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Abstract

Within a toroidal orbifold framework, we exhibit intersecting brane-world constructions
of flipped SU(5) × U(1) GUT models with various numbers of generations, other chiral
matter representations and Higgs representations. We exhibit orientifold constructions
with integer winding numbers that yield 8 or more conventional SU(5) generations, and
orbifold constructions with fractional winding numbers that yield flipped SU(5) × U(1)
models with just 3 conventional generations. Some of these models have candidates for
the 5 and 5 Higgs representations needed for electroweak symmetry breaking, but not for
the 10 and 10 representations needed for GUT symmetry breaking. We have also derived
models with complete GUT and electroweak Higgs sectors, but these have undesirable extra
chiral matter.
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1 Introduction

In recent years, theoretical understanding of string has deepened enormously, but the route
to a model capable of unifying all the particle interactions in a realistic way still remains
a mystery. String theory certainly has sufficient degrees of freedom to accommodate all
the known particles and their interactions, and recent theoretical advances have revealed
additional ways in which this might occur. Historically, the first approach to string model-
building was to compactify string on a suitable manifold [1] or orbifold [2], and subsequently
constructions using fermions on the world-sheet were made available [3]. These approaches
all originated in the context of weakly-coupled string theory, and many more possibilities are
now evident on non-perturbative string theory, also known as M theory. A new dimension
appears in the strong-coupling limit, string theories that formerly appeared unrelated are
now known to be connected by dualities, new gauge symmetries may appear at singularities
in moduli space [4], and non-perturbative brane constructions can accommodate new types
of matter [5, 6, 7, 8, 9, 10, 11, 12, 13].

Different types of particle models have been sought using these various constructions.
At first, it was thought that the four-dimensional gauge group would necessarily be some
subgroup of E6 [1], then it was thought that the rank of the gauge group might be as large
as 22 [3], and now higher-rank possibilities are known [4]. The minimal option would be
to embed just the Standard Model SU(3) × SU(2) × U(1) gauge group, but almost every
construction includes at least extra U(1) factors. Numerous attempts have been made to
embed conventional GUT groups such as SU(5) or SO(10) in string theory, but none of
these has been completely satisfactory. In the bad old days of perturbative string theory,
one of the issues was the origin of GUT symmetry breaking. In four-dimensional field
theories, this required Higgs multiplets in adjoint or larger representations, which were not
present in simple compactifications on manifolds or orbifolds, using for example Calabi-Yau
spaces [1] or lowest-level world-sheet fermions [14] 1.

This impasse led to the proposal [16] of flipped SU(5) × U(1) [17, 18] as a suitable
framework for string GUTs, since its symmetry breaking requires only 10 and 10 represen-
tations at the GUT scale, as well as 5 and 5 representations at the electroweak scale, and
these were readily available in perturbative string constructions. Flipped SU(5)×U(1) has
a number of attractive phenomenological features in its own right [16]. For example, it has
a very elegant missing-partner mechanism for suppressing proton decay via dimension-5
operators, and is probably the simplest GUT to survive experimental limits on proton de-
cay [19]. These considerations motivated the derivation of a number of flipped SU(5)×U(1)
models from constructions using fermions on the world-sheet [20].

Recently, models based on SU(5) or SO(10) GUT groups have been derived using more
sophisticated constructions, notably using branes [8, 12, 13] (for an introduction to D-
branes, see [21]). Promising constructions involve Type-I strings on toroidal orbifolds with
intersecting D9-branes, or T -dual formulations. The models known to us do not yet have

1For constructions using higher-level fermions, see [15].
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all the phenomenological features one might desire, but certainly merit being pursued as
far as has been done for some flipped SU(5) × U(1) models. In parallel with this effort,
the attractive phenomenological features of flipped SU(5) × U(1) models motivate us to
understand more completely their possible moduli space, in particular by exploring how
they may be derived from such brane constructions.

We explore in this paper the type of brane approach pioneered by [8, 12, 6, 5, 7, 9, 10, 11]
and studied further in [22]-[34] (for alternative compactifications with D-branes, see [35]-
[41]). Issues arising in this framework have included the breaking of supersymmetry, the
stability of the vacuum, the number of generations and the appearance of Higgs represen-
tations suitable for both GUT and electroweak symmetry breaking. In particular, toroidal
orientifold models with integer winding numbers have tended to have rather large numbers
of chiral matter generations. The number of generations can be adjusted to three in models
with fractional winding numbers [12, 10], although these do not provide any explanation
why there are just three generations in Nature 2. Moreover, the existing GUT models of this
type do not contain Higgs multiplets suitable for electroweak symmetry breaking, whereas
the adjoint Higgs representations needed for GUT symmetry breaking can be found. The
majority of the models constructed so far are non-supersymmetric and thus they suffer from
an intrinsic instability of the internal spacetime due to the presence of scalar tadpoles in the
theory 3. The constructions presented in [12, 10] provide some improvement in this respect,
as they ensure the cancellation of both Ramond-Ramond (RR) and Neveu-Schwarz-Neveu-
Schwarz (NSNS) tadpoles in the theory.

We investigate in this paper whether intersecting-brane constructions can give rise to
any flipped SU(5)×U(1) models. In the case of such constructions on a toroidal orientifold,
we have managed to construct an SU(5) GUT with eight generations, much less than in
the previous GUT models with integer winding numbers. This model contains many sin-
glet fields, but there is no phenomenological objection to their proliferation. It is shown,
however, that the model does not support a flipped SU(5) model but only a traditional
version of it with an extra U(1) symmetry. Turning to models with fractional winding
numbers, we show that a flipped SU(5) × U(1) gauge group can arise very naturally in
toroidal orbifold brane constructions, and we give examples with three generations. More-
over, many of these models also contain, by construction, 5 and 5 Higgs multiplets suitable
for electroweak symmetry breaking and no extra chiral matter. Our attempts to include
also the 10 and 10 Higgs representations suitable for GUT symmetry breaking into the
chiral spectrum have produced models with complete GUT and electroweak Higgs sectors,
but they suffer from a proliferation of undesirable extra chiral matter fields. Since the
GUT symmetry-breaking scale is close to the string/gravity scale, we find it quite plausible
that some (higher-dimensional?) mechanism might be responsible for this first stage of
symmetry breaking. Therefore the earlier models with neither GUT Higgs multiplets nor
undesirable chiral matter fields may be a more promising basis for future development.

2An argument in this direction was given in [11]. For other works trying to explain the number of
generations of fermionic matter, although in a different framework, see [42].

3Supersymmetric constructions have been build in Ref. [13], however, they contain exotic chiral matter.
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2 Search for Flipped SU(5)×U(1)X Brane Models on a

Toroidal Orientifold

In this section, we focus on the four-dimensional models that follow by considering sets
of D6-branes wrapping on a six-torus orientifold [5, 8]. We assume that the internal six-
dimensional space-time can be written as the direct product of three two-dimensional tori,
T 6 = T 2 × T 2 × T 2, which is made into an orientifold by the action of the world-sheet
parity transformation Ω. In the T -dual picture, the above construction is regarded as
a model of D9-branes with non-vanishing magnetic fluxes and mixed Neuman-Dirichlet
boundary conditions [6, 22]. However, we find the previous picture easier to conceptualize,
as a construction of D6-branes wrapped around two-dimensional cycles and intersecting
at angles. We denote by i = 1, 2, 3 the two-dimensional tori that comprise the internal
space-time, and by µ = a, b, c, ... the different stacks of D6-branes present in our models.
The position of each brane is given by the sets of integer numbers (n(i)

µ , m(i)
µ ) that describe

the number of times that each brane is wrapped around the (X(i), Y (i)) axes, respectively,
of each torus.

A number of conditions on these wrapping numbers arise from the requirement that
the Ramond-Ramond (RR) tadpoles in the model cancel, conditions that also imply the
cancellation of all non-Abelian gauge anomalies. For the particular toroidal construction
considered here, these tadpole cancellation conditions are [8]

∑

µ

Nµ n
(1)
µ n(2)

µ n(3)
µ = 16 ,

∑

µ

Nµ n
(1)
µ m(2)

µ m(3)
µ = 0 , (2.1)

∑

µ

Nµ m
(1)
µ n(2)

µ m(3)
µ = 0 ,

∑

µ

Nµ m
(1)
µ m(2)

µ n(3)
µ = 0 . (2.2)

The spectra of chiral matter given by such intersecting-brane constructions arise in a variety
of ways. Strings stretching between a brane belonging to stack (a) and a brane belonging
to stack (b), or its mirror image (Ωb) under the parity transformation, give rise to bifun-
damental representations, (N̄a, Nb) and (Na, Nb), respectively, of chiral matter of the group
U(Na)× U(Nb), with multiplicities

M(N̄a, Nb) = (n(1)
a m

(1)
b −m(1)

a n
(1)
b ) (n(2)

a m
(2)
b −m(2)

a n
(2)
b ) (n(3)

a m
(3)
b −m(3)

a n
(3)
b ) , (2.3)

M(Na, Nb) = (n(1)
a m

(1)
b +m(1)

a n
(1)
b ) (n(2)

a m
(2)
b +m(2)

a n
(2)
b ) (n(3)

a m
(3)
b +m(3)

a n
(3)
b ) , (2.4)

respectively. Strings stretching between a brane in stack (a) and its mirror image (Ωa) yield
chiral matter in the antisymmetric and symmetric representations of the group U(Na), with
multiplicities

M(Aa) = 8m(1)
a m(2)

a m(3)
a (2.5)

M(Aa + Sa) = 4m(1)
a m(2)

a m(3)
a

(

n(1)
a n(2)

a n(3)
a − 1

)

, (2.6)
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respectively. Finally, the chiral matter yielded by strings starting and ending on the same
brane of stack (a) corresponds to the spectrum of a d = 4, N = 4 super Yang-Mills theory
of the group U(Na).

The latter part of the spectrum is obviously supersymmetric, whilst the open string
spectra described previously, although ‘supersymmetric’ in number [6], i.e., with equal
numbers of fermionic and bosonic degrees of freedom, does not have a supersymmetric
mass spectrum. The fermions are massless, whilst the scalars acquire masses that are
proportional to the length of the string, and which depend on the details of the construction
of the internal space-time [9]. The spectrum of scalars is in principle tachyonic, although
models with ‘local’ supersymmetry [11] may be constructed. The tachyonic spectrum of
the theory may actually be useful, as it provides a potential source for the Higgs fields.

The fermionic spectrum of an SU(5) GUT model fits into three copies of (10, 1) and
(5̄, 1) representations, additionally with (1, 1) representations if singlet neutrinos are to
be accommodated. In the minimal flipped SU(5) × U(1)X model [17, 18], the particle
spectrum also includes a pair of 10 and 10 Higgs multiplets, that break the GUT gauge
group down to the Standard Model group, and a pair of light Higgs bosons in 5 and 5̄
multiplets, for electroweak symmetry breaking. Moreover, the fermionic multiplets should
have specific charges under the extra U(1)X gauge factor, since a linear combination of the
U(1)X and the U(1) gauge factor contained in SU(5) gives rise to the hypercharge factor of
the Standard Model gauge group. In the framework of the intersecting-brane models on a
six-torus orientifold, we look in this paper for flipped SU(5) GUT models with the minimal
possible particle content.

We saw easily that such a model cannot arise in the minimal case with two stacks of
branes. We considered the case with Na = 5 and Nb = 1, and we concentrated first on
the fermionic spectrum. We found that the demand for the minimum number of families
predicted by the model, namely eight, could not be met with non-fractional wrapping
numbers (n(i)

µ , m(i)
µ ). The situation did not ameliorate even when we tried to modify the

spectrum so as to include also Higgs multiplets in the matter spectrum, at least in the form
of the ‘nearly supersymmetric’ fermionic partners of the massive Higgs multiplets [6]. All
attempts in this direction resulted in models with many extra chiral matter multiplets, but
with no 5̄ representations or singlets.

We therefore concentrate on the search for viable configurations of three stacks of branes
with Na = 5, Nb = 1 and Nc = 1. The resulting gauge group is SU(5) × U(1)3. We
focus again on the fermionic part of the spectrum, and we look for values of the wrapping
numbers (n(i)

µ , m(i)
µ ) that would avoid any unnecessary proliferation of fermionic matter. For

that purpose, we impose the constraints

m(1)
a m(2)

a m(3)
a = 1 , n(1)

a n(2)
a n(3)

a = 1 , (2.7)

which lead to the minimal number of (10, 1) representations, and none with symmetric
SU(5) indices.

The complete set of wrapping numbers that satisfies the aforementioned constraints, as
well as the tadpole cancellation conditions, is given below:
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n(i)
µ =









1 1 1

1 1 2

1 3 4









, m(i)
µ =









1 1 1

1 1 -2

1 -5 0









. (2.8)

This set of wrapping numbers leads to 8 copies of the antisymmetric representation (10, 1),
and the same number of bifundamental representations (5̄, 1). The full spectrum of fermio-
nic matter is presented in Table I.

Table I

multiplicity representation U(1)a U(1)b U(1)c U(1)free

8 (10, 1) 2 0 0 2

8 (5̄, 1) −1 −1 0 −2

40 (1, 1) 0 −2 0 −2

In [8], the attempt to construct an SU(5) GUT model in the framework of the same
brane construction, led to a 24-generation model with abundant extra chiral matter. The
model presented above minimizes the number of fermionic representations, and makes a
considerable reduction in the number of generations to 8. The only extra chiral matter
representations present are singlets, whose proliferation is not in disagreement with particle
physics phenomenology. Neutrino masses suggest that at least three such states exist and
mix with the light neutrino species, but do not exclude the possible existence of more than
three such states.

The double vertical line in Table I separates the anomalous U(1) gauge factors from the
non-anomalous ones. All fermionic chiral matter is neutral under U(1)c, so this gauge factor
is automatically anomaly-free. Using the two remaining U(1) factors, we may construct an
anomaly-free combination in the following way

U(1)free = U(1)a + U(1)b , (2.9)

whilst the orthogonal combination U(1)a −U(1)b is anomalous. The charges of all the rep-
resentations under the anomaly-free Abelian gauge factor are displayed in the last column
of Table I. As can easily be seen, these charges do not correspond to the ones that the
fermionic representations should have under the U(1)X gauge factor of the flipped SU(5)
GUT model, so we conclude that such a model cannot arise in the framework of this anal-
ysis. Moreover, we need to check whether the anomaly-free gauge factors remain massless
after the generalised Green-Schwarz mechanism, that gives masses to the anomalous U(1)
factors, is implemented in the theory. According to [11], there are four RR fields, B0

2 and
BI

2 , with I = 1, 2, 3, whose couplings to the U(1)µ gauge factors are given by

c(0)µ = Nµm
(1)
µ m(2)

µ m(3)
µ , c(I)µ = Nµn

(J)
µ n(K)

µ m(I)
µ , I 6= J 6= K 6= I , (2.10)

respectively. By using the wrapping numbers displayed in (2.8), we find that
∑

A

c(A)
c = 0 ,

∑

A

c
(A)
free ≡

∑

A

(

c(A)
a + c

(A)
b

)

= 16 , (2.11)
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respectively, for the U(1)c and U(1)free anomaly-free gauge factors (in the above, A sums
over all RR scalar fields). Therefore, only the first Abelian gauge factor remains massless,
whereas the latter acquires a mass.

We considered a number of alternative sets of wrapping numbers (n(i)
µ , m(i)

µ ), consistent
with the tadpole cancellation conditions, in attempts to include the Higgs multiplets in the
matter spectrum. As in the two-brane case, any attempt to generate the minimal number
of (10, 1) and (10, 1) representations led to the absence of any (5̄, 1) representations and
singlets in the model. Abandoning the demand for the minimal number of families of chiral
matter led to a very rapid proliferation of multiplets which still, however, failed to have
the correct charges under the desired U(1)X gauge factor. We do not pursue further here
the quest for a viable flipped SU(5) model, as our analysis suggests that intersecting-brane
models on a six-torus orientifold are unsuited for the construction of such GUT models.
Even if a more persistent analysis of the possible combinations of wrapping numbers could
lead to such a model, the result would still be marred by the large number of generations
that these models generically predict, and orbifold constructions offer better prospects, as
we now discuss.

3 Flipped SU(5) × U(1)X Brane Models on a Toroidal

Orbifold

Intersecting-brane models on tori, such as the one presented in the previous section, are
known to have an additional weak point, apart from the large number of generations of chi-
ral matter. A dynamical instability of the moduli space associated with the non-vanishing
NSNS tadpoles is shared by all non-supersymmetric intersecting-brane models [12]. One
solution to this problem, presented by the same authors [12], is the construction of non-
supersymmetric intersecting-brane models with a fixed moduli space. This can be accom-
plished by imposing a discrete symmetry ZN on the toroidal internal space-time, turning
it into an orbifold. The problem of the large number of families has been tackled by intro-
ducing a discrete NSNS two-form field [10], which translates in the T -dual picture into a
tilting of the two-dimensional tori. The RR tadpole cancellation conditions should also be
modified, as well as the spectrum of the chiral matter predicted by the model. A simpler
language was used for this purpose, through the introduction of effective wrapping numbers
(Yµ, Zµ) which could also be fractional, in terms of which the set of RR tadpole conditions
reduced to the following, single requirement

∑

µ

Nµ Zµ = 2 . (3.1)

Turning to the spectrum of chiral matter that arises in these models, it was shown that the
net number of chiral bifundamental representations, that are yielded by strings stretching
between a brane belonging to stack (a) and a brane belonging to stack (b), or its mirror
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image (Ωb), would now be given by

M(N̄a, Nb) = Za Yb − Ya Zb , (3.2)

M(Na, Nb) = Za Yb + Ya Zb , (3.3)

respectively. Strings stretching between a brane in stack (a) and its mirror image (Ωa)
give rise to chiral matter in the antisymmetric and symmetric representations of the group
U(Na) as before, with multiplicities

M(Aa) = Ya (3.4)

M(Aa + Sa) = Ya

(

Za −
1

2

)

, (3.5)

respectively. The above part of the spectrum, corresponding to the open-string sector,
breaks supersymmetry, as in the case of intersecting-brane models on a toroidal orien-
tifold [8], with the scalar fields acquiring a non-vanishing mass. The closed-string sector
still preserves supersymmetry, and leads again to the spectrum of a d = 4, N = 4 super
Yang-Mills theory of the U(Na) gauge group.

In what follows, we look for viable three-generation flipped SU(5) GUT models. We first
concentrate on the fermionic chiral representations that follow from two- and three-stack
models, enquiring whether they have the correct charges under the U(1)X gauge factor.
Subsequently, we study modifications of the spectrum of chiral matter, seeking to include
the desired Higgs multiplets.

3.1 Two Stacks of Branes

We start again with the minimal case of two stacks of branes with Na = 5 and Nb = 1. The
final objective is to obtain three generations of the desired representations, that is (10, 1),
(5̄, 1) and (1, 1). However, we first make a general analysis for n families, before specifying
n = 3. The demands for n copies of the (10, 1) representation and for the absence of any
extra antisymmetric or symmetric representations lead, using (3.4)-(3.5), to Ya = n and
Za = 1/2, respectively. The choice of the value of the wrapping number Za automatically
determines the value of the second one, through the tadpole cancellation condition (3.1),
to be Zb = −1/2.

Then, from (3.2), (3.3) and (3.5), we find that the number of bifundamental and sym-
metric representations are given, respectively, by

M(5̄, 1) =
1

2
(Yb + n) , M(5, 1) =

1

2
(Yb − n) (3.6)

M(1, 1) = −Yb . (3.7)

The above part of the spectrum is characterized by the symmetry Yb ↔ −Yb under which
the spectrum remains essentially invariant. We choose the value Yb = +n, and comment
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briefly later on the differences appearing for the alternative choice Yb = −n. The spectrum
which follows in this case is displayed in Table II.

Table II

multiplicity representation U(1)a U(1)b U(1)X

n (10, 1) +2 0 1

n (5̄, 1) −1 1 −3

n (1, 1) 0 −2 5

Both of the two U(1) gauge factors are anomalous. However, there is a single combina-
tion that turns out to be anomaly-free 4, namely

U(1)X =
1

2

[

U(1)a − 5U(1)b
]

. (3.8)

The charges of the derived fermionic chiral spectrum under the U(1)X factor are shown in
the last column of Table II and are exactly those that these representations should have in
a flipped SU(5)×U(1)X model. Note that these charges under the U(1)X gauge factor are
reproduced for every number n of families. We may, therefore, conclude that the particular
two-stack intersecting-brane models studied here favour the construction of a flipped SU(5)
GUT model, without favouring a particular number of generations for the chiral matter.
We are free to choose the phenomenologically relevant case n = 3, but every other value of
n appears to be equally acceptable, from the theoretical point of view.

As mentioned above, the spectrum remains invariant under the change of the sign of
the wrapping number Yb. Indeed, if we choose Yb = −n, we end up again with n families
of (5̄, 1) and (1, 1), the only differences being the opposite signs of the charges of these
representations under the U(1)b gauge factor, which in turn leads to the opposite sign in
front of the second term in the definition of U(1)X (3.8). We now check that both options
survive the demand that U(1)X should remain massless despite potential couplings with
RR scalar fields. In the present orbifold models [12], the imposed Z3 symmetry projects
out three of the four RR scalar fields, and the remaining coupling with B0

2 is given by
cµ = NµYµ. For both choices Yb = +n and Yb = −n, we find

c
(±)
X ≡

1

2

(

ca ∓ 5 cb
)

= 0 , (3.9)

so in neither case does the corresponding U(1)X acquire a mass.

Another comment is in order at this point. For Yb = +n and n = 3, we find the
same number of generations and types of representations for the fermionic matter as in
the SU(5) GUT model presented in [12]. Therefore, the single, anomaly-free U(1) gauge

4The remaining anomalous U(1) gauge boson becomes massive because of the coupling of the RR-forms
to the gauge fields, and decouples from the system [12].
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factor is bound to be given by the same linear combination of U(1)a and U(1)b, modulo an
arbitrary coefficient. Indeed, by multiplying the charges of the fermionic representations
under the U(1)free gauge factor presented in Table 2 5 of Ref. [12] by a factor 5/2, we
recover the charges under the U(1)X gauge factor displayed on the last column of our Table
II. If one interprets this anomaly-free U(1) as an extra Abelian symmetry with no physical
content, then a Higgs singlet needs to be found to break the unnecessary symmetry, which
was the approach followed in [12]. However, the charges of the fermionic representations
under the anomaly-free U(1) call for a flipped SU(5) × U(1)X GUT model instead of the
traditional SU(5) one. In this approach, which we follow here, this gauge factor does not
need to be broken as it contributes to the building of the flipped version of the SU(5)
model.

3.2 Three Stacks of Branes

We now turn to the case with three stacks of branes, with Na = 5, Nb = 1 and Nc = 1. It
is of interest to investigate whether the construction of flipped SU(5) models is generically
favoured in the case of a toroidal orbifold, independently of the number of stacks of branes
considered. The desired spectrum of fermionic representations remains the same as before:
we need 3 generations, each one containing (10, 1), (5̄, 1) and (1, 1) multiplets. For this
purpose, and starting from (3.4) and (3.5), we assume that

(Ya, Za) =
(

3,
1

2

)

. (3.10)

The tadpole cancellation condition (3.1) leads in this case to the constraint

Zb + Zc = −
1

2
, (3.11)

which leaves an infinite number of possibilities for the values of the two wrapping numbers
Zµ. In what follows, we present in detail two sample models that lead to an optimal
spectrum of chiral matter, among the many examples we studied.

3.2.1 Model I: Zb = −1/3 and Zc = −1/6

We discuss first the spectrum of bifundamental representations. From (3.2) and (3.3),
after substituting the values of the wrapping numbers already determined, we find that the
number of copies of the 5̄ and 5 multiplets predicted by the model are given, respectively,
by the expressions

M(N̄a, Nb) = M(5̄, 1) =
Yb

2
+ 1 , M(N̄a, Nc) = M(5̄, 1) =

Yc

2
+

1

2
, (3.12)

5A typographical error in the third row of the last column in that Table has erroneously changed the
correct charge of the singlets under the U(1)free gauge factor from 2 to -2.
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M(Na, Nb) = M(5, 1) =
Yb

2
− 1 , M(Na, Nc) = M(5, 1) =

Yc

2
−

1

2
. (3.13)

On the other hand, the spectrum of singlets (1, 1) can be derived from the following ex-
pressions

M(Sb) = −
5

6
Yb , M(Sc) = −

2

3
Yc , (3.14)

M(N̄b, Nc) = −
Yc

3
+

Yb

6
, M(Nb, Nc) = −

Yc

3
−

Yb

6
. (3.15)

We need to make the correct choices for the wrapping numbers Yb and Yc that lead, first,
to integer numbers for the above multiplicities and, secondly, to a total number of copies of
the (5̄, 1) representation that close to 3. For non-vanishing Yb, it turns out to be extremely
difficult to perform successfully both tasks, so we choose Yb = 0 and Yc = +3. In that case,
the spectrum that we obtain is displayed in Table III.

The spectrum derived above indeed includes three generations with the desired repre-
sentations for an SU(5) GUT model. The double horizontal line separates those represen-
tations from the extra chiral matter obtained, whose importance is discussed in subsection
3.3. From among the three U(1) gauge symmetries present in the model, the following
linear combination turns out to be anomaly-free:

U(1)X =
1

2
U(1)a −

5

2

[

U(1)b + U(1)c
]

. (3.16)

Table III

multiplicity representation U(1)a U(1)b U(1)c U(1)X U(1)free

3 (10, 1) 2 0 0 1 0

2 (5̄, 1) −1 0 1 −3 0

1 (5̄, 1) −1 1 0 −3 1

2 (1, 1) 0 0 −2 5 0

1 (1, 1) 0 −1 −1 5 −1

1 (5̄, 1) −1 −1 0 2 −1

1 (5, 1) 1 0 1 −2 0

1 (1, 1) 0 1 −1 0 1

The corresponding charges of all representations under this gauge factor are also displayed
in the above Table, and they are the correct ones for a flipped SU(5)×U(1)X GUT model.
Moreover, one of the three gauge factors also turns out to be anomaly-free

U(1)free = U(1)b , (3.17)

while the anomalous U(1) factor can be chosen to be

U(1)an =
1

3

∑

µ

Nµ Yµ U(1)µ = 5U(1)a + U(1)c , (3.18)
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and is the only one that decouples from the system by acquiring a mass.

A symmetry under the change of the signs of the wrapping numbers Yb and Yc, similar
to that encountered in the two-stack case, is also present here. The spectrum obtained in
this case is identical to the one presented above, apart from the sign of the charges under
the corresponding U(1) gauge factors. Reversing the sign in front of U(1)b and U(1)c in
the definition of U(1)X (3.16) restores the correct charges under the flipped U(1) factor.

3.2.2 Model II: Zb = −1/2 and Zc = 0

We start again with the spectrum of bifundamental representations. Their multiplicities,
for the chosen values of the wrapping numbers, are given by the expressions

M(N̄a, Nb) = M(5̄, 1) =
1

2
(Yb + 3) , M(N̄a, Nc) = M(5̄, 1) =

Yc

2
, (3.19)

M(Na, Nb) = M(5, 1) =
1

2
(Yb − 3) , M(Na, Nc) = M(5, 1) =

Yc

2
. (3.20)

We also need to compute the spectrum of singlets (1, 1). They come again from both
symmetric and bifundamental representations, and have the multiplicities:

M(Sb) = −Yb , M(Sc) = −
Yc

2
, (3.21)

M(N̄b, Nc) = −
Yc

2
, M(Nb, Nc) = −

Yc

2
. (3.22)

The values of the wrapping numbers Yb and Yc that lead to integer multiplicities, close to
three, for both bifundamentals and singlets are Yb = 1 and Yc = 2. The spectrum of chiral
matter obtained in this case 6 is shown in Table IV.

Table IV

multiplicity representation U(1)a U(1)b U(1)c U(1)X U(1)free

3 (10, 1) 2 0 0 1 0

2 (5̄, 1) −1 1 0 −3 −1

1 (5̄, 1) −1 0 1 −3 1/2

1 (1, 1) 0 −2 0 5 2

1 (1, 1) 0 0 −2 5 −1

1 (1, 1) 0 −1 −1 5 1/2

1 (5̄, 1) −1 −1 0 2 1

1 (5, 1) 1 0 1 −2 1/2

1 (1, 1) 0 1 −1 0 −3/2

6Note that the transformations Yb ↔ −Yb and Yc ↔ −Yc still leave the spectrum of chiral fermionic
matter invariant.

11



Focusing first on the U(1) gauge factors of the model, we easily see that each one of
them is anomalous. However, there are two anomaly-free combinations. The first one is

U(1)X =
1

2
U(1)a −

5

2

[

U(1)b + U(1)c
]

, (3.23)

and corresponds to the gauge factor necessary for the construction of the flipped SU(5)
model. The second one is

U(1)free =
1

2
U(1)c − U(1)b , (3.24)

and the charges of all chiral matter under this gauge factor are displayed in the last column
of Table IV. Finally, the remaining, anomalous U(1) factor, that acquires a mass via its
coupling with the RR field, can be chosen to be

U(1)an =
∑

µ

Nµ Yµ U(1)µ = 15U(1)a + U(1)b + 2U(1)c . (3.25)

As is clear from the entries in the Table, we have again obtained three generations of
fermionic chiral matter, together with the same extra chiral spectrum as in the previous
case. Both models have an extra pair of 5 and 5̄ multiplets in the spectrum, together with a
singlet that is charged under the U(1)free gauge factor but neutral under the U(1)X factor.
The pair of non-singlet multiplets may be identified with the ‘supersymmetric’ partners of
the Higgs multiplets for the electroweak symmetry breaking, while the extra singlet serves
to break the U(1)free gauge factor. Therefore, these two models successfully generate a
three-generation fermionic spectrum with a flipped SU(5)× U(1)X GUT gauge symmetry,
together with a complete electroweak Higgs sector and no extra chiral matter.

Let us finally note that by choosing alternative values of the two wrapping numbers
Zb and Zc that satisfied the constraint (3.11), a number of additional models were also
constructed that successfully led to a three-generation fermionic chiral spectrum with the
correct charges for a flipped SU(5) GUT model. However, these models were accompanied
by a moderate, but unnecessary, proliferation of 5 and 5̄ multiplets, and therefore we do
not present them here.

3.3 Search for a Viable Higgs Spectrum

The successful derivation of the desired fermionic representations with the correct charges
under the U(1)X gauge factor is only part of the attempt to construct a flipped SU(5) ×
U(1)X GUT model. The models derived in the previous subsection already included the
(5, 1) and (5̄, 1) Higgs multiplets needed for electroweak symmetry breaking. However, one
would also like to augment the matter spectrum so as to include the (10, 1) and (10, 1)
Higgs multiplets needed for the breaking of the GUT group. This modification should take
place in such a way that the number of generations, as well as the charges under the extra
U(1)X , are preserved and, if possible, the appearance of any extra chiral matter is avoided.
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Returning to (3.4)-(3.5), we note that the sector of open strings stretching between a
brane in stack (a) and its mirror image (Ωa), is the only possible source for the antisym-
metric representation of the SU(5) group and its conjugate. Therefore, in order to obtain
an additional (10, 1) together with a (10, 1) multiplet for the Higgs spectrum, we need
to modify first the wrapping numbers that correspond to stack (a). The values of those
numbers that were found to serve best this purpose, while leading to a minimal spectrum
of extra chiral matter, are the following

(Ya, Za) = (6,
1

3
) . (3.26)

Then, (3.4)-(3.5) lead to 3+1 (10, 1) and one (10, 1), as desired, together, however, with
one copy of the symmetric representation (15, 1) of SU(5) and two extra (10, 1) 7.

In the two-stack case, a large number of models, including the one that corresponds
to the optimum choice of wrapping numbers (3.26), were studied, but did not contain any
5̄’s. Considering alternative values of the winding numbers and demanding the appearance
of 3+1 (5̄, 1) multiplets, we are led to a spectrum of chiral matter that contains three
generations of fermionic multiplets and a GUT Higgs sector with the required pair of (10, 1)
and (10, 1). However, these are accompanied by a large number of extra chiral matter fields,
and the flipped SU(5)× U(1)X gauge symmetry is not there any more: the sole anomaly-
free U(1) gauge factor that can be built out of the anomalous U(1)a and U(1)b does not
correspond to the flipped U(1)X gauge factor. The model fails to lead even to a traditional
SU(5) GUT model with an extra U(1) symmetry, due to the absence of the (5, 1) Higgs
multiplet with the correct charges. Vice versa, any attempt to preserve the symmetry
SU(5)× U(1)X leaves incomplete both the electroweak and GUT Higgs sectors.

In the three-stack case, the same stack with Na = 5 branes leads to the group SU(5)
and its fermionic representations, and therefore we will try to modify the corresponding
wrapping numbers as in (3.26), in order to include an extra (10, 1) and (10, 1) in the chiral
spectrum. Then, the tadpole cancellation condition leads to

Zb + Zc =
1

3
. (3.27)

The number of different combinations for the above wrapping numbers that respect this
constraint is again infinite. We have studied various combinations leading to a number of
models with different features in their fermionic and Higgs spectra. For a reason to be
discussed shortly, we present here the one which corresponds to the following wrapping
numbers:

(Yb, Zb) = (3, −
1

2
) , (Yc, Zc) = (3,

5

6
) . (3.28)

The spectrum of chiral matter that follows in this case is displayed in Table V.

7The choice (Ya, Za) = ( 4, 1

4
), which leads to exactly 3+1 (10,1) and one (10,1) together with only

one (15,1), is not allowed in the model by the construction of [12]. We thank R. Blumenhagen, B. Körs,
D. Lüst and T. Ott for communicating this to us.
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Table V

multiplicity representation U(1)a U(1)b U(1)c U(1)X U(1)free

3 (10, 1) 2 0 0 1 0

3 (5̄, 1) −1 1 0 −3 1

3 (1, 1) 0 −2 0 5 −2

1 (10, 1) 2 0 0 1 0

1 (10, 1) −2 0 0 −1 0

1 (5̄, 1) −1 −1 0 2 −1

1 (5, 1) 1 0 1 −2 −1

4 (1, 1) 0 1 −1 0 2

1 (15, 1) −2 0 0 −1 0

2 (10, 1) 2 0 0 1 0

1 (5̄, 1) −1 1 0 −3 1

1 (5̄, 1) −1 −1 0 2 −1

4 (5, 1) 1 0 −1 3 1

5 (5, 1) 1 0 1 −2 −1

1 (1, 1) 0 0 2 −5 −2

1 (1, 1) 0 1 1 −5 0

The following comments can be made concerning the derived spectrum:

• The first part of Table V contains the fermionic multiplets, that again come in 3
generations, as desired.

• We have managed to recover the correct charges of all the fermionic chiral spectrum
under the U(1)X gauge factor, which is defined as:

U(1)X =
1

2
U(1)a −

5

2
U(1)b −

5

2
U(1)c . (3.29)

The above Abelian factor is indeed anomaly-free and massless, and leads to a SU(5)×
U(1)X gauge symmetry for the flipped GUT model.

• We can build a second anomaly-free, massless U(1) gauge factor in the following way

U(1)free = U(1)b − U(1)c . (3.30)

In order to avoid having an SU(5)×U(1)X ×U(1) gauge symmetry, we need to break
this extra Abelian factor with a Higgs singlet that is charged under this U(1)free
gauge factor, but neutral under the U(1)X factor. The model presented above has
indeed singlets of this type.
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• In the second part of the Table, we display, in addition to the Higgs singlets for the
breaking of the U(1)free gauge factor, the derived GUT and electroweak Higgs sector.
We see that the (10, 1) and (10, 1) multiplets have been successfully included into
the spectrum, which completes the GUT symmetry breaking sector. In addition,
a complete electroweak Higgs sector with (5, 1) and (5̄, 1) multiplets has also been
generated.

The main conclusion that one can draw from the above analysis of the three-stack case
is that, contrary to what happens in the two-stack case, the attempt to include the Higgs
sector in the chiral spectrum does not lead to the breakdown of the SU(5)× U(1)X gauge
construction. In all of the models studied, the derived spectrum contained three generations
of fermionic matter, with the correct charges under the flipped gauge group, as well as a
complete GUT Higgs sector. Some of those models had an incomplete electroweak Higgs
sector, and hence would require an alternative way of breaking the electroweak symmetry.
Other models, an example of which is the one presented above, had a complete electroweak
Higgs sector. However, both groups of models are characterized by a large number of extra
chiral multiplets with undesirable quantum numbers.

In our opinion, a more natural scheme for symmetry breaking arises, together with a
phenomenologically preferred spectrum, if one abandons the attempt to include the GUT
Higgs sector into the spectrum. An alternative method for breaking the high-energy GUT
group would need to be invoked, maybe higher-dimensional. We find this more plausible
for the GUT sector than for the electroweak sector, retaining the more traditional Higgs
mechanism for the low-energy electroweak symmetry breaking. If we adopt this line of
thinking, the most successful models are those derived in Section 3.2. Both models presented
there had a three-generation fermionic spectrum with the appropriate charges for a flipped
SU(5)× U(1)X model, a Higgs singlet for the breaking of the extra U(1)free gauge factor,
and the pair of 5 and 5̄ needed for the electroweak symmetry breaking. However, an
alternative way of breaking of the GUT model would need to be introduced in each model.

4 Conclusions

We have explored in this paper the possibility of constructing a flipped SU(5) × U(1)X
GUT model in the framework of intersecting-brane scenarios. After the construction of
other GUT models in the literature, based on either SU(5) or SO(10) gauge groups, we
felt that the attractive phenomenological features of this model motivated a study of the
flipped version of SU(5).

We considered, first, sets of D6-branes wrapped on a six-dimensional T 6 toroidal ori-
entifold. This brane construction is characterized by integer wrapping numbers and, in
general, a large number of generations for chiral matter. In the case with three stacks of
branes, we have managed to obtain an SU(5) GUT model with just 8 families of fermionic
matter, considerably smaller than the number of families predicted in previous brane con-
structions. This model has an SU(5) × U(1) gauge symmetry group, but the extra U(1)
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factor did not correspond to the U(1)X factor in flipped SU(5). Moreover, this gauge factor,
although non-anomalous, had a non-vanishing coupling with the RR two-form fields and
thus acquired a mass.

Whilst brane constructions on a toroidal orientifold seem not to favour the flipped
version of SU(5), intersecting-brane models on a toroidal orbifold give rise to a flipped
SU(5)× U(1)X GUT gauge group quite naturally. Thanks to the fractional nature of the
wrapping numbers in this case, we were able to obtain models with 3 generations of chiral
fermions with the correct charges for the U(1)X flipped gauge factor. A number of models
were constructed, both in the case of two and three stacks of branes, manifesting a generic
tendency of these intersecting-brane configurations to give rise to the flipped version of the
SU(5) GUT group. In the three-stack case, the derived spectrum contained also the Higgs
multiplets required for electroweak symmetry breaking and Higgs singlet suitable for the
breaking of the extra U(1) Abelian factor present in the models. It is worth noting that,
in all models that led successfully to a flipped SU(5) GUT group, the U(1)X gauge factor
always remained massless, despite the presence of a RR two-form field in the theory.

The final step in our study involved exploring modifications of the derived models with
a view to including the Higgs multiplets needed for GUT symmetry breaking. In the case
with two stacks of branes, all our attempts in this direction resulted in the breakdown of the
flipped SU(5) symmetry. In the three-stack case, the same procedure led to a 3-generation
flipped SU(5) model with complete GUT and electroweak Higgs sectors and a Higgs singlet,
suitable for the breaking of the extra U(1)free gauge factor. However, this model had a
large amount of extra chiral matter. The previous three-stack models, though lacking a
GUT Higgs sector, may be a more attractive starting-point for future work. They naturally
accommodate a complete electroweak symmetry breaking sector, the Higgs singlet and no
extra chiral matter, and it may be possible to find an alternative mechanism for breaking
the high-energy GUT symmetry.
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[10] R. Blumenhagen, B. Körs and D. Lüst, JHEP 0102, 030 (2001) [arXiv:hep-
th/0012156].

[11] L. E. Ibanez, F. Marchesano and R. Rabadan, JHEP 0111, 002 (2001) [arXiv:hep-
th/0105155].
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