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ABSTRACT

The consistency of the embedding of four-dimensional SO(8) gauged ' = 8 supergravity
into eleven-dimensional supergravity, where the internal directions are compactified on a
seven-sphere, was established by de Wit and Nicolai in the 1980s. The reduction ansatz for
the eleven-dimensional metric, and for some of the components of the 4-form field strength,
were found at that time, and recently the complete expression for the 4-form reduction has
been obtained. The expressions are quite complicated, and in many practical applications
it would be sufficient to know the ansatz for a subset of the four-dimensional fields. In this
paper, we obtain explicit expressions for the embedding of the truncation of the full N’ = 8
gauged theory to the NV = 2 gauged STU supergravity. This corresponds, in the bosonic
sector, to a consistent truncation of the A' = 8 supergravity fields to those that are singlets
under the U(1)* Cartan subalgebra of SO(8). This truncation to STU supergravity, which
comprises N/ = 2 supergravity coupled to three vector multiplets, suffices, for example, for
lifting the general 8-charge asymptotically-AdS rotating black holes to eleven dimensions.
We also give two distinct further truncations to N' = 2 supergravities coupled to single

vector multiplets.
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1 Introduction

The idea that the four-dimensional N' = 8 gauged SO(8) supergravity of de Wit and
Nicolai [I] could be obtained by means of a dimensional reduction of eleven-dimensional
supergravity on S7 dates back to the early 1980s [2,[3]. Originally, this reduction was
discussed just at the level of the linearisation of the field equations around the Freund-
Rubin [4] AdS; x ST ground state. A reduction in which all the massive Kaluza-Klein
towers as well as the massless N' = 8 supergravity subsector is retained can obviously be
consistently extended, in principle, to the full non-linear order. However, one cannot in
general expect to be able to perform a consistent truncation of this full theory in which
the towers of massive multiplets are set to zero, leaving only the massless four-dimensional
gauged N = 8 supergravity [5]. The key issue here is that one would generically expect
that in the full theory, non-linear “currents” built from powers of the massless fields would
act as sources in the equations of motion of the massive fields that one wishes to set to
zero. Indeed, this is exactly what would happen in a sphere or coset-space reduction of
any generic theory, and thus a reduction in which just a “massless sector” (including the

gauge bosons of the full isometry group of the compactifying manifold) was retained would



be inconsistent beyond the linearised level. The first indication that the S7 reduction of
eleven-dimensional supergravity might be an exception to the general rule was found in
ref. [6], where it is shown that a crucial trilinear coupling of two SO(8) gauge bosons to
a massive spin-2 multiplet of fields is absent. This satisfies a first, necessary, condition
for the retained gauge bosons not in fact to act as sources for the massive fields that one
wishes to set to zero. This happens because the gauge bosons enter not only in the metric
uplift ansatz but also in the uplift ansatz for the 4-form field strength of eleven-dimensional
supergravity. This, together with a certain identity obeyed by the Killing vectors on the
T-sphere, conspires to remove the trilinear couplings that would otherwise be the first signal
of the inconsistency of the truncated reduction.

The possibility of a dimensional reduction of a higher-dimensional theory on a sphere, in
which a finite number of lower-dimensional fields including the gauge bosons of the isometry
group were retained, was in fact conceived by Pauli in 1953 (in the context of an S? reduction
of six-dimensional Einstein gravity) [THI], but he recognised that the consistency problems
mentioned above would be an obstacle to realising his idea. In fact, the S” reduction of
eleven-dimensional supergravity was the first non-trivial example in which the idea of a
“Pauli reduction” [I0] actually works.

An indirect, but nevertheless complete, demonstration of the consistency of the S7
reduction was provided by de Wit and Nicolai in ref. [IT] (see also [12]). They obtained an
explicit expression for the metric uplift ansatz, and also partial results for the uplift ansatz
for the 4-form field strength. Their construction, making extensive use of the supersymmetry
of the theory, essentially proves that the reduction is necessarily a consistent one. Much
more recently, further work has provided more complete expressions for the 4-form uplift
ansatz, and has also provided further insights into the structure of the reduction [I3HI6].

Although the consistency of the S” Pauli reduction of eleven-dimensional supergravity
has now been fully established, and the uplift ansétze for the metric and 4-form field strength
are explicitly known, these expressions are in practice somewhat unwieldy and complicated
to use in full generality. In many cases, when for example lifting a solution of the four-
dimensional gauged supergravity to D = 11, it may suffice to have explicit expressions for
the uplift ansatz for only a subset of the fields in the full four-dimensional supergravity
theory. The uplift ansatz for such a truncation of the full gauged supergravity theory may
be much simpler and more manageable. Examples of this kind that have been obtained
previously include the embedding of four-dimensional SO(4)-gauged N = 4 supergravity,

for which the complete and explicit bosonic ST uplift ansatz is given in ref. [I7]. The four-



dimensional N' = 4 gauged theory is of course itself a consistent truncation of the N = 8
gauged theory.

Another example that has proved to be of considerable utility is given in ref. [I8]. This
describes the embedding of a truncation of the full SO(8) gauged theory in which only
the gauge bosons of the U(1)* abelian subgroup of SO(8) are retained. The truncation
in ref. [I8] retains also the four-dimensional metric, and three dilatonic scalar fields. The
associated four-dimensional theory in this case is not a fully consistent truncation of N' = 8
gauged SO(8) supergravity: to be consistent, one should include a total of six scalar fields
rather than just the three that are retained in ref. [I§], comprising three axions as well as
the three dilatonic scalars. However, if one restricts attention to four-dimensional solutions
in which the U(1) gauge fields are essentially purely electric or purely magnetic, but not
both, then the three axions can be consistently set to zero and the ansatz in ref. [I§] can
then be used in order to lift such solutions to eleven dimensionsE' The uplift ansatz found
in ref. [I8], with its restricted notion of consistency, is sufficient for the purposes of lifting
the static four-charge black hole solutions to eleven dimensions.

The purpose of the present paper is to obtain explicit expressions for the bosonic uplift
ansatz for the embedding of the fully consistent truncation of the SO(8) gauged supergravity
to its abelian U(1)* subsector. This theory, comprising the metric, four U(1) gauge fields,
and the three dilatons and three axions mentioned above, is the bosonic sector of the NV = 2
supersymmetric gauged STU supergravity theory. Its field content comprises the N = 2
supergravity multiplet coupled to three vector multiplets. The inclusion of the additional
three axionic scalar fields makes the uplift ansatz considerably more complicated than the
restricted uplift ansatz that was found in ref. [I§]. In fact an attempt to construct the
ansatz for the embedding of the bosonic sector of the gauged STU supergravity was made
in ref. [19], but at that time only the partial results for the 4-form uplift ansatz that had
been obtained in ref. [I1] were available, and the results in ref. [19] are for that reason
incomplete. With the recent advances in the construction of the internal 4-form uplift
ansatz for the SO(8) gauged supergravity that have been achieved in refs. [I3,I5l20], we
are now in a position to complete the job that was left unfinished in ref. [19].

The ansatz that we shall present in this paper is considerably more complicated than the
restricted one without the three axionic scalars that was obtained in ref. [I8]. It is, however,

still considerably simpler, for practical purposes, than the complete ansatz for the reduction

!To be more precise, the three axions can be consistently set to zero if the wedge products F* A F B of

the four U(1) field strengths all vanish.



to the full N' = 8 gauged SO(8) supergravity theory. The ansatz we obtain allows one to
lift, for example, any black hole solution of gauged N/ = 8 supergravity carrying abelian
charges to eleven dimensions. The most general such solution would have four electric and
four magnetic charges (although global symmetries could be used in order to rotate to a

duality complexion where a total of 5 independent non-zero charges remain).

2 Gauged STU supergravity

The gauged STU supergravity is a consistent truncation of the N' = 8 SO(8) gauged theory
with V' = 2 supersymmetry and residual gauge group U(1)*, the maximal abelian subgroup
of SO(8) [18,21]. In particular, the truncation leaves a total of six non-trivial scalars, three
dilatons and three axions parameterised by A; and o, respectively, with ¢ = 1,2,3, and
four U(1) gauge fields A* (o = 1,2,3,4) with associated field strengths F'*. The bosonic

Lagrangian, in the notation of ref. [19], is
L =R+1+ Lgins —V *1+ Liina + Lcs, (2.1)

where the scalar kinetic terms are simply [19]

Liing = _% Z ((aAi)Q + sinh? \; (80’2-)2) *1 (2.2)

%

and the scalar potential

V=—dg?)y (4 Y7, (23)
where [19]
1 ~ 1 ~
cosh \; = §(YZ2 +Y7), cos o; sinh \; = §(YZ2 —Y?). (2.4)
In addition, we define [19]
sin o; sinh \; = b;. (2.5)

It will sometimes be more convenient to use an SL(2,R) parameterisation for the scalar

fields rather than an SO(2,1) parameteristion, by defining dilaton/axion pairs (¢;, x;) by
e¥’ = cosh \; + sinh \; cos oy, x; ¥ = sinh \; sinoy (2.6)

in terms of which the scalar kinetic Lagrangian becomes

Liing = —% Z ((&pi)z + %% (8)@)2) x1. (2.7)
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The quantities Yj, }7; and b; defined above are now given by

Y2 =e¥i, Y2 =e % 4 Zebr, by = xie?". (2.8)

7 7

The kinetic terms for the gauge fields Lg;,4 and the Chern-Simons terms Log, given

by equations (36) and (38) of ref. [19], are

Liina = —1W|72 [PO (fff V2VZ+FL AFL + V2Y2YE#F2 AF2
HYP VR Y FG) N F + YRS VEFY A F)

+2P; by by (Y «F b AN FG — Y xFj A FYy)

+2Py by by (Yo #F ) A Fy — Y5 xFg A Fy)

+2Py by by (VE*F A A — Y #F2) A Fj’;))} (2.9)

and

Los = — W] 2 [bl bo by (Yf V2VZFL AFL + Y2Y2Y2F2 AF2
FYRVEYE By Aoy + Y2V VEFY A FY)
+b1 (Po + 2b% b?&) (?12 F(lz) A F(22) - Y12 F(32) A F(42))
+bo (Po + 267 b3) (Y3 Fioy AN Fo — Y5 iy A Fy)

by (Po+20253) (V2 FL A A — Y2 F2 A Ff;))} : (2.10)

where

Po=1+b34+03+b3, W=P)—2ibbybs,
Pi=1-034+03+0b2, Po=1+bF—b3+03, P3=1-+0%+03-02. (2.11)

3 Complete ansitze for N = 8 gauged SO(8) supergravity

In this section we summarise briefly the uplift anséitze for the full N' = 8 gauged SO(8)
supergravity [13,[15,[16,20,22]. | We remark that the ansitze presented below are not
unique, and in fact there are many possible ways of writing them down [23124]. Of course,
these ansatze should all be equivalent and the consistency of both the D = 11 and N' = 8
theories as well as the reduction will guarantee that this will indeed be the case. Here, we

present the ansétze in what we believe to be their simplest known form.

2We simply state the uplift ansétze here and do not give an account of how they are derived. For such

an account, the reader is encouraged to consult Refs. [T4HI6].



The metric ansatz [22]

A=l (2, y) = %KmIJ(y)KnKL(y) [ (uMNU n UMNIJ) (UMNKL + UMNKL) ] (r) (3.1)

has been known for some time and is in fact applied in ref. [I9] to determine the internal
metric for the full gauged STU supergravity. The recent progress concerns uplift ansétze for
components of the field strength Fysnpg (or equivalently the three form potential Aynyp),
ViZ.

Fonpgs  Fumnps,  Fuvmns  Fuvpm and  Fi . (3.2)

Note that the components as presented above do not quite correspond in a direct manner
to the notation used in ref. [I9]. This is because, in line with the whole spirit of a Kaluza-
Klein reduction, all fields in ref. [19] are defined with the Kaluza-Klein gauge fields included;
i.e. the seven-dimensional coordinate differentials dy™ always appear in the Kaluza-Klein
covariantised form

dy™ — <dym — K™ (y) AL (@) dm“) : (3.3)

The Kaluza-Klein redefinition above is easy to account for and we shall do so when pre-
senting the full set of uplift ansétze (see section [).

The Fypg components of the field strength can be obtained simply from the ansatz for

Ay 1315120}

Aminp(2,y) = —% Agpq K%L(?J)Kq KL(?J) [ (UMNIJ - UMNIJ) (UMNKL + ’UMNKL) ] ().
(3.4)
In particular,
Frnpg = 40/m Anpq)- (3.5)
Similarly,
Fumnp = 0pAmnp — 30pm A ujnp) (3.6)

with A, as determined by equation ([B.4) and A, given by the following exact vector

ansatz [15]

K ) A1) = LA e )P A @), (BT

A,umn(xy y) = 2%

The ansatz for Fjgq, [16] is particularly simple

o o V2 _
€u el/ﬁem eanaﬁab = 5 KmnIJ(y) g;u/ IJ(x) —12A lAmnp(xyy) KpIJ(y) ,H;LVIJ(‘T) )

8
(3.8)



where G,,,, 17 and ’HWI 7/ are covariantised field strengths of the electric and magnetic vectors
and e, and e;,” are defined by
e, B,Pey®
Eyt=|" "7 . (3.9)
0 en”

The Kaluza-Klein vectors B,™ in the STU truncation are given by the abelian U(1)* trun-
cation of K™/ Af;] . In particular, from the above ansatz we deduce that Fig,, vanishes
for four-dimensional solutions with vanishing vector expectations values.

The ansatz for Fi,-, is perhaps the most involved [16]

euae,,gep“’em“Fag,m
_ _Q opon IJ KL i iglay (Kl KIKL
T Nuvp” K (v) Kmn™ " () (U IJ+v ) U KL — v (x)
X <1>MijaaVM K — 2V 2mr A, MNVME Y — 2\/§m7AaMN1>MPkﬂ>NPij) (x),
(3.10)

where Vi ij is usual four-dimensional Fr(7)/SU(8) coset element parameterising the 70
scalars.

The ansatz for the F),,,,, components of the four-form are

F,uz/mn = E,uAEVBEmCEnDFABCD

= emen’e, e’ Fugap + 2BuP Fumnp — BuP By F pg, (3.11)

where the first term is given in equation ([B.8). Similarly, the F),, ., are given by equation
(3I0) and appropriate contractions of the Fimn, Fimnp and Fp,,p, components with the
Kaluza-Klein vectors B,™.

On the other hand, the conjectured ansatz for the Freund-Rubin termH is perhaps the
simplest and most elegant [16] é

; 2
— L peBrs M — L QiR (1)5,.
frn = — g™ Fass = g5 <v<x> 5@ <x>zwkl<sv,y>+h.c.)>, (3.12)

*Note that in ref. [I6], the components on the left-hand side of equations (B8] and (BI0) are denoted by
Fluvmn and Fjpm, respectively.

“There are other established ansiitze for the Freund-Rubin term (see ref. [16]). However, it has not yet
been possible to show that those ansdtze have the following simple form.

°In this paper, we use the conventions of ref. [T9], which are related to the conventions of ref. [I6] as
follows: gref. — ﬁgref. [19] and Vref. 6] _ 1/2 Vref. EE



where V() is the four-dimensional scalar potential, QY* is simply given in terms of the
T-tensor

Qukl — ZAQ nlij g, Klm g mli g, k] (3.13)
and complex self-dual tensor

Sk (T, y) = (i ued™F = vij vk k) (2) K™ L () K 5 (y). (3.14)

Note that the only components of the four-form field strength for which an ansatz is not
given in ref. [I9] are the ones related to the internal components A, of Aynp, which, as
explained above, are given by the ansatz in equation ([3.4]), after including the Kaluza-Klein

redefinitions explained above and in section

4 Derivation of A,,,,

In this section, we outline the derivation of the purely internal (7-sphere) components A,y
using ansatz (B.4]), which we repeat here for convenience

iv2
96

As is clear from the ansatz above, the first step is to compute the v and v tensors. These

Apnp = == Agpg K1 KL (MY — oMY (up ™5 v oyvgr) . (40)

tensors have already been computed in ref. [I9] (see also ref. [25]), but here, we express them
in terms of U(1)*-invariant tensors. In this way the u and v are expressed more covariantly
with respect to the U(1)* symmetry.

Without loss of generality, we can choose U(1)* € SO(8) to act on the index pairs
{12}, {34}, {56} and {78}, where, for example the first U(1) rotates 1 and 2 into each other.

Introducing
(XIJKL)]/J/K/L/ =4l 5}?{]{{]%/[/ , (4.2)
we define C% as
Ol = x1234 4 X678 02 = X256 4 x3478 O3 = X1278 4 x3456 (4.3)

It is clear that C% are the unique rank-4 U(1)%-invariant tensors, up to redefinitions of the
embedding of U(1)* € SO(8). Furthermore, there are also four rank-2 invariant tensors

1 2 3 4
FI(J) = 26}37 FI(J) = 25;6? FI(J) = 25?97 FI(J) - 26}% (4’4)

With the 28 Killing vectors of the SO(8) symmetry of the round S7 written in the spinor

representation, i.e. with

.0 )
KIJ = %(Fab)IJ <.Z' @ — .Z'b E) s (45)

9



we then define the following vectors and tensors:

5#? = 1_160—(:.)7JKL Kii@ K"RL 57(7?71 = _1_160-(‘2JKL K,{{ Kri{L’

D1 ~() 1J 1-KL

57(7?7113 - EC—ZIJKL Kmn Kp )
Fo =F9 KLY, Fe=FY KL, (4.6)

where
1 o
Kpn' = Ky = —— D K" (4.7)
my

Indices on K,/ and K,,,’’ as well as all U(1)*invariant tensors are raised and lowered
with the background (inverse) metric ¢™" and gy, respectively.
The 56-bein V = V1V, V3, where
w® 1T v(i)inL

vi=| 9 : (4.8)
,U(z)klIJ u(z)leL

In symmetric gauge each 56-bein is expressed as

0 ¢®

oD 0

where ¢ is the complex conjugate of #@ . In terms of the U (1)*-invariant tensors above,

the scalar expectation values are

oW = —2\; (cos o; C’i — i sino; C”_) . (4.10)
Hence by exponentiation,
0,50 = 5855+ 1 (eosn 2~ 1) (cic 4.11
wry = opy g | coshig (CLCY) 1k (4.11)
W, o LA o ising O (4.12)
vV KL = —5sinh 5 (cosa, . —isino; _)UKL. .

The v and v matrices corresponding to the full 56-bein V can then be found from

up K = u(l)IJMN <u(2)MNPQu(3)PQKL + U(2)MNPQU(3)PQKL)

oW N <U(2)MNPQU(3)PQKL I U(Z)MNPQU(S)PQKL) 7 (4.13)
oIIEL _  (WITMN <u(2)MNPQu(3)PQKL + U(2)MNPQU(3)PQKL>

IO (,U(2)MNPQU(3)PQKL I u(2)MNPQU(3)PQKL> , (4.14)

10



Now that we have the u and v tensors, we can compute A~!gP? Apnp by contracting them
with K1/ and K95% as prescribed by the formula ([I). In terms of the U(1)*invariant

vectors and tensors defined in equations (.G])

3 4
, 1
-1 _ qli) (a)g @(B)
AT g Ay = g b; S* 0 + ol E fap F*YVUEY (4.15)
=1 a,f=1
where, defining
vi=YP YR @ =YY (4.16)

fi1 = 3 (b3y3 + bay3) + biyay3 — 4b1babs, faz = —yi(b3ys + bay3) + brydys — 4bibobs,

faz = —v2(bay3 — boy?) — biydy? — dbibobs,  fia = yP(bay3 — bay?) — bryay2 — 4bybabs,

fiz = —G3(bsy? + boy2) + bigag? — 4by, for = 3 (bsys + bay3) + brdis — 4br,

fi3 = —03(bsyd + b1y3) + bagiij3 — 4bo, fa1 = T5(bsyi + bry3) + bafit s — 4ba,

fra = =3 (b} + bry3) + bsyiy3 — 4bs, f = T3 (bay} + bry3) + bsfiijs — 4bs,

fo3 = T3 (bay — biy3) — b5 + 4bs, fa2 = =75 (bayi — b1y3) — bsPids + 4bs,

for = 3 (b3} — bry3) — baiiiifs + 4bo, fi2 = —3(b3y} — bry3) — boglif3 + 4bo,

fas = U3 (bsys — bay3) — briaifs + 4by, f13 = —73(bsy3 — bay3) — bri3i3 + 4by.
(4.17)

The U(1)*invariant vectors and tensors are given explicitly in terms of a set of adapted
coordinates on S” in appendix [Al Thus, all that is left to do in order to find A, is to
contract Agp,, which we know from the metric ansatz [19], with the expression found above

written in adapted coordinates, i.e.

3 4
7 1 «
Apnp = Agpq Z L0 —— Gl Z fap F(@)q Fr(nﬁrz ] (4.18)
i=1 a,B=1

The resulting expression iSEI

®Recall that indices on U(1)*-invariant tensors are raised /lowered using the background (inverse) metric

o o
on the round seven-sphere, ¢"" /g mn.
"The factor of g~2 is introduced in the expressions below because we are using dimensionless coordinates

on the unit sphere.
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b - e e -
Aase dtta = 5 :193 W d(pi5) — p3 W d(i) — it i (Y3'Y5 don +Y5'YS das) ||
b - . " -
Aats dita = 5 :193 d W d(pi5) — i3 Wa () + i3 i (Y3'Y5 don = Y5'Y5 das) ||
b - e e -
Aast dpta = 3 :293 1 W d(pi5) — i3 Wi d(ui) — i (YPY? don +Y5'YS das) ||
b - " " -
Aass dita = 3 :293 1 W d(pi3) — 3 Wa () + pi3 i (YPYP don = Y3V da) ||
bg [ lad lad ]
Aass djta = 3= | Wad(f) —pd Wad(ud) = i g (YPYY doa + Y575 daw) |
bg [ ~ ~ R
o1 djta = 32 5 13 Wa d(pi5) — 3 W d(pi3) + pi3 5 (Y'Y don = Y5'Y3 das) |, (4.19)
where
Wy = Y33 s + VPV 3 + Y25 1]
Wa = YZY3 if + YPY3 p3 + YV g,
Wa = Y2V i + YPY3 i + Y3V 1]
Wi = YPY5 i + YPY5 4 + Y53 1 (4.20)
and
ar=pit+ps  ae=pitpl, oz =pitpg. (4.21)
Note that the W, defined above are related to the Z, defined in ref. [I9] as follows
Wo = Zo — pi2. (4.22)

The coordinate indices (5,6,7,8) on the A,,,, refer to the directions (¢1, ¢2, ¢3, p4) respec-

tively, so Ay = Aase dpa AN dor Adgg +---.

The function = is defined in equation (21) of ref. [I9] as follows

= = YPVEYENL 4 VRV k  TRVET U 4 TR

+ (Y2YE + YY) (YR 3 + Y udud)
+ (YEYE + YY) (YEudud + Yiudus)
+ (YPY? + YRV (YR pipd + Yiu3u3). (4.23)

5 Uplifting gauged STU supergravity to eleven dimensions

The uplift ansatz for A,,y,, given in ([@I9) in the previous section, along with the previous

results of ref. [19], allows us to complete the uplift of gauged STU supergravity to eleven

12



dimensions. The uplift of the four-dimensional metric ds3 was obtained in ref. [19], and is

given by

[I‘]
i

ds?, = d

2
7

—_—2
g PES [Z Zo dpl, + 13 DOR) + 2b2 by (167 13 D Dz — i3 i Dbz Depa)

W>

|
[1]
ol

ds? +
dsj +
+2b1 by (43 113 D1 Dops — i3 i Dpo Dpa) + 2b1 ba (13 17 Dy Dby — 3 13 Dpo Dps)
+407 <(M1 dpy + pio dpiz)® + (ps dps + g du4)2)
+3b3 <(m dpy + 3 dps)® + (p2 dpg + pa du4)2)
+503 <(M1 dpiy + pra dpea)? + (po dpo + 3 du3)2)] ) (5.1)

where ds? is the four-dimensional metric, the Z, are defined in (Z20) and [@22), and = is
defined in ([£23). The 1-forms D¢,, which are defined by

Do = dpo — g Al s (5.2)

manifest the expected U(1)* gauge invariance A%, (x) — A%,

via the subset ¢, — ¢o + g A%(2) of the eleven-dimensional coordinate transformations.

(x) + dA“(x) that originates

The 4-form field strength is given in equation (41) of ref. [I9], which we reproduce here

for convenience
F(4) = —2gU€(4) + F(/4) + F(/Z/l) + 6(4) s (53)

where €4, is the volume form in the four-dimensional spacetime metric ds3. The first term

in (5.3) corresponds to the Freund-Rubin term, with

U =Y (0] +p3) + Y7 (03 + ) + Y5 (03 +13) + Y5 (03 + ) + Y5 (03 + 1) + Y5 (13 +113)
(5.4)

In terms of the components Fypcp, this corresponds to Fg+s.

where A’

The next term in the expression above is F (’ = dA! (3) 1s obtained by making

(3)7
the replacements d¢, — D¢, in the expression for the internal projection of the 3-form

potential ([AI9). Thus we have

Aly = 3A 5 o N (ddg — g AL) A (dy — g AT) (5.5)

where the components A_ . are given in (@.IJ).

$Note that we have introduced the hatted indices & such that (1,2,3,4) = (5,6,7,8).
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The term F, (1)» which is given in equation (43) of ref. [19], is
R 1 B
Fly = =52 W17 D_due A (dda = g A3) A Ra, (5.6)
[e%
where

Ry = YPYZYG [PyxFY + 201 by by Fy ] + Y2 [Prbo by + 5 + by (P + 203 03) F)] (5.7

Y5 [Py by by xF) + ba (Py + 267 b3) Fioy | + Y3 [Py by by #Fy) + by (Po + 2b7 b3) Fy ],
Ry = Y2 Y3 Y [Py +F3) + 2b1 by by Fig] + Y7 [Py bo by +F5) + by (Py + 203 b3) Fb |

—Y3 [Py by by +F ) + by (Po + 207 b3) Fi3)] — Y [Py by by F ) + by (P + 2b103) Fiy ],
Ry = Y2 Y5 Y [Py +F3) + 2b1 by b Figy] — Y7 [Py bo by +F) + by (Py + 203 b3) Fy |

Y5 [Py by by < F ) + bo (Py + 261 b3) Fby] — Y5 [Py by by #Fy) + by (Po + 267 b3) Fi3]
Ry = YP Y3 Y [Py +FQ + 2b1 by by Fiay] — Y7 [Py bo by +F3) + by (Py + 203 b3) 3 |

—Y5 [Py by by xF ) + by (Po + 263 b3) F3)] + Y5' [Py by by xF ) + by (Py + 267 b3) Flb]

and W and P, are defined in (2I1]).
Finally, the remaining term in (5.3]) is given by

R 1 -
Gu = 2% Y] #dY1 — x1 Yy xdya) A d(pf + p3)

1 _
T (2V5 L %dYa — xo Yol xdxa) A d(p? + p2)

L oy dyy — a Vi #d d(u? + pi
+2g( 3 *dYs3 —x3Y3 xdxs) A d(py + pg) - (5.8)
Note that, as observed in ref. [19], the equations of motion for the U(1) gauge fields in the
STU theory are simply given by d(|W|~2 R,) = 0.

5.1 Consistency of the other uplift formulae with the general uplift ansatze

In this section, we revisit the uplift ansitze for some of the other components of the 4-form
field strength. In particular, in light of the recent developments [16], we show that the
ansatz for, in particular, the Freund-Rubin term takes a simple form.

In ref. [16], an uplift ansatz is given for the Freund-Rubin term and it is, moreover,
conjectured that the term can be expressed in terms of the sum of the potential and its
derivative according to the conjectured formula (8.12]). In order to express the Freund-Rubin

term in this form, we introduce the following paramaterisation of the scalars:
n; = A\ cos oy, ;= M\ sino; . (5.9)
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The scalars 7); are the coefficients of the self-dual tensors in the parameterisation of ¢;;z; in
the unitary gauge, and (; are the coefficients of the anti-self dual tensors.

It can now be seen that the function U given in (5.4 can be written as

1 v
U=——(V e, 5.10
where
G=pi+us—p3—pi, b=pitpi—ps—pi, SGe=pi+pd—p3— 3. (5.11)

Note also that, in terms of tensors &;, G(4) given in (0.8) can be written as

A 1
Guy = 19 Z(cos o; xd)\; — sino; sinh A\; cosh \; xdo;) A d¢; . (5.12)

i
The form of this is consistent with the ansatz for the F, 3., component of the field strength
proposed in ref. [16], equation ([BI0). Furthermore, it is now straightforward to see that the
Bianchi identity dﬁ(4) = 0 is satisfied provided that the scalar fields satisfy their equations
of motion.

The F (’ 1) term is given by the Kaluza-Klein covariantisation of Fy,npq, Flumnp and, since
F(’ ) = dA’(3) with A’(3) given by equation (B.3]), the second term on the right-hand side of
the expression for Fi, g4, [B.8).

Moreover, the F(’jl) is given by the Kaluza-Klein covariantisation of the first term on the
right-hand side of the expression for F,gq,, ([3.8]).

Thus, we have established the direct, if somewhat intricate, relationship between the
uplift ansatze of the gauged STU supergravity with the general ansitze for the full NV = 8
supergravity, given in ref. [16].

6 Consistent truncations of the STU embedding

There are two inequivalent consistent truncations of STU supergravity that are sometimes
useful in their own right, and have the merit of being considerably simpler than the full
STU theory. In each case, the bosonic sector of the truncated supergravity comprises
gravity coupled to two U(1) gauge fields, a dilatonic scalar and an axionic scalar. The two

truncations, which we shall refer to as the 2 + 2 truncation and the 3 4 1 truncation, are
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implemented by setting

242: A=A o1 =0, /\2:/\3:02:03:0,

1 2 3 4 A

A, =4, =4,, A=A, =4,, (6.1)
3+1: A =X=A3 =], 01 =09 =03 =20,

A=A, A =4 =A=A,. (6.2)

Note that we are not rescaling the gauge potentials in these truncations, so A, and EM in the
2+ 2 truncation and A, in the 3+ 1 truncation will have non-canonically normalised kinetic
terms. Also, in the 3 + 1 truncation the scalar fields A and ¢ will have non-canonically
normalised kinetic terms. We have chosen not to rescale the truncated fields in order to
avoid the occurrence of many V2 or /3 factors. It will be convenient to parameterise the
scalar fields in the standard SL(2,R) form, for which their kinetic terms are proportional

to —0p? — e?¥ Ox?, by introducing ¢ and y that are related to A and o by
e¥ = cosh A\ +sinh \ coso, xe? =sinh A sino, (6.3)
in terms of which we have
Y? = e?, YZ=c"%+%e?, b=xe”. (6.4)

6.1 2+ 2 truncation

Here, with the fields truncated as in (G.]), we choose an adapted parameterisation for the

the pq coordinates in which we take
ulzccos%H, ugzcsin%H, ugzscoséé, ,u4:ssin%9~, (6.5)

where we have also defined

c=cos&, s =sin€. (6.6)

The four azimuthal angles ¢, will be parameterised by defining

N[
—

<)

|

-2
SN—
—
D
\]
N—

pr=3W+¢), o=3W—9), d3=3iW+P), du=

The unit 7-sphere metric then takes the form

4
07 = "(du2 + pd d¢?) = d&* + cos® £ dQ3 + sin® £ dQ3 | (6.8)

a=1
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where

dQ3 = 1|d6? +sin® 0d¢2+(d¢—|—0050d¢)2] , 03 = 1|d6% +sin? 6 dg? + (di + cos 0 d)>

(6.9)
are the metrics on two unit 3-spheres.
The metric reduction ansatz (5.1) in the 2 4 2 truncation thus reduces to
1
a2 -t .0 23 o Cos?Er o 2 2
dsh = 3 dsi+ 5 {dg t o [d@ +s5in2 0 dg? + (dip + cos O de — 2gA.)) }
sin® € [~ 25 172 > i T2
+ [d@ +sin2 0 dg? + (di + cos 6 dd — 2gA,)) ”,(6.10)
1

where, from ([@20) and [@22]), we now have
Zy = Zy=Y?sin?E+cos’E, Zys=Z4=Y?cos’E+sin’E, E=717Z;. (6.11)

The 4-form reduction ansatz is now given by

sc R .
Fuy = —29Uc¢€u — ; (xdp — Xezp xdx) N d§ + dA£3) + F(’i) ,

. 1 o C4 34 ~ o~
_ L Q) - £ 12
Ay = Sxe [Zg Q4) - - 34, (6.12)
~ C 3
' = 3y (38 A (At + cos0dp — 29 A) + he sin0dh A dg| A (+F oy + X Y2 Fro)

—2;? [cdﬁ A (dJ—l— cos O dp — Qgg(l)) — %S sin 6 df A dgﬂ A (*Fv(z) —xY? Fv(z)) ,
g

where
U=2Y*+2Y%2+2,
Q(A) = Lsinb (dip + cosOdp — 2gA.)) Adb Adg,
QA) = %siné(d{/;—i— cos 0dg —2gA,)) AdO A d. (6.13)

The bosonic sector of the STU supergravity Lagrangian given in section 3 reduces under

the present 2 + 2 truncation to
L =Rxl— %*dcp/\dcp— %ezp*dx/\dx— V1
—Y_2 *F(z) AN F(z) — }7_2 *Fv(z) AN ﬁ(g)
_XF(Q) /\F(Q) +XY2 }7_2 ﬁ(g) /\ﬁQ, (614)
where
V=4 (Y2 4+Y%14). (6.15)
It can be verified that the uplift of the 242 truncation that we obtained in this subsection

agrees with the abelian truncation of the uplift of the N' = 4 gauged SO(4) supergravity
that was obtained in ref. [I7].
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6.2 3+ 1 truncation

For the 3 4+ 1 truncation of the fields of STU supergravity, given by equation (G.2]), an

appropriate adapted parameterisation for the u, coordinates is given by taking
1 = cos&, la = Vg SINE, a=2,3,4, Zugzl. (6.16)

The unit S7 metric then takes the form

dQ2 = de® + cos? £ dp? + sin” €02, (6.17)
where y
A% = (dvZ + v} d}) = d¥3 + (dip + B)? (6.18)
a=2

is the metric on the unit 5-sphere, and d¥2 is the standard “unit” Fubini-Study metri(H on
CP?, with J = %dB being the Kahler form on CP2. In terms of v, and ¢, we have

(dip + B) Z v2do, . (6.19)
It will be convenient to define the two functions
B=Y2(Y2P2+Y2s?), y=Y1e? 457, (6.20)

where, as before, we have defined ¢ = cos¢ and s = sin¢. From ([£20), (£.22) and ([£23]) we
find
=Y+, Za=B-bs*2, ==p%Y2, (6.21)

where, as before, b = xe¥ = y Y2. The eleven-dimensional metric (5.I]) now becomes, in
the 3 4+ 1 truncation we are considering here,

R 1 o2 b2 2 - 2
ds}) = S5 ds3 + g 2= _dgz + s ((dv + B - gA(l))—I—T(qul )

522

+B 52 dS + = (de — gﬁ(l)ﬁ] . (6.22)

Substituting the 3 + 1 truncation into the uplift formula for the 4-form in STU super-

gravity given in section 5, we now find

F(4) = —2gU 6(4) + é(4) + dA£3) + F(Z) s (623)

9The Fubini-Study metric is given in terms of the complex coordinates z, = v, €' ?* on S° by d¥3 =

>oudZadza — |3, Zodza|®. This “unit” metric is Einstein with R;; = 6g;;.
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with

U=2Y22+Y2s%)+Y2,

N 2
Gu = ;C (xdep — x €2 xdx) A dE,

, scx -~ 8262 20 ~
A(S) = ? dg A (dQSl - gA(l)) AN (drlz} + B — QA(1)) — @ X e (dqbl — gA(l)) A J

4
S
+IB—93X€2¢ (d’l/]‘i‘B _gA(l)) /\J,

i = 2\W\2 d€ AR A (doy — gAp)) — 2!W!2 dé NRA (dip + B — gAy))
82
————RAJ 6.24
g (W2 ’ (6.24)
where, from (211,
W2 = (14 4b*)(1 4 b*)? (6.25)
and from (5.1),
R=R,, R=Ry=Ry=Ry, (6.26)
with

R =Y [(1+3b) F 4 20° Fio) ] + 3b (1 + 0*) Y2 [bxFy) + (1 + 2b%) Fpp],
R=Y?(1+b)?[4F o — 20 Fo)] +b(1+b2) Y2 [bxFy + (14 2b%) Fipy].  (6.27)

The bosonic sector of the STU supergravity Lagrangian given in section 3 reduces, under

the 3 + 1 truncation, to
Ly=Rx1-— % (*dcp A dp + €2 sdy N dx) —Vxl+ Lgina+ Leos, (6.28)
with

V = —1282(Y? +Y?),
1

Liina = _W [6X2 e? xFy N }7}2) +e (1 + 3X2 2S0)(1 + X2€2w) *ﬁ@) N ﬁ@)
+3e¥ *Fo) A Fly,
N _
Los = (L 4x2e%) [ —3e*Fa) A Fpoy +3(1+2x% %) Fioy A Fg

X+ x2e*) Foy A Fpy). (6.29)

7 Conclusions

The existence of a consistent reduction of eleven-dimensional supergravity on S”, to give

four-dimensional N = 8 SO(8) gauged supergravity, was first established in [II]. In that
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paper, the complete expression for the eleven-dimensional metric ansatz was obtained, and
partial expressions also for the four-form field strength. The complete expressions for the
uplifted four-form field strength were obtained recently [I3HIG]. Although the results are
now complete, they are not necessarily convenient to use in practice, if, as is commonly the
case, one is interested in uplifting four-dimensional configurations that involve only a subset
of the full set of N' = 8 supergravity fields. In the context, for example, of four-dimensional
black hole solutions, it is almost always the case that only an abelian subsector of the
SO(8) gauge fields is turned on. Thus for many practical purposes, it suffices to know the
uplift formulae for the truncation of the SO(8) gauged supergravity to its abelian U(1)%
subsector. The consistent truncation of the maximal gauged supergravity to this abelian
subsector corresponds to the gauged N/ = 2 STU supergravity theory, whose bosonic sector
comprises the metric, the four abelian U(1) gauge fields, three dilatonic scalars and three
axionic scalars. This theory is, for example, sufficient in order to describe the general class
of rotating asymptotically AdS black holes, which can carry four electric and four magnetic
charges.

In this paper, we have carried out the abelian truncation of the results for the uplifting
of the gauged N/ = 8 theory, thereby obtaining fully explicit expressions for the lifting of
the bosonic sector of the four-dimensional gauged STU supergravity to eleven dimensions.
We formulated the truncation in a notation that is adapted to the U(1)* isometries in the
internal directions on the seven-sphere. In special cases where the gauge fields are either
purely electric or purely magnetic, one can make a further consistent truncation (to a non-
supersymmetric theory) in which the three axionic scalars vanish. This leads to enormous
simplifications in the formulae, and they then reduce to ones that are given in ref. [I8].

We also considered two distinct supersymmetric truncations of the STU supergravity,
where, in each case, two gauge fields, a dilatonic scalar and an axionic scalar survive. The
first, which we referred to as the 2 4+ 2 truncation, is achieved by setting the four original
gauge fields to be pairwise equal. The second, which we call the 341 truncation, is achieved
instead by setting three of the original four gauge fields equal. The geometric structure of
the internal seven-sphere becomes particularly simple in these two truncations. In the 2+ 2
truncation, the seven-sphere is described as a foliation by S° x S3 factors, with the two
surviving gauge fields being associated with the two U(1) isometries acting on the Hopf
fibres in the two S® factors, viewed as U(1) bundles over S2. In the 3 + 1 truncation the
seven-sphere is instead described as a foliation by S° x S! factors, with the two surviving

gauge fields being associated with the U(1) isometry acting on the Hopf fibres of S° viewed
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as a U(1) bundle over CP?, and the U(1) isometry of the S* factor. Consequently, the uplift
formulae are much simpler for these truncations.

We hope that the new uplift ansétze presented in this paper for what are particularly
interesting truncations of maximal SO(8) gauged supergravity will be of use in future ap-

plications.
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A U(1)*invariant tensors in adapted coordinates

We shall use an adapted coordinate system y™ = (fiq, ¢,) for S7, with the direction cosines

e satisfying
4
S oui=1. (A1)
a=1
These coordinates are related to the R® coordinates as follows
iz = e, B4izt=ppel??, 24128 = pzel?, 242 = el (A2)

The expressions for the various U (1)*-invariant tensors become much more elegant in terms

of these coordinates. First of all, we have the background round S7 metric

A% = Grondy™dy™ = > (dp? + p? dg2) . (A.3)

«

Note that the inverse background metric in these coordinates is

0% = GOy = > (HaOuy — 1500,)2 + > 1o 02, . (A.4)

a<p
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The vectors 57(,?, viewed as 1-forms, are then given by

Wdy™ = 3d(uf + p3) = 3(p1 dps + po dp) = —3d(p3 + pf) = —3(us dps + pa dpa)

Wdy™ = 3d(u + p3) = 3w dp + ps dps) = —5d(p3 + p3) = —3(n2 dpa + pa dpa)

Ddy™ = 3d(pf + pf) = (1 dpn + padpg) = —3d(p3 + p3) = —3(p2 dpz + pis dus) .
(A.5)

The 2-index symmetric tensors g,% are given by

o dy™dy™ = — 1 (uf + 13)(dpd + du3 + pidet + p3des)
+ 113 + 1) (A3 + dpi + p3de3 + pide?) ,
&R, dy™dy™ = — F(uf + 13)(dpd + dp3 + pidet + p3des)
+ 5 (15 + pd) (dp3 + dpi + pdds + pides)
&), dy™dy™ = — $(uf + 1) (dpd + dpd + pidet + pided)
+ 5 (15 + p3) (dps3 + dp3 + p5dds + p3de3) . (A.6)

The vectors Fr(na) are given by

FDdy™ = pf dgy + p3 do + p3 ds + pi3 doa
FPdy™ = 1} doy + p3 dps — i3 des — pi3 des ,
Fdy™ = pif dgy — p3 gy + pi3 des — pi des ,
Fidy™ = 13 dgy — p3 de — p3 dds + i dea (A7)

The 2-forms F ((2?) = dF((S) are given by

3 52

Ddy™ A dy™ = 2pdpn Addy + 2uadps A dds + 2psdpg A dés + 2uadpg A déy
2dy™ A dy" = 2u1dpy A déy + 2uadps A dgy — 2usdps A dds — 2uadpug A da
Ddy™ A dy" = 2pidps A déy — 2padps A dgs + 2psdps A dos — 2padpug A dey
ndy™ A dy" = 2uydpny A dy — 2padps A ddy — 2pzdps A des + 2padpg A doy .
(A.8)

5k

NI NI= N N

S|

3

—~
o~
=

The 3-forms S are given by

SW = g (pdps — padpn) A dgy A dos + gpspia (psdpa — padpis) A des A dga,

S@ = —Lpuips (dus — padur) A dey A des + Spapa (podua — padpsz) A dés A dey

S = — Ly pg (prdps — padpn) A dey A dés + Lpops (nadus — padps) A dgs A ds .
(A.9)
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