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A measurement of the top quark mass (Mtop) in the all-hadronic decay channel is presented. It uses
5.8 fb−1 of pp̄ data collected with the CDF II detector at the Fermilab Tevatron Collider. Events with
six to eight jets are selected by a neural network algorithm and by the requirement that at least one
of the jets is tagged as a b-quark jet. The measurement is performed with a likelihood fit technique,
which simultaneously determines Mtop and the jet energy scale (JES) calibration. The fit yields a value of
Mtop = 172.5 ± 1.4(stat) ± 1.0(JES) ± 1.1(syst) GeV/c2.
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The mass of the top quark (Mtop) is a fundamental parame-
ter of the standard model (SM) and its large value makes the top
quark contribution dominant in loop corrections to many observ-
ables, like the W boson mass MW . Precise measurements of MW

and Mtop allow one to set indirect constraints on the mass of the,
as yet unobserved, Higgs boson [1].

In this Letter we present a measurement of Mtop using proton–
antiproton collision events at a center-of-mass energy of
1.96 TeV. Top quarks are produced at the largest rate in pairs
(tt̄), with each top quark decaying immediately into a W bo-
son and a b quark nearly 100% of the time [2]. In this analy-
sis events where both the W ’s decay to a quark–antiquark pair
(tt̄ → W +bW −b̄ → q1q̄2bq3q̄4b̄) are considered. This all-hadronic
final state has the largest branching ratio among the possible de-
cay channels (46%), but it is overwhelmed by the QCD multijet
background processes, which surpass tt̄ production by three orders
of magnitude even after a dedicated trigger requirement. Never-
theless, it will be shown how this difficult background can be
successfully controlled and significantly suppressed with a prop-
erly optimized event selection. The fundamental analysis technique
is the same exploited to obtain the previous result from CDF, and
is described in details in [3]. However, improvements in the event
selection and a larger dataset allow us to decrease the total uncer-
tainty on Mtop by 21%. The additional dataset has been acquired
at higher instantaneous luminosity, which results in a higher num-
ber of background events in the data sample. Despite this fact, the
introduction of significant improvements to the analysis results in
the world best measurement of Mtop in the all-hadronic channel so
far, also entering with the third largest weight in the Mtop world
average calculation [4,5].

The data correspond to an integrated luminosity of 5.8 fb−1.
They have been collected between March 2002 and February
2010 by the CDF detector, a general-purpose apparatus designed
to study pp̄ collisions at the Tevatron and described in detail
in [6]. Events used in this measurement are selected by a mul-
tijet trigger [3], and retained only if they are well contained in
the detector acceptance, have no well-identified energetic electron
or muon, and have a missing transverse energy32 /E T satisfying

10 Visitor from Office of Science, U.S. Department of Energy, Washington, DC
20585, USA.
11 Visitor from University College Dublin, Dublin 4, Ireland.
12 Visitor from ETH, 8092 Zurich, Switzerland.
13 Visitor from University of Fukui, Fukui City, Fukui Prefecture, 910-0017 Japan.
14 Visitor from Universidad Iberoamericana, Mexico D.F., Mexico.
15 Visitor from University of Iowa, Iowa City, IA 52242, USA.
16 Visitor from Kinki University, Higashi-Osaka City, 577-8502 Japan.
17 Visitor from Kansas State University, Manhattan, KS 66506, USA.
18 Visitor from Korea University, Seoul, 136-713, Korea.
19 Visitor from University of Manchester, Manchester M13 9PL, United Kingdom.
20 Visitor from Queen Mary, University of London, London, E1 4NS, United King-

dom.
21 Visitor from University of Melbourne, Victoria 3010, Australia.
22 Visitor from Muons, Inc., Batavia, IL 60510, USA.
23 Visitor from Nagasaki Institute of Applied Science, Nagasaki, Japan.
24 Visitor from National Research Nuclear University, Moscow, Russia.
25 Visitor from Northwestern University, Evanston, IL 60208, USA.
26 Visitor from University of Notre Dame, Notre Dame, IN 46556, USA.
27 Visitor from Universidad de Oviedo, E-33007 Oviedo, Spain.
28 Visitor from CNRS-IN2P3, Paris, F-75205 France.
29 Visitor from Texas Tech University, Lubbock, TX 79609, USA.
30 Visitor from Universidad Tecnica Federico Santa Maria, 110v Valparaiso, Chile.
31 Visitor from Yarmouk University, Irbid 211-63, Jordan.
32 We use a cylindrical coordinate system where θ is the polar angle with respect

to the proton beam direction (z axis), φ is the azimuthal angle about the beam axis,
and the pseudorapidity is defined as η = − ln tan(θ/2). A particle’s transverse mo-
mentum pT and transverse energy ET are given by |p| sin θ and E sin θ respectively.
/E T /
√∑

ET < 3 GeV
1
2 , where

∑
ET is the sum of the transverse

energy ET of all jets. Candidate events are also required to have
from six to eight “tight” (ET � 15 GeV and |η| � 2.0) jets. After
this preselection, a total of about 5.7 M events is observed in the
data, with less than 9 thousand expected from tt̄ events. To im-
prove the signal-to-background ratio (S/B) a b-tagging algorithm
[7] is used to identify (“b-tag” or simply “tag”) jets that most likely
resulted from the fragmentation of a b quark. Only events with
one to three tagged jets are then retained, improving the S/B by a
factor of 6. In order to further increase the signal purity, a mul-
tivariate algorithm is implemented. An artificial neural network,
based on a set of kinematic and jet shape variables [3], is used
to take advantage of the distinctive features of signal and back-
ground events. The neural network was trained using simulated tt̄
events generated by Pythia [8] and propagated through the CDF
detector simulation. At this level of selection the fraction of signal
events is still negligible so that the data can be used to represent
the background. The value of the output node, Nout, is used as a
discriminant between signal and background, providing a gain in
S/B by an additional factor of about 30.

The background for the tt̄ multijet final state comes mainly
from QCD production of heavy-quark pairs (bb̄ and cc̄) and events
with false tags from light-quark and gluon jets. Given the large
theoretical uncertainties on the QCD multijet production cross sec-
tion, the background prediction is obtained from the data them-
selves. The probability of tagging a jet in a background event (P+)
is evaluated using data with five tight jets and passing the pres-
election (S/B ≈ 1/2000). This “tag rate” is parametrized in terms
of a few relevant jet variables and is then used to estimate the
probability that a candidate event belongs to the background and
contains a given number of tagged jets. As described in detail in [3]
this allows to predict the expected amount of background events
in the selected samples as well as their distributions. For example,
the average number of background 1-tag events is estimated by

∑
events

[Njets∑
i=1

C i
1 tag · P+

i

∏
k �=i

(
1 − P+

k

)]

where the outer sum runs over all events selected just before
the b-tagging requirement, and the inner one over the jets of the
event. The factor C1 tag represents a correction to take into ac-
count correlations among jets within the same event [3], and it
is parametrized as a function of the same variables used for the
tag rate.

The analysis employs the template method to measure Mtop
with simultaneous calibration of the jet energy scale (JES) [3,9],
allowing a strong reduction of the associated systematic uncer-
tainty. Distributions of variables sensitive to the “true” values of
Mtop and JES, obtained by Monte Carlo (MC) events, are used as
a reference (“template”) in the measurement. A maximum likeli-
hood fit is performed to define the values that best reproduce the
same distributions as observed in the data. An usual choice is to
consider the distributions of the event-by-event reconstructed top
quark mass, mrec

t , and W boson mass, mrec
W as the reference tem-

plates. The JES is a multiplicative factor representing a correction
applied to the raw energy of a reconstructed jet (Eraw

T ), so that
its corrected energy ET = JES · Eraw

T , is a better estimate of the en-
ergy of the underlying parton [10]. Discrepancies between data and
simulation result in an uncertainty on the JES value to be applied
in MC events to reproduce the data, and, as a consequence, on the

The missing ET vector, �/E T , is defined by �/E T = −∑
i ET ,i n̂T ,i where n̂T ,i is the unit

vector in the x–y plane pointing from the primary interaction vertex to a given

calorimeter tower i, and ET ,i is the E T measured in that tower. Finally /E T = | �/E T |.
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measurements of Mtop. Nevertheless, this value can be calibrated
“in situ”, using mrec

W as a template. This represents a well-tested
technique, first applied in [9] and now used to obtain the most
precise top quark mass measurements at the Tevatron [4,5].

The templates are built as follows [3]. For each selected event,
each of the six highest-ET jets is assigned in turn to one of the six
quarks of a tt̄ all-hadronic final state. Then, for each combination
the jets are arranged in two triplets (the top quarks), each includ-
ing a doublet (corresponding to the W boson) and a b quark. To
reduce the possible number of permutations, b-tagged jets are as-
signed to b quarks only, resulting in 30, 6 or 18 permutations for
events with one, two or three tagged jets, respectively.33

For each permutation mrec
t is obtained through a constrained fit

based on the minimization of the following χ2-like function:

χ2
t = (m(1)

j j − MW )2

Γ 2
W

+ (m(2)
j j − MW )2

Γ 2
W

+ (m(1)

j jb − mrec
t )2

Γ 2
t

+ (m(2)

j jb − mrec
t )2

Γ 2
t

+
6∑

i=1

(pfit
T ,i − pmeas

T ,i )2

σ 2
i

where m(1,2)
j j are the invariant masses of the two pairs of jets

assigned to light flavor quarks, m(1,2)

j jb are the invariant masses
of the triplets including one pair and one jet assigned to a b
quark, MW = 80.4 GeV/c2 and ΓW = 2.1 GeV are the measured
mass and natural width of the W boson [2], and Γt = 1.5 GeV is
the assumed natural width of the top quark [11]. The jet trans-
verse momenta are constrained in the fit to the measured values,
pmeas

T ,i , within their known resolutions, σi . The fit is performed

with respect to mrec
t and the transverse momenta of the jets pfit

T ,i ,
and, among all the permutations, the one which gives the lowest
value for the minimized χ2

t is selected. The variable mrec
W is recon-

structed by the same procedure considered for mrec
t , but with a χ2

function, χ2
W , where also the W mass is left free to vary in the fit.

The selected values of mrec
t and mrec

W enter the respective distribu-
tions, built separately for events with exactly one or � 2 tags.

Signal templates are built using MC events with Mtop values
from 160 to 185 GeV/c2, with steps of 1.0 GeV/c2, and, for each
value, moving the JES by �JES · σJES from the default. Here σJES is
the absolute uncertainty on the JES [10] and �JES is a dimension-
less number. Values of �JES between −2 and +2, in steps of 0.5,
have been used, and in the following we refer to this parameter
to denote variations of the JES. To construct the background tem-
plates we apply the fitting technique to the data events passing
the neural network selection cut, omitting the b-tagging require-
ment (“pretag” sample) [3]. The weight of each value of mrec

t and
mrec

W is given by the probability of the event to belong to the back-
ground and to contain tagged jets, evaluated by the tag rates of
jets, as outlined above.

Sets of simulated experiments (“pseudo-experiments”, PEs)
have been performed to optimize the requirements on the values
of Nout, χ2

t and χ2
W in order to minimize the statistical uncertainty

on the Mtop measurement. As an improvement with respect to [3],
two different sets of events, denoted by S JES and SMtop , are used to
build the mrec

W and mrec
t templates, respectively. The set S JES is se-

lected by using cuts on Nout and χ2
W , while SMtop is selected by a

33 If three b-tagged jets are present in the event, the three possible assignments
of two out of three of them to b quarks are also considered, while the remaining
one is treated as a light flavor jet.
Table 1
Selection flow for 1-tag events samples. For each requirement the number of events
observed in the data, the expected number of tt̄ signal events, the absolute effi-
ciency on the signal (ε) and the signal-to-background ratio (S/B) are shown. For the
signal Mtop = 172.5 GeV/c2 and �JES = 0 are used. The expectations are normal-
ized to the integrated luminosity of the data sample (5.8 fb−1) using the theoretical
cross section (7.46 pb), while the background is evaluated as the difference between
the data and the expected signal.

Selection requirement Data tt̄ ε (%) S/B

Trigger + Presel. 5 683 210 8854 20.6 1/641
≡ 1 b-tag 546 579 3861 9.0 1/141
Nout > 0.97 5743 1028 2.4 1/4.6
χ2

W < 2 (S JES) 4368 881 2.1 1/4.0
χ2

t < 3 (S Mtop ) 2256 604 1.4 1/2.7

Table 2
Selection flow for � 2-tag events samples. The same notations of Table 1 are used.

Selection requirement Data tt̄ ε (%) S/B

Trigger + Presel. 5 683 210 8854 20.6 1/641
� 2 b-tags 47 229 1520 3.5 1/30
Nout > 0.94 2379 740 1.7 1/2.2
χ2

W < 3 (S JES) 1196 468 1.1 1/1.6
χ2

t < 4 (S Mtop ) 600 316 0.7 1/0.9

further requirement on χ2
t , so that SMtop corresponds to a subset of

S JES. This new procedure contributes in reducing the final total un-
certainty on Mtop with respect to [3] by about 12%. Tables 1 and 2
report the flow of the event selection for 1-tag and � 2-tag events,
respectively. As the final requirements are optimized separately for
the two tagging categories, the b-tag requirement is included in
the flow just after the preselection.

In order to measure Mtop with the simultaneous calibration of
the JES, a fit is performed in which an unbinned extended like-
lihood function is maximized to find the values of Mtop, �JES,
the number of signal (ns) and background (nb) events for each
tagging category which best reproduce the observed distributions
of mrec

t and mrec
W [3]. The likelihood depends on the probability

density functions (p.d.f.’s) of mrec
t and mrec

W expected for signal
(s) and background (b), P s(mrec

t |Mtop,�JES), P s(mrec
W |Mtop,�JES),

Pb(m
rec
t ), and Pb(m

rec
W ). The notation points out that the shapes

of the signal p.d.f.’s are functions of the fit parameters Mtop and
�JES. This dependence is obtained by fitting the whole set of tem-
plates, initially built as histograms. Fig. 1 shows examples of signal
and background templates for the � 2-tag sample, with the corre-
sponding p.d.f.’s superimposed.

The presence of the different sets S JES and SMtop requires the
generalizations of some of the terms of the likelihood with respect
to [3]. The function can be divided into three parts:

L = L1 tag ×L�2 tags ×L�JESconstr

where L�JESconstr is a Gaussian term constraining the JES to the
nominal value (i.e. �JES to 0) within its uncertainty:

L�JESconstr = e
− (JES−JESconstr)

2

2σ2
JES

= e
− [(JESconstr+�JES·σJES)−JESconstr]2

2σ2
JES

= e− [�JES]2
2 .

Terms L1 tag and L�2 tags are in turn defined as:

L1,�2 tags = L�JES ×LMtop ×Levts ×L
Nbkg

constr
,

where, omitting the dependences on Mtop and �JES,
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Fig. 1. Templates of mrec
t for events with � 2 tags and corresponding probability

density functions superimposed. Top plot: the signal p.d.f., Ps , for various values of
Mtop and �JES = 0. Bottom plot: the background p.d.f., Pb.

L�JES =
N

SJES
obs∏

i=1

ns P
mrec

W
s (mW ,i) + nb P

mrec
W

b (mW ,i)

ns + nb
,

LMtop =
N

SMtop
obs∏
i=1

Asns P
mrec

t
s (mt,i) +Abnb P

mrec
t

b (mt,i)

Asns +Abnb
,

Levts =
∑

rs+rb=N
SJES
obs

P (rs,ns) · P (rb,nb)

·
[ ∑

ts�rs,tb�rb

ts+t =N
SMtop

B(ts, rs,As) · B(tb, rb,Ab)

]

b obs
and

L
Nbkg

constr
= e

− [nb−n(b,exp)]2
2σ2

n(b,exp) .

In the first term the probability to observe the set mW ,i

(i = 1, . . . , N
S JES

obs ) of mrec
W values reconstructed in the data is cal-

culated by the signal and background expected distributions, P
mrec

W
s

and P
mrec

W
b respectively, as a function of the free parameters of the

fit Mtop, �JES, ns , and nb . In the second the same is done for
the distributions of the observed reconstructed top masses, mt,i

(i = 1, . . . , N
SMtop

obs ), and the mrec
t probability density functions. The

factors As(Mtop,�JES) and Ab represent the acceptance of SMtop

with respect to S JES for signal and background, respectively (i.e.,
the fraction of events selected by the requirements on χ2

t only).
For the signal this acceptance is parametrized as a function of
the fit parameters Mtop and �JES. The third term, Levts, gives the
probability to observe simultaneously the number of events se-
lected in the data in the S JES and the SMtop samples, given the
assumed values for the average number of signal (ns) and back-
ground (nb) events to be expected in S JES and the acceptances
As(Mtop,�JES) and Ab . It depends on the Poisson (P ) and Bino-
mial (B) probabilities

P (r,n) = e−n · nr

r! ,

B(t, r,A) =
(

r

t

)
·At · (1 −A)r−t .

In the last term, L
Nbkg

constr
, the parameter nb is constrained by a

Gaussian to the a priori background estimate i.e.
n(b,exp) = 3652 ± 181 for 1-tag events and n(b,exp) = 718 ± 14 for
� 2-tag events.

The possible presence of biases in the values returned by the
likelihood fit has been investigated. Pseudo-experiments are per-
formed assuming specific values for Mtop and �JES and “pseudo-
data” are therefore extracted from the corresponding signal and
background templates. The results of these PEs have been com-
pared to the input values, and calibration functions to be applied
to the output from the fit have been defined in order to obtain, on
average, a more reliable estimate of the true values and uncertain-
ties.

Finally, the likelihood fit is applied to data. After the event se-
lection described above, we are left with 4368 and 1196 events
with one and � 2 tags (147 have 3 tags), respectively, in the
S JES sample. The corresponding expected backgrounds amount to
3652 ± 181 and 718 ± 14 events, respectively. The tighter require-
ments used for the SMtop samples select 2256 with one tag and
600 with � 2 tags (76 have 3 tags), with average background esti-
mates of 1712 ± 77 and 305 ± 22 events, respectively.

For these events the variables mrec
W and mrec

t have been recon-
structed and used as the data inputs to the likelihood fit. Once the
calibration procedure has been applied, the measurements of Mtop
and �JES are

Mtop = 172.5 ± 1.4(stat) ± 1.0(JES) GeV/c2,

�JES = −0.1 ± 0.3(stat) ± 0.3(Mtop).

Fig. 2 shows the measured values together with the negative log-
likelihood contours whose projections correspond to one, two, and
three σ uncertainties on the values of Mtop and �JES as obtained
from the likelihood fit.

Fig. 3 shows the mrec
t and mrec

W distributions for the data com-
pared to the expected background and the signal for Mtop and
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Fig. 2. Negative log-likelihood contours for the likelihood fit performed for the Mtop

and �JES measurement. The minimum is shown along with the contours whose
projections correspond to one, two, and three σ uncertainties on the Mtop and �JES
measurements.

Table 3
Sources of systematic uncertainty affecting the Mtop and �JES measurements. The
total uncertainty is obtained by the quadrature sum of each contribution.

Source δMtop

(GeV/c2)
δ�JES

Residual bias 0.2 0.03
Calibration 0.1 0.01
Generator 0.5 0.21
Initial/final state radiation 0.1 0.04
b-jet energy scale 0.2 0.05
b-tag 0.1 0.01
Residual JES 0.4 –
Parton distribution functions 0.2 0.04
Multiple pp̄ interactions 0.1 0.04
Color reconnection 0.3 0.12
Statistics of templates 0.3 0.05
Background 0.6 0.11
Trigger 0.2 0.04

Total 1.1 0.29

�JES corresponding to the measured values. The signal and back-
ground distributions are normalized to the respective yields as fit-
ted to the data, with the 1-tag and � 2-tag contributions summed
together.

Various sources of systematic uncertainties affect the Mtop and
�JES measurements, as described in [3]. They are evaluated by
performing PEs using templates built by signal samples where ef-
fects due to systematic uncertainties have been included. The dif-
ferences in the average values of Mtop and �JES with respect to
the PEs performed with default templates are then taken into ac-
count. Possible residual biases existing after the calibration, and
uncertainties on the parameters of the calibration functions are
also taken into account. The largest contributions come from un-
certainties on the modeling of the background, on the simulation
of tt̄ events, and on the individual corrections which JES depends
on [10]. Table 3 shows a summary of all the systematic uncertain-
ties.
Fig. 3. Distributions of mrec
t (top plot) and mrec

W (bottom plot) as obtained in the
selected data (black points) with � 1 tag, compared to the distributions from sig-
nal and background corresponding to the measured values of Mtop and �JES. The
expected distributions are normalized to the best fit yields.

In summary, we have presented a measurement of the top
quark mass in the all-hadronic channel, using pp̄ collision data
corresponding to an integrated luminosity of 5.8 fb−1. An op-
timized event selection, based mainly on a neural network and
a b-tagging algorithm, allows us to select candidate event sam-
ples with S/B close to 1 in spite of the huge background
still existing at trigger level. The simultaneous calibration of
the jet energy scale, following a well-established technique, al-
lows to reduce down to 1 GeV/c2 the systematic uncertainty
due to this source. The value obtained for the JES is in agree-
ment both with the default value [10] and with the results
obtained by other measurements of the top quark mass per-
formed by the CDF Collaboration using the in situ calibration
technique [4,5]. The measured value of the top quark mass is
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Mtop = 172.5 ± 1.4(stat) ± 1.0(JES) ± 1.1(syst) GeV/c2, with a to-
tal uncertainty of 2.0 GeV/c2. This result complements and is
consistent with the most recent measurements obtained in other
channels by the CDF and D0 Collaborations, and also represents
the most accurate all-hadronic measurement at the Tevatron so
far.
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