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We study the equilibrium and nonequilibrium properties of Boolean decision problems with com-
peting interactions on scale-free networks in an external bias (magnetic field). Previous studies
at zero field have shown a remarkable equilibrium stability of Boolean variables (Ising spins) with
competing interactions (spin glasses) on scale-free networks. When the exponent that describes the
power-law decay of the connectivity of the network is strictly larger than 3, the system undergoes
a spin-glass transition. However, when the exponent is equal to or less than 3, the glass phase is
stable for all temperatures. First, we perform finite-temperature Monte Carlo simulations in a field
to test the robustness of the spin-glass phase and show that the system has a spin-glass phase in
a field, i.e., exhibits a de Almeida–Thouless line. Furthermore, we study avalanche distributions
when the system is driven by a field at zero temperature to test if the system displays self-organized
criticality. Numerical results suggest that avalanches (damage) can spread across the whole system
with nonzero probability when the decay exponent of the interaction degree is less than or equal to
2, i.e., that Boolean decision problems on scale-free networks with competing interactions can be
fragile when not in thermal equilibrium.

PACS numbers: 05.50.+q, 75.50.Lk, 75.40.Mg, 64.60.-i

I. INTRODUCTION

Scale-free networks play an integral role in nature, as
well as industrial, technological and sociological applica-
tions [1]. In these networks, the edge degrees {ki} (the
number of neighbors each node has) are distributed ac-
cording to a power law λ, with the probability ℘k for a
node to have k neighbors given by

℘k ∝ k−λ. (1)

In the meantime, there have been many studies of
Boolean variables on scale-free networks [2–5] and, more
recently, even with competing interactions [6–10]. There
is general consensus that stable ferromagnetic and spin-
glass phases emerge in these complex systems [10] and
that for particular choices of the decay exponent λ the
critical temperature diverges, i.e., Boolean variables with
competing interactions are extremely robust to local per-
turbations.
However, the behavior of these intriguing systems in

an external magnetic field—which can be interpreted as
a global bias—remains to be fully understood. Although
a replica ansatz works well when determining the critical
temperature of the system [7, 10] in zero field, it is unclear
if a stable spin-glass state persists in a field. In addition,
when studying the system without local perturbations
(i.e., at zero temperature), it is unclear if “damage” in
the form of avalanches of Boolean variable flips triggered
by a field can spread easily across the system.
In this work we tackle the two aforementioned prob-

lems numerically and show that at finite temperature
Boolean variables with competing interactions are re-

markably robust to global external biases. In particular,
we show that a de Almeida–Thouless line [11] persists to
a regime of λ where the system is not in the mean-field
Sherrington-Kirkpatrick [12] universality class, i.e., when
λ < 4 [7, 10].

Furthermore, we probe for the existence of self-
organized criticality (SOC) when driving the system at
zero temperature with an external magnetic field across
a hysteresis loop. SOC is a property of large dissipative
systems to drive themselves into a scale-invariant critical
state without any special parameter tuning [13–17]. It
is a phenomenon found in many problems ranging from
earthquake statistics to the structure of galaxy clusters.
As such, studying SOC on scale-free networks might help
us gain a deeper understanding on how avalanches, i.e.,
large-scale perturbations, might spread across scale-free
networks that are so omnipresent in nature. Recent simu-
lations [18] have shown that a diverging number of neigh-
bors is the key ingredient to obtain SOC in glassy spin
systems. In scale-free graphs the average edge degree di-
verges if λ ≤ 2. As such, it might be conceivable that in
this regime spin glasses on scale-free graphs exhibit SOC.
However, it is unclear what happens for λ > 2 where the
number of neighbors each spin has is finite in the thermo-
dynamic limit, or how the fraction of ferromagnetic ver-
sus antiferromagnetic bonds influences the scaling of the
avalanche distributions. Within the spin-glass phase, for
Gaussian disorder and bimodal disorder with the same
fraction p of ferromagnetic and antiferromagnetic bonds,
we find that when λ ≤ 2 Boolean variables with compet-
ing interactions always display SOC like the mean-field
Sherrington-Kirkpatrick model [16]. For λ > 2 and with
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bimodal disorder, a critical line in the p–λ plane emerges
along which perturbations to the system are scale free,
but not self-organized critical because the fraction of fer-
romagnetic bonds has to be carefully tuned. The latter
is reminiscent of the behavior found in the random-field
Ising model [19–23], as well as random-bond [24] and
random-anisotropy Ising models [25].
The paper is structured as follows. Section II intro-

duces the Hamiltonian studied, followed by numerical
details, observables, and results from equilibrium Monte
Carlo simulations in Sec. III. Section IV presents our re-
sults on nonequilibrium avalanches on scale-free graphs,
followed by concluding remarks. In the appendix we
outline our analytical calculations to determine the de
Almeida–Thouless for spin glasses on scale-free graphs.

II. MODEL

The Hamiltonian of the Edwards-Anderson Ising spin
glass on a scale-free graph in an external magnetic field
is given by

H({si}) = −
N∑

i<j

Jijεijsi sj −
∑

i

Hisi, (2)

where the Ising spins si ∈ {±1} lie on the vertices of
a scale-free graph with N sites and the interactions are
given by

P(Jij , εij) = ℘J (Jij)

[(
1− K

N

)
δ(εij) +

K

N
δ(εij − 1)

]
.(3)

If a bond is present, we set εij = 1, otherwise εij = 0. K
represents the mean connectivity of the scale-free graph.
The connectivity of site i, ki :=

∑
j εij , is sampled from

a scale-free distribution as done in Ref. [10]. The inter-
actions between the spins Jij are independent random
variables drawn from a Gaussian distribution with zero
mean and standard deviation unity, i.e.,

℘J(Jij) ∼ exp (−J2
ij/2) . (4)

In the nonequilibrium studies we also study bimodal-
distributed disorder where we can change the fraction
of ferromagnetic bonds p, i.e.,

℘J(Jij) = pδ(Jij + 1) + (1− p)δ(Jij − 1) . (5)

Finally, for the finite-temperature studies we use ran-
dom fields drawn from a Gaussian distribution with zero
mean and standard deviation Hr in Eq. (2), instead of
a uniform field. This allows us to perform a detailed
equilibration test of the Monte Carlo method [26, 27].
The scale-free graphs are generated using preferential

attachment with slight modifications [28]. Details of the
method are described in Ref. [10]. We impose an up-

per bound on the allowed edge degrees, kmax =
√
N .

Although we can, in principle, generate graphs with k

exceeding
√
N , the ensemble is poorly defined in this

case: Even randomly chosen graphs cannot be uncor-
related [29–31]. Furthermore, to prevent dangling ends
that do not contribute to frustrated loops in the system,
we set a lower bound to the edge degree, namely kmin = 3.

III. EQUILIBRIUM PROPERTIES IN A FIELD

In equilibrium, the behavior of spin glasses in a mag-
netic field is controversial [27, 32–36]. While the infinite-
range (mean-field) Sherrington-Kirkpatrick (SK) model
[12] has a line of transitions at finite field known as the
de Almeida–Thouless (AT) line [11] that separates the
spin-glass phase from the paramagnetic phase at finite
fields or temperatures, it has not been definitely estab-
lished whether an AT line occurs in systems with short-
range interactions. Spin glasses on scale-free networks
are somewhat “in between” the infinite-range and short-
range limits depending on the exponent λ. As such, it is
unclear if a spin-glass state will persist when an external
field H is applied, especially when the spin-glass transi-
tion at zero field occurs at finite temperatures, i.e., for
λ > 3.
Note that spin glasses on scale-free graphs share the

same universality class as the SK model if λ > 4 [10]. As
such, in this regime, one can expect an AT line. However,
for 3 < λ < 4, where Tc < ∞, the critical exponents
depend on the exponent λ [7, 10]. Therefore, it is unclear
if a spin-glass state in a field will persist. For λ ≤ 3 the
critical temperature diverges with the system size, i.e., we
also expect the system to have a spin-glass state for finite
fields. We therefore focus on two values of λ, namely
λ = 4.50 (deep within the SK-like regime because λ = 4
has logarithmic corrections) [10] and λ = 3.75 (where the
existence of an AT line remains to be determined).

A. Observables

In simulations, it is most desirable to perform a finite-
size scaling (FSS) of dimensionless quantities. One such
quantity, the Binder ratio [37], turns out to be poorly
behaved in an external field in short-range systems [38].
Therefore, to determine the location of a spin-glass phase
transition we measure the connected spin-glass suscepti-
bility given by

χ =
1

N

∑

i,j

[(〈sisj〉T − 〈si〉T 〈sj〉T )2]av, (6)

where 〈· · · 〉T denotes a thermal average and [· · · ]av an
average over both the bond disorder and different net-
work instances. N is the number of spins. To avoid bias,
each thermal average is obtained from separate copies
(replicas) of the spins. This means that we simulate four
independent replicas at each temperature.



3

For any spin glass outside the mean-field regime, the
scaling behavior of the susceptibility is given by [10]

χ = N2−ηC̃
(
N1/ν [β − βc]

)
, (7)

where ν and η are the correlation length and susceptibil-
ity exponents, respectively, and βc = 1/Tc is the inverse
temperature for a given field strength Hr.
For λ < 4 (see the appendix for details) we expect

the critical exponent γ = 1. This is only possible if 2 −
η = 1/ν in Eq. (7). Using the standard scaling relation
α+2β+γ = 2, the hyperscaling relation dν = 2−α (which
we assume will hold when λ < 4), and allowing for the
nonstandard meaning of ν in this paper (it is equal to dν
in standard notation where d is here the dimensionality
of the system), it follows for λ < 4, where β = 1/(λ− 3)
(see the appendix and Ref. [7]) that

ν =
λ− 1

λ− 3
and η = 2− 1

ν
. (8)

For the case of λ = 3.75 this means that ν = 11/3 and
therefore η = 2 − 1/ν = 19/11. As such, curves of
χ/N3/11 should have the same scaling behavior as the
Binder ratio.
For λ > 4, the finite-size scaling form presented in

Eq. (7) is replaced by [27, 39]

χ = N1/3C̃
(
N1/3[β − βc]

)
. (9)

In this case the scaling is simpler because the exponents
are fixed and independent of λ, i.e., 1/ν = 2 − η = 1/3.
Here, curves of χ/N1/3 should have the same scaling be-
havior as the Binder ratio. Performing a finite-size scal-
ing of the data therefore allows one to detect the transi-
tion to high precision.
Finally, note that the aforementioned study is, strictly

speaking, only valid at zero field. Although γ = 1 across
the AT line, there is no explicit calculation of the critical
exponent β in a field. While our data suggest that the
values of the zero-field exponents might be the same as
those for finite external fields, the accuracy of our results
for the exponents in a field is limited by large finite-size
corrections.

B. Equilibration scheme and simulation parameters

The simulations are done using the parallel temper-
ing Monte Carlo method [40, 41]. The spins couple to
site-dependent random fields Hi chosen from a Gaussian
distribution with zero mean [Hi]av = 0 and standard

deviation [H2
i ]

1/2
av = Hr. Simulations are performed at

zero field as well as at Hr = 0.1, 0.2, 0.3, and 0.4. Us-
ing Gaussian disorder, we can use a strong equilibration
test to ensure that the data are in thermal equilibrium
[10, 26, 27]. Here, the internal energy per spin

U = (1/N)[〈H〉T ]av , (10)
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FIG. 1: (Color online) Equilibration test for N = 8192 spins
at T = 1.500 (lowest temperature simulated) and λ = 3.75.
Once the data for the energy U and the energy computed
from q4 [U(q4)] agree, the system is in thermal equilibrium
(shaded area). At this point data for q2 are also independent
of Monte Carlo time. Note that the data for q2 are shifted by
a constant factor of 1.1 for better comparison. Error bars are
smaller than the symbols.

with H defined in Eq. (2), has to equate an expression
derived from both the link overlap q4 given by

q4 =
1

Nb

∑

i,j

εijs
α
i s

α
j s

β
i s

β
j , (11)

and the spin overlap

q =
1

Nb

∑

i

sαi s
β
i . (12)

Here α and β represent two copies of the system with the
same disorder and Nb represents the number of neighbors
each spin has for a given sample (graph instance). Note
that because in Eq. (6) we already simulate four repli-
cas, we actually perform an average over all four-replica
permutations.

The system is in thermal equilibrium if

U = U(q4) = − 1

T

[〈
Nb

N
(1− q4) +H2

r (1− q)

〉]

av

.

(13)
Sample data are shown in Fig. 1. The energy U com-
puted directly is compared to the energy computed from
the link overlap U(q4). The data for both quantities ap-
proach a limiting value from opposite directions. Once
U = U(q4), the data for q2 (shifted for better viewing in
Fig. 1) are also in thermal equilibrium. The simulation
parameters are shown in Table I.
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TABLE I: Parameters of the simulation: For each exponent
λ and system size N , we compute Nsa disorder or network
instances. Nsw = 2b is the total number of Monte Carlo
sweeps for each of the 4NT replicas for a single instance, Tmin

[Tmax] is the lowest [highest] temperature simulated, and NT

is the number of temperatures used in the parallel tempering
method for each system size N .

λ Hr N Nsa b Tmin Tmax NT

3.75 0.0 2048 9600 16 1.5000 3.0000 30
3.75 0.0 3072 9600 16 1.5000 3.0000 30
3.75 0.0 4096 9600 16 1.5000 3.0000 30
3.75 0.0 6144 9600 16 1.5000 3.0000 30
3.75 0.0 8192 9600 16 1.5000 3.0000 30
3.75 0.1 512 9600 17 0.9000 3.0000 50
3.75 0.1 768 9600 17 0.9000 3.0000 50
3.75 0.1 1024 9600 17 0.9000 3.0000 50
3.75 0.1 1536 9600 18 0.9000 3.0000 50
3.75 0.1 2048 2400 18 0.9000 3.0000 50
3.75 0.2 768 9600 17 0.9000 3.0000 50
3.75 0.2 1024 9600 17 0.9000 3.0000 50
3.75 0.2 1536 9600 18 0.9000 3.0000 50
3.75 0.2 2048 2400 18 0.9000 3.0000 50
3.75 0.2 4096 2400 19 0.9000 3.0000 50
3.75 0.3 256 9600 17 0.9000 3.0000 50
3.75 0.3 512 9600 18 0.9000 3.0000 50
3.75 0.3 1024 9600 18 0.9000 3.0000 50
3.75 0.3 2048 2400 18 0.9000 3.0000 50
3.75 0.4 256 9600 18 0.9000 3.0000 50
3.75 0.4 512 9600 18 0.9000 3.0000 50
3.75 0.4 1024 9600 18 0.9000 3.0000 50
3.75 0.4 2048 2400 18 0.9000 3.0000 50
4.50 0.0 1024 9600 16 1.0000 3.0000 30
4.50 0.0 2048 9600 16 1.0000 3.0000 30
4.50 0.0 4096 9600 16 1.0000 3.0000 30
4.50 0.0 8192 9600 16 1.0000 3.0000 30
4.50 0.1 512 9600 17 0.9000 3.0000 50
4.50 0.1 1024 9600 17 0.9000 3.0000 50
4.50 0.1 2048 9600 18 0.9000 3.0000 50
4.50 0.1 4096 2400 18 0.9000 3.0000 50
4.50 0.2 256 9600 18 0.6000 3.0000 50
4.50 0.2 512 9600 18 0.6000 3.0000 50
4.50 0.2 1024 9600 18 0.6000 3.0000 50
4.50 0.2 2048 2400 19 0.6000 3.0000 50
4.50 0.3 64 9600 18 0.3000 3.0000 50
4.50 0.3 128 9600 19 0.3000 3.0000 50
4.50 0.3 256 9600 20 0.3000 3.0000 50
4.50 0.3 512 9600 22 0.3000 3.0000 50
4.50 0.4 90 9600 19 0.3000 3.0000 50
4.50 0.4 128 9600 19 0.3000 3.0000 50
4.50 0.4 180 9600 19 0.3000 3.0000 50
4.50 0.4 256 9600 20 0.3000 3.0000 50

C. Numerical results for λ = 4.50

Corrections to scaling are large for this model despite
the large system sizes and number of samples studied. As
previously stated, we expect that for λ = 4.50 a spin-glass
state is stable towards an external field because for λ > 4
the system shares the same universality class as the SK
model. To determine the AT line, we plot χ/N1/3 versus

the inverse temperature β = 1/T . Because χ/N1/3 is
a dimensionless function [see Eq. (9)], data for different
system sizes should cross at the putative field-dependent
transition temperature. To cope with corrections to scal-
ing and obtain a precise estimate of the critical temper-
ature, we study the crossing temperatures Tc(N, 2N) for
pairs of system sizes N and 2N assuming

Tc(N, 2N) = Tc +A/Nω , (14)

where A is a fitting parameter and empirically ω = 1.
An example extrapolation is shown in Fig. 2 for λ = 4.50
and Hr = 0.1. A linear fit is very stable and the extrapo-
lation to the thermodynamic limit clear. Statistical error
bars are determined via a bootstrap analysis [42] using
the following procedure: For each system size N and Nsa

disorder realizations, a randomly selected bootstrap sam-
ple of Nsa disorder realizations is generated. With this
random sample, an estimate of χ/N1/3 is computed for
each temperature. The crossing temperature for pairs of
N and 2N is obtained by fitting the data to a third-order
polynomial and a subsequent root determination. We re-
peat this procedure Nboot = 500 times for each lattice
size and then assemble Nboot complete data sets (each
having results for every system size N) by combining the
ith bootstrap sample for each size for i = 1, . . ., Nboot.
The nonlinear fit to Eq. (14) is then carried out on each of
these Nboot sets, thus obtaining Nboot estimates of the fit
parameters Tc and A. Because the bootstrap sampling
is done with respect to the disorder realizations which
are statistically independent, we can use a conventional
bootstrap analysis to estimate statistical error bars on
the fit parameters. These are comparable to the stan-
dard deviation among the Nboot bootstrap estimates.
The obtained estimates of Tc are listed in Table II.

Figure 3 shows the field–temperature phase diagram for
λ = 4.50. The shaded area is intended as a guide to
the eye. The critical line separates a paramagnetic (PM)
from a spin-glass (SG) phase. The dotted (blue) line
represents the AT line computed analytically (appendix)
in the limit ofHr → 0. For 4 < λ < 5 the shape of the AT
line is given by Eq. (A.17). The analytical approximation
fits the data for λ = 4.5 very well with Hr(T ) ∼ C4.5(1−
T/Tc)

5/4 and C4.5 = 0.48(3).

D. Numerical results for λ = 3.75

Because for λ < 4 we are no longer in the SK univer-
sality class, it is a priori unclear if a spin-glass state in
a field will exist. Furthermore, when λ = 3.75, a finite-
size scaling according to Eq. (7) has to be performed.
Because it is not possible to define a distance metric on
a scale-free network, there is no notion of a correlation
length or spin-spin correlation function. As such, the
critical exponents ν (that describes the divergence of the
correlation length) and η (also known as the anomalous
dimension) have to be treated carefully. However, we
will assume that Eq. (7) is valid in this regime on generic
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FIG. 2: (Color online) Extrapolation to the thermodynamic
limit for the critical temperature Tc for λ = 4.50 and Hr =
0.1. We determine the crossing points of critical temperatures
of the susceptibility expression for pairs of system sizes N and
2N . Using Eq. (14) with ω = 1 we extrapolate the data to
the thermodynamic limit. This allows us to take into account
corrections to scaling in an unbiased way.
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FIG. 3: (Color online) Field Hr versus temperature T phase
diagram for an Ising spin glass on a scale-free graph with
λ = 4.50. The data points separate a paramagnetic (PM)
from a spin-glass (SG) state. The shaded area is intended as
a guide to the eye. The dotted (blue) line is a calculation of
the AT line in the Hr → 0 limit.

finite-size scaling grounds and treat ν and η as parame-
ters when Hr > 0 with no special meaning attached to
them. In addition, we fix ν = 11/3 and η = 2 − 1/ν
— the zero-field values of the critical exponents — and
scale the data at finite fields assuming these exponents
are valid also when Hr > 0.

To determine Tc(Hr), we perform a finite-size scaling
analysis of the susceptibility data according to Eq. (7).
To determine the optimal value of Tc = 1/βc that

TABLE II: Critical parameters Tc, ν, and η for a spin glass
with Gaussian random bonds defined on a scale-free graph.
The data for λ = 4.50 have been determined using the mean-
field finite-size scaling expression in Eq. (9). In this case one
can, in principle, define η = 5/3 and ν = 3, although these
should be viewed as parameters placed in Eq. (7) to obtain
Eq. (9). For λ = 3.75 we determine the critical parameters us-
ing Eq. (7). The starred estimates of Tc for Hr > 0 have been
determined by using the zero-field estimates of η = 19/11 and
ν = 11/3 as fixed. Both Tc and T ⋆

c agree within error bars,
except statistical fluctuations are smaller for T ⋆

c because there
are fewer fitting parameters.

λ Hr Tc T ⋆
c ν η

3.75 0.0 1.98(2) 1.97(1) 3.56(17) 1.72(1)
3.75 0.1 1.67(5) 1.68(3) 4.42(73) 1.70(3)
3.75 0.2 1.32(8) 1.39(5) 6.53(61) 1.72(2)
3.75 0.3 1.20(6) 1.16(4) 3.31(32) 1.74(2)
3.75 0.4 0.97(7) 1.00(4) 3.68(46) 1.72(2)

4.50 0.0 1.39(1) 3 5/3
4.50 0.1 1.03(3) 3 5/3
4.50 0.2 0.66(5) 3 5/3
4.50 0.3 0.55(5) 3 5/3
4.50 0.4 0.46(4) 3 5/3

scales the data best we use the approach developed
in Ref. [42]. We assume that the scaling function in
Eq. (7) can be represented by a third-order polynomial
y(x) = c0+c1x+c2x

2+c3x
3 for |x| . 1 and do a global fit

to the seven parameters ci with i ∈ {0, . . . , 3}, βc, η, and
ν. Here y = χ/N2−η and x = N1/ν [β − βc]. After per-
forming a Levenberg-Marquardt minimization combined
with a bootstrap analysis we determine the optimal crit-
ical parameters with an unbiased statistical error bar.

Figure 4 shows two representative scaling collapses at
zero and nonzero field values. The data scale well and al-
low one to determine the critical temperature with good
precision despite the difficulties that scaling the spin-
glass susceptibility poses [42]. Note that for zero field we
obtain η = 1.72(1) and ν = 3.56(17), which agree very
well with the analytical expressions η = 19/11 = 1.72 . . .
and ν = 11/3 = 3.66 . . .. However, for finite fields de-
viations are visible. A summary of the relevant fitting
parameters is listed in Table II. Note that the value of
η for different fields agrees within error bars. However,
fluctuations are larger for ν. One can expect that the
universality class of the system does not change along
the AT line [43]. Therefore, and because it is hard to
simulate large systems for large fields, we also determine
Tc by fixing η = 19/11 and ν = 11/3. As listed in Table
II, both estimates agree within error bars. This is also
visible in Fig. 5 which shows the AT line for λ = 3.75.
Overall, the analysis using the zero-field estimates for η
and ν gives more accurate results. The dotted (blue)
line in Fig. 5 is our analytical estimate of the AT line
computed in the Hr → 0 limit (appendix). The estimate
fits the data well with Hr(T ) ∼ C3.75(1 − T/Tc)

7/6 and
C3.75 = 0.76(5).
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FIG. 4: (Color online) Finite-size scaling analysis of χ/N2−η

as a function of N1/ν(β−βc) for an Ising spin glass on a scale-
free network with Gaussian disorder and λ = 3.75. The data
at zero field (top panel) scale very well. The bottom panel
shows representative data for Hr = 0.1 scaled according to
Eq. (7). Error bars are smaller than the symbols.

IV. NONEQUILIBRIUM PROPERTIES IN A

FIELD

It has recently been shown that a key ingredient for
the existence of SOC in glassy spin systems is a di-
verging number of neighbors [18]. Scale-free networks
have a power-law degree distribution. If the exponent
λ ≤ 2, then scale-free networks have an average num-
ber of neighbors K that diverges with the system size.
Therefore, it is possible that SOC might be present in
this regime. To test this prediction, in this section we
compute nonequilibrium avalanche distributions of spin
flips driven by an external field.
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FSS

0.0

0.1

0.2
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0.4

0.5

0.6

0.7

0.8

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

SG

FIG. 5: (Color online) Field Hr versus temperature T phase
diagram for an Ising spin glass on a scale-free graph with
λ = 3.75. The data points separate a paramagnetic (PM)
from a spin-glass (SG) state. The shaded area is intended as
a guide to the eye. The dotted (blue) line is a calculation
of the AT line in the Hr → 0 limit. Note that estimates for
the critical temperature Tc from a finite-size scaling analysis
(FSS) according to Eq. (7) with Tc, η, and ν as free param-
eters agree within error bars with estimates at finite fields
where η = 19/11 and ν = 11/3 are used as fixed parameters
(labeled with “Fixed” in the plot).

A. Numerical details and measured observables

We study the Hamiltonian in Eq. (2) either with Gaus-
sian [Eq. (4)] or bimodal [Eq. (5)] disorder. The ex-
ternal magnetic field used to drive the avalanches is
uniform rather than drawn from a Gaussian distribu-
tion, i.e., Hi = H in Eq. (2). Spin-flip avalanches are
triggered by using zero-temperature Glauber dynamics
[18, 19, 21, 44]. In this approach one computes the local
fields

hi =
∑

j

JijSj −H (15)

felt by each spin. A spin is unstable if the stability
hiSi < 0 is negative. The initial field H is selected to
be larger than the largest local field, i.e., H > |hi| ∀i.
Furthermore, we set all spins Si = +1. The spins are
then sorted by local fields and the field H reduced until
the stability of the first sorted spin is negative, therefore
making the spin unstable. This (unstable) spin is flipped,
then the local fields of all other spins updated, and the
most unstable spin is flipped again until all spins are sta-
ble, i.e., the avalanche ends. Simulation parameters are
shown in Table III.
We measure the number of spins that flipped until the

system regains equilibrium and record the avalanche size
distributions D(n) for all triggered avalanches of size n
until Si → −Si ∀i. When SOC is present (as for the
SK model), we expect the avalanche distributions to be
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TABLE III: Simulation parameters in the nonequilibrium
study with both Gaussian and bimodal-distributed random
bonds: For each exponent λ we study systems of N = 500×2m

spins with m ∈ {1, . . . ,mmax}. For Gaussian disorder, when
λ < 4, we also simulate systems with 48 000 spins (m = 6
corresponds to 32 000 spins). All distributions are computed
using Nsa disorder realizations.

disorder type λ mmax Nsa

Gaussian 1.50 6 12 000
Gaussian 2.00 6 12 000
Gaussian 2.50 6 12 000
Gaussian 3.00 6 12 000
Gaussian 3.50 6 12 000
Gaussian 4.00 5 12 000
Gaussian 4.50 5 12 000
Gaussian 5.00 5 12 000
Gaussian 5.50 5 12 000
Gaussian 6.00 4 12 000
Gaussian 6.50 4 12 000
Gaussian 7.00 4 12 000

Bimodal 1.50 6 12 000
Bimodal 2.00 6 12 000
Bimodal 2.25 6 12 000
Bimodal 2.50 6 12 000
Bimodal 3.00 6 12 000
Bimodal 3.50 6 12 000
Bimodal 4.00 6 12 000
Bimodal 4.50 5 12 000
Bimodal 5.00 5 12 000

power-law distributed with an exponential cutoff that
sets in at a characteristic size n∗. Only if n∗(N) → ∞ for
N → ∞ without tuning any parameters does the system
exhibit true SOC. n∗ is determined by fitting the tail of
the distributions to D(n) ∼ exp[−n/n∗(N)] with n∗(N)
a fitting parameter. This procedure is repeated for dif-
ferent values of λ and the thermodynamic value of n∗ is
determined by an extrapolation in the system size N .

B. Numerical results for Gaussian disorder

We start by showing avalanche distributions for se-
lected values of the exponent λ which show the char-
acteristic behavior of the system.
Figure 6 (top panel) shows avalanche distributions

D(n) for λ = 4.50 recorded across the whole hysteresis
loop (bottom panel). Here, the number of neighbors does
not diverge with the system size because λ = 4.50 > 2.
The distributions show no system size dependence. The
fact that the data show a curvature in a log-log plot
clearly indicate that these are not power laws. Although
tens of thousands of spins are simulated, the largest
avalanches found span less than 1% of the system. The
vertical line represents the extrapolated typical avalanche
size n∗ which is rather small and indicates that the sys-
tem is not in an SOC state.
In contrast, Fig. 7, top panel, shows data for λ = 1.5 <
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FIG. 6: (Color online) Top: Avalanche distribution D(n) for
the Edwards-Anderson spin-glass model with Gaussian dis-
order on scale-free networks with λ = 4.50 recorded across
the whole hysteresis loop. The data show no system size de-
pendence. The vertical (black) line marks the extrapolated
value of n∗. Clearly, no signs of SOC are visible in the data.
Bottom: Magnetization M = (1/N)

∑
i si versus field H hys-

teresis loop for λ = 4.50 and 48000 spins. The data are for one
single sample and meant as an illustration for the typical be-
havior of the system in a field. The inset shows a zoom into
the boxed region. The discrete steps due to magnetization
jumps in the hysteresis loop are clearly visible.

2 in the regime where the number of neighbors diverges
with the system size. The distributions D(N) have a
clearly visible power-law behavior with a crossover size
n∗(N) that grows with increasing system size. Further-
more, a careful extrapolation to the thermodynamic limit
shows that 1/n∗ = −0.0012(23), i.e., n∗ = ∞. The hys-
teresis loop shown in the bottom panel of Fig. 7 suggests
that for this value of λ larger rearrangements of spins are
possible.
We have repeated these simulations for several val-

ues of the exponent λ. Our results are summarized in
Fig. 8, where 1/n∗ is plotted as a function of λ. Clearly,
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FIG. 7: (Color online) Top: Avalanche distribution D(n) for
the Edwards-Anderson spin-glass model with Gaussian disor-
der on scale-free networks with λ = 1.5 recorded across the
whole hysteresis loop. For λ = 1.5 < 2.0 the number of neigh-
bors diverges. The data show a clear system-size dependence
with the distributions becoming increasingly power-law-like
for increasing system size N . As shown in Fig. 8, the extrap-
olated cutoff value is n∗ = ∞, i.e., the system exhibits true
SOC behavior. Bottom: Magnetization M = (1/N)

∑
i si

versus field H hysteresis loop for λ = 1.50 and 48000 spins.
The data are for one single sample and meant as an illustra-
tion for the typical behavior of the system in a field. The inset
shows a zoom into the boxed region. The discrete steps due to
magnetization jumps in the hysteresis loop are clearly visible.
Qualitatively, the data seem to show larger rearrangements
as for λ = 4.50 (Fig. 6).

1/n∗ = 0 only if λ ≤ 2, i.e., in the regime where the num-
ber of neighbors diverges, in perfect agreement with the
results of Ref. [18] for hypercubic systems, as well as the
SK model [16]. Note that we have also recorded distribu-
tions of magnetization jumps (not shown) [16, 18] that
qualitatively display the same behavior as the avalanche
size distributions.

1
/n

∗

λ

0.0

0.1

0.2

0.3

0.4

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

S
O

C

FIG. 8: (Color online) Characteristic avalanche size n∗ ex-
trapolated to the thermodynamic limit for different values
of λ and Gaussian disorder. Plotted are 1/n∗ versus λ. Only
when 1/n∗ = 0 (here within error bars) we can expect the sys-
tem to show SOC behavior. This is only the case for λ ≤ 2,
i.e., in the regime where the number of neighbors diverges.

C. Numerical results for bimodal disorder

So far, we have only probed for the existence of SOC
within the spin-glass phase. Bimodal disorder [Eq. (5)]
has the advantage that one can easily tune the fraction
of ferromagnetic bonds by changing p. When p = 1 the
system is a pure ferromagnet, whereas for p = 0 it is an
antiferromagnet and for p = 0.5 a spin glass (comparable
to the Gaussian case).

Sethna et al., as well as others, have studied the
random-field Ising model [19–24, 45] where the level of
ferromagnetic behavior is tuned by changing the width of
the random-field distribution σ. In particular, for three
space dimensions, there is a critical value σc where a
jump in the hysteresis loop appears, i.e., large system-
spanning rearrangements of the spins start to occur when
σ > σc. We call this regime supercritical because here
system-spanning avalanches will always occur in a pre-
dominant fashion. For σ = σc true power-law distribu-
tions of the spin avalanches are obtained, whereas for
σ < σc no system-spanning rearrangements are found.
We call the latter scenario subcritical.

Here we find a similar behavior when tuning the frac-
tion of ferromagnetic bonds p. Figure 9 shows the typ-
ical behavior we observe for the avalanche distributions
D(n). For p = 0.63 and λ = 3.50 (Fig. 9, top panel), the
distributions show small system-size dependence. A de-
tailed analysis of the characteristic avalanche size n∗(N)
shows that it extrapolates to a finite value in the ther-
modynamic limit. This means we are in the subcriti-
cal regime. However, for λ = 3.50 and p = 0.66 clear
power laws in the distributions D(n) emerge (Fig. 9, cen-
ter panel). Here n∗ → ∞, i.e., true power-law behavior.



9

However, for λ = 3.50 and p = 0.70, although most of
the distributions show a clear power-law-like behavior,
a bump for large n appears (Fig. 9, bottom panel). In
this case the probability for very large rearrangements
increases. Direct inspection of the underlying hysteresis
loops (not shown) shows a jump in the magnetization,
i.e., we are in the supercritical regime. We repeat these
simulations for different exponents λ and vary the frac-
tion of ferromagnetic bonds p until the distributions are
power laws. This allows us to construct the phase di-
agram shown in Fig. 10. We find a critical line pc(λ)
(triangles, solid curve) that separates the subcritical re-
gion from the supercritical region. Along the critical line
avalanche size distributions are power laws. Note that
this critical line shows no close correlations with the spin-
glass–to–ferromagnetic boundary computed in Ref. [10]
(dotted line in Fig. 10). For λ ≤ 2 and when p = 0.5, i.e.,
within the spin-glass phase where the graph connectivity
diverges, we recover true SOC.

V. SUMMARY AND CONCLUSIONS

We have studied Boolean (Ising) variables on a scale-
free graph with competing interactions in an external
field both in thermal equilibrium, as well as in a nonequi-
librium hysteretic setting.
At finite temperatures, we show that for λ > 3, where

at zero field the system orders at finite temperatures [10],
spin glasses on scale-free graphs do order in a field, i.e.,
their behavior is very much reminiscent of the mean-field
SK model in a field. Naively, one could have expected
that outside the SK regime (λ < 4) a behavior reminis-
cent of (diluted) one-dimensional spin glasses with power-
law interactions [46–48] emerges where a spin-glass state
in a field seems stable only within the mean-field regime
of the model [27, 33]. These results again illustrate the
superb robustness of Boolean decision problems on scale-
free networks to perturbations. In this case, a stable
spin-glass state emerges at nonzero temperatures even in
the presence of magnetic fields (external global biases).
At zero temperature, when driven with an external

field, Boolean decision problems on scale-free networks
show self-organized critical behavior only when the num-
ber of neighbors diverges with the system size, i.e., for
λ ≤ 2. For λ > 2 and with bimodal disorder, a behavior
reminiscent of the random-field Ising model is found [19–
24] where system-spanning avalanches only occur when-
ever the fraction of ferromagnetic bonds pc(λ) is tuned
towards a critical value. These results show that “dam-
age” can easily spread on real networks where typically
λ . 3. Therefore, in contrast the robustness found at
finite temperatures, Boolean decision problems on scale-
free networks show a potential fragility when driven in a
nonequilibrium scenario at zero temperature.
It will be interesting to perform these simulations for

real networks in the future, as well as the study of q-state
Potts variables [49].
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FIG. 9: (Color online) Avalanche distribution D(n) for the
Edwards-Anderson spin-glass model with bimodal disorder on
scale-free networks with λ = 3.5 recorded across the whole
hysteresis loop. Top panel: Data for p = 0.63 < pc. Here the
system displays subcritical behavior, i.e., the characteristic
avalanche size n∗ is finite. Center panel: For p = 0.66 ≈ pc
the system is in the critical regime where the distributions
are well described by power laws. Bottom panel: For p =
0.70 > pc the system is in the supercritical regime. A jump
in the hysteresis loop occurs, i.e., very large rearrangements
are very probable, as can be seen in the bump that develops
in the distributions D(n) for large n.
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FIG. 10: (Color online) Fraction of ferromagnetic bonds p
versus λ phase diagram for the Edwards-Anderson spin-glass
model on scale free networks with bimodal interactions be-
tween the spins. For λ > 2 a critical line pc(λ) separates the
subcritical regime where avalanches are small, from the su-
percritical regime where system-spanning avalanches are very
common. Along the critical line pc(λ) (triangles, solid line)
avalanche sizes are distributed according to power laws. For
λ ≤ 2 the number of neighbors diverges. In this regime for
p = 0.5 the system displays avalanches that are power laws,
i.e., true SOC. The dotted line represents the spin-glass–to–
ferromagnetic phase boundary from Fig. 2 in Ref. [10].
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Appendix: Analytical form of the de

Almeida-Thouless for Hr → 0

In this appendix we derive analytically the form of the
AT line in the limit when Hr → 0 for a type of scale-free
network which is very convenient for analytical calcula-
tions, namely the static model used by Kim et al. [7],
whose procedures and equations we shall closely follow.
In this model the number of vertices N is fixed. Each

vertex i (i = 1, 2, . . . , N) is given a weight pi, where

pi =
i−µ

ζN (µ)
. (A.1)

where µ is related to λ via λ = 1 + 1/µ, and

ζN (µ) ≡
N∑

j=1

j−µ ≈ N1−µ

1− µ
. (A.2)

Only µ in the range [0, 1) (i.e., λ > 2) will be discussed.
Two vertices i and j are selected with probabilities pi
and pj and if i 6= j they are connected with a single
bond unless the pair are already connected. The process
is repeated NK/2 times. Then in such a network, the
probability that a given pair of vertices is not connected
by an edge is 1−fij = (1−2pipj)

NK/2 ≈ exp(−NKpipj),
and the probability that they are connected by an edge
is fij = NKpipj. This product form for fij enabled Kim
et al. [7] to proceed analytically. Note that here K is the
mean degree of the scale-free network generated by this
procedure.
We shall work in the paramagnetic phase where the

spin glass is replica symmetric, i.e., where

qab =
∑

i

pi〈sai sbi〉 = q, (A.3)

independently of the replica labels a = 1, 2, . . . , n, where
n is set to zero at the end of the calculation. In qab, a 6= b.
Kim et al. [7] showed then that the higher order param-
eters such as qabcd =

∑
i pi〈sai sbiscisdi 〉 can be neglected

when q is sufficiently small—that is, in the region near
Tc studied in this appendix—and that a “truncation” ap-
proximation can be made for q

q =

∫
Dz

N∑

i=1

pi tanh
2
(
z
√
NKT2piq +H2

r /T
2

)
,

(A.4)
where

∫
Dz ≡ 1√

2π

∫
∞

−∞

dze−z2/2 (A.5)

and

T2 = 〈tanh2(Jij/T )〉. (A.6)

Here the average is over the distribution of bonds, as-
sumed symmetric, i.e., P (Jij) = P (−Jij). The random
field of variance H2

r was not included in the Kim et al. [7]
paper, but Eq. (A.4) is consistent with the equations for
a spin glass in a random field studied in Ref. [50] (in the
appropriate limit).
In the Hr–T phase diagram it is expected that the

assumption of replica symmetry holds until the AT line
is crossed. The equation of the line where the spin-glass



11

susceptibility diverges follows from the expressions given
in Ref. [7]:

(KT2)
−1 =

∫
Dz

N∑

i=1

Np2i sech
4
(
z
√
NKT2piq +H2

r /T
2

)
.

(A.7)
The solution of Eqs. (A.4) and (A.7) together fix the
equation of the AT line.
It is convenient to convert the sums over i to integrals.

Let x = i/N . Then
∑N

i=1 →
∫ 1

0
Ndx, and in the large-N

limit Eq. (A.4) becomes

q =

∫
Dz

∫ 1

0

dx
1 − µ

xµ
tanh2

(
z
√
Q′/xµ +H2

r /T
2

)
,

(A.8)

where Q′ = (1 − µ)KT2q. Equation (A.7) becomes on
converting the sum to an integral

(KT2)
−1 =

∫
Dz

∫ 1

0

dx
(1 − µ)2

x2µ

sech4
(
z
√
Q′/xµ +H2

r /T
2

)
.(A.9)

We shall only study explicitly here the case where 3 <
λ < 4 (1/3 < µ < 1/2). Similar procedures can be used
to determine the AT line when λ > 4. We first rewrite
Eq. (A.8) as

q =

∫
Dz

∫ 1

0

dx
1 − µ

xµ

{
z2(Q′/xµ +H2

r /T
2) +

[
tanh2

(
z
√
Q′/xµ +H2

r /T
2

)
− z2(Q′/xµ +H2

r /T
2)
]}

. (A.10)

The integral over z involving just the first line of
Eq. (A.10) can be done to yield

q = (K/Kp)T2q +H2
r /T

2 +R(Hr, q), (A.11)

where

Kp =
1− 2µ

(1− µ)2
, (A.12)

and

R(Hr, q) =

∫
Dz

∫ 1

0

dx
1 − µ

xµ

[
tanh2

(
z
√
Q′/xµ +H2

r /T
2)− z2(Q′/xµ +H2

r /T
2
)]

. (A.13)

One can show that R(Hr, q) = R(0, q) + O(Q′H2
r /T

2).
For small q, the term in addition to R(0, q) is negligible

in comparison to the term H2
r /T

2 in Eq. (A.11) and can
be dropped. We next re-write the integral for R(0, q) as

R(0, q) =

∫
Dz

(∫
∞

0

dx−
∫

∞

1

dx

)
1− µ

xµ

[
tanh2(z

√
Q′/xµ)− z2Q′/xµ

]
. (A.14)

The integral from 1 to∞ can be evaluated for small Q′ by
expanding the tanh in a power series in Q′. The integrals
converge for λ < 4 and the leading contribution is

2Q′2(1− µ)
λ− 1

4− λ
+O(Q′3).

The integral from 0 to ∞ can by evaluated after a vari-
able change w = z

√
Q′/xµ when it gives a contribution

F (λ)Q′λ−2
, where

F (λ) = P (λ)

∫
∞

0

dw w3−2λ[tanh2 w − w2]. (A.15)
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Here P (λ) = (1 − µ)Γ(λ − 3/2)2λ−1(λ − 1)/
√
π. Thus,

for 3 < λ < 4, the equation of state is

H2
r /T

2 = q[1−KT2/Kp]− F (λ)Q′λ−2

−2Q′2(1− µ)
λ− 1

4 − λ
+O(Q′3), (A.16)

which agrees with the expression given in Ref. [7] when
Hr = 0.
When 4 < λ < 5, one can proceed in a similar fashion.

The equation of state is unchanged except F (λ) becomes

F̃ (λ) where

F̃ (λ) = P (λ)

∫
∞

0

dw w3−2λ[tanh2 w − w2 + 2w4/3].

(A.17)

For λ > 5 the term in Q′λ−2
is subdominant to the term

of order Q′3 and can be ignored to leading order.
We next deduce some simple features which follow from

the equations of state. In the high-temperature state
q ∼ H2

r /T
2, and in the limit of Hr/T → 0,

χSG → q

(H2
r /T

2)
=

1

1−KT2/Kp
. (A.18)

The zero-field spin-glass susceptibility χ diverges at the

zero-field transition temperature Tc where T2 = Kp/K,
and at lower temperatures q becomes nonzero. The diver-
gence of this susceptibility as the transition is approached
is of the same form for all λ > 3. This means for the crit-
ical exponent

γ = 1 (λ > 3) (A.19)

However, the exponent β in q ∼ (1− T/Tc)
β depends on

λ. We obtain

β =
1

λ− 3
(3 < λ < 4) (A.20)

β = 1 (λ > 4). (A.21)

We can use Eq. (A.9) in conjunction with the equations
of state to determine the form of the AT line as Hr/T →
0. Once again, we shall start in the region 3 < λ <
4 and write the term sech4(z

√
Q′/xµ +H2

r /T
2) as 1 +

[sech4(z
√
Q′/xµ +H2

r /T
2)−1]. The term in unity in the

integral evaluates to 1/Kp, so

(KT2)
−1 = 1/Kp + S(Hr, q), (A.22)

where

S(Hr, q) =

∫
Dz

∫ 1

0

dx
(1 − µ)2

x2µ

[
sech4

(
z
√
Q′/xµ +H2

r /T
2

)
− 1

]
. (A.23)

Once again, it is sufficient to evaluate S(Hr, q) atHr = 0;
the corrections of O(H2

r /T
2) are negligible compared to

the terms which we retain. Next we rewrite the integral
as

S(0, q) =

∫
Dz

(∫
∞

0

dx−
∫

∞

1

dx

)
(1 − µ)2

x2µ

[
sech4

(
z
√
Q′/xµ

)
− 1

]
. (A.24)

The integral from 0 to ∞ can be evaluated after making
the same variable change w = z

√
Q′/xµ, when it gives

the contribution G(λ)Q′λ−3
, where

G(λ) = 2λ−2(1− µ)2(λ− 1)Γ(λ− 5/2)/
√
π ×

∫
∞

0

dww5−2λ[sech4w − 1].

The integral from 1 to ∞ can be done in a power series in Q′ and the leading term of this contribution to S(0, q)
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is

− 2(1− µ)2Q′/(1− 3µ) +O(Q′2).

We can now calculate the AT line: It is simplest to com-
bine Eqs. (A.16) and (A.22) to eliminate the term in

(1−KT2/Kp) when one finds that

H2
AT/T

2 = C(λ)Q′λ−2
+O(Q′3), (A.25)

where

C(λ) =
1√
π
2λ−2(λ− 2)Γ(λ− 5/2)

∫
∞

0

dw w5−2λ
{
sech4w − 1− 2(λ− 5/2)

[
tanh2 w/w2 − 1

]}
. (A.26)

The integral has to be done numerically but it stays finite
as λ → 4. For example, C(3.75) ≈ 0.530. The terms

of O(Q′2) cancel from Eq. (A.25). Thus, in the range
3 < λ < 4, the equation of the AT line in terms of the
temperature rather than Q′ is just

H2
AT/T

2 ∼ (1 − T/Tc)
λ−2

λ−3 (3 < λ < 4). (A.27)

Note that this is in agreement with the scaling form

H2
AT/T

2 ∼ (1− T/Tc)
β+γ , (A.28)

on inserting the vales for β = 1/(λ − 3) and γ = 1 for
3 < λ < 4.

In the range 4 < λ < 5, a similar expression holds for
H2

AT/T
2 as in Eq. (A.25), but C(λ) becomes C̃(λ) where

C̃(λ) =
1√
π
2λ−2(λ − 2)Γ(λ− 5/2)

∫
∞

0

dw w5−2λ
{
sech4w − 1 + 2w2 − 2(λ− 5/2)

[
tanh2 w/w2 − 1 + 2w2/3

]}
.

(A.29)

Because in this range the exponent Q′ ∼ (1− T/Tc), the
form of the AT line is

H2
AT/T

2 ∼ (1− T/Tc)
λ−2 (4 < λ < 5). (A.30)

Finally, in the range λ > 5, the term in Q′λ−2
is sub-

dominant compared with the term in Q′3 and

H2
AT/T

2 ∼ (1− T/Tc)
3 (λ > 5), (A.31)

which is the familiar form of the AT line in the SK model.
One can also use the static model to investigate the

behavior when λ < 3. The spin-glass phase with broken
replica symmetry exists in zero field up to infinite tem-
perature, i.e., Tc is infinite when λ < 3 [7]. However, in
the interval 5/2 < λ < 3 the application of a large enough

random fieldHr can restore replica symmetry. By solving
Eqs. (A.8) and (A.9) it can be shown that this happens

at a field HAT, where, as before, β
2H2

AT ∼ Q′λ−2
where

HAT ∼ T
5−2λ

3−λ (2.5 < λ < 3). (A.32)

for the limit when T → ∞. This phase boundary is,
as usual, for the thermodynamic limit when N → ∞.
The behavior which would be seen in simulations at finite
system size N will be complicated by an unfamiliar finite-
size behavior because, for this λ range, Tc at zero field is
infinite. When λ < 5/2 we think that for all Hr and T
the spin-glass phase has broken replica symmetry and so
as a consequence, there will then be no AT line.
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V. Dobrosavljević, and G. T. Zimanyi, Phys. Rev. Lett.
111, 097203 (2013).

[19] J. P. Sethna, K. Dahmen, S. Kartha, J. A. Krumhansl,
B. W. Roberts, and J. D. Shore, Phys. Rev. Lett. 70,
3347 (1993).

[20] O. Perkovic, K. A. Dahmen, and J. P. Sethna, Phys. Rev.
Lett. 75, 4528 (1995).

[21] O. Perkovic, K. A. Dahmen, and J. P. Sethna, Phys. Rev.
B 59, 6106 (1999).

[22] M. C. Kuntz, O. Perkovic, K. A. Dahmen, B. W. Roberts,
and J. P. Sethna (1998), (arXiv:cond-mat/9809122v2).

[23] J. P. Sethna, K. A. Dahmen, and O. Perkovic (2004),
(arXiv:cond-mat/0406320v3).

[24] E. Vives and A. Planes, Phys. Rev. B 50, 3839 (1994).
[25] E. Vives and A. Planes, Phys. Rev. B 63, 134431 (2001).
[26] H. G. Katzgraber, M. Palassini, and A. P. Young, Phys.

Rev. B 63, 184422 (2001).
[27] H. G. Katzgraber, D. Larson, and A. P. Young, Phys.

Rev. Lett. 102, 177205 (2009).
[28] A. L. Barabasi and R. Albert, Science 286, 509 (1999).
[29] Z. Burda and A. Krzywicki, Phys. Rev. E 67, 046118

(2003).
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