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Abstract

It is shown that in the physically interesting domain of the parameter space of SU(5)

supergravity GUT, the Higgs and the Z poles dominate the LSP annihilation. Here

the naive analyses on thermal averaging breaks down and formulae are derived which

give a rigorous treatment over the poles. These results are then used to show that

there exist significant domains in the parameter space where the constraints of proton

stability and cosmology are simultaneously satisfied. New upper limits on light particle

masses are obtained.
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I. INTRODUCTION : Recently there have been extensive investigations of SU(5)

supergravity models1−7 with electro–weak symmetry broken via radiative corrections8,9.

Analyses of Refs (6)–(7) were carried out in the framework of No–Scale models9 while the

analysis of Refs (1–5) are for the standard SU(5) supergravity case10. In this letter we

shall discuss only the standard SU(5) Model10,8. Here, after fixing the Z–boson mass the

model depends on four arbitrary parameters, aside from the top quark mass mt, which

may be chosen to be mo (the universal scalar mass), m1/2 (the universal gaugino mass),

Ao (the cubic soft SUSY breaking parameter) and tan β =< H2 > / < H1 > where

< H1 > gives mass to the down quarks and the leptons and < H2 > gives mass to the

up quarks. The analyses of Refs (1–4) investigated the full parameter space of the theory,

Ref (5) investigated the space under one more constraint (B0 = A0 −m0 where B0 is the

quadratic soft SUSY breaking parameter) while Refs (1–3) also included in the analysis

the constraint of proton stability11. The inclusion of proton stability constraints were

seen to lead to a number of simple mass relations among the neutralino, chargino and

gluino mass spectra1−3. One finds for most of the parameter space 2mz̃1
∼= mz̃2

∼= mW̃1
,

and mW̃1
≃ (1/4)mg̃ for µ > 0 and mW̃1

≃ (1/3)mg̃ for µ < 0. (Here Z̃1,2 are the two

lightest neutralinos, W̃1 is the lightest chargino and g̃ is the gluino.) Thus the gluino mass

(approximately) determines the light neutralino and chargino spectrum.

Remarkably the standard SU(5) supergravity model under the constraint of proton

stability also leads to the prediction that the lightest neutralino is the lightest supersym-

metric particle (LSP)1−3. We investigate here the implications on the parameter space of

the constraint that the relic density of the lightest neutralino not overclose the universe

i.e. Ωz̃1h
2 ≤ 1, where Ωz̃1 = ρz̃1/ρc, with ρz̃1 the matter density of the lightest neutralino

Z̃1 and ρc = 3H2
0/(8πGN ) the critical density. Here H0 = h×100km/(s.Mpc) and h is the

Hubble parameter with 1
2
≤ h ≤ 1. Recently12, it was pointed out that the dominant anni-

hilation of neutralinos occurs near the lightest neutral Higgs (h) pole in the s–channel for

the domain of the parameter space satisfying CDF,LEP and proton stability constraints

and the finetuning requirement that mq̃,g̃ ≤ 1TeV. It is known that the expansion in powers

of v of the thermally averaged quantity < σv > (where σ is the spin averaged annihilation

cross–section of two neutralinos, v is the relative velocity defined by
√
s ∼= 2mz̃1 +

1
4mz̃1v

2,
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and s is square of the center–of–mass energy), breaks down when
√
s is in the vicinity of

a pole13. In this case, a careful treatment of integration over the pole in the annihilation

channel is needed. However, the rigorous analysis even in the non–relativistic approxima-

tion involves a double integration over the pole (which is numerically intricate) for the

quantity J =
∫ xf

0
dx < σv > needed to calculate the relic density. (xf = kTf/mz̃1 , where

Tf is the freeze out temperature.) Here we derive rigorous formulas where the integra-

tions over one of the variables is analytically carried out and the remaining integration is

smooth over the pole. The analysis here is complete and includes the direct channel Higgs

and Z–poles as well as t–channel fermion exchange diagrams. Using the rigorous analysis

for J outlined above we explore the full five dimensional parameter space of the theory

characterized by m0, m1/2, A0, tan β and mt under the combined constraints of CDF and

LEP data, proton stability and relic density. We show that while the parameter space

is strongly constrained, significant domains in the parameter space remain where all the

constraints mentioned above are satisfied. Also new limits on the light Higgs, the light

chargino and on the LSP result.

II. BASIC FORMULAE : We follow standard procedure14 and write the equation

governing the number density n at time t of the lightest neutralino Z̃1 in a Friedman–

Robertson–Walker universe with isotropic mass density in the form

df

dx
=

mz̃1

k3

(

8π3NFGN

45

)−
1

2

< σv >
(

f2 − f2
0

)

(1)

where f = n/T 3, x = kT/mz̃1 (k is the Boltzman constant), NF is the number of degrees

of freedom at temperature T, GN is the Newtonian constant and f0 = n0/T
3 where n0 is

the number density at thermal equilibrium. The relic density of the LSP is then given by

the following (approximate) formula14:

ρz̃1 = 4.75× 10−40

(

Tz̃1

Tγ

)3(
Tγ

2.75◦K

)3

NF
1/2

(

GeV −2

J(xf )

)

g

cm3
(2)

where (Tz̃1/Tγ)
3 is a reheating factor, Tγ is the current temperature and J(xf ) is given by

J(xf ) =
∫ xf

0
< σv > dx and:

< σv >=

∫

∞

0

dvv2(σv)e−v2/4x
/

∫

∞

0

dvv2e−v2/4x (3)
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The freezeout temperature Tf is determined by the relation14

x−1
f = ℓn

[

x
1

2

f < σv >
√
45mz̃1

/

(4π3N
1

2

F G
1

2

N )
]

(4)

In Eq. (4) < σv > is the thermally average of σv evaluated at xf .

III. INTEGRATION OVER HIGGS AND Z–POLES: J(xf ) appearing in Eq.(2)

can be decomposed as J = Jh+JZ+Jsf where Jh, JZ are the contributions of the s–channel

Higgs and Z poles, and Jsf is the t–channel contribution from the exchange of squarks and

sleptons. In the domain of physical interest with finetuning constraints mq̃,g̃ ≤ 1TeV , only

the lightest neutral Higgs h makes a significant contribution to the cross–section. For the

Higgs pole, using the non–relativistic approximation, we write σv in the form

(σv)h =
Ah

m2
z̃1

v2
(

(v2 − ǫh)2 + γ2
h

) (5)

In Eq.(5) ǫh = (m2
h − 4m2

z̃1
)/m2

z̃1
and γh = mhΓh/m

2
z̃1

where mh is the Higgs mass and

Γh is the Higgs decay width and Ah is15

Ah =
1

8π

(

g2
2MW

sinα

cosβ

)2
g22

cos2 θW

(

n11 cos θW − n12 sin θW
)2

(

n13 sinα+ n14 cosα
)2∑

i

Cim
2
fi

(

1−
m2

fi

m2
z̃1

)
3

2

. (6)

Here sin 2α = −(m2
A +m2

Z)(m
2
H −m2

h)
−1 sin 2β and where mA is the mass of the CP–odd

Higgs and mH is the mass of the CP–even heavy neutral Higgs. Ci is a color factor which

is (3,1) for (quarks, leptons) and n1i are components of Z̃1 eigen–vector in the basis defined

in Ellis et al in Ref (14). Using Eq.(5) one can carry out the x–integration in Jh(xf ) and

get

Jh(xf ) =
Ah

2
√
2m2

z̃1

[

I1h +
ǫh
γh

I2h

]

(7)

where

I1h =
1

2

∫

∞

0

dξξ−
1

2 e−ξℓn

[

(4ξxf − ǫh)
2 + γ2

h

ǫ2h + γ2
h

]

(8)

4



I2h =

∫

∞

0

dξξ−
1

2 e−ξ

[

tan−1

(

4ξxf − ǫh
γh

)

+ tan−1

(

ǫh
γh

)]

(9)

A similar analysis can be carried out for the Z–Pole and here one finds

JZ =
1

2
√
πm4

z̃1

[

AZ
I1Z
ǫZ

+
ǫZ
γZ

BZ

(

I1Z + I2Z
)

]

(10)

where I1Z and I2Z are defined anologously to I1h and I2h with mh,Γh replaced by MZ ,ΓZ .

In Eq.(10) AZ is given by

AZ =
π

8

α2
2

cos4 θW
(n2

13 − n2
14)

2

(

1−
4m2

z̃1

M2
z

)2

×

[

3m2
b

(

1−
m2

b

m2
z̃1

)
1

2

+m2
τ

(

1−
m2

τ

m2
z̃1

)
1

2

+ 3m2
c

(

1−
m2

c

m2
z̃1

)

1

2

]

(11)

where we have retained only the dominant b, c and τ–contributions, while BZ (in the

zero–fermion mass approximation) is

BZ =
π

6

α2
2

cos4 θW
m2

z̃1(n
2
13 − n2

14)
2

[

21

2
+

80

3
sin4 θW − 20 sin2 θW

]

. (12)

In the vicinity of the Higgs (or Z–Pole), Jsf is typically much smaller than Jh (or JZ) and

thus we shall use the conventional approximation14−15 of axf + 1
2
bx2

f in computing Jsf .

IV. ANALYSIS AND RESULTS : We begin by exhibiting the result that the com-

putation of Japprox using power expansion in v2 on < σv > is a poor approximation to the

full analysis of J where rigorous thermal averaging on the Higgs and Z–Poles is carried out.

The ratio of Ωapprox/Ω = J/Japprox is exhibited in Fig. 1. The results of Fig. 1 show that

Ωapprox can be inaccurate by up to 3 orders of magnitude and show a total breakdown of

the approximate result near the Higgs pole or Z pole.

To proceed further we must include proton stability constraints. In supergravity

SU(5), the dominant proton decay proceeds via dimension five operators and involves the

Higgs color triplet exchange. The most dominant decay mode is p → νK+, and proton

stability may be conveniently characterized by the value of the dressing loop function B

that enters in p → νK+ decay and is defined in Ref 1. The current Kamiokande bound

5



of16 τ(p → νK+) > 1× 1032yr translates to a bound on B of17

B < 105

(

MH3

MG

)

GeV −1 (13)

where MH3
is the Higgs triplet mass and MG is the GUT mass. We also note that the

simplest GUT sector in SU(5)18 leads to the relation MH3
/MV = (αλ/αG)

1

2 between the

Higgs triplet mass MH3
and the massive vector boson mass MV . [Here αλ = λ2

2/4π and

λ2 enters the GUT superpotential via the term λ2H1(Σ + 3M)H̄2 where H1, H̄2 are the

5, 5̄ and Σ is the 24–plet representation of SU(5).] An upper limit on the Higgs triplet

mass emerges if one assumes that the Yukawa couplings be perturbative at the GUT

scale. Estimates on MH3
that lead to perturbative λ2 lie in the range MH3

< 3M1,2
G to

MH3
< 10M19

G . Here as a guideline we shall use a benchmark limit of MH3
< 6MG.

We discuss now the result of the analysis. We start at the GUT scale with SU(5)

supergravity boundary conditions and use the renormalization group equations to evolve

masses and coupling constants to low energy where a radiative breaking of the electro–

weak symmetry is achieved. Solutions are subjected to constraints of the CDF and LEP

data which give lower limits on the SUSY mass spectra, the proton decay constraint of

Eq.(13) with MH3
< 6MG, and the relic density constraints discussed in secs I–III. We

shall also impose the fine tuning condition mq̃,g̃ < 1TeV . The analysis shows that there

exists significant domains in the parameter space for both µ > 0 and µ < 0 (µ is the

Higgs mixing parameter which enters the superpotential via the term µH1H2) where all

the desired constraints are satisfied. The allowed parameter space is found to be larger for

the case µ > 0.

We discuss the µ > 0 case now in greater detail. Fig. 2 exhibits the allowed domain

consistent with proton stability and relic density for the case m0 = 700GeV as a function

of At (where At is the t-quark Polonyi constant at the electro–weak scale) when tan β

and m1/2 are varied over the allowed range. Fig. (3) exhibits the allowed domain as a

function of αH(tanαH ≡ cot β) at At = 0 when m0 and m1/2 are varied over the allowed

range of values. In each of the two cases one finds that the domain of the parameter space

consistent with CDF,LEP data, proton stability and relic density is quite substantial

even at the lower bound of B < 300 GeV−1 (MH3
= 3MG).
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New upper limits on the Higgs mass and on the chargino mass also emerge. One finds

that mh ≤ 105 GeV and mW̃1
< 100 GeV for B < 600 GeV−1. Thus the chargino should

be seen at LEP2 while for much of the allowed parameter space, the light CP even Higgs

should also be seen. The lightest neutralino mass has an upper limit of l50 GeV and the

maximum t-quark mass is ≃ 165 GeV. These bounds are lower than the ones given in Ref.

2 where no relic density constraint was imposed. The h, W̃1 and Z̃1 mass bounds also

decrease if one lowers the bound on B.

IV. CONCLUSION : It is shown that in the physically interesting domain of the

parameter space of the standard SU(5) supergravity, annihilation of the relic neutralinos

is dominated by the light Higgs and the Z poles. Analysis is given which treats the

thermal averaging over the poles rigorously. Previous approximate analyses are found to

be inaccurate by several orders of magnitude near the Higgs pole and also significantly

inacurate near the Z pole. It is found that for both µ > 0 and µ < 0 significant domains

of the parameter space exists where all the desired constraints are satisfied.
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Figure Captions

Fig. 1 : Ωapprox/Ω as a function of mgluino for top masses of 110 GeV (dashed curve),

125 GeV (solid curve) and 140 GeV (dotted curve), showing massive breakdown of the

approximation near the Higgs and Z poles. The poles occur close to where Ωapprox/Ω

decreases sharply. Note that Ωapprox is least accurate in the region prior to the poles,

which is also where Ωh2 < 1.

Fig. 2 : Allowed domains in the B−At plane for top mass of 110 GeV (dashed curves),

7



125 GeV (solid curves) and 140 GeV (dotted curves) when m0 = 700 GeV. The domain

allowed by relic density constraints is the region between the upper and lower curves. The

domain allowed by proton stability lies below the solid horizontal line when MH3
< 6MG.

The gap in the central region for mt = 110 GeV is due to the requirement that mh > 60

GeV.

Fig. 3 : Allowed domains in the B−αH (tan αH ≡ ctn β) plane for top quark masses

of 110 GeV (dashed curves), 125 GeV (solid curves), 140 GeV (dotted curves) and 160

GeV (dot–dash curves), when At = 0. The domain allowed by relic density constraints

and proton stability is as in Fig. 2.
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