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Abstract

We calculate the transition density for the overtone of the isoscalar giant monopole resonance

(ISGMR) from the response to an appropriate external field ∼ f̂ξ(r) obtained using the semiclas-

sical fluid dynamic approximation and the Hartree-Fock (HF) based random phase approximation

(RPA). We determine the mixing parameter ξ by maximizing the ratio of the energy-weighted sum

for the overtone mode to the total energy-weighted sum rule and derive a simple expression for the

macroscopic transition density associated with the overtone mode. This macroscopic transition

density agrees well with that obtained from the HF-RPA calculations. We also point out that the

ISGMR and its overtone can be clearly identified by considering the response to the electromagnetic

external field ∼ j0(qr).

PACS numbers: PACS numbers : 21.60Jz, 24.30.Cz, 26.60.Ev, 24.10.Nz
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I. INTRODUCTION

The properties of a giant resonance in nuclei are commonly determined from the distorted

wave Born approximation (DWBA) analysis of its excitation cross-section by inelastic scat-

tering of a certain projectile. The transition potential required in actual implementation of

DWBA calculation is usually obtained by convoluting the projectile-nucleus interaction with

the transition density associated with the giant resonance. The relevant transition density

can be obtained from a microscopic theory of the giant resonance, such as the Hartree-Fock

(HF) based random phase approximation (RPA). However, the use of a macroscopic tran-

sition density ρmacr
tr (r) greatly simplifies the application of the giant multipole resonance

theory to the analysis of the experimental data. The simple form of the transition density

ρsctr(r) = α0

(
3 + r

d

dr

)
ρeq(r)Y00(r̂), (1)

obtained by the scaling approximation, is a well-known example of the macroscopic transi-

tion density ρmacr
tr (r) commonly used in the case of the isoscalar giant monopole resonance

(ISGMR) [1]. The transition density of Eq. (1) nicely agrees with the ISGMR transition

density obtained in microscopic HF-RPA calculations. It has a one-node structure, satisfy-

ing the condition of particle number conservation
∫
ρsctr(r) dr = 0. Unfortunately the scaling

consideration can not be extended to the overtone of the ISGMR, where ρmacr
tr (r) has a two-

node structure. To derive the macroscopic transition density ρmacr
tr (r) in this more general

case, one can use the well-known method [2, 3] of determining ρmacr
tr (r) from the local sum

rule which is exhausted by one collective state with the appropriate choice of the transition

operator f̂ξ(r). However, in the quantum random phase approximation, the highly excited

collective modes are strongly fragmented over a wide range of energy and a special averaging

procedure must be employed to determine the macroscopic transition density corresponding

to an average collective excitation. In this respect, the semiclassical Fermi-liquid approach

(FLA) [4] is more appropriate. Both the main ISGMR and its overtone are well-defined

within the FLA as single resonance states. This fact enables us to derive the transition op-

erator f̂ξ(r) simply by maximizing the fraction of the energy-weighted sum rule (FEWSR)

exhausted by the single overtone.

In the present work we suggest a procedure to derive the macroscopic transition density

for the ISGMR overtone using both the HF based RPA and the Fermi-liquid approaches.
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We remark that some preliminary results of this investigation were presented in Ref. [5] (see

also Ref. [6]).

II. QUANTUM DERIVATIONS

The transition density ρtr,n(r) for a certain eigenstate |n〉 of a nucleus with A nucleons

is given by

ρtr,n(r) = 〈0|ρ̂(r)|n〉, (2)

where ρ̂(r) =
∑A

i=1 δ(r− ri) is the particle density operator and |0〉 represents the ground

state of the nucleus. The transition density reflects the internal structure of the nucleus and

does not depend on the external field. However, a problem arises if one intends to derive the

transition density ρtr(r) for a group of the thin-structure resonances in the giant multipole

resonance (GMR) region. An appropriate averaging procedure is necessary in this case and

ρtr(r) can be evaluated if the nucleus is placed in an external field

Vext ∼ F̂ ({ri}) =
A∑

i=1

f̂(ri), (3)

where the transition operator F̂ ({ri}) is so chosen that it provides a preferable excitation

of the above mentioned thin-structure resonances.

Let us introduce the local strength function

S(r, E) =
∑

n

〈0|ρ̂(r)|n〉 〈n|F̂ |0〉 δ(E − En) (4)

and the energy smeared local strength function S̃(r, E) defined near the GMR energy ER

by

S̃(r, ER) =
1

∆E

∫ ER+∆E/2

ER−∆E/2

dE S(r, E). (5)

The corresponding strength functions are given by

S(E) =

∫
dr f̂(r) S(r, E) =

∑

n

∣∣∣∣
∫

dr f̂(r) ρtr,n(r)

∣∣∣∣
2

δ(E − En), (6)

and

S̃(E) =

∫
dr f̂(r) S̃(r, E). (7)
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Let us assume, for the moment, that the operator F̂ ({ri}) excites only a single state |D〉,
within the energy interval ER ± ∆E/2. The corresponding transition density ρtr,D(r) =

〈0|ρ̂(r)|D〉 is then given by the following exact expression

ρtr,D(r) =
∆E√

S̃(ER) ∆E
S̃(r, ER). (8)

We will extend expression (8) to the case of a group of the thin-structure resonances in the

GMR region which are excited by the operator F̂ ({ri}) and define the smeared transition

density ρ̃tr,R(r) as

ρ̃tr,R(r) =
∆E√

S̃(ER) ∆E
S̃(r, ER). (9)

Note that Eq. (9) is associated with the strength in the region of ER±∆E/2 and is consistent

with the smeared strength function S̃(ER) for a single resonance state. That is (see also Eq.

(6)),

S̃(ER) =
1

∆E

∣∣∣∣
∫

dr f̂(r) ρ̃tr,R(r)

∣∣∣∣
2

. (10)

We also point out that with the Lorentz’s function

gγ(E,ER) =
1

π

γ

(E − ER)2 + γ2
, (11)

the energy smeared S̃(r, ER) is given by

S̃(r, ER) =

∫
∞

−∞

dE S(r, E) gγ(E,ER), (12)

and the smeared transition density ρ̃tr,R(r) is obtained from

ρ̃tr,R(r) =
πγ√

S̃(ER) πγ
S̃(r, ER). (13)

The consistency condition, Eq. (10), then reads

S̃(ER) =
1

πγ

∣∣∣∣
∫

dr f̂(r) ρ̃tr,R(r)

∣∣∣∣
2

. (14)

In the quantum RPA, the local strength function S(r, E) is related to the RPA Green’s

function G(r ′, r, E) by [7, 8]

S(r, E) =

∫
f̂(r ′)

[
1

π
ImG(r ′, r, E)

]
dr ′ . (15)
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For the isoscalar monopole and dipole excitations, the transition operator f̂(r) is taken in

the form of

f̂(r) ≡ f̂ξ(r) = fξ(r)Y00(r̂) for L = 0, (16)

and

f̂(r) ≡ f̂η(r) = fη(r)Y10(r̂) for L = 1, (17)

with an appropriate choice of the radial functions fξ(r) and fη(r), see below. In the following,

the quantum transition density for the main ISGMR and its overtone is evaluated using the

Eq. (9) with ER ±∆E/2 taken separately for the ISGMR and the overtone regions.

III. MACROSCOPIC TRANSITION DENSITY

Let us consider the local energy-weighted sum M1(r) given by (see Eq. (4))

M1(r) =

∫
∞

0

dE ES(r, E) =
∑

n

En 〈0|ρ̂(r)|n〉 〈n|F̂ |0〉, (E0 = 0). (18)

The continuity equation provides the following sum rule [3]

M1(r) = − ~
2

2m

(
ρeq∇f̂(r)

)
. (19)

Let us assume that only one state |D〉 exhausts the sum rule Eq. (19). Then for the

corresponding (”macroscopic”) transition density, ρmacr
tr (r), we have from Eqs. (18) and (19)

the following expression

ρmacr
tr (r) = 〈0|ρ̂(r)|D〉 = α0 ∇

(
ρeq∇f̂(r)

)
, (20)

where the normalization coefficient α0 can be found using the energy-weighted sum rule

(EWSR)

m1 =

∫
dr f̂(r) M1(r) =

~
2

2m

∫
dr ρeq

(
∇f̂(r)

)2

. (21)

Taking into account that

〈D|F̂ |0〉 =
(∫

dr f̂(r)ρmacr
tr (r)

)
∗

,

we obtain

|α0| = (~2/2m)(EDm1)
−1/2. (22)
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Thus, the macroscopic transition density ρmacr
tr (r) of Eq. (20) coincides with the quantum

transition density for a certain state |D〉 if the single state |D〉 exhausts all the EWSR, Eq.

(21), associated with the transition operator f̂(r). In the case of the transition operator

f̂(r) from Eqs. (16) and (17), the EWSR is given by [2]

m1 =
~
2

2m

A

4π
(2L+ 1)

[〈
0

∣∣∣∣∣

(
df

dr

)2

+ L(L+ 1)

(
f

r

)2
∣∣∣∣∣ 0
〉]

. (23)

Assuming that the energy-weighted transition strength (EWTS) ED |〈D|F̂ |0〉|2 for the

resonance at ED fully exhausts the EWSR associated with f̂(r) = f(r)YLM(r̂), we obtain

the expression for the macroscopic transition density for the state at ED from Eq. (20) [9]

ρmacr
tr (r) = − ~

2

2m

√
2L+ 1

m1ED

[
1

r

d2

dr2
(r f)− L(L+ 1)

r2
f +

df

dr

d

dr

]
ρeq(r)YLM(r̂). (24)

For L = 0 we have from Eq. (24) the commonly used ISGMR result of Eq. (1). The main

(lowest) ISGDR is the spurious state with the eigenenergy E1− = 0. The next ISGDR is the

overtone. Assuming that the EWTS for the 1− overtone equals the EWSR associated with

the operator

f̂η(r) = (r3 − ηr)Y10(r̂), (25)

we obtain from Eq. (20) the macroscopic transition density as

ρmacr
tr,overtone(r) = α0

√
3

(
10 r + (3 r2 − η)

d

dr

)
ρeq(r)Y10(r̂) for L = 1. (26)

For the isoscalar dipole mode, the translation invariance condition is used for the derivation

of η. This condition implies that the center of mass of the system can not be affected by

internal excitation. We thus have,

∫
dr r Y ∗

10(r̂)ρ
macr
tr (r) = 0 for L = 1. (27)

From Eqs. (26) and (27) one obtains, see also Refs. [10, 11, 12],

η =
5

3

〈
r2
〉
, (28)

where 〈r2〉 =
∫
∞

0
dr r4ρeq(r)/

∫
∞

0
dr r2ρeq(r) is the mean square radius.

The free (mixing) parameter appearing in the transition operator f̂ξ(r) (similar to η of

Eq. (17) for the L = 1 case) can be determined by an appropriate condition leading to a

general method for the evaluation of the transition density for the overtone mode. In this
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work we present this method for the case of the monopole mode, L = 0. Let us introduce

the transition operator f̂ξ(r) as

f̂ξ(r) = (r4 − ξr2)Y00(r̂) for L = 0. (29)

The corresponding macroscopic transition density ρmacr
tr (r) is obtained from Eqs. (20) and

(29) as

ρmacr
tr (r) = 2α0

[
10r2 − 3ξ + r

(
2r2 − ξ

) d

dr

]
ρeq(r)Y00(r̂) for L = 0 (overtone).

(30)

The determination of the parameter ξ in Eq. (30) requires an additional consideration since

for the L = 0 case we have no fundamental condition such as Eq. (27) for the L = 1 mode.

We note, however, that if we assume that the ISGMR has the transition density of Eq. (1)

and require that ∫
drf̂ξ(r)ρ

sc
tr(r) = 0, (31)

i.e., the ISGMR is not excited by the scattering operator of Eq. (29) we have

ξ = 2〈r4〉/〈r2〉. (32)

Similar result is obtained by imposing the condition that the scattering operator r2Y00(r̂)

does not excite the overtone of the ISGMR, assuming the transition density of Eq. (30).

Following the general requirement for the proper use of Eq. (20) in the derivation of

the macroscopic transition density ρmacr
tr (r), we can determine the parameter ξ from the

condition that the transition operator f̂ξ(r) provides for the single overtone the maximum

fraction of the energy-weighted sum rule m1 of Eq. (21).

IV. SEMICLASSICAL FERMI-LIQUID APPROACH

The transition density ρtr(r) and the strength function S(E) can also be evaluated within

the semiclassical Fermi-liquid approach. For a given multipolarity L and overtone n, the

FLA transition density is given by [4]

ρFLAtr,Ln(r) = αLn [θ(R0 − r)jL(qLnr)+
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1− a δL1
qLn

δ(R0 − r)j
′

L(qLnR0)

]
ρ0YL0(r̂), (33)

where ρ0 is the bulk density, R0 is the equilibrium nuclear radius and the parameter a is

determined by the translation invariance condition (Eq. (27)) in the case of the isoscalar

dipole compression mode and is given by

a = j1(x)/xj
′

1(x), x = qLnR0. (34)

The wave numbers qLn are derived from the boundary conditions of the FLA model: the

normal component of the tensor pressure δPνµ, created by a sound wave, on the free surface

of the nucleus should be equal to zero

δPrr|R=R0
= 0. (35)

Note that for the case of compression sound modes, the contribution from the surface tension

pressure is negligible and it was omitted in Eq. (35). The boundary condition (Eq. (35))

leads to the following secular equation (see Ref. [15])

[qr j0(qr)−Dµ j1(qr)]r=R0
= 0, Dµ =

4µ

mρ0c
2
0

, (36)

where c0 is the zero sound velocity and the coefficient µ determines the contribution from the

dynamical Fermi surface distortion associated with the collective motion in a Fermi liquid.

In the case of a quadrupole distortion of the Fermi surface, one has [16]

µ = Im (
ωτ

1− iωτ
)Peq. (37)

Here, Peq ≈ (2/5)ǫFρ0 is the equilibrium pressure of a Fermi gas, ǫF is the Fermi energy, and

ω and τ are the eigenfrequency and the relaxation time for sound excitations in the Fermi

liquid, respectively. The relaxation time τ is assumed to be frequency dependent because of

the memory effect in the collision integral [17]. Following Refs. [16, 18, 19] we take

τ = 4π2β~/(~ω)2, (38)

where β is the constant related to the differential cross section for the scattering of two

nucleons in the nuclear interior. In the case of isoscalar sound mode, we will adopt β = 1.5

MeV [20]. The eigenfrequency ω is obtained from the dispersion relation

ω2 − c20q
2 + iωγq2 = 0, (39)
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where c0 is given by

c20 =
1

9m
(K + 12µ/ρ0). (40)

Here K is the nuclear incompressibility coefficient and γ is the friction coefficient

γ =
4ν

3ρ0m
, ν = Re

(
τ

1− iωτ

)
Peq. (41)

The smeared FLA strength function S̃FLA(E) can be obtained in a way similar to S̃(E),

obtained within the quantum approach of Eq. (14). That is,

S̃FLA(E) =
∑

n

∣∣∣∣
∫
dr ρFLAtr,Ln(r)f̂(r)

∣∣∣∣
2

gγ(E,ELn). (42)

The smearing function gγ(E,ELn) in Eq. (42) is given by (γLn ≪ ELn)

gγ(E,ELn) =
1

π

γLn
(E − ELn)2 + γ2

Ln

, γLn =
1

2

γ

~ c20
E2

Ln . (43)

Here, γLn is the damping parameter due to the viscosity of the Fermi liquid and ELn =

~Re(ωLn), where the eigenfrequency ωn is obtained as a solution to both the dispersion

equation (39) and the secular equation (36). We point out that the amplitude αLn in Eq.

(33) for the FLA transition density ρFLAtr,Ln(r) is derived as the amplitude of the quantum

oscillations

αLn =
√
~/2BL(q) ω(q), (44)

where q = qLn is determined by Eq. (36) and BL(q) is the corresponding mass coefficient

with respect to the density oscillations. The collective mass coefficient BL(q) can be found

from the collective kinetic energy Ekin for the particle density oscillations. The collective

kinetic energy is derived as

Ekin =
1

2
mρ0

∫
dr v2 =

1

2
BL

·

α
2

L . (45)

For the compression modes L = 0, the mass coefficient B0 is given by [4]

B0 ≡ B0(q) = (1/2)mρ0R
5
0 x

−4
0

[
1− j20(x)−Dµ j21(x)

]
x=x0

, for L = 0, (46)

where x0 = qR0.
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V. RESULTS AND DISCUSSIONS

We have carried out calculations for the ISGMR in the frameworks of HF based RPA

and the semiclassical Fermi liquid approach as briefly outlined in the preceding sections. We

have evaluated the smeared FLA strength function S̃FLA(E) of Eq. (42) and the HF-RPA

smeared strength function S̃(E) of Eq. (14) for the ISGMR in several nuclei, for f̂ξ(r) from

Eq. (29). In the subsequent discussions, the HF-RPA results presented are obtained using

the Skyrme force SkM∗ [21]. For the RPA calculations to be highly accurate we discretized

the continuum in a large box of size 90 fm and use a smearing parameter γ = Γ/2 = 1.0 MeV,

in evaluating the RPA Green’s function (see Eq. (15) ), and allow particle-hole excitations

up to 500 MeV (see Ref. [9] for the details). In case of the FLA calculations we have

adopted the values of ρ0 = 0.14 fm−3, ǫF = 32.85 MeV and R0 = 1.2 · A1/3 fm. In Table I

we compare the FLA and RPA results for the centroid energies E01 and E02 corresponding

to the main and overtone mode of the ISGMR, respectively. We see from this table that the

FLA and RPA results are in qualitative agreement. The small differences (< 10%) can be

understood by the fact that the centroid energy mainly depends on the size of the system.

The values of the mean square radii and the higher moments of the ground state density

distribution are smaller in the FLA than the ones obtained from HF calculations. Note also

that the ratio E02/E01 in both models considered is greater than two (∼ 2.2 − 2.4). We

point out that E02 > 2E01 is due to the Fermi-surface distortion effect as noted earlier in

Ref. [15].

We have performed a comparison of the macroscopic transition density ρmacr
tr (r) with the

ones obtained within the HF-RPA, ρHF−RPA
tr (r), and the FLA, ρFLAtr (r), approaches for the

main resonance L = 0 and its overtone. The FLA transition density is given by Eq. (33)

with the wave number q obtained from the secular equation (36). The contribution of the

ISGMR overtone to the EWSR for the case of the transition operator f̂ξ(r) is given by

m02(ξ) = E02

∣∣∣∣
∫

dr f̂ξ(r)ρ
FLA
tr,02(r)

∣∣∣∣
2

, (47)

where E02 = ~ω(q02). The eigenfrequency ω(q02) is obtained from the dispersion equation

(39) and the wave number q02 is the second (overtone) solution to the secular equation (36).

The EWSR for the transition operator f̂ξ(r) reads

m1(ξ) =
~
2

2m

∫
dr ρeq

(
∇f̂ξ(r)

)2

. (48)
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Now, we will determine the parameter ξ from the condition that the value of the ratio of

the partial sum m02(ξ) to the total sum m1(ξ) is the maximum. In Fig. 1, we have plotted

the ratio m02(ξ)/m1(ξ) as a function of the parameter ξ for the nucleus 208Pb obtained in

the FLA (dashed line) and the HF-RPA (solid line) models . As seen from Fig. 1, the

maximum value of the ratio of m02(ξ) to m1(ξ) for the FLA model is achieved for ξ = 68.3

fm2 where the overtone exhausts about 73% of the EWSR. In the case of HF-RPA, the

maximum ratio is achieved for ξ = 78.6 fm2 where the overtone, in the energy range of

25 - 50 MeV, exhausts about 60% of the EWSR. It is interesting to note that if we use

the FLA and HF ground-state densities to calculate ξ from Eq. (32), we get ξ = 72.2

and 79.0 fm2, respectively. These values are close to the corresponding ones (68.3 and 78.6

fm2) obtained by the condition of maximizing the ratio m02(ξ)/m1(ξ). This means that the

mixing parameter ξ in the transition operator f̂ξ(r) of Eq. (29) can also be derived from

the condition that the main ISGMR gives a minimal contribution to the energy-weighted

sum rule m1(ξ). The FLA as well as HF-RPA calculations show that the difference in the

values of ξ obtained in both conditions does not exceed ∼ 0.2%. We have also calculated

the dependence of the parameter ξ on the nuclear mass number A. Following the same

procedure we find for 90Zr, 116Sn and 144Sm nuclei the value of mixing parameter ξ = 38.6

(48.5), 45.9 (56.7) and 53.1 (66.1) fm2 from the FLA (RPA) calculations, respectively. These

values can be well approximated by ξ = 1.89A2/3 and 2.36A2/3 fm2 for the FLA and RPA

approaches, respectively.

In Fig. 2, we plot the FLA and RPA results for the fraction energy-weighted transition

strength as a function of the excitation energy obtained for the transition operator f̂ξ(r)

for the 208Pb nucleus. We use ξ = 68.3 and 78.6 fm2 in the FLA and RPA calculations,

respectively. One can clearly see that the RPA calculation yields a wide resonance of width

of ∼ 10 MeV around the excitation energy 30 − 35 MeV which corresponds to the ISGMR

overtone. Whereas, in the case of FLA, the transition operator f̂ξ(r) (Eq. (29)) with an

appropriate value of ξ gives rise to a well defined resonance for the overtone mode. We

also notice that the RPA results have the reminiscence of the ISGMR main tone but it is

practically eliminated in the FLA calculations.

In Figs. 3a and 3b, we compare the radial macroscopic transition density ρmacr
tr (r) of

Eq. (30), obtained using the HF ground-state density, and the corresponding FLA and HF-

RPA ones for the overtone of the ISGMR. The radial transition density ρtr(r) for a certain
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multipolarity L is given by ρtr(r) = ρtr(r)YL0(r̂). The macroscopic transition densities for

the overtone in Figs. 3a and 3b are not the same. Because, for an appropriate comparison,

in Fig. 3a, we have plotted ρmacr
tr (r) obtained using ξ = 78.6 fm2 and it is normalized to 60%

of the EWSR. On the other hand, ρmacr
tr (r) plotted in Fig. 3b corresponds to ξ = 68.3 fm2

and is normalized to 73% of the EWSR. Further, the RPA transition density is calculated

by averaging over the energy range of 25 - 50 MeV. Notice that the shift of the nodes of

ρFLAtr,02(r) to the left with respect to the ones of ρmacr
tr (r) is caused by the fact that in contrast

to Eq. (30) used for the macroscopic transition density, in the FLA we use sharp nuclear

surface, see Eq. (33). We also looked into the energy dependence of the RPA transition

density for the operator f̂ξ(r) over the range of energy employed for the averaging. We see

that over the entire range considered, the transition density has two nodal structure and the

distance between the nodes decreases with the increase in energy. For example, averaging

over ∆E = 0.5 MeV range, we find that at the excitation energies of 30, 40 and 50 MeV,

the distances between the two nodes are 3.1, 2.7, and 2.4 fm, respectively, which reflects the

fact that the microscopic transition density is state dependent.

We have used the microscopic transition densities for the operator f̂ξ(r) to evaluate the

cross-section for the ISGMR overtone mode excited via inelastic scattering of α-particles

with energies 240 and 400 MeV. We have used the folding model (FM)-DWBA to calculate

the excitation cross-section (see Ref. [23] for details). We find that for the α-particles

with 400 MeV energy, the calculated cross-section is about 7 - 10 times higher than the one

obtained for α-particles with 240 MeV. Note that for a monopole resonance the cross-section

is maximum at 0o. The values of the cross-section at 0o for the peak energy of the ISGMR

overtone are 0.5 and 3.5 mb/(sr MeV) for the case of 240 and 400 MeV, respectively. We

point out that the maximum cross-section for the case of 240 MeV α-particles is below the

current experimental sensitivity of about 2 mb/(sr MeV) [24]. It may be possible to identify

the ISGMR overtone mode with 400 MeV α-particles.

The transition density ρtr(r) for the compression modes is distributed over the nuclear

interior and has a node close to the nuclear surface for both the main ISGMR and its

overtone. The transition density ρtr,02(r) of the overtone has an additional node in the

nuclear interior. This feature of ρtr(r) can be tested by evaluating the strength distribution

S0(k) of the electromagnetic operator jL(kr)YL0(r̂). The strength function S0n(k) for a

12



certain eigenstate n is given by

S0n(k) = |I0n(k)|2 (49)

where

I0n(k) =

∫
dr ρtr,0n(r) j0(kr)Y00(r̂). (50)

The strength function S0n is related to the excitation function of electron-nucleus scattering

in the Born approximation. We use Eqs. (49) and (50) to calculate the energy-weighted sums

m01(k) and m02(k) for the main ISGMR and its overtone, respectively. In Fig. 4, we display

the k dependence of the fraction energy-weighted sums m01(k)/m1(k) and m02(k)/m1(k) for

the 208Pb nucleus obtained from the FLA (dashed line) and HF-RPA (solid line) approaches.

It can be seen from Fig. 4 that m01(k)/m1(k) and m02(k)/m1(k) depend strongly on k. A

shift of the maximum of the ratio m02(k)/m1(k) for the overtone to the higher value of wave

number k is due to the more complicated nodal structure of the transition density associated

with the overtone as compared with the main resonance. This shift can be exploited to

separate the modes in electron-nucleus scattering. In Fig. 5 we plot the surface and the

volume contributions to the integral in Eq. (50) for the transition density associated with

overtone mode (see Eq. (33)). For smaller k, there is a cancellation between the surface and

the volume contributions leading to a peak structure for the overtone response as shown in

Fig. 4.

VI. SUMMARY AND CONCLUSIONS

Starting from the local strength function S(r, E) and using the smearing procedure,

we have extended the quantum expression for the transition density ρtr,n(r) to the case of a

group of the thin-structure resonances which are localized in the GMR region and are excited

due to the specifically chosen transition operator F̂ ({ri}) =
∑A

i=1 f̂(ri). Our approach was

applied to the study of the transition density of the ISGMR overtone. In this case, an

appropriate form of the transition operator f̂(r) is given by f̂(r) = f̂ξ(r) = (r4− ξr2)Y00(r̂),

see Eq. (29). The mixing parameter ξ was determined from the condition that the transition

operator f̂ξ(r) provides for the single overtone the maximum fraction of the energy-weighted

sum rule m1 of Eq. (21). The mixing parameter ξ depends on the nuclear mass number A.

This dependence is well approximated by ξ ≈ 2 · A2/3 fm2.

13



We have applied our smearing procedure (using f̂ξ(r) associated with the maximum

FEWSR of the overtone) to the evaluation of the smeared out transition density ρ̃tr,R(r) of

Eq. (9) within the HF-RPA. We have shown that the smearing procedure for the ISGMR

overtone region provides a simple two nodal structure of ρ̃tr,R(r) (see the solid line in Fig. 3a),

as expected for the L = 0 overtone. Moreover, the transition density ρ̃tr,R(r), obtained by

the averaging over many quantum states, resembles its macroscopic counterpart. This fact

is well illustrated in Fig. 3a by comparing the quantum smeared transition density ρ̃tr,R(r)

with the macroscopic one ρmacr
tr (r) of Eq. (30). An independent derivation of the smeared

out transition density ρ̃tr,R(r) can be also obtained using the semiclassical approaches. In

Sec. IV, we have applied a simple semiclassical Fermi-liquid approximation to the evaluation

of the smeared out (in quantum mechanical sense) transition density ρFLAtr (r). We have used

the same form of the transition operator f̂ξ(r) as in the case of quantum HF-RPA calculation

to provide an additional check of the derivation of the mixing parameter ξ from the energy-

weighted sum m1. We found a good agreement between the values of parameter ξ obtained

in both the quantum and the semiclassical approaches. It is important to emphasize that

equation (32) together with Eq. (20) provides a simple expression for the macroscopic

transition density that can be employed in the folding model-DWBA analysis of excitation

cross-section of the ISGMR overtone.

The nodal structure of the semiclassical transition density ρFLAtr (r) is similar to that of

both the quantum, ρ̃tr,R(r), and the macroscopic, ρmacr
tr (r), cases, see Figs. 3a and 3b. A

discrepancy occurs in the surface region, where the particular behavior of ρFLAtr (r) is due to

the assumption of the sharp surface of the nucleus in the FLA model. This discrepancy is not

so significant in the integral quantities like the strength functions. This is illustrated in Fig.

4 for the case of the nuclear response to the electromagnetic-like external field ∼ j0(kr)Y00(r̂).

The ratios m01(k)/m1(k) and m02(k)/m1(k) for the ISGMR and its overtone, respectively,

show an distinct feature in the k-dependence. Namely, for a certain value of the wave number

k, the strength function for the overtone reaches a maximum whereas the contribution of the

main resonance to the strength function is strongly suppressed. This fact can be exploited

to separate the ISGMR and the overtone modes in electron-nucleus scattering by varying

the electron’s momentum transfer k.
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Figure captions

Fig. 1. The ratio m02(ξ)/m1(ξ) of the partial contribution of the overtone to the EWSR

as a function of the parameter ξ in the transition operator f̂ξ(r) (Eq. (29)) obtained within

the FLA (dashed line) and the HF-RPA (solid line) approaches, for the monopole mode

L = 0 in the nucleus 208Pb.

Fig. 2. The FLA and HF-RPA results for the fraction energy-weighted transition strength

for the operator f̂ξ(r) with ξ = 78.6 MeVfm2.

Fig. 3a. The HF-RPA transition density, ρ̃HF−RPA
tr (r), multiplied by 4πr2 for the overtone

of the ISGMR in the nucleus 208Pb (solid line) and the corresponding macroscopic transition

density ρmacr
tr (r) taken at ξ = 78.6 fm2 (dotted line).

Fig. 3b. The FLA transition density, ρFLAtr (r), multiplied by 4πr2 for the overtone of the

ISGMR in the nucleus 208Pb (dashed line) and the corresponding macroscopic transition

density ρmacr
tr (r) taken at ξ = 68.3 fm2 (dotted line).

Fig. 4. The ratio m0n(k)/m1(k) for the main (n = 1) ISGMR and its overtone (n = 2),

respectively, as a function of the wave number k obtained for electromagnetic operator

j0(kr)Y00(r̂) for the 208Pb nucleus. The dashed and the solid lines represent the FLA and

HF-RPA results, respectively.

Fig. 5. Partial contributions of the volume (”vol”) and surface (”surf”) terms of the FLA

transition density of the ISGMR overtone (see Eq. (33)) to the integral in Eq. (50) (dashed

lines). The solid line shows the sum of both the volume and the surface terms.
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TABLE I: Comparison of the FLA and RPA results for the centroid energies (in MeV) for the

main (E01) and the overtone (E02) modes of ISGMR. In the case of RPA calculations the values

of E01 are obtained by integrating the strength function for the operator r2Y00 over the energy

range of 0 - 60 MeV and the values of E02 are obtained using the operator (r4 − ξr2)Y00(r̂) and

the energy ranges of 35 - 60, 28 - 60, 27 - 55 and 25 - 50 MeV for 90Zr, 116Sn, 144Sm and 208Pb

nuclei, respectively. The experimental data for the main tone is taken from the Ref. [22].

FLA RPA EXP.

Nucleus E01 E02 E02/E01 E01 E02 E02/E01 E01

90Zr 19.6 43.0 2.2 18.1 43.8 2.4 17.89±0.20

116Sn 18.2 40.4 2.2 16.5 39.1 2.4 16.07±0.12

144Sm 17.0 38.5 2.3 15.7 36.8 2.3 15.39±0.28

208Pb 15.3 35.5 2.3 13.8 33.7 2.4 14.17±0.28
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