ones by zeros
in the previous sentence.

As an example, the function

f�x1, x2, x3� � x1x2 � x2x3 � x1x3 [1]

is A2, because any two vectors on which the function is equal
to 1 have a common unity component. It is easy to see that if
f is A�, then it is also A� for any � satisfying 2 � � � �. A similar
result holds for a�. Thus, these classes are nested with A2

(respectively, a2) being the largest and A
 (respectively, a
)
being the smallest. Another interesting result is that if the
function f:{0, 1}n 3 {0, 1} is A�, then for � � n it is also A


(ref. 24).
It is easy to show that if f is A�, then any collection of m � �

terms in the disjunctive normal form must contain a variable that
belongs to each one of those terms. Thus, once again there is an
interesting relationship to canalizing functions in the sense that
the functions defined by those terms are themselves canalizing
functions. For example, if we take any two terms from the
function in Eq. 1, such as x1x2 � x2x3, then the Boolean function
corresponding to these terms is canalizing, with canalizing
variable x2.

Because the classes a
, A
, a�, and A� are all Post classes,
they are closed under the operation of composition. This
implies that a Boolean network constructed from one of these
classes has the remarkable property that any t-step transition
function (outputting the gene value t time steps into the future)
also belongs to this class much like the property of p-biased
annealed networks. Let us now look at the relationship to bias
more closely.

�It is also interesting to note (details not shown) that the three-step functions are equal to
the two-step functions f i

(3) � f i
(2), i � 1, 2, 3. This implies that, regardless of the starting

state, a fixed-point attractor is reached in no more than three steps.

**Typically, notation such as �A
� is reserved to denote the property of a Boolean function.
The original notation used by Post and subsequent authors (24) to denote the set
of functions with such a property is, for example, F8


. However, in this article we will
simply use the simplified notation such as A
 to denote the set of functions with the
property �A
�.
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Consider Fig. 1 once again and recall that the solid-line plots
refer to canalizing functions. The dashed-line plots in the same
figure have been constructed from the class A2 � a2 for the same
number of variables. We can notice a striking similarity between
the solid- and dashed-line plots and can readily conclude that
functions from A2 or a2 are also more likely to be biased, as
suggested by the two-peaked histograms in Fig. 1 a and c.
Similarly, Fig. 1 b and d show a marked tendency for a p-biased
random Boolean function to be either A2 or a2 with increasing
p (dashed line). A similar relationship exists for A� � a�, � �
2. Thus, it seems that the functions in A2 or a2 behave very
similarly to canalizing functions in that they both prefer internal
homogeneity. This is promising from the point of view of
network behavior in terms of order and chaos. Had the situation
been the opposite, namely, if functions in A2 or a2 were unlikely
to be biased, then networks constructed from them would have
been more likely to behave chaotically, especially for K � 2.
However, before discussing this, let us address the question of
the cardinality of these classes, especially as it compares to that
of the class of canalizing functions.

Sizes of the Classes
As we discussed earlier, the proposed class of functions should
be significantly larger than the class of canalizing functions under
typical connectivity of real genetic networks for it to be a more
evolutionarily plausible alternative. It is known (19) that the num-
ber of canalizing functions of K input variables is upper-bounded by
4K � 22K�1

. At the same time, the exact number of A2 functions is
known to be �(K)22K�1

, where the value �(K) is related to the
number of self-dual monotone Boolean functions with K variables
(25). Thus, for us to compare the number of canalizing functions
with the number of A2 functions, it suffices to compare 4K with �(K)
from the two formulas shown above. Fig. 2 compares these two
values for K � 1, . . . , 7 on a logarithmic scale. It is clear that
although 4K is only linear, �(K) grows at a superexponential rate.

The cardinality of a2 is equal to that of A2. Thus, we can say
that the classes A2 and a2 are asymptotically much larger than the
class of canalizing functions. For � � 3 (including � � 
) and
K3 
, we have the asymptotic formula  A� �  a�  K � 22K�1

(ref. 26), which is of the same order as the upper bound for the

number of canalizing functions.†† For K � 3, 4, and 5, the exact
numbers of canalizing and A2 functions are shown in Table 1. The
number of A2 functions begins to exceed the number of cana-
lizing functions already for K � 5.

Dynamical Behavior of Networks Constructed from the
Considered Post Classes
One of our requirements is that networks constructed from
functions belonging to the considered Post classes should exhibit
a tendency for ordered behavior. We have examined this ques-
tion from several different points of view.

First, let us consider so-called Derrida curves (13), which are
constructed as follows. Let x(1)(t) and x(2)(t) be two randomly
chosen states at some time t. The normalized Hamming distance
between them is �(t) � (1�n)�i�1

n (xi
(1)(t) Q xi

(2)(t)), where Q is
addition modulo 2. Then, given a random Boolean network
realization, let x(1)(t � 1) and x(2)(t � 1) be the successor states
of x(1)(t) and x(2)(t), respectively. Similarly, let �(t � 1) be the
Hamming distance between these successor states. The Derrida
curve consists of plotting �(t � 1) versus �(t) and averaging over
many random networks. If the network is operating in the chaotic
regime, then small Hamming distances tend to diverge, and the
Derrida curve lies above the main diagonal for small initial
Hamming distances. This also implies that small gene perturba-
tions (i.e., nearby states) tend to spread further apart and
networks are sensitive to initial conditions, which is a hallmark
of chaotic behavior. On the other hand, networks in the ordered
regime exhibit convergence for nearby states, with the Derrida
curve lying below the main diagonal. The more the Derrida curve
lies above the main diagonal for small values of �(t), the more
chaotic the network is.

Consider Fig. 3, where we have plotted the Derrida curves
corresponding to networks constructed from several different
classes of functions. In Fig. 3a, the dash-dot line plot corresponds
to random (and unbiased) Boolean networks for K � 4. As can
be seen, the Derrida plot is significantly above the main diagonal
for small �(t), indicating that K � 4 random Boolean networks
behave chaotically. In the same plot, the solid line corresponds
to networks constructed from canalizing functions, and the
dashed line corresponds to networks constructed from A2 and a2

functions, also for K � 4. In both cases, these networks behave
much less chaotically. In Fig. 3b, we compared the Post classes
A2, A3, and A4 � A
 for K � 4. It is evident that random networks
constructed from A3 and A4 (which for the case of K � 4 differ
only by two functions) exhibit even more ordered behavior than
those constructed from A2. This is intuitively clear, because A4

is a more restrictive condition than A2. Finally, in Fig. 3c, we
compared the behavior of networks constructed from A2 func-
tions for K � 3, 4, and 5. As expected, networks with higher
values of K behave relatively more chaotically than those with
lower values of K.

We also consider the effect of these Post classes on the
dynamical behavior of Boolean networks in terms of percolation
(28–31). Here we consider genes to be placed on a square lattice.

††There is actually an exact formula for the number of functions in A
: �j�1
K (�1)j�1� j

K�22K�j

for any number of variables K (27).

Fig. 2. A comparison between 4K and �(K) for K � 1, . . . , 7. A logarithmic
scale is used. Because �(K) grows much faster than 4K, the number of A2

functions grows much faster than the number of canalizing functions.

Table 1. A comparison of the number of A2 and canalizing
functions for K � 3, 4, and 5

K

3 4 5

A2 functions 40 1,376 1,314,816
Canalizing functions 120 3,514 1,292,276
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Unlike in random Kauffman networks, where the wiring for each
gene is chosen randomly, on a square lattice, every gene receives
inputs from its four nearest neighbors via a randomly chosen
Boolean function. Thus, K � 4, as considered above. In perco-
lation problems, one typically studies the fraction of points
(sites) that must be occupied such that a continuous path of
nearest neighbors is formed from one side to the other. Let r be
the probability of site occupancy independent of all other sites.
A percolation threshold is a critical probability rc at which a
spanning cluster of occupied sites suddenly begins to form and
propagate infinitely. Thus, for r � rc, a single spanning cluster of
occupied sites exists, whereas for r 	 rc, no spanning cluster
exists. The transition from no spanning cluster to a spanning
cluster is also a type of phase transition. For example, for the
two-dimensional square-lattice model, the percolation threshold
is rc � 0.592746.

In practice, lattices are finite, and thus the typical approach is
to find the probability at which a horizontally (or vertically)
spanning cluster emerges. This is done by Monte Carlo simula-
tions with many randomly generated lattices and computing what
fraction of those contains a horizontally spanning (percolating)
cluster. For Boolean networks on square lattices, instead of
varying the occupancy probability r, one can, for instance, vary
the bias p of the random Boolean functions. Then, one can select
a subset of genes according to some criterion and ask whether
those genes percolate through the lattice. For example, to study
the dynamical behavior of networks, we can ask whether the set
of frozen genes (i.e., genes that eventually stop changing values)
forms a percolating cluster through the network. It has been
shown that the critical bias pc for Boolean networks on square
lattices is approximately equal to 0.72 (14, 29). Thus, if each
function in the random Boolean network is biased with p � 0.72,
then there exists a percolating cluster of frozen genes; for 0.5 �
p 	 0.72, such a cluster does not form.‡‡

We can use these ideas to study the dynamical properties of
networks constructed from various classes as follows. Rather
than varying the bias p of the random Boolean functions, we can
vary the probability that a random Boolean function will belong
to a given class. For example, we can generate random networks
in which 70% of the functions are guaranteed to be canalizing
and the other 30% are chosen randomly from the set of all
functions. Then, we can repeat this procedure many times and
record the fraction of such networks in which a frozen cluster of
genes percolates. We have performed such experiments with the
classes A2, A3, A4 � A
, A2 � a2, and canalizing. The percolation
results are shown in Fig. 4. The horizontal axis shows the
probability q that a randomly selected function belongs to a given

class. The vertical axis shows the fraction of networks for which
a frozen cluster of genes percolates through the network.

In the two-dimensional square-lattice framework, we can see
that the Post classes A2, A3, and A4 � A
 behave in the most
orderly fashion. Even for �60% of functions belonging to one of
these classes, the Boolean network is virtually guaranteed to
contain a spanning cluster of frozen genes. The situation for
canalizing functions is markedly different. Even at q � 1, when
all functions are guaranteed to be canalizing, frozen genes
percolate only �92% of the time. When the networks are
constructed from A2 or a2 functions, they behave more orderly
than canalizing networks for the same q.

An interesting observation is that A2 networks percolate at a
lower value of q than A2 � a2 networks. Although both classes
contain mostly biased functions (as does the class of canalizing
functions), the reason behind the more ordered behavior of A2

(as well as A3 and A4) networks relative to A2 � a2 networks on
the square lattice is rooted in the fact that the former represent
a considerably stronger constraint than the latter in terms of
‘‘information transfer.’’ Consider a state x of the lattice that has
at least one gene ON (i.e., it is not all-zero). If all genes are
governed by A2 functions, then it follows that all pairs of ‘‘parent’’
states (that is, those states that lead directly to x in one step) must
share at least one common gene that is ON. In fact, for every
gene that is ON in x, every pair of parent states must share at
least one neighbor of that gene that is ON. The same can be said
about all pairs of states at exactly two steps before x due to the
closure property, and so on. This represents a formidable
constraint that does not need to hold for A2 � a2 networks.

Discussion
Boolean functions from the Post classes that we have considered
here represent plausible evolutionarily selected candidates for
regulatory rules in genetic networks. These classes are compat-
ible with a number of natural requirements. As we have dem-
onstrated by means of Derrida curves on random Kauffman
networks and percolation simulations on square lattices, net-
works constructed from functions belonging to these classes have

‡‡We note that the situation for p 	 0.5 is symmetric, and the ‘‘polarity’’ of the bias p for
each function can be different. In other words, some functions might be biased up
(favoring 1), and some might be biased down (favoring 0).

Fig. 3. Derrida curves corresponding to several classes. (a) Canalizing func-
tions (solid line), the class A2 � a2 (dashed line), and random Boolean functions
(dash-dot line) (K � 4). (b) Post classes A2 (solid line), A3 (dashed line), and A4 �
A
 (dash-dot line) (K � 4). (c) Post classes A2 for K � 3 (solid line), 4 (dashed
line), and 5 (dash-dot line).

Fig. 4. Percolation results of random networks constructed by using several
classes of Boolean functions. The horizontal axis shows the fraction of func-
tions belonging to a given class. The vertical axis shows the fraction of
networks that contain a spanning (percolating) cluster of frozen genes. The
classes are A2 (�), A3 (ƒ), A4 (�), canalizing (E), and A2 � a2 (‚). The size of the
lattice is 50 � 50 (2,500 genes). For each q (51 equally spaced values), 100
networks were constructed for computing the fraction of those containing
percolating clusters.
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a tendency toward ordered behavior. Thus, such networks with
connectivity higher than 2, when purely random unbiased net-
works behave chaotically, can still avoid chaotic behavior. They
are not overly sensitive to initial conditions, and damage does not
spread throughout the network. On a square-lattice model, such
networks exhibit a spanning cluster of frozen genes and isolated
islands of twinkling genes that are functionally isolated from
each other (5).

These classes, in particular A2 and its dual class a2, are
significantly larger than the class of canalizing functions for
realistic K. In a sense, functions from these classes can be viewed
as ‘‘softer’’ versions of canalizing functions. The parameter � in
A� and a� then is a way of tuning the canalizing property, with
A
 and a
 being the most restrictive classes that, in fact, are
subsets of the class of canalizing functions.

These Post classes exhibit the same kind of preference toward
biased functions as do canalizing functions. In fact, the two peaks
of the histograms in Fig. 1 a and c actually correspond to A2 (left
peaks) and a2 (right peaks). Thus, we can conclude that functions
from the Post class A2 prefer low bias (toward 0), whereas
functions from a2 prefer high bias (toward 1). It is tempting to
speculate that, because the majority of genes are typically
unexpressed under any given condition, the regulatory rules are
preponderantly from A� rather than a�.

The additional remarkable property of the Post classes that we
considered here is the closure property. Any gene at any number
of steps in the future is guaranteed to be governed by a function
from the same class, much like the composition of p-biased
random Boolean functions itself is a p-biased function in the
annealed approximation. Canalizing functions do not possess
this property. Obviously, this property carries with it a strong
constraint and, consequently, a tendency toward ordered behav-
ior in networks. We emphasize that the closure property is
intrinsic to Post classes and holds true in the usual quenched-
model setting. Another interesting implication of the closure
property relates to the connection between ‘‘model time’’ and
actual physical time. In the context of genetic regulatory net-
works, Boolean networks, which are discrete-time systems, are
idealizations of the real continuous-time systems that they
represent. For instance, if we were to fit the models to real
gene-expression data, we would typically sample the cell system
at consecutive points in time (either uniformly or nonuniformly)
and use the time-series data to infer the Boolean functions in the
network. Therefore, there is an implicit albeit unspecified map-
ping between the discrete-model time and the actual physical
time of the cells. If genes are regulated by rules belonging to the

considered Post classes, then regardless of how many discrete
time steps correspond to the actual physical time interval (we
emphasize that this mapping need not even be time-invariant),
the overall rule specifying the gene value at the end of the
physical time interval still belongs to the same Post class. Thus,
the plausibility of the Post classes representing gene regulatory
mechanisms does not depend on the relationship between model
time and physical time.

But what of robustness against noise and uncertainty? Cana-
lizing functions are good candidates indeed for control networks
in the presence of noise or misinformation (21). Are the classes
A� and a� (� � 2, . . . , 
) really equipped with such a mech-
anism, which evolution would be inclined to use as a fitness
criterion? The problem of reliable computation with unreliable
components in the Boolean circuit setting dates back to von
Neumann (20). The relevant characteristic of a reliable circuit is
redundancy. Intuitively, higher redundancy ensures reliability.
The aim is to construct such circuits that, with high probability,
can compute the correct function even when their components
are noisy.

In the 1960s, it was discovered that the Post classes A� and a�

play a significant role in the synthesis and reliability of control
systems and self-correcting circuits (32, 33). These results rest on
the concept of basis functions. Any closed class of Boolean
functions contains a set of basis functions such that any function
in this class can be constructed by iterative composition of these
basis functions. For example, because the class of all Boolean
functions is a closed class (Post class), one possible set of basis
functions is {x � y, x�} (i.e., conjunction and negation). Thus, any
Boolean function can be constructed by repeated composition of
these two functions. The basis set for the class A2 is {x � y�, xy �
xz � yz} (24). The second function is the well known majority (or
three-point median) function. These functions are essentially
building blocks from which any function in A2 can be con-
structed. By cascading such building blocks a sufficient number
of times, in a tree-like fashion, it can be shown (33) that any
Boolean function can be realized in a reliable manner, meaning
that the correct output is guaranteed even when some of the
components are faulty. Thus, Post classes A� and a� are strongly
implicated in fault-tolerant Boolean circuit synthesis. It thus can
be speculated that evolution used a similar mechanism to give
rise to highly resilient and robust genetic networks.

We are grateful to Stuart A. Kauffman and Maximino Aldana for
careful reading of this manuscript, stimulating discussions, and useful
suggestions.
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