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ABSTRACT

Certain supergravity theories admit a remarkable consistent dimensional reduction in

which the internal space is a sphere. Examples include type IIB supergravity reduced on

S5, and eleven-dimensional supergravity reduced on S4 or S7. Consistency means that any

solution of the dimensionally-reduced theory lifts to give a solution in the higher dimension.

Although supersymmetry seems to play a role in the consistency of these reductions, it

cannot be the whole story since consistent sphere reductions of non-supersymmetric theories

are also known, such as the reduction of the effective action of the bosonic string in any

dimension D on either a 3-sphere or a (D− 3)-sphere, retaining the gauge bosons of SO(4)

or SO(D − 2) respectively. We show that although there is no supersymmetry, there is

nevertheless a natural Killing spinor equation for the D-dimensional bosonic string. A

projection of the full integrability condition for these Killing spinors gives rise to the bosonic

equations of motion (just as happens in the supergravity examples). Thus it appears that

by extending the notion of supersymmetry to “pseudo-supersymmetry” in this way, one

may be able to obtain a broader understanding of a relation between Killing spinors and

consistent sphere reductions.

http://arxiv.org/abs/1105.6114v1


Kaluza-Klein dimensional reduction was introduced in the 1920’s in an attempt to unify

four-dimensional gravity and electromagnetism into the theory of pure gravity in five di-

mensions. Its most important applications in physics came after the discovery of string

theories, whose natural space-time dimensions are higher than four. As in the original mo-

tivation of Kaluza and Klein, dimensional reduction can provide a natural interpretation

for lower-dimensional gauge symmetries as general coordinate transformations in the higher

dimension. In particular, the gauge group of the lower-dimensional theory is associated with

the isometry group of the internal space.

An important question that arises in a Kaluza-Klein reduction is whether the procedure

is consistent or not. By consistency, we mean that all solutions of the lower-dimensional the-

ory are also solutions of the higher-dimensional theory. (Consistency is always guaranteed

if one retains the full Kaluza-Klein towers for all modes; the issue here, though, is whether

there exists a useful consistent truncation to a finite set of modes.) In fact the original

proposal of Kaluza and Klein to unify gravity and electromagnetism in five-dimensional

pure gravity could be said to be only partially successful, because the consistency of the

reduction requires that an additional massless scalar field (the dilaton) must be retained

in the reduced four-dimensional theory. The consistency in this, and many cases, can be

understood straightforwardly by a group-theoretic argument. If the internal space is sym-

metric under some group action, then it is consistent to perform a dimensional reduction

that retains all the singlets, and only the singlets, under this action [1]. Such a reduction

was called a DeWitt reduction in [2]. A simple example is an n-torus reduction; it is con-

sistent to keep all the massless modes, since they are singlets under the action of the U(1)n

isometry group. More complicated examples, introduced by DeWitt [3], involve dimensional

reduction on a group manifold G, in which only those modes that are invariant under the

left action of the G×G isometry group are retained.

A much more subtle reduction is exemplified by Pauli’s (albeit unsuccessful) attempt

in the early 1950’s to obtain SO(3) non-abelian gauge fields by reducing six-dimensional

gravity on the 2-sphere (see [4, 2]). The inconsistency in this case can be understood by

considering the untruncated theory in four dimensions, prior to setting any of the fields in

the Kaluza-Klein towers to zero. In this reduction, the SO(3) gauge fields act as sources

not only for gravity, but also for certain massive spin-2 fields in four dimensions. Thus the

massive spin-2 Kaluza-Klein tower cannot be consistently truncated in this reduction. In

fact this same problem, of the retained gauge fields acting as sources for massive spin 2 fields

that one wants to discard, means that Pauli reductions will, generically, be inconsistent.
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Remarkably, however, there do exist certain theories for which a Pauli sphere reduction is

consistent.

Specifically, it has been demonstrated that in certain supergravities where the theory

admits an AdS×Sphere vacuum, it is consistent to perform a Pauli reduction on the n-sphere

in which all the gauge fields associated with the SO(n+1) isometry group are retained. A

notable example is the S7 reduction of D = 11 supergravity [5]. Various other examples of

consistent sphere reductions of M-theory and type IIB supergravity were obtained in [6]-[14].

The fact that there is a supergravity underlying the higher-dimensional theory in all these

examples might suggest that the consistency of the reduction could be intimately related

to the supersymmetry of the higher-dimensional theory. Indeed, the demonstration of the

consistency of the S7 reduction of eleven-dimensional supergravity in [5] made extensive

use of the Killing spinors that exist in the pure AdS4 × S7 background.

As we shall discuss below, there also exist purely bosonic theories that are not contained

within any supergravities and that also admit non-trivial consistent Pauli sphere reductions.

It is of considerable interest to see if there exists any universal way of characterising bosonic

theories that admit Pauli reductions, to encompass both the supersymmetric and the non-

supersymmetric examples.

One feature common to all the supergravity examples is that if one looks at the equations

for Killing spinors in purely bosonic backgrounds, then by taking certain canonical projec-

tions of the integrability conditions for the Killing spinor equations, one can essentially

derive the bosonic equations of motion for the theory. For example, the gravitino trans-

formation rule in bosonic backgrounds in eleven-dimensional supergravity is δψM = D̂M ǫ,

where

D̂M = DM − 1
288 (ΓM

N1···N4 FN1···N4 − 8FMN1···N4 Γ
N1···N4) , (1)

Projecting the integrability condition [D̂M , D̂N ]ǫ = 0 with ΓM gives an equation of the

form (RMN + · · · )ΓNǫ = 0, where the factor in brackets vanishes by virtue of the bosonic

equations of motion. (This is related to the fact that in the supersymmetry variation of

the action, the terms coming from varying ψM in the gravitino terms must cancel against

those coming from varying the bosonic terms in the action.) Thus, one may say that a

characterisation of the bosonic equations of motion in the supergravity theories that admit

consistent Pauli reductions is that these equations can be derived from an appropriate

projection of the integrability condition for Killing spinors.

Recently, it was shown that for a large class of theories admitting AdS×Sphere vacua, en-

compassing the supergravities mentioned above but including also non-supersymmetric the-
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ories, a broader notion of Killing spinors can be introduced [15]. In such non-supersymmetric

theories, bosonic backgrounds for which the Killing spinor equations admit solutions were

referred to as “pseudo-supersymmetric.”1 The simplest class of such theories, which admit

AdS×Sphere vacua, is provided by Einstein gravity coupled to an n-form field strength,

with the Lagrangian

L =
√−g(R− 1

2n!F
2
n) , (2)

where Fn = dA(n−1). A Killing spinor equation has been introduced for this system [15],

given by

DM ǫ̂+
α̃

(n− 1)!
ΓM1···Mn−1FMM1···Mn−1 ǫ̂+

β̃

n!
ΓM

M1···MnFM1···Mn
ǫ̂ = 0 , (3)

where DM is the covariant derivative, defined by

DM ǫ̂ ≡ ∂M ǫ̂+
1
4(ωM )ABΓA

B ǫ̂ . (4)

The constants (α̃, β̃) are given by

α̃ = i[(n+1)/2]

√
∆

4d
, dα̃+ d̃β̃ = 0 , (5)

where d = n− 1, d̃ = D − n− 1, and ∆ = 2dd̃/(D − 2).

Although it was shown that the AdS×Sphere vacuum, and a class of p-brane solutions,

are “pseudo-supersymmetric” with respect to this definition of a Killing spinor, the inte-

grability conditions in (3) are not in general consistent, in the sense that the equations of

motion following from (2) are necessary but not sufficient to ensure the vanishing of the

projected integrability condition. Rather, additional constraints must still be imposed [15].

These additional constraints are absent in certain special cases, such as n = 4, D = 11,

if a suitable F ∧ F ∧ A term is added to the Lagrangian; or in the case n = 5, D = 10,

if the 5-form is restricted to be self-dual. Interestingly enough, these additional terms or

restrictions are also precisely what is needed in order to permit a consistent Pauli sphere

reduction.

Let us consider the case of ten-dimensional gravity coupled to a 5-form field strength

in more detail. It was shown in [15] that if one does not require the 5-form H(5) in D = 10

to be self-dual, then the projected integrability condition for the Killing spinor will only

vanish upon use of the equations of motion if, in addition, the extra constraints

HM1[M2M3M4M5
HM1

N2N3N4N5] = 0 , HM1[M2M3M4M5
HN1N2N3N4N5] = 0 (6)

1A related notion, referred to as “fake supersymmetry,” was introduced for scalar-gravity theories in [16].
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are imposed. In [15], a new class of pseudo-supersymmetric “bubbling AdS geometries” was

constructed, that satisfy the constraints (6). In particular, as in the case of the LLM solution

[17], the new solution corresponding to the elliptic disc boundary condition is expected to

admit a reduction to D = 5, with an S5 internal space. It is therefore of interest to examine

whether the extra conditions (6) are related to the consistency of the 5-sphere reduction.

The consistent S5 reduction for D = 10 with a self-dual 5-form was obtained in [12].

The reduction ansatz is given by

dŝ210 = ∆1/2 ds25 + g−2 ∆−1/2 T−1
ij DµiDµj , (7)

Ĥ(5) = Ĝ(5) + ∗Ĝ(5) , (8)

where

Ĝ(5) = −g U ǫ(5) + g−1 (T−1
ij ∗DTjk) ∧ (µkDµi)

−1
2g

−2 T−1
ik T−1

jℓ ∗F(2)
ij ∧Dµk ∧Dµℓ , (9)

∗̂Ĝ(5) =
1

5!
ǫi1···i6

[

g−4 U ∆−2Dµi1 ∧ · · · ∧Dµi5 µi6

−5g−4 ∆−2Dµi1 ∧ · · · ∧Dµi4 ∧DTi5j Ti6k µj µk

−10g−3 ∆−1 F i1i2
(2) ∧Dµi3 ∧Dµi4 ∧Dµi5 Ti6j µj

]

, (10)

and

U ≡ 2Tij Tjk µ
i µk −∆Tii , ∆ ≡ Tij µ

i µj ,

F ij
(2) = dAij

(1) + g Aik
(1) ∧Akj

(1) , DTij ≡ dTij + g Aik
(1) Tkj + g Ajk

(1) Tik ,

µi µi = 1 , Dµi ≡ dµi + g Aij
(1) µ

j , (11)

with ǫ(5) being the volume form on the five-dimensional spacetime. Note that ∗̂Ĝ(5) is deriv-

able from the given expressions (7) and (9). The coordinates µi, subject to the constraint

µi µi = 1, parameterise points in the internal 5-sphere. It was shown in [12] that the reduc-

tion is consistent, giving rise to lower-dimensional equations of motion that can be derived

from the five-dimensional Lagrangian

L5 = R ∗1l− 1
4T

−1
ij ∗DTjk ∧ T−1

kℓ DTℓi − 1
4T

−1
ik T−1

jℓ ∗F ij
(2) ∧ F kℓ

(2) − V ∗1l (12)

− 1
48 ǫi1···i6

(

F i1i2
(2) F i3i4

(2) Ai5i6
(1) − g F i1i2

(2) Ai3i4
(1) Ai5j

(1) A
ji6
(1) +

2
5g

2Ai1i2
(1) Ai3j

(1) A
ji4
(1) A

i5k
(1) A

ki6
(1)

)

,

where the potential V is given by

V = 1
2g

2
(

2Tij Tij − (Tii)
2
)

. (13)
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(In (12), the wedge symbols in the final topological term are omitted to economise on space.)

If instead we do not impose the self-duality condition for the 5-form, so that its reduction

ansatz is now given simply by

H(5) = Ĝ(5) , (14)

then the reduction will not in general be consistent, since, as was observed in [12], the field

equation d∗̂G(5) = 0 gives rise to the constraint

ǫijk1···k4 F
k1k2
(2) ∧ F k3k4

(2) = 0 . (15)

The intriguing point is that if we substitute the reduction ansatz (14) into (6), we arrive at

exactly the same constraint (15) that arose in [15] from imposing the projected integrability

condition for the Killing spinors.2

Thus we find that the extra constraint needed for the projected integrability of the

Killing spinor for the D = 10, n = 5 system is exactly the same as the extra constraint

(15) that is required for the consistency of the S5 reduction. This observation leads us to

speculate that the ability of a theory to be consistently reduced, à la Pauli, on a sphere

may go hand in hand with its admitting some suitably-defined Killing spinor equation.

In some cases, namely certain supergravity theories, the Killing spinor equation is simply

the standard one associated with supersymmetry of the bosonic background. In more

general situations, however, the Killing spinor equation may be associated with a “pseudo-

supersymmetry” that has not hitherto been considered.

There are some further examples that lend support to this idea. Consider pure gravity

in (D + 1) dimensions, for which the Lagrangian is

LD+1 =
√

−ĝR̂ . (16)

The associated Killing spinor equation is simply

0 = DM ǫ̂ ≡ ∂M ǫ̂+
1
4(ωM )ABΓA

B ǫ̂ , (17)

The projected integrability condition is

0 = ΓM [DM ,DN ]ǫ̂ = 1
2RMNΓM ǫ̂ , (18)

2It is worth pointing out that there are large classes of solutions in five dimensional gauged supergravity

that satisfy the condition (15). These solutions can now also be lifted to the non-supersymmetric ten-

dimensional theory where the 5-form is not self-dual. A summary of such liftings, together with an explicit

example, is presented in appendix A.
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which is satisfied by virtue of the Einstein equations of motion. We now perform a Kaluza-

Klein reduction on S1, with the metric ansatz given by

dŝ2D+1 = e2αφds2D + e2βφ(dz +A(1))
2 ,

β = −(D − 2)α , α2 = 1
2(D−1)(D−2) . (19)

The reduced D-dimensional Lagrangian in D is

LD =
√
g(R − 1

2(∂φ)
2 − 1

4e
aφF 2

(2)) , (20)

where F(2) = dA(1) and a = −2(D − 1)α. We can also perform the Kaluza-Klein reduction

of (17), to obtain the equations for the D-dimensional Killing spinors:

DMη +
i

8(D − 2)
e

1
2
aφ
(

ΓM
M1M2 − 2(D − 2)δM1

M ΓM2

)

FM1M2η = 0 ,

ΓM∂Mφη +
i
4ae

1
2
aφΓM1M2FM1M2 = 0 . (21)

One can obviously expect that the projected integrability conditions for these equations

should be satisfied by virtue of theD-dimensional equations of motion. Indeed the projected

integrability conditions following from (21) are given by

[

RMN − 1
2∂Mφ∂Nφ− 1

2e
aφ(F 2

MN − 1
2(D−2)F

2gMN )
]

ΓNη

− i
4(D−2)e

1
2
aφ∇NFM1M2

(

ΓMΓNM1M2 − 3(D − 2)δ
[N
M ΓM1M2]

)

η

− i
2(D−2)e

−
1
2
aφ∇N

(

eaφFN
M2

)(

ΓMΓM2 − (D − 2)δM2
M

)

η = 0 , (22)

and

(

∇2φ− 1
4ae

aφF 2
)

η + i
4ae

1
2
aφΓNM1M2∇NFM1M2η

+ i
2ae

−
1
2
aφΓM2∇N

(

eaφFN
M2

)

η = 0 . (23)

Thus the equations of motion imply that the projected integrability conditions are satisfied

for any dimension D.

The interesting point is that it is also consistent to perform a Pauli S2 reduction of the

system (20) in any dimension D, yielding a theory in (D − 2) dimensions that includes the

full set of SO(3) gauge bosons [18]. This can be seen from the fact that it is consistent

to perform a (necessarily consistent) DeWitt reduction of the pure gravity theory (16) on

S3 ∼ SU(2), viewing it as the SU(2) group manifold and keeping all the singlets of the

left-invariant action. Since S3 can be viewed as a U(1) bundle over S2, the reduction can

be split into two stages; an S1 reduction followed by an S2 Pauli reduction. Thus the
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consistency of the DeWitt reduction guarantees the consistency of the Pauli S2 reduction

in this case [18].

Of course, this is a rather simple example. There are in fact further examples of con-

sistent Pauli sphere reductions of non-supersymmetric theories. It was shown in [18] that

it is consistent to perform an S3 or an SD−3 Pauli reduction of the effective action of the

bosonic string in any dimension D. This leads us to consider the possibility of a defining a

Killing spinor equation for the bosonic string.

The Lagrangian for the effective theory of the bosonic string in D-dimensions is given

by

LD =
√−g

(

R− 1
2 (∂φ)

2 − 1
12e

aφF 2
(3)

)

, (24)

where F(3) = dA(2) and a
2 = 8/(D − 2). The equations of motion are given by

�φ = 1
12a e

aφF 2
(3) , dF(3) = 0 = d(eaφ∗F(3)) ,

RMN = 1
2∂Mφ∂Nφ+ 1

4e
aφ
(

F 2
MN − 2

3(D − 2)
F 2gMN

)

. (25)

We find that the appropriate equations for defining a Killing spinor in this case are

DMη +
1
96e

1
2
aφ
(

a2ΓMΓNPQ − 12δNMΓPQ
)

FNPQ η = 0 , (26)

ΓM∂Mφ η +
1
12ae

1
2
aφΓMNPFMNP η = 0 . (27)

The forms of these Killing spinor equations are motivated by generalising the supersymmetry

transformation rules for the gravitino and dilatino in D = 10, N = 1 supergravity [19].

The coefficients of each term are determined by investigating the projected integrability

conditions, whose derivation is presented in appendix B. They are given by

[

RMN − 1
2∂Mφ∂Nφ− 1

4e
aφ(F 2

MN − 2
3(D−2)F

2gMN )
]

ΓNη

− 1
6(D−2)e

1
2
aφ∇NFM1M2M3

(

ΓMΓNM1M2M3 − 2(D − 2)δ
[N
M ΓM1M2M3]

)

η

− 1
2(D−2)e

−
1
2
aφ∇N

(

eaφFN
M2M3

)(

ΓMΓM2M3 − (D − 2)δM2
M ΓM3

)

η = 0 , (28)

and

(

∇2φ− 1
12ae

aφF 2
)

η + 1
12ae

1
2
aφΓNM1M2M3∇NFM1M2M3η

+1
4ae

−
1
2
aφΓM2M3∇N

(

eaφFN
M2M3

)

η = 0 . (29)

Thus we see that the projected integrability conditions are satisfied by virtue of the full set of

equations of motion. In the special case when D = 10, the theory can be supersymmetrised,

to give N = 1, D = 10 supergravity, and the Killing spinor defined above just reduces to
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the usual Killing spinor of the supergravity theory. But the construction we have discussed

here works equally well in any spacetime dimension.

Sometimes it is advantageous to work with the theory in the string frame, rather than

the Einstein frame we have been using until now. It is defined by rescaling the metric so

that ds2string = e−
1
2
aφds2Einstein. If we now define Φ = −φ/a, the Lagrangian becomes

L = e−2Φ(R+ 4(∂Φ)2 − 1
12F

2
(3)) . (30)

The defining equations for the Killing spinors, which are now scaled by the factor e−
1
8aφ,

are given by

DM (ω−)η = 0 , ΓM∂MΦ η − 1
12Γ

MNPFMNP η = 0 , (31)

where ω− is the torsionful spin connection, given by

ωM±
AB = ωAB

M ± 1
2FM

AB . (32)

To conclude, we have observed an intriguing feature common to all the known examples

of consistent Pauli sphere reductions. Namely, in all such cases, the higher-dimensional

theory admits a natural definition of a Killing spinor. A certain canonical projection of

the integrability conditions for the Killing spinor is satisfied by virtue of the equations

of motion of the theory. In certain cases, the projected integrability conditions may also

impose quadratic algebraic constraints on field strengths in the theory. In such cases, these

turn out to be precisely the same as constraints that must be imposed in order to achieve

a consistent Pauli reduction.

We discussed various classes of examples that provide support for this relation between

consistent Pauli reductions and the existence of a Killing spinor equation. First of all, there

are cases such as eleven-dimensional supergravity and type IIB supergravity, where the

Killing spinor equation simply reduces to the standard Killing spinor equations associated

with supersymmetry. We then considered the example of ten-dimensional gravity coupled

to a 5-form field strength with no self-duality constraint. In this case, we saw that both

the consistency of the Pauli S5 reduction and the consistency of the projected integrability

conditions for the Killing spinor equations required exactly the same quadratic constraint

(15) on the 5-form field. Further examples that we considered included dilatonic gravity

coupled to a 2-form field strength in any dimension, and dilatonic gravity coupled to a

3-form field strength in any dimension. The latter example arises as the effective action for

the bosonic string. The fact that there exists a natural notion of a Killing spinor for the

bosonic string in an arbitrary spacetime dimension suggests that there may some generalised

geometric structure still to be uncovered.
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A Lifting of the solutions

As discussed in the paper, the S5 Pauli reduction of the theory described by the Lagrangian

L10 =
√−g(R− 1

240F
2
(5)) , (33)

where F(5) is not self-dual, is not in general consistent. There is an extra condition (15)

that has to be satisfied. However, this also implies that all the solutions of five-dimensional

theory (12) that satisfy (15) are also solutions of (33), with the lifting ansatz given in this

paper. Thus all the domain wall solutions supported by the scalar fields, which are dual to

the Coulomb branch of the boundary conformal theory [20, 21], are solutions of (33). The

U(1)3 charged black holes in D = 5 supergravity [22] can be embedded not only in type IIB

supergravity [23], but also in the theory described by (33). Furthermore, the smooth U(1)3

charged bubbling soliton solutions obtained in [24] can also be lifted into solutions of (33).

In particular, the single U(1) charged solution can be lifted to give a pseudo-supersymmetric

AdS bubble geometry with an elliptic disc boundary condition, as was constructed in [15].

Five-dimensional rotating black holes do not in general satisfy the supplementary constraint

(15), and so they will not lift to give solutions of (33). However, the singly-charged rotating

black hole constructed in [25] does satisfy the condition (15), and so in this case a lifting to

give a solution of (33) is possible. All such liftings use the reduction ansatz we have given

in this paper, and we shall not present them in detail.

Here, we present one simple example in detail, namely the embedding of the five-

dimensional Reissner-Nordstrøblack hole in (33). Expressed in the notation we are using in

this paper, the five-dimensional Reissner-Nordström solution is given by

ds25 = −H−2 f dt2 +H (f−1 dr2 + r2dΩ2
3) ,

Tij = δij ,

A12 = A34 = A56 =
1√
3
A , (34)

where

A =

√

q(q + 2m)

(r2 + q)
dt , H = 1 +

q

r2
, f = 1− 2m

r2
+ g2r2H3 . (35)
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Substituting into (7) and (9), we find that the Reissner-Nordström solution lifts to give the

ten-dimensional solution

dŝ210 = −H−2 f dt2 +H (f−1 dr2 + r2dΩ2
3) + g−2(dψ +B − g√

3
A)2 + dΣ2

2 ,

F̂5 = 4g ǫ5 −
1√
3 g2

∗F ∧ J , (36)

and hence

∗̂F̂5 = 2g−4 (dψ +B − g√
3
A) ∧ J ∧ J − 1√

3g3
(dψ +B − g√

3
A) ∧ F ∧ J , (37)

where dΣ2
2 is the standard Fubini-Study metric on CP 2, J is its Kähler form, dB = 2J ,

and ψ is the coordinate on the Hopf fibre over CP 2, with period 2π. (The proof of these

results follows using analogous manipulations to those in appendix B of [26].)

B Projected Integrability Conditions for the Bosonic String

Here, we derive the projected integrability conditions for the Killing spinor equations for

the D-dimensional bosonic string. We begin by supposing that the Killing spinor equations

take the form

DMη + a2e
1
2
aφ
(

ΓMΓM1M2M3 − a1δ
M1
M ΓM2M3

)

FM1M2M3 η = 0 , (38)

ΓM∂Mφ η − a3e
1
2
aφΓM1M2M3FM1M2M3 η = 0 . (39)

The motivation for these equations is provided by the supersymmetry transformation rules

for the gravitino and dilatino in ten-dimensional N = 1 supergravity [19]. The constants

a1, a2 and a3 will be determined below. We also leave the dilaton coupling constant a

unspecified for now.

The next step is to compute the projected commutator ΓM [DN ,DM ] acting on η, and

then to choose the undetermined coefficients by requiring that it should vanish upon use of

the equations of motion. After lengthy calculations, we find

0 = RMNΓNη − 2a2e
1
2
aφ∇NFM1M2M3

(

ΓM
NM1M2M3 − 4

3(a1 − 3)δ
[N
M ΓM1M2M3]

)

η

−2a2e
−

1
2
aφ∇N

(

eaφFN
M2M3

)(

3ΓM
M2M3 − 2(a1 − 3)δM2

M ΓM3

)

η

+
aa1a2
3a3

∇Mφ∇NφΓ
Nη + 2a2

(

2
3a1 −D + 2

)

∇M

(

e
1
2
aφFM1M2M3

)

ΓM1M2M3η

+
[

12(2a1 − 3(D − 4))a22 + 9aa2a3

]

eaφΓM
M2M3N2N3FM1M2M3F

M1
N2N3η

+
[

24(D − 4)a22 − 6aa2a3

]

eaφΓMF
2η

−
[

4(4a1 − 3(D − 2))a22 + aa1a2a3

]

eaφΓM2M3N1N2N3FMM2M3FN1N2N3η
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−
[

8
(

2a21 − 3(D − 2)a1 + 9(D − 6)
)

a22 − 6(6− a1)aa2a3

]

×eaφΓM3N2N3FM1MM3F
M1

N2N3η

−
[

8
(

2a21 − 12a1 + 9(D − 2)
)

a22 − 6aa1a2a3

]

eaφΓNF 2
MNη . (40)

The vanishing of the ∇M (e
1
2
aφFM1M2M3) term implies

a1 =
3
2 (D − 2) , (41)

which then leaves

0 =
[

RMN +
aa2(D − 2)

2a3
∇Mφ∇Nφ+

(

24(D − 4)a22 − 6aa2a3

)

eaφgMNF
2

−9(D − 2)
(

4(D − 4)a22 − aa2a3

)

eaφF 2
MN

]

ΓNη

−2a2e
1
2
aφ∇NFM1M2M3

(

ΓMΓNM1M2M3 − 2(D − 2)δ
[N
M ΓM1M2M3]

)

η

−6a2e
−

1
2
aφ∇N

(

eaφFN
M2M3

)(

ΓMΓM2M3 − (D − 2)δM2
M ΓM3

)

η

+9(8a22 + aa2a3)e
aφΓM

M2M3N2N3FM1M2M3F
M1

N2N3η

−3
2(D − 2)(8a22 + aa2a3)e

aφΓM2M3N1N2N3FMM2M3FN1N2N3η

−9(D − 6)(8a22 + aa2a3)e
aφΓM3N2N3FM1MM3F

M1
N2N3η (42)

The terms involving ∇Mφ∇Nφ, F
2
MN and ΓM

M2M3N2N3FM1M2M3F
M1

N2N3 will then

vanish upon use of the equations of motion, provided that we choose

a3 + a a2(D − 2) = 0 , 8a22 + a a2 a3 = 0 ,

9(D − 2)(4(D − 4)a22 − a a2 a3) =
1
4 , (43)

for which the solution is

a2 =
8

D − 2
, a2 =

1

12(D − 2)
, a3 = − 1

12a . (44)

Acting on (39) with ΓN∇N , we have

∇2φ η = ΓNΓM∇N∇Mφ η = ΓNDN

(

ΓM∂Mφ η
)

− ΓNΓM∂MφDNη

= a3e
1
2
aφΓNM1M2M3∇NFM1M2M3η + 3a3e

−
1
2
aφΓM2M3∇N

(

eaφFN
M2M3

)

η

−6
(

D − 2− 2
3a1

)

a2e
1
2
aφΓM2M3FN

M2M3∂Nφ η

+
[

6(3D − 2a1 − 12)a2a3 − 9
2aa

2
3

]

eaφΓM2M3N2N3FM1M2M3F
M1

N2N3η

−3
[

4(D − 4)a2a3 − aa23
]

eaφF 2η . (45)

This is also satisfied by the equations of motion, provided that the coefficients a, a1, a2 and

a3 are chosen as in (41) and (44). Thus the Killing spinor equations are given by (26) and

(27). The projected integrability conditions are given by (28) and (29).

12



Finally we would like to remark that we have investigated the Killing spinors for a more

general system with the 3-form field strength replaced by an arbitrary n-form. It turns out

that that projected integrability condition works only for two cases, the bosonic string (24)

and the Kaluza-Klein theory (20).
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