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ABSTRACT

We obtain new intersecting 5-brane, string and pp-wave solutions in the heterotic string

on a torus and on a K3 manifold. In the former case the 5-brane is supported by Yang-

Mills instantons, and in the latter case both the 5-brane and the string are supported by

the instantons. The instanton moduli are parameterised by the sizes and locations of the

instantons. We exhibit two kinds of phase transition in which, for suitable choices of the

instanton moduli, a 5-brane and/or a string can be created. One kind of phase transition

occurs when the size of an instanton vanishes, while the other occurs when a pair of Yang-

Mills instantons coalesce. We also study the associated five-dimensional black holes and the

implications of these phase transitions for the black-hole entropy. Specifically, we find that

the entropy of the three-charge black holes is zero when the instantons are separated and

of non-zero scale size, but becomes non-zero (which can be counted miscrospically) after

either of the phase transitions.
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1 Introduction

The BPS p-branes of supergravity theories describe non-perturbative states of the under-

lying string theory or M-theory. In general, the p-brane solitons are not exact solutions

in supergravity, in the sense that delta-function singularities arise in the field equations,

implying that external source terms are needed. These sources are in fact supplied by the

associated fundamental p-brane actions [1]. There are a few examples of p-brane solitons in

maximal supergravities where such source terms are absent, notably the M5-brane [2] and

the D3-brane [3, 4].

In the heterotic string there is a different mechanism that can give rise to regular brane-

like solutions with no singular source terms. Due to the the Bianchi identity

dF(3) =
1

2
Ga

(2) ∧Ga
(2) , (1.1)

one can construct a solitonic 5-brane that is supported by a Yang-Mills instanton config-

uration living in the 4-dimensional space transverse to the 5-brane worldvolume [5]. This

configuration, unlike its 5-brane counterpart in the maximal D = 10 supergravity, is a per-

fectly regular solution of the supergravity equations of motion and is not supported by any

external source term.1 The Bianchi identity (1.1) implies that the 5-brane charge is nothing

but the total instanton number, providing a natural quantisation of the 5-brane charge that

lies outside, but is consistent with, the usual Dirac quantisation condition.

In this paper, we obtain a new solution describing the intersection of a gauge 5-brane,

a string and a pp-wave. In other words, we show that a string, with a wave propagating

on its worldsheet, can lie on the worldvolume of the instanton-supported 5-brane. This

configuration is of particular interest since it reduces to a three-charge black hole in D = 5.

This means that we can study thermodynamic quantities such as the entropy.

The Yang-Mills instanton moduli are parameterised by the sizes of the instantons and

their locations. The 5-brane charge, following from (1.1), is given by

Qm =
1

8π2

∫
dF(3) =

1

16π2

∫
Ga

(2) ∧Ga
(2) = N , (1.2)

where the integration is over the entire 4-volume of the transverse space and N is the

instanton number. This charge is topological and is therefore independent of the Yang-

Mills instanton moduli. This leads to the interesting question as what happens if the size
1One might argue that calling such a regular solution a 5-brane is somewhat inappropriate, and that

it were better thought of as an instanton solution which happens to have a Poincaré symmetry in a six-

dimensional submanifold. We shall, however, follow the traditional terminology and refer to it as the gauge

5-brane [5].
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of a instanton becomes zero, or if two instantons coalesce. We show that in each case there

is a phase transition in which a fundamental 5-brane is created, while at the same time a

gauge 5-brane is destroyed. Thus a gauge 5-brane turns into a fundamental 5-brane, while

keeping the total magnetic charge conserved.

These two phase transitions have significant consequences for the associated 3-charge

black holes that arise after a dimensional reduction to five dimensions. The horizon has a

curvature singularity, and has zero area, when the instantons supporting the gauge 5-brane

are of non-vanishing size, and are non-coincident. However, the horizon becomes regular

(AdS × sphere), with non-zero area, when either of the above phase transitions occurs.

This phenomenon supports the idea that a fundamental 5-brane is created as a result of

the phase transition, since the 3-charge black hole in D = 5 with non-zero horizon area

can be interpreted, at the microscopic level, by counting the states in such an intersecting

configuration [6].

We also study the phase transitions leading to brane creation in the context of the

heterotic string compacified on the K3 manifold. In this case, both the string and 5-

brane (in the ten-dimensional picture) can be supported by Yang-Mills instantons; this

corresponds to gauge dyonic strings in D = 6 [7]. Thus either of the two kinds of phase

transition discussed above will now lead to the creation not only of fundamental 5-branes,

but also fundamental strings. We obtain a new intersection with an additional superposed

pp-wave. This gives rise, upon a further reduction toD = 5, to 3-charge black holes with two

instanton-supported charges and one point charge, whose entropies become non-vanishing

under either of the two phase transitions.

Supergravity on an anti-de Sitter spacetime background is conjectured to be dual to

an associated superconformal field theory on its boundary [8]. Thus the instanton phase

transition can be viewed as a transition from a supergravity theory to the superconformal

field theory.

2 Heterotic string on torus

The low-energy effective action of the heterotic string is N = 1 supergravity in D = 10,

coupled to E8 × E8 Yang-Mills matter fields. We shall focus on an SU(2) subgroup of

E8 × E8. The Lagrangian for the bosonic sector is given by

e−1 L10 = R∗1l− 1

2
∗dφ ∧ dφ− 1

2
e−φ ∗F(3) ∧ F(3) − 1

2
e−

1
2
φ ∗Ga

(2) ∧Ga
(2) , (2.1)
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where the field Ga
(2) is the Yang-Mills field strength given by

Gα
(2) = dBa

(1) +
1

2
ǫabcBb

(1) ∧Bc
(1) , (2.2)

and F(3) is the three-form field strength, given by

F(3) = dA(2) +
1

2
Ba

(1) ∧ dBa
(1) +

1

6
ǫabcBa

(1) ∧Bb
(1) ∧Bc

(1) . (2.3)

It satisfies the Bianchi identity

dF(3) =
1

2
Ga

(2) ∧Gα
(2) . (2.4)

2.1 Instanton-supported intersections

The Lagrangian (2.1) admits a solution describing an intersection of a string, a 5-brane and

a pp-wave, given by

ds210 = H−3/4
e H−1/4

m (−W−1 dt2 +W (dz1 + (W−1 − 1) dt)2)

+H1/4
e H−1/4

m (dz22 + · · ·+ dz25) +H1/4
e H3/4

m dyi dyi ,

φ = −1

2
log(He/Hm) , (2.5)

F(3) = eφ ∗(dt ∧ d5z ∧ dH−1

m )− dt ∧ dz1 ∧ dH−1

e ,

where the functions He, Hm and W , associated with the string, 5-brane and pp-wave

respectively, depend only on the four coordinates yi of the transverse space, and satisfy

the equations

He = 0 , W = 0 , Hm = −1

4
Ga

ij G
a
ij . (2.6)

Note that here ≡ ∂i ∂i is the Laplacian in the flat transverse metric ds2 = dyi dyi,

and the index contractions in Ga
ij G

a
ij are performed simply using the metric δij of the

flat transverse space. The SU(2) Yang-Mills fields Ga
(2) satisfy the self-duality equations

∗Ga
ij = Ga

ij in the four-dimensional flat transverse space, where ∗ denotes Hodge duality in

this flat space. Single-charge and certain multi-charge SU(2) instanton solutions are given

in the Appendix.

For a single-center configuration, the solutions to equations (2.6) can be taken to be:

He = 1 +
2Qe

r2
, Hm = 1 +

2(r2 + 2a2)

(r2 + a2)2
, W = 1 +

2P

r2
, (2.7)

where we have made use of (A.5) in order to solve the equation of motion for Hm. Note

that the solution requires a fundamental string as its source term, but does not require any

fundamental 5-brane, since the 5-brane is supported by the Yang-Mills instanton, which
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provides one unit of 5-brane charge. This provides a discretisation of the 5-brane charge

that lies outside the Dirac quantisation condition [5, 1]. This is possible due to the Bianchi

identity (2.4). Of course, if there were also a fundamental 5-brane that could provide a

delta-function source term, then we could have an additional term 2Q̃m/r
2 in Hm, giving

Hm = 1 +
2Q̃m

r2
+

2(r2 + 2a2)

(r2 + a2)2
. (2.8)

(We shall discuss the normalisation of the magnetic charge below. Note that a unit charge

corresponds to a singularity of strength 2 in the harmonic function.)

For multi-centered configurations, we may take the solutions to (2.6) to be

He = 1 +
∑

α′

2Qα′

e

|~y − ~y ′
α′ |2 , Hm = 1 + 2ψ , W = 1 +

∑

α′′

2Pα′′

|~y − ~y ′′
α′′ |2 , (2.9)

where ψ, given in (A.10), is associated with the Yang-Mills instanton, discussed in detail in

Appendix. The primes on the various indices and the locations of the singularities signify

the fact that the number, and locations, of the singularities for He, W and f can all be

different.

To determine the approriate choice for the harmonic function h in (A.10), we must

examine the behaviour of ψ in the vicinity of each singularity of the harmonic function f

in (A.8). Noting that log f = f−1 f − f−2 (∂if)
2, we see that near the singularity at

~y = ~yα, we shall have ψ = 1

4
log f + h ∼ −|~y − ~yα|−2 + h, since f ∼ λα |~y − ~yα|−2 near

this singularity. We see from (2.9) that in the absence of any correction term from h, this

would be of the form of a singular point source with magnetic charge (−1). Therefore we

may exploit the freedom of adding an harmonic function h = |~y − ~yα|−2 to ψ, in order to

ensure that the only source for the magnetic charge of the 5-brane at ~y = ~yα is from the

Yang-Mills instanton. Carrying out this procedure for each singularity ~yα, we see that ψ in

(2.9) should be chosen to be2

ψ = 1

4
log

(
1 +

N∑

α=1

λα
|~y − ~yα|2

)
+

N∑

α=1

1

|~y − ~yα|2
. (2.10)

2In [18], the delta-function singularities in Ga
ij G

a
ij = −8 ψ that result from simply taking ψ to be given

by 1
4
log f were eliminated by excising small spheres around the singularities in f . This could be done there

because ψ itself had no direct physical significance (and indeed it was not explicitly introduced in [18])). In

our case, however, ψ itself appears when we solve for Hm in (2.6) to obtain (2.7), and so we must ensure

that ψ is free of singularities if we are to have a solution that has only non-singular instanton source-terms

for the 5-brane charge. This procedure has the added advantage that Ga
ij G

a
ij = −8 ψ is now an exactly

correct expression, with no delta-function singularities, and so the excision of spheres performed in [18] is

no longer necessary.
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In general, the total magnetic charge Qm is given by

Qm =
1

8π2

∫

S3

F(3) . (2.11)

This can receive contributions both from non-singular instanton-supported sources and from

any singular sources corresponding to the possible additional presence of point charges. The

instanton contributions can be calculated from the Bianchi identity (2.4), since the integral

in (2.11) can be viewed as being over the sphere at infinity in the four-dimensional transverse

space V4, and hence we can write

Qm =
1

8π2

∫

S3

F(3) =
1

8π2

∫

V4

dF3

=
1

16π2

∫

V4

Ga
(2) ∧G2

(2) ≡ N , (2.12)

where N is the instanton number defined by the integral in the second line. If there

are, in addition, point-charge singular contributions, then these can be calculated from

the expression for F(3) in (2.5). The first term gives the magnetic contribution F(3) =

−1

6
∂iHm ǫijkℓ dy

j ∧dyk∧dyℓ, and hence a contribution to dF(3) of dF(3) = − Hm d
4y. This

implies that there will be a contribution to the magnetic charge

Qm =
1

8π2

∫

S3

F(3) = − 1

8π2

∫

V4

Hm . (2.13)

Thus a term in Hm of the form 2k |~y − ~yα|−2 will contribute a magnetic charge

Qm = − 1

4π2

∫

S3

∂i

( k

|~y − ~yα|2
)
dΣi = k . (2.14)

Putting this all together, we see that a solution withN instantons with scales λα centered

at the points ~yα, and N ′ point magnetic charges Q̃α̃
m, centered at the points ~yα̃, will be

described in terms of a function Hm in (2.9) with

ψ =
[
1

4
log

(
1 +

N∑

α=1

λα
|~y − ~yα|2

)
+

N∑

α=1

1

|~y − ~yα|2
]
+

N ′∑

α̃=1

Q̃α̃
m

|~y − ~yα̃|2
. (2.15)

The term enclosed in square brackets is the non-singular contribution from the instantons,

and the final term is the singular contribution of the point charges. The total magnetic

5-brane charge will be

Qm = N +

N ′∑

α̃=1

Q̃α̃
m . (2.16)

5



2.2 Brane creation

We have seen that the moduli space of the instantons in the solutions we are discussing

is parameterised by the sizes of the instantons λα and their positions ~yα. Two types of

phase transitions can arise when one adjusts these modulus parameters. The first type is

associated with the sizes of the instantons. If the scale-size of an instanton located at ~y = ~yα

is taken to zero, there is a point singularity left at ~yα. To see this explicitly, we note that

in the vicinity of the instanton location ~yα, the function Hm defined by (2.9) and (2.10)

becomes

Hm = 1 +
2(r2 + 2a2)

(r2 + a2)2
a→0

−−−−−−→ 1 +
2

r2
, (2.17)

where ~r = ~y−~yα, and a =
√
λα is the scale-size of the instanton. In other words, the function

Hm becomes a harmonic function, associated with a point singularity in the transverse space,

when the instanton size vanishes. This point charge, unlike the case of the non-singular

instanton, has a delta-function singularity, implying the need for a source term outside the

N = 1, D = 10 supergravity. This external source is in fact provided by introducing a

fundamental 5-brane action. Thus we see that a fundamental 5-brane is created when the

instanton size is taken to zero. In this phase transition, the total magnetic charge measured

by
∫
F(3) is conserved.

Another kind of phase transition occurs if two of the instanton centers are allowed to

become coincident. Suppose, for example, that we take ~yα = ~yβ for two specific instanton

centers ~yα and ~yβ. In the function f = 1 +
∑

α λα |~y − ~yα|−2, the effect is merely to

coalesce a two-instanton configuration with instantons of size a2 = λα and a′2 = λβ into

a one-instanton configuration of size a′′2 = λα + λβ. However, the harmonic function h

will now have a term 2|~y − ~yα|−2, whose strength is twice the value that is needed for

cancelling out the singularity in ψ at ~y = ~yα. Thus, there is one unit of point charge (in

the transverse space) left over. The upshot of this is that when two instanton centers are

brought into coincidence, a configuration that previously described a non-singular gauge

5-brane with instanton number 2 undergoes a phase transition to a configuration describing

two superposed 5-branes supported by one non-singular instanton charge and one singular

point-magnetic-charge, which is nothing but the fundamental 5-brane charge. In particular,

as must be, the net magnetic charge is conserved.

As an example, consider a 2-instanton solution, where the two instanton centers are

initially located at ~y1 and ~y2. The function ψ will be given by

ψ = 1

4
log

(
1 +

λ1
|~y − ~y1|2

+
λ2

|~y − ~y2|2
)
+

1

|~y − ~y1|2
+

1

|~y − ~y2|2
. (2.18)
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After allowing the instanton centers to coalesce, say at ~y = ~y1, the function ψ becomes

ψ =
[
1

4
log

(
1 +

λ1 + λ2
|~y − ~y1|2

)
+

1

|~y − ~y1|2
]
+

1

|~y − ~y1|2
, (2.19)

where the term enclosed in square brackets is the non-singular contribution to the function

Hm in (2.7) coming from the remaining instanton-supported charge, while the final term

describes the singular contribution to Hm coming from a unit point-charge located at ~y1.

In both of the phase transitions that lead to the creation of fundamental 5-branes, the

fundamental 5-brane charge that is generated is quantised and is equal to the decrease in

the Yang-Mills instanton number. The 5-branes that are created all contribute positively

to the total mass.

One could have asked the question purely in the framework of four-dimensional Yang-

Mills theory as to what happens when two instanton centers in a multi-instanton solution

are allowed to coalesce. However, unlike the situation that we have been discussing here,

the question in four-dimensional Yang-Mills theory is an entirely non-dynamical one, in

the sense that there is no external “time” coordinate and, thus, no possibility of a “slow

motion” confluence of the instanton centers. Thus four-dimensional Yang-Mills theory does

not really in itself demand that one give a precise interpretation to the question of what

happens if two instanton centers coalesce. In our case, however, where the instantons reside

in a four-dimensional space transverse to the 5-branes, it does make sense to envisage a slow-

motion approximation in which the locations of the instanton centers vary as a function

of time. Thus it is important in this context that one should be able to give a sensible

interpretation, of the kind that we have supplied, to the question of what happens when

two instanton centers coalesce.

2.3 D = 5 black hole and its entropy

The intersection solution (2.5) is invariant under translational symmetry of the coordinates

{z1, z2, . . . , z5}. It follows that we can dimensionally reduce the solution on the five-torus

T 5 associated with these coordinates, giving rise to a three-charge black hole in D = 5. This

torus reduction can also be consistently performed on the Lagrangian (2.1). The relevant

part of the five-dimensional Lagrangian of the associated three-charge black hole is given

by

e−1 L5 = R ∗1l− 1

2
∗d~φ ∧ d~φ− 1

2
e~a·

~φ ∗F(3) ∧ F(3) − 1

2
e
~d·~φ ∗F(2) ∧ F(2)

−1

2
e
~b·~φ ∗F(2) ∧ F(2) − 1

2
e~c·

~φ ∗Ga
(2) ∧Ga

(2) , (2.20)
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where F(2) = dA(1) is the Kaluza-Klein two-form field strength. The dilaton vectors ~a, ~b, ~c

and ~d in (2.20) satisfy the following product rules

~a · ~a = ~b ·~b = ~d · ~d = 4~c · ~c = 8

3
, ~a ·~b = ~a · ~d = ~a · ~c = 4

3
,

~b · ~c = ~d · ~c = 2

3
, ~b · ~d = −4

3
. (2.21)

We can realise these by the two-component vectors

~a = (−
√
2,
√

2

3
) , ~b = (0,

√
8

3
) , ~c = (−

√
1

2
,
√

1

6
) , ~d = (−

√
2,−

√
2

3
) . (2.22)

The three-charge five-dimensional black hole, which is the dimensional reduction of (2.5)

and a solution to (2.20), is given by

ds25 = −(HeHmW )−2/3 dt2 + (HeHmW )1/3 (dr2 + r2 dΩ2

3) ,

~φ = −1

2
~a logHm + 1

2
~b logW + 1

2
~d logHe , (2.23)

F(2) = dt ∧ dW−1 , F(2) = dt ∧ dH−1

e , F(3) = e−~a·~φ ∗(dt ∧ dH−1

m ) .

For convenience, we have assumed here, as we did for the previous gauge 5-brane solution,

that the asymptotic values of the dilatons vanish; ~φ0 = 0. Here, for simplicity, we consider

only the isotropic black hole, where all the charges are located at the origin. In this case,

there is only a single instanton, contributing one unit of the charge associated with F(3).

The metric in (2.23) has an horizon at r = 0. For any non-vanishing size a of the instanton,

the metric (2.20) is singular at the horizon, which has vanishing area. It follows that the

entropy is exactly zero. On other hand, when the instanton size is zero, the instanton is

replaced by a point charge in the transverse space. In this case, the horizon becomes regular

and has a non-zero area. Thus the entropy undergoes a phase transitition as the scale-size

of the instanton vanishes:

S =





0 : a > 0

1

4
Ahorizon = π2

√
2Qe P : a = 0

(2.24)

An analogous phenomenon occurs if N + 1 instantons coalesce. The entropy, which is

initially zero, becomes non-vanishing and is given by

S = π2
√

2NQe P . (2.25)

This non-vanishing of the area of the horizon in either of the two kinds of phase transition

supports the earlier proposal that 5-branes are created, since the entropies of these black-

hole configurations can be independently evaluated in terms of a miscroscopic counting of
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string states propagating on the intersecting D1-D5 brane system [6]. One might envisage

that although the black hole entropy, which is equal to one quarter of the area of the

black hole event horizon, vanishes when the Yang-Mills instanton size is non-zero or the

instantons are seperated, it is possible that the total entropy, which is the sum of the

black hole entropy and the entropy of the Yang-Mills excitations, may be conserved in

the phase transition. It is worth mentioning that the dilaton behavior is quite different

before and after the phase transition. Before the phase transition, the dilatonic scalars

diverge on the horizon, with the consequence that the classical black-hole solution is not

reliable for extracting information about physical quantities such as the entropy. After the

phase transition, in which a fundamental 5-brane is created, the dilatons are stablised on

the horizon, and consequently the non-vanishing entropy can be evaluated by independent

microscopic methods.

We have seen that the horizon has a curvature singularity when the instantons are

of non-zero size and are separated but that, under either of the phase transitions, the

horizon becomes regular once the point-source limit is reached. In D = 5, the near-horizon

structure after the phase transition is AdS2 × S3. From the ten-dimensional point of view,

it is AdS3 × S3 × T 4. The AdS3 is also known as the extremal BTZ black hole [9], which

is a special case of the generalised Kaigorodov metric [10, 11]. Supergravity on this AdS3

background is conjectured to be dual to a two-dimensional superconformal field theory on

the boundary of the AdS3 [8]. Thus the instanton phase transition can be viewed as a

transition from supergravity theory to a two-dimensional conformal field theory.

Another physical quantity that undergoes a phase transition is the absorption rate for

massless scalar waves. For the case when the instanton size a is non-zero, the near-horizon

structure of the black hole is dominated by the electric string and wave charges and its

low energy absorption cross-section is proportional to the frequency of the wave [12]. On

the other hand, when the instanton scale size a goes to zero, the absorption cross-section

approaches the area of the horizon in the low-frequency limit. To summarise, we have

σ ∼





2π2 (Qe P )ω : a > 0

Ahorizon : a = 0
(2.26)

3 Heterotic string on K3

In the previous section, we obtained intersections of a string, a 5-brane and a pp-wave in

the heterotic string, where the 5-brane carries magnetic charge supported by a Yang-Mills

instanton or multi-instanton configuration. When dimensionally reduced on a torus to

9



D = 6, the intersection becomes that of a dyonic string with a pp-wave, where the magnetic

charge of the string is supported by the Yang-Mills instanton, while the electric charge is

associated with singular sources. Thus, in this case, the electric and the magnetic strings

play very different rôles. In this section, we shall consider the heterotic string compactified

on K3 rather than a 4-torus, in which case not only the magnetic strings, but also the

electric strings, can be supported by Yang-Mills instantons.

3.1 N = 1 supergravity in D = 6

The heterotic string admits a compactification to D = 6 in which the internal four-

dimensional manifold is taken to be K3. Various different six-dimensional theories can

be obtained, with different Yang-Mills gauge groups, depending upon precisely how the

SU(2)-valued spin connection of the Ricci-flat Kähler K3 is embedded in the E8 × E8 or

SO(32) gauge group of the ten-dimensional theory [13]. There will also be quantum cor-

rections to the six-dimensional effective action, whose 1-loop structures can be determined

by general arguments based on the necessary anomaly-freedom of the theory. The result-

ing six-dimensional theories are described by N = 1 supergravity, coupled to an N = 1

hypermultiplet and a Yang-Mills multiplet. The bosonic sectors comprise the metric gµν ,

a dilaton φ, a 3-form field strength F(3), and the Yang-Mills fields Ga
(2). The self-dual part

of the 3-form field belongs to the gravity multiplet, while the anti-self-dual part and the

dilaton belong to the hypermultiplet. The field equations, including the 1-loop terms, take

the form [13]

Rµν = 1

2
∂µφ∂νφ+ 1

4
e−2αφ [F 2

µν − 1

6
F 2

(3) gµν ]

+1

4
(v e−αφ + ṽ eαφ) [(Ga)2µν − 1

8
(Ga

(2))
2 gµν ] ,

d∗dφ = α e−2αφ ∗F(3) ∧ F(3) +
1

2
α (v e−αφ − ṽ eαφ) ∗Ga

(2) ∧Ga
(2) ,

d(e−2αφ ∗F(3)) = 1

2
v Ga

(2) ∧Ga
(2) , (3.1)

D[(v e−αφ + ṽ eαφ) ∗Ga
(2)] = v e−2αφ ∗F(3) ∧Ga

(2) + ṽ F(3) ∧Ga
(2) ,

where α = 1/
√
2. Here, D denotes the Yang-Mills-covariant exterior derivative, defined by

DXa = dXa − ǫabcX
b ∧Bc

(1) , (3.2)

where, as previously, we restrict attention to an SU(2) subgroup of the Yang-Mills gauge

group. The constants v and ṽ are rational numbers characteristic of the embedding of the

SU(2) holonomy group of K3 in the original E8 ×E8 or SO(32) Yang-Mills gauge group in
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D = 10. The terms associated with ṽ come from 1-loop corrections. The field strengths are

given in terms of potentials as follows:

F(3) = dA(2) +
1

2
v ω ,

Ga
(2) = dBa

(1) +
1

2
ǫabcB

b
(1) ∧Bc

(1) . (3.3)

Here, ω is given by

ω = Ba
(1) ∧ dBa

(1) +
1

3
ǫabcB

a
(1) ∧Bb

(1) ∧Bc
(1) , (3.4)

and by construction it satisfies dω = Ga
(2) ∧Ga

(2).

The field equations (3.1) cannot be obtained from any Lagrangian. However, there

is a closely-related system of field equations which, in particular, admit the same set of

solutions that we wish to consider, which can be derived from a Lagrangian. If we consider

the Lagrangian

L6 = R ∗1l− 1

2
∗dφ∧dφ− 1

2
e−2αφ ∗F(3)∧F(3)− 1

2
(v e−αφ+ṽ eαφ) ∗Ga

(2)∧Ga
(2)+

1

2
ṽ Ga

(2)∧Ga
(2)∧A(2) ,

(3.5)

it is easily seen that it correctly produces all except one of the equations of motion given

in (3.1). The exception is the Yang-Mills equation, which turns out to be

D[(v e−αφ+ ṽ eαφ) ∗Ga
(2)] = v e−2αφ ∗F(3)∧Ga

(2)+ ṽ dA(2)∧Ga
(2)− 1

4
v ṽ Ga

(2)∧Ga
(2)∧Ba

(1) , (3.6)

rather than the corresponding equation in (3.1).

The discrepancy between the Yang-Mills equations in (3.1) and (3.6) is a term of the

form

(F(3) − dA(2)) ∧Ga
(2) +

1

4
v Gb

(2) ∧Gb
(2) ∧Ba

(1)

= 1

2
v
[
(Bb

(1) ∧ dBb
(1) +

1

3
ǫbcdB

b
(1) ∧Bc

(1) ∧Bd
(1)) ∧Ga

(2) +
1

2
Gb

(2) ∧Gb
(2) ∧Ba

(1)

]
. (3.7)

It is therefore evident, since this involves only the Yang-Mills fields, that if we consider

instanton solutions where Ba
(1) is non-vanishing only in the four-dimensional transverse

space, then this 5-form will vanish. Thus for such configurations, the solutions of (3.1) and

those following from (3.5) will coincide. Note that the theory admits two different types of

global limit [14]. In one of the limits, the resulting flat-space theory admits a tensionless

string as a solution [7]. The other is a further specialisation of the flat-space theory and

had also been obtained in [15].
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3.2 Gauge dyonic strings with pp-wave, and D = 5 black hole

The equations of motion (3.1) admit solutions describing the intersection of a dyonic string

with a pp-wave, given by

ds26 = (HeHm)−1/2(−W−1 dt2 +W (dz + (W−1 − 1)dt)2 + (HeHm)1/2 dyi dyi ,

φ =
1√
2
log(Hm/He) ,

F(3) = e−
√
2φ ∗(dt ∧ dz ∧ dH−1

m )− dt ∧ dz ∧ dH−1

e . (3.8)

Here, He, Hm and W satisfy

He = −1

4
ṽ Ga

ij G
a
ij , Hm = −1

4
v Ga

ij G
a
ij , W = 0 . (3.9)

Thus we have

He = 1 + 2ṽ ψ , Hm = 1 + 2v ψ , W = 1 +
∑

α′

2Pα′

|~y − ~y ′
α′ |2 , (3.10)

where for multi-instantons, ψ is given by (2.10). (The solution with no pp-wave was obtained

in [7].) Thus we see that when the size of an instanton vanishes, or when two instantons

coalesce, there is a creation not only of a magnetic string, coming from the dimensional

reduction of the 5-brane in D = 10, but also of an electric string.

The dyonic string solution (3.8) can be dimensionally reduced on the z coordinate,

giving rise to a D = 5 three-charge black hole. The form of the solution is the same as

given in (2.23), except that now the functions He, Hm are given by (3.10) instead of (2.9).

Equations of motion that describe these black holes can be derived from the five-dimensional

Lagrangian

L5 = R ∗1l− 1

2
∗d~φ ∧ d~φ− 1

2
e~a·

~φ ∗F(3) ∧ F(3) − 1

2
e
~d·~φ ∗F(2) ∧ F(2)

−1

2
e
~b·~φ ∗F(2) ∧ F(2) − 1

2
v e~c·

~φ ∗Ga
(2) ∧Ga

(2) − 1

2
ṽ e

~̃c·~φ ∗Ga
(2) ∧Ga

(2)

+1

2
ṽ A(1) ∧Ga

(2) ∧Ga
(2) , (3.11)

where the dilaton vectors ~a, ~b, ~c and ~d are given by (2.22), and ~̃c = (1/
√
2, 1/

√
6). This

is obtained by dimensional reduction of the D = 6 Lagrangian (3.5). Again, this produces

equations of motion which do not coincide precisely with those of the dimensionally-reduced

string (which cannot themeselves be derived from a Lagrangian). However, the discrepancies

between the string equations of motion and those following from (3.11) are terms which

vanish for the configurations we are considering.

The discussion of the entropy of the 3-charge black hole is analogous to the previous

case. When the instanton size is non-zero, the entropy vanishes; when the size becomes
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zero, the area of the horizon becomes non-zero and hence the entropy is non-vanishing.

The singular horizon becomes regular and, in terms of the ten-dimensional point of view,

the near horizon structure is AdS3 × S3×K3. Before the phase transition, the metric has

an almost naked singularity, which can be reached in a logarithmically-divergent time by a

null geodesic. A closely-related feature is that the absorption cross-section for scalar waves

vanishes below a certain frequency threshold [12]. After the phase transition, the metric

becomes regular and at low frequencies the absorption cross-section is approximately equal

to non-vanishing area of the horizon. Prior to any phase transition, there is one significant

difference between this solution and the one obtained from the heterotic string on torus,

which we discussed previously. Here, owing to the fact that both the string and the 5-brane

are supported by Yang-Mills instantons, it follows that the six-dimensional dilaton remains

finite as r tends to zero. Thus the six-dimensional dyonic string with a pp-wave has a

regular horizon both before and after the phase transition. This should be contrasted with

the previous 5-brane example, where the associated intersection has a regular horizon only

after the phase transition occurs.

4 Conclusions

In this paper, we have studied certain extremal p-brane configurations in which one or more

of the charges are supplied by Yang-Mills instantons in a four-dimensional transverse space.

Previously known examples were the gauge 5-brane in the ten-dimensional heterotic theory

[5] and the gauge dyonic string in the theory in six dimensions obtained by compactifying

the heterotic string on K3 [7]. If the gauge 5-brane is compactified on T 5, or the gauge

dyonic string is compactified on S1, one obtains in either case a five-dimensional black

hole. The former gives a 1-charge magnetic black hole, while the latter gives a 2-charge

dyonic black hole. In both cases, the charges are “smeared out” by the Yang-Mills instanton

construction.

It is of interest to study configurations that correspond to 3-charge black holes in five

dimensions, since then one has the possibility of having a non-zero entropy even for extremal

configurations. For this reason, we constructed generalisations of the previously-known

gauge solutions, namely a gauge 5-brane intersecting with a string and a pp-wave in D =

10 and a gauge dyonic string intersecting with a pp-wave in D = 6. These give rise to

five-dimensional 3-charge black holes with one smeared charge or two smeared charges

respectively, with the remainder being standard point-source charges.

We showed that, as long as the Yang-Mills instantons are non-degenerate, the entropies
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of the 3-charge black holes vanish. Indeed, from this point of view, the smeared charges

coming from the instantons contribute little to the horizon structures and the black holes

are more like those with the correspondingly fewer number of “genuine” point charges.

However, we also showed that, if certain singular limits of the instanton configurations

are taken, the resulting black holes undergo phase transitions in which they acquire the

non-vanishing entropy associated with the usual 3-charge black holes.

We exhibited two different kinds of degenerate limits for the Yang-Mills instanton con-

figurations, each of which leads to such phase transitions. One of these is the situation

where the scale-size of an instanton goes to zero, leading to the appearance of a single unit

of point charge at the location of the associated instanton center. Another, perhaps more

surprising, degenerate limit occurs if two previously-separated instantons come into coinci-

dence. This leads to a configuration with a superposed instanton and a unit point charge

at the coincidence point. In either of these cases, the emergence of the point charge in the

transverse space in the singular limit gives rise to the phase transition. This singularity is

nothing but the fundamental 5-brane or string charge.

Appendix

A SU(2) Yang-Mills instantons

The solutions that we consider in this paper all involve the use of an SU(2) Yang-Mills

instanton in the four-dimensional transverse space. The simplest such solution is the BPST

single instanton, which is spherically symmetric. This is most elegantly described by writing

the metric on the flat transverse space in terms of hyperspherical polar coordinates, as

ds2 = dr2 + 1

4
r2 (σ21 + σ22 + σ23) , (A.1)

where the σa are the three left-invariant 1-forms on the 3-sphere, satisfying the equation

dσa = −1

2
ǫabc σb ∧ σc. The instanton is obtained by making the ansatz

Ba
(1) = hσa , (A.2)

where h is a function only of r. A simple symmetrical ansatz of this type is possible because

we are considering a Yang-Mills instanton with SU(2) gauge group, which coincides with

the left-acting symmetry group of the 3-sphere. It is elementary to calculate the Yang-Mills

field strengths Ga
(2) for the ansatz (A.2) and then to show that the self-duality equations
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are satisfied if r h′ = 2h (h − 1). The general solution of this equation is

h =
a2

a2 + r2
, (A.3)

where a is an arbitrary constant which sets the scale-size of the instanton. The Yang-Mills

field strength is therefore given by

Ga
(2) = − 4a2

(a2 + r2)2
(e0 ∧ ea + 1

2
ǫabc e

b ∧ ec) , (A.4)

where e0 = dr and ea = 1

2
r σa is a vielbein basis for (A.1). Note that Ga

(2) is manifestly self

dual. One easily verifies from (A.4) that Ga
ij G

a
ij = 192a4 (a2 + r2)−4 and, hence, that

Ga
ij G

a
ij = −8 ψ , where ψ =

r2 + 2a2

(r2 + a2)2
, (A.5)

where here denotes the scalar Laplacian in the four-dimensional flat transverse-space

metric (A.1). Note that the local solution for ψ is ambiguous up to the addition of a

harmonic term k/r2, and we have resolved this ambiguity by choosing k so that ψ has no

singularity at r = 0.

The general multi-instanton solutions are most completely described by the ADHM

construction [16]. Sub-classes of solution are describable using more elementary methods

[17, 18]. For this purpose, it is convenient to write the metric on the four-dimensional

transverse space in Cartesian coordinates yi, for i = 0, 1, 2, 3, as ds2 = dyi dyi. Let us

define the anti-self-dual ’t Hooft tensors ηaij , which are antisymmetric and anti-self-dual in

ij. Thus

ηa = 1

2
ηaij dy

i ∧ dyj = −dy0 ∧ dya + 1

2
ǫabc dy

b ∧ dyc . (A.6)

In other words, ηa
0b = −δab , ηab0 = δab and ηabc = ǫabc. The ansatz for the Yang-Mills potentials

is

Ba
(1) = −ηaij ∂if̃ dyj . (A.7)

After a little algebra, one finds that self-duality ∗Ga
(2) = Ga

(2) implies the equation f̃ +

∂if̃ ∂if̃ = 0, which is solved by taking f̃ = log f , where f satisfies f = 0. Thus we have

instanton solutions with

f = ǫ+

N∑

α=1

λα
|~y − ~yα|2

, (A.8)

where ǫ is a constant that can be taken to be either 1 or 0, and λα and ~yα are constant

strengths and positions for the singularities in f . When ǫ = 1, they have rather direct

interpretations as scale sizes and positions for N separated Yang-Mills instantons [17].
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When ǫ = 0, the interpretation is more subtle and (A.8) then actually describes an (N −1)-

instanton solution, with scale sizes and locations that are rather complicated functions of

the λα and ~yα parameters.

After further algebra, one can show that, for these multi-instanton solutions, we have

Ga
ij G

a
ij = −2 log f . (A.9)

This means that we may write Ga
ij G

a
ij as

Ga
ij G

a
ij = −8 ψ , where ψ = 1

4
log f + h , (A.10)

f is the harmonic function given in (A.8) and h is an arbitrary harmonic function. As in

the single-instanton example discussed above, we may exploit the freedom to add such an

harmonic function in order to ensure that ψ itself is non-singular at the locations of the

instantons. This is discussed in section 2. We consider, for convenience, the case where

ǫ = 1 in (A.8), since then the parameters λα and ~yα have clearer interpretations.

To see how the parameters may be interpreted, consider the special case N = 1 in (A.8),

with ǫ = 1. Without loss of generality, we may take ~yα = 0 and λα = λ, so that

f = 1 +
λ

r2
, (A.11)

where r = |~y|. Evaluating ψ as given in (A.10), with h chosen to be 1/r2, we obtain

ψ = (2λ + r2)(λ + r2)−2. Comparing with (A.5), we see that the N = 1 solution has

precisely the interpretation of a single Yang-Mills instanton of size a =
√
λ, located at

~y = 0. The general N -instanton solution (A.8) with ǫ = 1 describes instantons of size
√
λα

centered on locations ~yα.
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