
ar
X

iv
:h

ep
-p

h/
95

01
24

7v
1 

 9
 J

an
 1

99
5

CTP-TAMU-01/95

hep-ph/9501247

January 1995

Planck Scale Physics and the Testability of SU(5) Supergravity

GUT

D. Ring∗, S. Urano†, and R. Arnowitt‡

Center for Theoretical Physics, Department of Physics, Texas A&M University, College Station,

TX 77843-4242

Abstract

GUT scale threshold corrections in minimal SU(5) supergravity grand

unification are discussed. It is shown that predictions may be made despite

uncertainties associated with the high energy scale. A bound relating the

strong coupling constant to the mass scales associated with proton decay and

supersymmetry is derived, and a sensitive probe of the underlying theory is

outlined. In particular, low energy measurements can in principle determine

the presence of Planck scale (1/MPl) terms.
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Over the past two decades, much attention has been given to the possibility of unifying

the three gauge groups of the Standard Model into one group. These GUT models are theo-

retically more appealing than the Standard Model for various reasons [1]. The 1990 precision

LEP data strongly indicated that supersymmetry is needed to achieve grand unification [2],

and spurred on many new analyses of different aspects of SUSY GUTs.

With the increasing precision of data, further predictions will be affected by supersymme-

try threshold effects and the details of the model at high energy. In this note we examine the

effects of the non-degeneracy of the super-heavy GUT spectrum, and the possible existence

of non-renormalizable operators from Planck scale physics. A number of treatments of these

issues have been given recently for the SU(5) model [3–6]. It was found that many of the

predictions for low energy observables were blurred by the high scale effects. For example, it

was argued that the SUSY scale cannot be determined by a more accurate measurement of

α3 [3], and the rate of proton decay cannot be predicted from low energy data if additional

Planck scale terms are present [5].

Nevertheless, we will show here that there are still predictions to be made in this model:

a. The effect of Planck scale non-renormalizable terms becomes smaller as the value of

α3 is varied to lower values, so the lower limit on α3 is not lost. This is especially interesting

since there is currently a disparity in the values of α3 between the measurements made

at weak scale energies, and those made at lower energies [7]. Resolving this disparity and

refining the measured value of α3 will provide an important test of the model.

b. Since Planck scale physics smears the correlation between α3 and the mass scale

which governs proton decay, proton decay will be a sensitive probe of Planck scale physics.

In particular it will be seen that by purely low-energy measurements one can determine

experimentally the degree to which the dominant Planck scale term is present. Thus models

of this type allow for the first time a test for the existence of Planck scale physics and

whether Planck scale physics impinges on low-energy (electroweak scale) physics.

With respect to the second item, progress has been made recently in deriving models

similar to the ones considered here from string theory [8,9], so that the gravitational smearing
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may be calculable in principle. Proton decay would then be a sensitive test of string theory.

Our model of GUT physics is defined by superpotential [10,11]

W = λ1[ 13 tr(Σ
3) + 1

2
Mtr(Σ2)]

+λ2HX(Σ
X
Y + 3M′ δXY )H

Y

+εUVWXY HUMVW f1M
XY +HXM

XY f2MY , (1)

where Σ,H, and H form a 24, 5, and 5 of SU(5) respectively, M and M are 5 and 10 matter

superfields, f1 and f2 are Yukawa coupling constant matrices in the generation space, and the

mass parameters M and M′ are set equal to account for a light Higgs doublet. (This is a well

known fine tuning problem with this model. We consider elsewhere alternate models such as

those in Ref. [12] which avoid this fine tuning.) The gauge group is broken down to SU(3)

× SU(2) × U(1) when Σ grows a VEV: 〈Σ〉 = Mdiag(2, 2, 2,−3,−3). The resulting super-

heavy spectrum includes a heavy color Higgs chiral multiplet (3,1,2
3
) of mass MH = 5λ2M, a

vector multiplet (3,2,5
3
) of mass MV = 5

√
2gM, chiral multiplets (8,1,0) and (1,3,0) of mass

MΣ = 5

2
λ1M, and a Standard Model gauge singlet chiral multiplet (1,1,0) of mass 1

2
λ1M,

where the numbers in parentheses are the SU(3) and SU(2) representations and hypercharge

quantum numbers.

In the following we assume 0.1 ≤ λ1,2 ≤ 2.0, i.e. 10−3 <∼ αλ1,2

<∼ 1/3. The upper bound

is imposed so that the model stays within the perturbative domain, while the lower bound

excludes any anomalously small couplings.

In addition to the renormalizable interactions, one may add the dominant non-

renormalizable operator from Planck scale physics [13],

L0 =
c

2MPl

tr(FFΣ), (2)

where MPl = 1/
√
κ = 1/

√
8πG. In the first part of this paper we impose, for naturalness,

|c| < 1. The main effect of this term is to modify the unification condition when Σ grows

a VEV. Note for now that 〈Σ〉 will be O(MGUT) so this term enters with a coefficient

MGUT/MPl ≈ (1/10− 1/100) and we would naively expect its effects to be small [14].
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We will concentrate mainly on gauge coupling unification. The running of the gauge

couplings with respect to the energy scale, µ, is governed by the two-loop renormalization

group equations [15],

d

dt

1

αi(t)
= −bi −

1

4π

∑

j

bij αj(t) +
1

16π2

∑

f

bif h
2
f (t) (3)

where αi ≡ g2i /4π, t ≡ (ln µ̂)/2π, µ̂ = µ/(arbitrary mass parameter), and hf are the Yukawa

couplings. In MSSM, one-loop coefficients are bi = (33/5, 1,−3)i. The two-loop coefficients

are also well known and can be found elsewhere, e.g. in [16].

We first discuss the effect of GUT scale thresholds without the Planck term. The GUT

degrees of freedom are included in the running at their respective thresholds by

αi
−1(µ) = αi0

−1(µ)−
∑

a

∆bthia
1

2π
ln(

µ

Ma

), (4)

where αi0(µ)’s are calculated numerically to two-loop accuracy from their low energy values

via the RGE’s using the MSSM beta functions. The low energy values of αi0(µ)’s include

SUSY threshold which will be discussed later. In Eq. (4), the index a sums over the GUT

degrees of freedom with masses less than µ, ∆bthiΣ = (0, 2, 3)i, ∆bthiH = (2/5, 0, 1)i, and

∆bthiV = (−10,−6,−4)i. The largest of the Ma is called MU, as this is where the coupling

constants actually meet. Thus the unification condition is αi(MU) = α5(MU).

On the other hand, if the Planck term is included, then when the VEV of Σ is inserted

into the dominant Planck scale operator of Eq. (2), the kinetic terms for the gauge bosons

will receive a contribution. Thus the unification condition will be modified by replacing

α5(MU)
−1 by

α−1
5 (MU)(1− c

M

MPl

, 1− 3c
M

MPl

, 1 + 2c
M

MPl

), (5)

where M is the mass parameter entering in 〈Σ〉.

At low energies we must consider the decoupling of supersymmetric degrees of freedom.

This can be described at the one-loop level by three SUSY threshold parameters Mi, one

for each coupling constant [6]. The meaning of these parameters is as follows: if above

4



Mi we assume the threshold particles to be massless, and below Mi we assume them to

be completely integrated out, and we assume the couplings meet smoothly at Mi, then at

scales far from Mi our running coupling constants will match the exact ones [17]. Such an

Mi can always be found for each i so long as the one-loop beta function above the threshold

is different from that below [18]. Thus the effect of SUSY thresholds is given by [19]

αi
−1(MZ) = αi0

−1(MZ) + ∆bthi
1

2π
ln(

MZ

Mi

). (6)

Here, αi(MZ) are the couplings at MZ, while αi0(MZ) are the couplings one would obtain at

MZ if one ran with the full SUSY beta function down to MZ. ∆bthi = (5/2, 25/6, 4)i gives

the contribution to the β function from the additional SUSY degrees of freedom. This is

sufficient for a two-loop analysis as well, so long as the SUSY thresholds are not too far

from MZ. We treat all Standard Model degrees of freedom except the top as degenerate

with or lighter than MZ. We take the top mass to be 174 GeV in accordance to the latest

experimental indication [20]. Uncertainties in its value do not affect our results significantly.

There are two subtleties involved in relating the Mi’s to the sparticle spectrum. First,

the coupling constants do not actually jump in slope when the scale reaches the mass of a

particle, rather they change gradually. If our measurements are performed in the region of

changing slope, “match and run” will be inaccurate. Second, if the threshold region is close

to the electroweak symmetry breaking scale, there are always mass splittings among the

particles in the gauge multiplets. This potentially large effect has never been fully treated,

and is essential for incorporating detailed SUSY spectra in unification analyses. Regardless

of these subtleties, any supersymmetric spectrum can be accommodated by Eq. (6) if the

Mi’s are allowed to vary below MZ as well as above [6].

Combining Eqs. (3), (4), (6), and the unification condition as modified by (5), we arrive

at the equation which we use for our calculations:

α−1
5 (MU)

(

1− c
M

MPl

, 1− 3c
M

MPl

, 1 + 2c
M

MPl

)

i

= α−1
i (MZ)− bi

1

2π
ln(

MU

MZ

)
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−
∑

j

bij
1

4π

∫ tU

tZ

αj0(t) dt+
∑

f

bif
1

16π2

∫ tU

tZ

h2
f(t) dt

−∆bthi
1

2π
ln(

MZ

Mi

)−
∑

a

∆bthia
1

2π
ln(

MU

Ma

). (7)

In order to provide a bound relating α3 to MH and Mi we fix c and sin2(θW ) to take

their maximum values [21] and λ1 to take its minimum value, while λ2 varies. At each

point we iterate numerically in order to find the solution of Eq. (7) and thus α3 and MH.

Some of the results are displayed in Fig. 1, where we have chosen the degenerate case of

M1 = M2 = M3 = MSUSY, and we have plotted a bound each for MSUSY = 10 GeV, 100 GeV,

and 1000 GeV.

The relevant bound on α3, the lower horizontal line in Fig. 1, can be parametrized by

[22]

α3,min = 0.040 + 0.0139 tH

−0.00579 tSUSY − 0.00454 t2SUSY, (8)

where tα ≡ (1/2π) ln(Mα/MZ) for mass Mα. For the case that the Mi’s are non-degenerate,

we may still use Eq. (8) to a close approximation, when we replace tSUSY using the following

formula:

tSUSY = 0.305 t1 + 7.738 t2 − 7.043 t3

+2.38 t21 + 20.91 t22 + 6.90 t23

−20.21 t1t2 + 12.54 t1t3 − 22.53 t2t3. (9)

We find it useful to think of MSUSY as defined in this formula as an effective mass scale to

account for the SUSY thresholds in Eq. (8). Thus, in Fig. 1, although we have only plotted

the results for the degenerate SUSY thresholds case, we may think of the bottom curves

(which give the α3 bound) as valid for all Mi with corresponding MSUSY as given by Eq. (9)

[23].

Current bounds on the p → ν̄ +K+ decay mode [24] imply MH > 1.2 × 1016 GeV [25].

Using MSUSY = 100 GeV, (a characteristic value consistent with proton decay data), one
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finds α3 > 0.112. Thus resolving the α3 measurements is a crucial test of the model.

We also plot in Fig. 1 the allowed region (shaded) where c = 0, and all GUT thresholds

are taken to be degenerate (i.e. MH = MV = MΣ = MU), for the case of degenerate SUSY

thresholds, and Mi between 10 GeV to 1000 GeV. We see that the lower bound on MH

implies now α3 > 0.1145, and there is a strong correlation between α3(MZ) and MH.

We turn now to the Planck scale parameter c. Due to a cancellation, fixing sin2(θW ),

α3(MZ), and the Mi’s uniquely determines MH when c = 0 [26]. Assuming in the future we

have a complete picture of the low energy physics, including the SUSY spectrum and the

proton decay rate in both major modes, we can compare this value for c = 0 (MH(0)) with

the correct MH as determined from proton decay, and therefore determine c. The result can

be summarized in the formula

c =
α5MPl

10πM
ln

MH

MH(0)
. (10)

M could be determined by the p → e+ + π0 decay mode, since this decay is governed by

MV = 5
√
8πα5 M. One may obtain α5 from Eq. (7). An approximate value is α5 = 1/23.

Note that a rough determination of c is possible even without the pion decay mode, e.g.

by taking λ2 = 1 so that M = MH/5. In this approximation, the front factor in Eq. (10)

is ≈ 0.3, and while the ratio MH/MH(0) can vary substantially for reasonable range of low

energy physics data, owing to the logarithmic dependence, c determined this way is in fact

O(1) and not expected to be anomalously large.

Although we have not yet observed proton decay, nor been able to determine the SUSY

spectrum, using our naturalness conditions that 0.1 ≤ λ1,2 ≤ 2.0 and 10 GeV ≤ M1,2,3 ≤

1000 GeV, and requiring MH ≥ 1.2 × 1016 GeV [25], we can already place bounds on

c for different values of α3(MZ) and sin2(θW ). We plot in Fig. 2 the allowed region for

sin2(θW ) = 0.2294 and for sin2(θW ) = 0.2327 in the c–α3(MZ) plane for M1 = M2 = M3. We

find that in this analysis where Mi’s are taken to be degenerate, the Planck scale term must

exist for some values of sin2(θW ) and α3(MZ). We further note that ranging over the values

of sin2(θW ) between 0.2294 and 0.2327, the LEP range for α3(MZ), i.e. 0.117 ≤ α3 ≤ 0.129
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corresponds to −6.0 ≤ c ≤ 3.4; and the low energy data [7] range, 0.107 ≤ α3 ≤ 0.117,

corresponds to −2.2 ≤ c ≤ 8.1.

In contrast to the conclusions of Refs. [3–5], we have found that GUT models of the type

considered here do have significant experimental consequences. Thus for models without

Planck scale terms (c = 0), measurements made purely at the low energy (electroweak) scale

can allow a prediction of the proton lifetime, and thus allow a direct test of the model. When

c is left arbitrary, this is no longer possible. However, then low energy measurements will

allow an experimental determination of c, and one has the remarkable possibility of seeing

experimentally, for the first time, whether Planck scale physics exists. We note further, that

the presence of GUT threshold effects and Planck scale terms do not qualitatively change

the grand unification conclusions of Ref. [2].

This work was supported in part by the National Science Foundation under grant number

PHY-9411543.
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FIGURES

FIG. 1. Allowed regions in the parameter space projected onto the MH–α3(MZ) plane. The

curves are for MSUSY = 10 GeV (solid), 100 GeV (dashed), and 1000 GeV (dot dashed). The

shaded region corresponds to the case where c = 0, with all the GUT threshold mass scales taken

to be degenerate, and MSUSY allowed to vary between 10 GeV to 1000 GeV.

FIG. 2. Allowed regions in the parameter space projected onto the α3(MZ)–c plane. The curves

are for sin2(θW ) = 0.2294 (solid) and sin2(θW ) = 0.2327 (dashed).
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