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ABSTRACT

Several recent papers have made considerable progress in proving the existence of re-

markable consistent Kaluza-Klein sphere reductions of D = 10 and D = 11 supergravities,

to give gauged supergravities in lower dimensions. A proof of the consistency of the full

gauged SO(8) reduction on S7 from D = 11 was given many years ago, but from a practical

viewpoint a reduction to a smaller subset of the fields can be more manageable and explicit,

for the purposes of lifting lower-dimensional solutions back to the higher dimension. The

major complexity of the spherical reduction Ansätze comes from the spin-0 fields, and of

these, it is the pseudoscalars that are the most difficult to handle. In this paper we address

this problem in two cases. One arises in a truncation of SO(8) gauged supergravity in

four dimensions to U(1)4, where there are three pairs of dilatons and axions in the scalar

sector. The other example involves the truncation of SO(6) gauged supergravity in D = 5

to a subsector containing a scalar and a pseudoscalar field, with a potential that admits a

second supersymmetric vacuum aside from the maximally-supersymmetric one. We briefly

discuss the use of these embedding Ansätze for the lifting of solutions back to the higher

dimension.
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1 Introduction

In this paper, we discuss two examples where non-trivial subsets of the scalar sectors of

gauged supergravities are obtained by spherical reduction from a higher dimension. The first

example is the embedding of the scalars in the U(1)4 maximal abelian truncation of SO(8)

gauged N = 8 maximal supergravity in D = 4, arising from D = 11 via compactification

on S7. The consistency of the full SO(8) reduction on S7 was proven in [1], although

at a somewhat implicit level. The N = 2 truncation includes a total of six scalar fields,

comprising three dilaton/axion pairs. In terms of the original SO(8) representations of the

full theory, where there are 35 scalars in the 35v , and 35 pseudoscalars in the 35c of SO(8),

the three dilatons come from the 35v , and the three axions come from the 35c. In [2], a

further simplifying truncation was performed, in which the three axions were set to zero.

The reduction Ansatz becomes considerably more complicated when axions are included,

as was already seen in the case of the single dilaton/axion pair of the N = 4 gauged SO(4)

truncation, discussed in [3]. In the present example, the inclusion of the three axions as well

as the three dilatons leads to a considerably more complicated structure in the reduction

Ansatz.

The second example is a truncation of the SO(6) gauged N = 8 maximal supergravity

in D = 5, arising from type IIB via compactification on S5. In this case there are 42 spin-0

fields in total, comprising 20 scalars in the 20′ of SO(6), 20 pseudoscalars in the 10 and 10,

and two singlets corresponding to the original dilaton and axion of the type IIB theory. The

truncation we shall consider retains two spin-0 fields, comprising one scalar from the 20′,

and one pseudoscalar from the 10 and 10. This particular truncation is of interest because

it is large enough to include the fields that participate in two distinct supersymmetric vacua

of the D = 5 gauged theory [4], one with maximal N = 8, SO(6) symmetry, and the other

with N = 2, SU(1) × U(1) symmetry. Although an explicit interpolating solution is not

known it is in principle describable within the truncation we are making.

In both of our examples, we shall concentrate on elucidating the geometrical structure

of the embedding in D = 11 or type IIB supergravity. Specifically, we shall concentrate

on the Ansatz for the Kaluza-Klein reduction of the metric tensor. Strictly speaking, one

can only be sure that the reduction is fully consistent with all the equations of motion of

the higher-dimensional theory if one has the complete Ansatz for all the higher-dimensional

fields, including the antisymmetric tensor field strengths. (Or, alternatively, if an “existence

proof” for the consistency of the reduction Ansatz has independently been constructed.)

Obtaining the Ansatz for the antisymmetric tensor fields is notoriously difficult, and we
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shall not complete this part of the analysis in this paper. In the case of our D = 4 example,

we can appeal to the results of [1], in which a complete proof of the consistency of the

S7 reduction is exhibited. In principle it allows one to read off the Ansatz for the 4-form

field strength, although only an implicit procedure for its construction is presented. On the

other hand, the general Anstaz for the metric tensor is rather explicit, and it is by making

use of this expression that we are able to obtain the D = 4 results in this paper. These

results can be used in order to study the eleven-dimensional geometrical structure of general

domain-wall solutions in D = 4 supported both by the three dilatonic scalars and also the

three accompanying axions. Such solutions can be constructed from the purely dilatonic

ones by means of SL(2, R) transformations.

In D = 5 the situation is less clear, since no proof for the consistency of the full S5

reduction to SO(6) gauged N = 8 maximal supergravity currently exists. A conjecture

for the metric reduction Ansatz appears in [4], which is closely analogous to the known

construction in D = 4 given in [1], and it is this that we use in order to obtain an explicit

expression for the metric embedding for our 2-scalar truncation. Again, the complexities

of the antisymmetric tensor embedding have prevented us from obtaining a full non-linear

result in that sector. Thus the status of our D = 5 embedding is that, subject to the

assumption of an ultimate consistency of the S5 reduction scheme,1 and subject to the

assumption that the conjecture for the metric Ansatz in [4] is correct, then our explicit

results for the 2-scalar metric Ansatz is valid. In principle, our result can then be used to

study the geometry of the RG flow describing the transition between the two supersymmetric

extrema of the associated scalar potential.

2 N = 2 U(1)4 Gauged Supergravity in D = 4 From D = 11

2.1 The Three Dilaton/Axion Pairs in D = 4

The 35v+35c of spin-0 fields in SO(8) gauged supergravity in D = 4 are described in terms

of a 56-vielbein V, with the block-diagonal form

V =

(
uij

IJ vijKL

vkℓIJ ukℓKL

)
, (1)

1Further evidence for the consistency of the S5 reduction was obtained in [5], where certain scalar

plus gravity truncations in Kaluza-Klein sphere reductions were proved to be consistent. Additionally,

the complete consistent reductions of D = 11 supergravity on S4 [6, 7] and massive type IIA supergravity on

S4 [8] have been constructed. Recently, more evidence for the consistency of the S5 reduction was presented

in [9].
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which transforms under local SU(8) and rigid E7 [10, 11]. In terms of the quantities uij
IJ

and vijKL, it was shown in [1] (having been previously proposed in [12]) that the Ansatz

for the inverse of the internal S7 compactifying metric is

ĝmn(x, y) ≡ ∆̂−1 gmn(x, y) = 1
2(K

mIJ KnKL+KnIJ KmKL) (uij
IJ+vijIJ) (u

ij
KL+v

ijKL) ,

(2)

where KmIJ are the 28 Killing vectors on the round S7, and

∆̂2 =
det(gmn(x, y))

det(gmn(y))
, (3)

where gmn(x, y) is the inverse of g
mn(x, y), and gmn(y) is gmn(x, y) with the scalar fields all

set to zero, so that it becomes the round S7 metric. The eleven-dimensional metric Ansatz

will be given by [12, 1]

dŝ211 = ∆̂−1 ds24 + gmn(x, y) dy
m dyn = ∆̂−1 (ds24 + ĝmn(x, y) dy

m dyn) , (4)

where ĝmn(x, y) = ∆̂ gmn(x,y) is the inverse of ĝmn(x, y).2

We use the parameterisation of the uij
IJ and vijKL matrices described in [13]. In

particular, we introduce three scalars λi, and three associated pseudoscalars σi, whose

kinetic Lagrangian is

L = −1
2

∑

i

(
(∂λi)

2 + sinh2 λi (∂σi)
2
)
. (5)

To shorten the subsequent formulae, we make the following definitions:

ci ≡ cosh λi , si ≡ sinhλi . (6)

Also, for future convenience, we introduce the “standard” dilaton/axion pairs (ϕi, χi), re-

lated to (λi, σi) by

coshλi = coshϕi +
1
2χ

2
i e

ϕi ,

cos σi sinhλi = sinhϕi −
1
2χ

2
i e

ϕi , (7)

sinσi sinhλi = χi e
ϕi .

In terms of these fields, the scalar kinetic terms are

L = −1
2

∑

i

(
(∂ϕi)

2 + e2ϕi (∂χi)
2
)
. (8)

2For now, we shall leave out the Kaluza-Klein gauge fields from the construction of the metric. As

discussed in [13, 2], the truncation to three dilaton/axion pairs is naturally accompanied by the four U(1)

gauge fields of the maximal abelian U(1)4 subgroup of SO(8). These gauge fields are easily incorporated in

the Kaluza-Klein Ansatz, and we shall add them in at the end of the derivation. We shall also set the gauge

coupling constant g equal to 1 for now, and restore it later.
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After some algebra, we find that uij
IJ and vijKL are given by

1
4uij

KLPij QKL = c1 (Pa1a2 Qa1a2 + Pa3a4 Qa3a4) (9)

+c2 (Pa1a3 Qa1a3 + Pa2a4 Qa2a4) + c3 (Pa1a4 Qa1a4 + Pa2a3 Qa2a3)

+P12 (c1 c2 c3Q12 + c1 s2 s3 e
i(σ2+σ3)Q34 + c2 s1 s3 e

i(σ1+σ3)Q56 + c3 s1 s2 e
i(σ1+σ2)Q78)

+P34 (c1 c2 c3Q34 + c1 s2 s3 e
−i(σ2+σ3)Q12 + c2 s1 s3 e

i(σ1−σ3)Q78 + c3 s1 s2 e
i(σ1−σ2)Q56)

+P56 (c1 c2 c3Q56 + c1 s2 s3 e
i(σ2−σ3)Q78 + c2 s1 s3 e

−i(σ1+σ3)Q12 + c3 s1 s2 e
i(−σ1+σ2)Q34)

+P78 (c1 c2 c3Q78 + c1 s2 s3 e
i(−σ2+σ3)Q56 + c2 s1 s3 e

i(−σ1+σ3)Q34 + c3 s1 s2 e
−i(σ1+σ2)Q12)

1
4vijKLPij QKL = (10)

−s1 (e
iσ1 ǫa1b1 ǫa2b2 Pa1a2 Qb1b2 + e−iσ1 ǫa3b3 ǫa4b4 Pa3a4 Qb3b4)

−s2 (e
iσ2 ǫa1b1 ǫa3b3 Pa1a3 Qb1b3 + e−iσ2 ǫa2b2 ǫa4b4 Pa2a4 Qb2b4)

−s3 (e
iσ3 ǫa1b1 ǫa4b4 Pa1a4 Qb1b4 + e−iσ3 ǫa2b2 ǫa3b3 Pa2a3 Qb2b3)

+P12 (s1 s2 s3 e
i(σ1+σ2+σ3)Q12 + s1 c2 c3 e

iσ1 Q34 + s2 c1 c3 e
iσ2 Q56 + s3 c1 c2 e

iσ3 Q78)

+P34 (s1 s2 s3 e
i(σ1−σ2−σ3)Q34 + s1 c2 c3 e

iσ1 Q12 + s2 c1 c3 e
−iσ2 Q78 + s3 c1 c2 e

−iσ3 Q56)

+P56 (s1 s2 s3 e
i(−σ1+σ2−σ3)Q56 + s1 c2 c3 e

−iσ1 Q78 + s2 c1 c3 e
iσ2 Q12 + s3 c1 c2 e

−iσ3 Q34)

+P78 (s1 s2 s3 e
i(−σ1−σ2+σ3)Q78 + s1 c2 c3 e

−iσ1 Q56 + s2 c1 c3 e
−iσ2 Q34 + s3 c1 c2 e

iσ3 Q12) .

Here, we have introduced P and Q simply as arbitrary antisymmetric tensors, in order to

provide a compact way of summarising all the components of the uij
IJ and vijKL matrices.

The index notation is as follows. Indices with a “1” subscript, such as a1, range over the

values (1, 2); similarly a2 ranges over (3, 4), a3 ranges over (5, 6) and a4 ranges over (7, 8).

Next, we substitute these results into the Ansatz (2) for the inverse S7 metric. It is

advantageous to introduce a new parameterisation for the dilaton/axion pairs, as follows:

Yi ≡ e
1
2
ϕi , Ỹi ≡ (1 + χ2

i Y
4
i )

1
2 Y −1

i , bi ≡ χi Y
2
i , (11)

and so

coshλi = 1
2(Y

2
i + Ỹ 2

i ) ,

cos σi sinhλi = 1
2(Y

2
i − Ỹ 2

i ) , (12)

sinσi sinhλi = bi .

It is also advantageous to redefine the SO(8) basis relative to the one we have used so far.

The action of transformation, which amounts to a triality rotation under which Kij −→

1
2 (Γij)

kℓKkℓ, is given explicitly in Appendix A. After doing this, we find that the inverse
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internal metric (2) takes the form3

∂̂2s ≡ ĝmn∂m ∂n = Y 2
1 (K2

13 +K2
14 +K2

23 +K2
24) + Ỹ 2

1 (K2
57 +K2

58 +K2
67 +K2

68)

+Y 2
2 (K2

15 +K2
16 +K2

25 +K2
26) + Ỹ 2

2 (K2
37 +K2

38 +K2
47 +K2

48)

+Y 2
3 (K2

17 +K2
18 +K2

27 +K2
28) + Ỹ 2

3 (K2
35 +K2

36 +K2
45 +K2

46)

+Y 2
1 Y

2
2 Y

2
3 K

2
12 + Y 2

1 Ỹ
2
2 Ỹ

2
3 K

2
34 + Ỹ 2

1 Y
2
2 Ỹ

2
3 K

2
56 + Ỹ 2

1 Ỹ
2
2 Y

2
3 K

2
78

−2b2 b3 (Y
2
1 K12K34 − Ỹ 2

1 K56K78)

−2b1 b3 (Y
2
2 K12K56 − Ỹ 2

2 K34K78)

−2b1 b2 (Y
2
3 K12K78 − Ỹ 2

3 K34K56) . (14)

In order to proceed further, it is useful to look at the geometry of the 7-sphere in some

detail. Some useful results on this topic are collected in Appendix B.

2.2 The Metric Ansatz for the three dilaton/axion pairs

From the results in Appendix B, it follows that the inverse metric (14) for the system with

3 dilatons and 3 axions is a direct sum of a 4× 4 part involving the ∂φi basis vectors, and a

3× 3 part involving the ∂µi basis vectors (which are constrained by the fact that µi µi = 1):

∂̂2s = ∂̂2s4 + ∂̂2s3 . (15)

For the 4× 4 inverse metric, we find

∂̂2s4 =
∑

i

µ−2
i Qi ∂

2
φi − 2b2 b3 (Y

2
1 ∂φ1 ∂φ2 − Ỹ 2

1 ∂φ3 ∂φ4)

−2b1 b3 (Y
2
2 ∂φ1 ∂φ3 − Ỹ 2

2 ∂φ2 ∂φ4)− 2b1 b2 (Y
2
3 ∂φ1 ∂φ4 − Ỹ 2

3 ∂φ2 ∂φ3) , (16)

where

Q1 = Y 2
1 Y

2
2 Y

2
3 µ

2
1 + Y 2

1 µ
2
2 + Y 2

2 µ
2
3 + Y 2

3 µ
2
4 ,

Q2 = Y 2
1 Ỹ

2
2 Ỹ

2
3 µ

2
2 + Y 2

1 µ
2
1 + Ỹ 2

3 µ
2
3 + Ỹ 2

2 µ
2
4 ,

Q3 = Y 2
2 Ỹ

2
1 Ỹ

2
3 µ

2
3 + Y 2

2 µ
2
1 + Ỹ 2

3 µ
2
2 + Ỹ 2

1 µ
2
4 ,

Q4 = Y 2
3 Ỹ

2
1 Ỹ

2
2 µ

2
4 + Y 2

3 µ
2
1 + Ỹ 2

2 µ
2
2 + Ỹ 2

1 µ
2
3 . (17)

3The notation for writing the inverse metric is ∂2
s ≡ gmn ∂m ∂n. The derivatives do not act on any

other objects here; it is just a convenient way of writing all the components of gmn in one formula, exactly

analogous to writing the downstairs metric as ds2 = gmn dym dyn. For example, the inverse of the 2-sphere

metric ds2 = dθ2 + sin2 θ dφ2 is written as

∂
2
s = ∂

2
θ +

1

sin2 θ
∂
2
φ . (13)
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For the 3× 3 part, we find

∂̂2s3 = Y 2
1 (µ1 ∂µ2 − µ2 ∂µ1)

2 + Y 2
2 (µ1 ∂µ3 − µ3 ∂µ1)

2 + Y 2
3 (µ1 ∂µ4 − µ4 ∂µ1)

2 (18)

+Ỹ 2
1 (µ3 ∂µ4 − µ4 ∂µ3)

2 + Ỹ 2
2 (µ2 ∂µ4 − µ4 ∂µ2)

2 + Ỹ 2
3 (µ2 ∂µ3 − µ3 ∂µ2)

2 ,

where µi µi = 1.

Because of the block-diagonal structure, we can invert the two parts separately. For the

4× 4 part, we straightforwardly invert the inverse metric to obtain

dŝ24 =
1

Ξ

[∑

i

µ2i Zi dφ
2
i + 2b2 b3 (µ

2
1 µ

2
2 dφ1 dφ2 − µ23 µ

2
4 dφ3 dφ4) (19)

+2b1 b3 (µ
2
1 µ

2
3 dφ1 dφ3 − µ22 µ

2
4 dφ2 dφ4)

+2b1 b2 (µ
2
1 µ

2
4 dφ1 dφ4 − µ22 µ

2
3 dφ2 dφ3)

]
,

where

Z1 = µ21 + Ỹ 2
2 Ỹ

2
3 µ

2
2 + Ỹ 2

1 Ỹ
2
3 µ

2
3 + Ỹ 2

1 Ỹ
2
2 µ

2
4 ,

Z2 = µ22 + Y 2
2 Y

2
3 µ

2
1 + Ỹ 2

1 Y
2
2 µ

2
3 + Ỹ 2

1 Y
2
3 µ

2
4 ,

Z3 = µ23 + Y 2
1 Y

2
3 µ

2
1 + Y 2

1 Ỹ
2
2 µ

2
2 + Y 2

3 Ỹ
2
2 µ

2
4 ,

Z4 = µ24 + Y 2
1 Y

2
2 µ

2
1 + Y 2

1 Ỹ
2
3 µ

2
2 + Y 2

2 Ỹ
2
3 µ

2
3 . (20)

The function Ξ is given by

Ξ = Y 2
1 Y

2
2 Y

2
3 µ

4
1 + Y 2

1 Ỹ
2
2 Ỹ

2
3 µ

4
2 + Ỹ 2

1 Y
2
2 Ỹ

2
3 µ

4
3 + Ỹ 2

1 Ỹ
2
2 Y

2
3 µ

4
4

+(Y 2
2 Ỹ

2
2 + Y 2

3 Ỹ
2
3 ) (Y

2
1 µ

2
1 µ

2
2 + Ỹ 2

1 µ
2
3 µ

2
4)

+(Y 2
1 Ỹ

2
1 + Y 2

3 Ỹ
2
3 ) (Y

2
2 µ

2
1 µ

2
3 + Ỹ 2

2 µ
2
2 µ

2
4)

+(Y 2
1 Ỹ

2
1 + Y 2

2 Ỹ
2
2 ) (Y

2
3 µ

2
1 µ

2
4 + Ỹ 2

3 µ
2
2 µ

2
3) . (21)

There remains the problem of inverting the 3 × 3 part ∂̂2s3 of the inverse metric. Since

we know the inverse metric in the form (18), expressed in terms of the four ∂µi basis vectors

formed from the the constrained µi, it is helpul first to solve the constraint µi µi = 1

explicitly, by introducing three angular coordinates as follows:

µ1 = c cos 1
2θ , µ2 = c sin 1

2θ , µ3 = s cos 1
2 θ̃ , µ4 = s sin 1

2 θ̃ , (22)

where c = cos ξ, s = sin ξ. It then follows that

∂θ = 1
2(µ1 ∂µ2 − µ2 ∂µ1) ,

∂θ̃ = 1
2(µ3 ∂µ4 − µ4 ∂µ3) ,

∂ξ = −s c−1 (µ1 ∂µ1 + µ2 ∂µ2) + c s−1 (µ3 ∂µ3 + µ4 ∂µ4) . (23)

6



Substituting into (18), the inverse metric is then expressed in terms of the three uncon-

strained basis vectors (∂ξ , ∂θ, ∂θ̃), and hence it can be straightforwardly inverted. Having

done so, the downstairs metric can then be re-expressed elegantly in terms of the redundant

set of four dµi differentials, in the form

dŝ23 =
1

Ξ

[∑

i

Zi dµ
2
i +

1
2b

2
1

(
(µ1 dµ1 + µ2 dµ2)

2 + (µ3 dµ3 + µ4 dµ4)
2
)

+1
2b

2
2

(
(µ1 dµ1 + µ3 dµ3)

2 + (µ2 dµ2 + µ4 dµ4)
2
)

+1
2b

2
3

(
(µ1 dµ1 + µ4 dµ4)

2 + (µ2 dµ2 + µ3 dµ3)
2
)]
. (24)

Finally, adding this to the 4 × 4 metric dŝ24 given in (19), we obtain the result for the

downstairs 7-metric, dŝ27 = dŝ24 + dŝ23:

dŝ27 =
1

Ξ

[∑

i

Zi (dµ
2
i + µ2i dφ

2
i ) + 2b2 b3 (µ

2
1 µ

2
2 dφ1 dφ2 − µ23 µ

2
4 dφ3 dφ4)

+2b1 b3 (µ
2
1 µ

2
3 dφ1 dφ3 − µ22 µ

2
4 dφ2 dφ4) + 2b1 b2 (µ

2
1 µ

2
4 dφ1 dφ4 − µ22 µ

2
3 dφ2 dφ3)

+1
2b

2
1

(
(µ1 dµ1 + µ2 dµ2)

2 + (µ3 dµ3 + µ4 dµ4)
2
)

+1
2b

2
2

(
(µ1 dµ1 + µ3 dµ3)

2 + (µ2 dµ2 + µ4 dµ4)
2
)

+1
2b

2
3

(
(µ1 dµ1 + µ4 dµ4)

2 + (µ2 dµ2 + µ3 dµ3)
2
)]
. (25)

We can now work out the eleven-dimensional metric Ansatz, given by (4). To do this,

we first note that the determinant of (25), where it is understood that the µi coordinates

are expressed in terms of (ξ, θ, θ̃) using (22), is

det(ĝmn) =
(µ21 µ22 µ23 µ24

Ξ2

)(s2 c2
16Ξ

)
=
µ21 µ

2
2 µ

2
3 µ

2
4 s

2 c2

16Ξ3
, (26)

where in the first expression, the first factor is the determinant of 4×4 block involving the φi

coordinates, and the second factor is from the 3×3 block involving the (ξ, θ, θ̃) coordinates.

From (3), it follows that

∆̂ = Ξ− 1
3 , (27)

and hence from (4) that the Ansatz for the eleven-dimensional metric takes the following

rather explicit form:

dŝ211 = Ξ
1
3 ds24 +Ξ

1
3 dŝ27

= Ξ
1
3 ds24 + g−2 Ξ− 2

3

[∑

i

Zi (dµ
2
i + µ2i dφ

2
i ) + 2b2 b3 (µ

2
1 µ

2
2 dφ1 dφ2 − µ23 µ

2
4 dφ3 dφ4)

+2b1 b3 (µ
2
1 µ

2
3 dφ1 dφ3 − µ22 µ

2
4 dφ2 dφ4) + 2b1 b2 (µ

2
1 µ

2
4 dφ1 dφ4 − µ22 µ

2
3 dφ2 dφ3)

+1
2b

2
1

(
(µ1 dµ1 + µ2 dµ2)

2 + (µ3 dµ3 + µ4 dµ4)
2
)

7



+1
2b

2
2

(
(µ1 dµ1 + µ3 dµ3)

2 + (µ2 dµ2 + µ4 dµ4)
2
)

+1
2b

2
3

(
(µ1 dµ1 + µ4 dµ4)

2 + (µ2 dµ2 + µ3 dµ3)
2
)]
. (28)

Note that we have reinstated the gauge-coupling constant g in this expression.

Having obtained the Kaluza-Klein metric Ansatz for the three dilaton/axion pairs, it

is a simple matter to incorporate also the associated U(1)4 gauge fields that naturally

accompany this truncation of the maximal supergravity. Denoting their potentials by Ai(1),

for i = 1, 2, 3, 4, we simply replace each occurrence of dφi in (28) by

dφi −→ dφi − g Ai(1) . (29)

Finally in this section, we may note that our result (28) is consistent with previously-

obtained special cases. In particular, if we set the three axions χi to zero, then the function

Ξ reduces to

Ξ = ∆2 , (30)

where

∆ = Y1 Y2 Y3 µ
2
1 +

Y1
Y2 Y3

µ22 +
Y2
Y1 Y3

µ23 +
Y3
Y1 Y2

µ24 . (31)

In the absence of axions, it is natural to define

X1 = Y1 Y2 Y3 , X2 =
Y1
Y2 Y3

, X3 =
Y2
Y1 Y3

, X4 =
Y3
Y1 Y2

, (32)

implying that we shall have

∆ =
∑

i

Xi µ
2
i , Zi = ∆X−1

i . (33)

It can be seen that the metric Ansatz (28) therefore indeed reduces to the one given in [2]

if the axions are set to zero.

2.3 The Ansatz for the 4-form Field Strength

In principle, we should like to obtain also the Ansatz for the 4-form field strength F̂(4) of

eleven-dimensional supergravity. In spherical Kaluza-Klein reductions it is always much

more difficult to obtain the Ansatz for antisymmetric tensors than for the metric, and the

present case is no exception. Unfortunately, one can only obtain limited guidance from

those results that are presented in [1]. In other truncations, simpler than the case in hand,

it has been possible to determine the field-strength Ansatz by brute-force methods, and

up to a point, this technique is still useful here. (This method was used successfully in

[3], where the complete and explicit Ansätze for the S7 reduction to the bosonic sector of
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N = 4, SO(4) gauged supergravity in D = 4 were obtained.) The contributions to the

4-form Ansatz can be organised into different sectors, and in all except one of these we have

obtained complete results. Since these are instructive and useful in their own right, it seems

to be worthwhile to present those results that we have obtained here.

We begin with a summary of the four-dimensional theory comprising gravity, the three

dilaton/axion pairs, and the associated U(1)4 gauge fields.

2.3.1 D = 4 Lagrangian

The complete Lagrangian for four-dimensional N = 8 SO(8)-gauged supergravity was ob-

tained in [10, 11]. In [13, 2], the truncation to the N = 2 U(1)4-gauged subsector was

discussed. Adapting these results to the notation of this paper, we find that the four-

dimensional bosonic Lagrangian for this N = 2 truncation is given by

L4 = R ∗1l− 1
2

3∑

i=1

(∗dϕi ∧ dϕi + e2ϕi ∗dχi ∧ dχi

)
− V ∗1l + LKin + LCS , (34)

where V is the potential for the scalar fields, and LKin and LCS are the kinetic terms and

the Chern-Simons terms for the four U(1) gauge fields F i(2) = dAi(1). The scalar potential is

given by

V = −4g2
3∑

i=1

(Y 2
i + Ỹ 2

i ) . (35)

The kinetic terms for the gauge fields are

LKin = −1
2 |W |−2

[
P0

(
Ỹ 2
1 Ỹ

2
2 Ỹ

2
3 ∗F 1

(2) ∧ F
1
(2) + Ỹ 2

1 Y
2
2 Y

2
3 ∗F 2

(2) ∧ F
2
(2)

+Y 2
1 Ỹ

2
2 Y

2
3 ∗F 3

(2) ∧ F
3
(2) + Y 2

1 Y
2
2 Ỹ

2
3 ∗F 4

(2) ∧ F
4
(2)

)

+2P1 b2 b3 (Ỹ
2
1 ∗F 1

(2) ∧ F
2
(2) − Y 2

1 ∗F 3
(2) ∧ F

4
(2))

+2P2 b1 b3 (Ỹ
2
2 ∗F 1

(2) ∧ F
3
(2) − Y 2

2 ∗F 2
(2) ∧ F

4
(2))

+2P3 b1 b2 (Ỹ
2
3 ∗F 1

(2) ∧ F
4
(2) − Y 2

3 ∗F 2
(2) ∧ F

3
(2))
]
, (36)

where

P0 ≡ 1 + b21 + b22 + b23 , W ≡ P0 − 2i b1 b2 b3 ,

P1 ≡ 1− b21 + b22 + b23 , P2 ≡ 1 + b21 − b22 + b23 , P3 ≡ 1 + b21 + b22 − b23 . (37)

Finally, the Chern-Simons terms for the gauge fields are

LCS = −|W |−2
[
b1 b2 b3

(
Ỹ 2
1 Ỹ

2
2 Ỹ

2
3 F

1
(2) ∧ F

1
(2) + Ỹ 2

1 Y
2
2 Y

2
3 F

2
(2) ∧ F

2
(2)

+Y 2
1 Ỹ

2
2 Y

2
3 F

3
(2) ∧ F

3
(2) + Y 2

1 Y
2
2 Ỹ

2
3 F

4
(2) ∧ F

4
(2)

)
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+b1 (P0 + 2b22 b
2
3) (Ỹ

2
1 F

1
(2) ∧ F

2
(2) − Y 2

1 F
3
(2) ∧ F

4
(2))

+b2 (P0 + 2b21 b
2
3) (Ỹ

2
2 F

1
(2) ∧ F

3
(2) − Y 2

2 F
2
(2) ∧ F

4
(2))

+b3 (P0 + 2b21 b
2
2) (Ỹ

2
3 F

1
(2) ∧ F

4
(2) − Y 2

3 F
2
(2) ∧ F

3
(2))
]
. (38)

From (34), we find that the equations of motion for the gauge fields are

d(|W |−2Ri) = 0 , (39)

for i = 1, 2, 3, 4, where

R1 = Ỹ 2
1 Ỹ

2
2 Ỹ

2
3 [P0 ∗F

1
(2) + 2b1 b2 b3 F

1
(2)] + Ỹ 2

1 [P1 b2 b3 ∗F
2
(2) + b1 (P0 + 2b22 b

2
3)F

2
(2)] (40)

+Ỹ 2
2 [P2 b1 b3 ∗F

3
(2) + b2 (P0 + 2b21 b

2
3)F

3
(2)] + Ỹ 2

3 [P3 b1 b2 ∗F
4
(2) + b3 (P0 + 2b21 b

2
2)F

4
(2)] ,

R2 = Ỹ 2
1 Y

2
2 Y

2
3 [P0 ∗F

2
(2) + 2b1 b2 b3 F

2
(2)] + Ỹ 2

1 [P1 b2 b3 ∗F
1
(2) + b1 (P0 + 2b22 b

2
3)F

1
(2)]

−Y 2
2 [P2 b1 b3 ∗F

4
(2) + b2 (P0 + 2b21 b

2
3)F

4
(2)]− Y 2

3 [P3 b1 b2 ∗F
3
(2) + b3 (P0 + 2b21 b

2
2)F

3
(2)] ,

R3 = Y 2
1 Ỹ

2
2 Y

2
3 [P0 ∗F

3
(2) + 2b1 b2 b3 F

3
(2)]− Y 2

1 [P1 b2 b3 ∗F
4
(2) + b1 (P0 + 2b22 b

2
3)F

4
(2)]

+Ỹ 2
2 [P2 b1 b3 ∗F

1
(2) + b2 (P0 + 2b21 b

2
3)F

1
(2)]− Y 2

3 [P3 b1 b2 ∗F
2
(2) + b3 (P0 + 2b21 b

2
2)F

2
(2)] ,

R4 = Y 2
1 Y

2
2 Ỹ

2
3 [P0 ∗F

4
(2) + 2b1 b2 b3 F

4
(2)]− Y 2

1 [P1 b2 b3 ∗F
3
(2) + b1 (P0 + 2b22 b

2
3)F

3
(2)]

−Y 2
2 [P2 b1 b3 ∗F

2
(2) + b2 (P0 + 2b21 b

2
3)F

2
(2)] + Ỹ 2

3 [P3 b1 b2 ∗F
1
(2) + b3 (P0 + 2b21 b

2
2)F

1
(2)] .

2.3.2 The Ansatz for F̂(4)

In previous papers the Ansatz for the 4-form field strength F̂(4) was obtained for the U(1)4

truncation in absence of the three axions [2], and for the N = 4 gauged SO(4) truncation,

in which there is one scalar and one axion [3]. Based on those results, it can be seen

to be natural to write the Ansatz for F̂(4) as the sum of three terms, each with its own

characteristic contribution to the whole.

Thus we are led to the following construction for the 4-form field strength:

F̂(4) = −2g U ǫ(4) + F̂ ′
(4) + F̂ ′′

(4)

+ 1
2g (2Y

−1
1 ∗dY1 − χ1 Y

4
1 ∗dχ1) ∧ d(µ

2
1 + µ22)

+ 1
2 g (2Y

−1
2 ∗dY2 − χ2 Y

4
2 ∗dχ2) ∧ d(µ

2
1 + µ23)

+ 1
2g (2Y

−1
3 ∗dY3 − χ3 Y

4
3 ∗dχ3) ∧ d(µ

2
1 + µ24) , (41)

where

U = Y 2
1 (µ21+µ

2
2)+Ỹ

2
1 (µ23+µ

2
4)+Y

2
2 (µ21+µ

2
3)+Ỹ

2
2 (µ22+µ

2
4)+Y

2
3 (µ21+µ

2
4)+Ỹ

2
3 (µ22+µ

2
3) , (42)
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and ǫ(4) denotes the volume form on the four-dimensional spacetime. The term F̂ ′′
(4) will be

given by

F̂ ′′
(4) = −

1

2g2
|W |−2

∑

i

dµ2i ∧ (dφi − g Ai(1)) ∧Ri . (43)

(We shall justify these expressions below.) The remaining term is F̂ ′
(4). This will be written

in terms of a potential Â′
(3), as F̂

′
(4) = dÂ′

(3). It will be the determination of Â′
(3) that presents

the greatest difficulty.

It will be noted that F̂(4) does not identically satisfy dF̂(4) = 0. This feature was already

seen in the truncations in [2] and [3]. It is not possible, at least within the usual second-

order formulation of eleven-dimensional supergravity, to write an Ansatz for F̂(4) in the S7

reduction that identically satisfies dF̂(4) = 0. An implication from this is that one cannot

write the Ansatz directly on the potential Â(3), which in turn means that one cannot write

an Ansatz that can be substituted directly into the eleven-dimensional action. One must

work at the level of the equations of motion.

In fact the requirement that F̂(4) must satisfy the Bianchi identity dF̂(4) = 0 provides

us with very important clues as to the correct form of the reduction Ansatz, and we used

this in writing down our results in (41) and (43). The point is that the Bianchi identity

will be satisfied by virtue of the D = 4 equations of motion for the scalar fields and the

U(1) gauge fields being satisfied. (To be precise, the scalar equations of motion in question

here are those of the three dilatons ϕi, in combination with certain non-linear admixtures

of the three axion equations of motion.) Of course the contribution to F̂(4) from Â′
(3), whose

precise form we have not been able to determine, does not enter into the discussion of the

Bianchi identity, since it gives a contribution F̂ ′
(4) that identically satisfies dF̂ ′

(4) = 0.

To see how the Bianchi identity dF̂(4) = 0 implies the four-dimensional equations of

motion for the scalars and the gauge fields, we note from the structure of (41) and (43) that

after acting with d we shall have two distinct classes of terms. First, there will be terms of

the form dµ2i ∧ω(4), where ω(4) is a 4-form living entirely in the four-dimensional spacetime.

(ω(4) will comprise terms of the form ǫ(4), and of the form d∗dYi, etc. Of course they are all

proportional to ǫ(4).) The requirement of the vanishing of these terms will imply the scalar

equations of motion. Secondly, there will be terms of the form dµ2i ∧ (dφi −
1
2g A

i
(1)) ∧ ω(3)

coming from the action of d on F̂ ′′
(4), where ω(3) is a 3-form living in the four-dimensional

spacetime. The vanishing of these terms will imply the four-dimensional equations of motion

for the gauge fields.

Let us consider the second type of contribution first, since it is the simpler one. The

11



terms of this type come only from dF̂ ′′
(4), and give

∑

i

dµ2i ∧ (dφi − g Ai(1)) ∧ d(|W |−2Ri) = 0 . (44)

This can immediately be seen to imply precisely the equations of motion for the four U(1)

gauge fields, given in (39).

It remains to check that the terms of the form dµ2i ∧ω(4) coming from the Bianchi identity

vanish by virtue of the four-dimensional scalar equations of motion. The kinetic terms of

these scalar equations come from the action of d on the final three lines in (41). Clearly, we

get the combinations of the form

d(2Y −1
1 ∗dY1 − χ1 Y

4
1 ∗dχ1) , (45)

arising (with similar independent expressions involving the (Y2, χ2) and (Y3, χ3) pairs). This

is a combination of the ϕ1 and the χ1 equations of motion. In fact it is

[d∗dϕ1 + e2ϕ1 ∗dχ1 ∧ dχ1]− χ1 [d(e
2ϕ1 ∗dχ1)] , (46)

where the first quantity in square brackets is the dilaton equation of motion, and the second

quantity in square brackets is the axion equation of motion.

This particular combination, of the dilaton equation plus an admixture of the axion

equation, is an especially simple one to compare with the scalar equations of motion coming

from the four-dimensional Lagrangian (34). It means that we are looking at the combination

that comes from the following variation of the D = 4 Lagrangian:

δ̂L4 ≡
δL4

δϕ1
− χ1

L4

δχ1
. (47)

If we define a symbol δ̂ to denote this specific combination of field variations, i.e.

δ̂ ≡
δ

δϕ1
− χ1

δ

δχ1
, (48)

then we find the great simplification that

δ̂Y 2
1 = Y 2

1 , δ̂Ỹ 2
1 = −Ỹ 2

1 , δ̂b1 = 0 . (49)

(Of course since we are focusing on the scalars with the index i = 1 at the moment, all of

the scalar quantities with i = 2 or i = 3 labels are invariant under this transformation.)

The last equation in (49), δ̂b1 = 0, leads to an enormous simplification when we vary LKin

and LCS given by (36) and (38). It means that |W |, the Pa, and all the bi are invariant.

We need only consider Y1 and Ỹ1, and these just vary by the very simple rules given in (49).
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With these observations, it becomes a relatively straightforward matter to verify that

the terms of the form dµ2i ∧ω(4) that arise in the Bianchi identity for F̂(4) vanish precisely as

a consequence of the scalar equations of motion following from (34), to all orders in scalar

fields and gauge field strengths. Note that the contributions to the scalar equations of

motion from the potential V given in (35) arise from the action of the exterior derivative on

the term −2g U ǫ(4) in (41). This part of the calculation can be seen quite easily, and can be

examined in isolation from the more complicated contributions from the four-dimensional

gauge fields.

The contribution F̂ ′
(4) = Â′

(3) in (41) remains undetermined. We know some aspects of

it structure, for example that it is of the general from

Â′
(3) =

∑

i 6=j
hij (µ

2
i dµ

2
j − µ2j dµ

2
i ) ∧ (dφi − g Ai(1)) ∧ (dφj − g Aj(1)) , (50)

where the functions hij depend on the scalars ϕi and χi, and the direction cosines µi. At

leading order, these terms will give rise to the linearised Ansatz for the axions χi. If explicit

expressions for the complete Ansatz for the N = 8 SO(8) gauged supergravity embedding

were available, A′
(3) could in principle be determined by substituting the expressions for

uij
KL and vijKL appearing in (9) and (10) into them. To the extent that such expressions

are implicit in the work of [1], a procedure in principle exists for reading off A′
(3). It is not

clear that attempting such a substitution would be simpler than a brute-force direct attack

on the problem, of the type that has proved successful in previous (simpler) cases [2, 3].

2.4 Domain wall solutions and their oxidation

The four-dimensional U(1)4 Lagrangian (34) supports a four-charge AdS black hole solution

[13]. In the extremal limit, the four U(1) gauge fields decouple and the solution becomes

AdS domain wall, supported by the scalar fields only. It is given by [14]

ds4 = (gr)4(H1H2H3H4)
−1/2 dxµ dxµ + (H1H2H3H4)

1/2 dr2

g2r2
,

eϕi = Y 2
1 = fi , χi = 0 , (51)

where

f1 =
(H3H4)

1/2

(H1H2)1/2
, f2 =

(H2H4)
1/2

(H1H3)1/2
,

f3 =
(H2H3)

1/2

(H1H4)1/2
, Hi = 1 +

ℓ2i
r2
. (52)

This solution can be oxidised back to D = 11 [14], where it acquires the interpretation of

being a continuous ellipsoidal distribution [15, 16, 17, 18, 14, 19] of M2-branes.
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The scalar kinetic terms in the Lagrangian (34) are invariant under global SL(2, R)3

transformations, corresponding to the usual fractional-linear group action on each of the

axion/dilaton pairs. The scalar potential in (34), on the other hand, is invariant only under

the SO(2)3 subgroup transformations

τi → τ ′i =
cos λi τ + sinλi
− sinλi τ + cos λi

. (53)

where τi ≡= χi+i e−ϕi . Applying these global transformations to the original domain walls

we obtain new solutions, with

Y 2
i = eϕi =

1

fi
(f2i cos

2 λi + sin2 λi) , χi =
1
2 (fi − 1)

f2i cos
2 λi + sin2 λi

. (54)

The Ỹi are hence given by

Ỹ 2
i =

f2 + 1
4 (f − 1)2 sin2(2λi)

fi(f2i cos
2 λi + sin2 λi)

. (55)

Having obtained the SO(2)3 rotated domain-wall solutions, they can be oxidised back

to D = 11. The eleven-dimensional metric is given by substituting the solution into (28).

These solutions with non-vanishing χi no longer simply describe distributed M2-branes. To

see this we note from (50) that with non-vanishing axions the field strength F(4) will involve

components lying purely in the internal S7. By contrast, in a distributed M2-brane solution

one has F(4) = d3x∧dH−1, where H is the harmonic function in the transverse space. Thus

for a distributed M2-brane the field strength F(4) always carries three world-volume indices.

3 The 2-scalar D = 5 embedding in type IIB

In this section, we consider the embedding of the 2-scalar truncation of D = 5 gauged

supergravity discussed in the introduction, and its embedding in the type IIB theory via an

S5 reduction. In the early stages of the derivation, we retain all four of the scalar fields of

the truncation discussed in [4].

3.1 The metric reduction Ansatz

The set of 42 spin-0 fields in the complete SO(6) gauged N = 8 supergravity in D = 5 [20]

are described by a 27-bein V, which transforms under local USp(8) and global E6. The

truncation to four spin-0 fields is described in [4], in terms of an SL(6, R)×SL(2, R) basis,

for which the components of the vielbein are decomposed as (VIJab,VIα
ab). In terms of this

decomposition, the following conjecture for the inverse S5 metric has been proposed [4]:

ĝmn(x, y) ≡ ∆̂− 2
3 gmn(x, y) = 2Km

IJ K
n
KL ṼIJab ṼKLcdΩ

acΩbd , (56)
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where Ṽ is the inverse of the vielbein V, ∆̂2 = det(gmn(x, y))/det(gmn(y)), and gmn(y) is

the undeformed round S5 metric where the scalar fields are set to zero. The ten-dimensional

metric Ansatz will then be

dŝ210 = ∆̂− 2
3 ds25 + gmn(x, y) dy

m dyn = ∆̂− 2
3 (ds25 + ĝmn(x, y) dy

m dyn) . (57)

The process of making the 4-scalar truncation in the vielbein V has been described in

detail in [21]. Substituting this into the metric Ansatz (56) is a mechanical exercise that is

most conveniently implemented by computer. Since the final result is considerably simpler

than the intermediate stages we shall, without further ado, present the final answer. We

find that the inverse 5-sphere metric ∂̂2s5 ≡ ĝmn ∂m ∂n is given by

∂̂2s5 = X−1
(
cosh 2y2 (cosh 2r − sin θ sinh 2r) (K2

15 +K2
25 +K2

35 +K2
45)

+ cosh 2y2 (cosh 2r + sin θ sinh 2r) (K2
16 +K2

26 +K2
36 +K2

46)

+2 cos θ sinh 2r sinh 2y2 (K26K35 −K25K36 +K16K45 −K15K46)
)

+X2
(
1
4 (3− cos θ + 2cos2 θ cosh 4r) (K2

12 +K2
34) + (K2

14 +K2
23)

+ cosh2 2y2 (K
2
13 +K2

24) + 2 cos2 θ sinh2 2r K12K34 − 2 sinh2 2y2K13K24

)

+X−4K2
56 . (58)

The scalars (X, r, y2, θ) are related to the quantities (ρ, ϕ1, ϕ2, φ) appearing in [21] by

ρ = X− 1
2 , r = 1

2(ϕ2 − ϕ1) , y2 =
1
2 (ϕ1 + ϕ2) , θ = 2φ . (59)

Note that the D = 5 scalar Lagrangian for this truncation is

L = −2

3∑

i=1

(∂ϕi)
2 − sinh2(ϕ1 − ϕ2) (∂θ)

2 − V , (60)

where X = e−
√
6ϕ3/2, and the scalar potential V takes the form [4]

V = g2
(
X2 [1− cos2 θ (sinh2 ϕ1 − sinh2 ϕ2)] +X−1 [cosh 2ϕ1 + cosh 2ϕ2] (61)

+ 1
16 X

−4 [2 + 2 sin2 θ − 2 sin2 θ cosh(2(ϕ1 − ϕ2))− cosh 4ϕ1 − cosh 4ϕ2]
)
.

At this stage, we impose the further truncation to the 2-scalar subsector that we really

want to consider. This corresponds to setting θ = 0 and ϕ2 = 0 [21]. It is easily verified

from (60) and (61) that this is a consistent truncation. Thus we shall have r = −1
2ϕ, and

y2 =
1
2ϕ, where we now drop the “1” subscript on ϕ1. The potential (61) reduces to

V = cosh2 ϕ
[
X2 (2− cosh2 ϕ) + 2X−1 − 1

2X
−4 sinh2 ϕ

]
. (62)
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It is convenient also at this stage to perform a labelling of indices on the Killing vectors Kij

in (58), under which the index values (2, 3, 4) are cycled: 2 → 3, 3 → 4 and 4 → 2.

We now adopt a description of the round 5-sphere that is precisely analogous to the

one that we introduced in Appendix B for S7. This time, we shall end up with three

“direction cosines” µi, subject to the condition µi µi = 1, and three azimuthal angles φi.

After manipulations similar to those in section 2, we arrive at the following expression for

the inverse 5-sphere metric ∂̂25 :

∂̂2s5 = ∂̂2s2 + ∂̂2s3 , (63)

where the 2× 2 and 3× 3 blocks are given by

∂̂2s2 = cosh2 ϕ
(
X−1 [(µ1 ∂µ3 − µ3 ∂µ1)

2 + (µ2 ∂µ3 − µ3 ∂µ2)
2] +X2 (µ1 ∂µ2 − µ2 ∂µ1)

2
)
,

∂̂2s3 = ∆ cosh2 ϕ
[
X (µ−2

1 ∂2φ1 + µ−2
2 ∂2φ2) +X−2 µ−2

3 ∂2φ3

]

− sinh2 ϕ
(
X (∂φ1 + ∂φ2)−X−2 ∂φ3

)2
, (64)

and

∆ ≡ (µ21 + µ22)X + µ23X
−2 . (65)

Note that the 2 × 2 inverse metric ∂̂2s2 is just equal to the metric for the single-scalar

truncation when ϕ = 0, multiplied by a factor of cosh2 ϕ. The 3× 3 inverse metric is equal

to cosh2 ϕ times the ϕ = 0 metric, with the correction term appearing in its second line.

The inverse of the 3× 3 block ∂̂2s3 is straightforward to calculate, and we find

dŝ23 =
sech 2ϕ

∆

(
X−1 (µ21 dφ

2
1 + µ22 dφ

2
2) +X2 µ23 dφ

2
3

)
+

tanh2 ϕ

∆2
(µ21 dφ1 + µ22 dφ2 − µ23 dφ3)

2 .

(66)

Note that the determinant of dŝ23 is given by (µ1 µ2 µ3)
2/(∆3 cosh4 ϕ).

For the 2× 2 block, the inversion gives the metric

dŝ22 =
sech 2ϕ

∆

(
X−1 (dµ21 + dµ22) +X2 dµ23

)
. (67)

It is helpfull at this stage to reparameterise the direction cosines µi, and make redefini-

tions of the azimuthal angles (φ1, φ2) as follows:

µ1 = cos ξ cos 1
2ϑ , µ2 = cos ξ sin 1

2ϑ , µ3 = sin ξ ,

φ1 =
1
2(ψ + φ) , φ2 =

1
2 (ψ − φ) . (68)

In fact (ϑ, φ, ψ) are just the Euler angles on S3. One can define left-invariant 1-forms σi, as

σ1 + iσ2 = e−iψ (dϑ + i sinϑ dφ) , σ3 = dψ + cos ϑ dφ . (69)
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These satisfy dσ1 = −σ2 ∧ σ3, and cyclically. Defining also

c ≡ cos ξ , s ≡ sin ξ , (70)

we find that the 5-dimensional internal metric dŝ25 ≡ ĝmn(x, y) dy
m dyn = dŝ22+dŝ

2
3 becomes

dŝ25 =
sech 2ϕ

∆

[
X ∆ dξ2 + 1

4X
−1 c2 (σ21 + σ22 + σ23) +X2 s2 dφ23

]

+
tanh2 ϕ

4∆2
(c2 σ3 − 2s2 dφ3)

2 , (71)

where

∆ = X c2 +X−2 s2 . (72)

In the absence of the pseudoscalar field ϕ, this reduces to the metric Ansatz encountered

in the N = 4 gauged SU(2)× U(1) supergravity embedding obtained in [22]. In that case,

the scalar field X parameterises inhomogeneous deformations of S5 viewed as a foliation of

S3 × S1 surfaces.

With the pseudoscalar ϕ non-vanishing, it is advantageous to rewrite the metric (71) as

the sum of squares of just five quantities, by completing the square. After doing this, we

obtain the result

dŝ25 =
X

cosh2 ϕ
dξ2 +

c2X−1

4∆ cosh2 ϕ
(σ21 + σ22) +

c2X

4Ω
σ23 +

s2Ω

∆2 cosh2 ϕ

(
dφ3 −

c2 sinh2 ϕ

2Ω
σ3

)2
,

(73)

where

Ω ≡ X3 c2 + s2 cosh2 ϕ . (74)

This expression reduces to the one found in [22] if ϕ = 0. In that case, the scalar X

parameterises deformations of S5 corresponding to inhomogeneities of codimension 1 of the

foliation by S3 ×S1. When the pseudoscalar ϕ is included too, the inhomogeneities remain

of codimension 1, but with a slightly more complicated structure. In addition, there is a

sort of “twist” in the S3 × S1 product structure of the homogeneous foliating surfaces, as

indicated by the cross-term between the interval dφ3 on S1, and the 1-form σ3 on S3.

Finally, substituting our result for the internal hatted metric dŝ25 into (57), we arrive at

the conjectured ten-dimensional metric Ansatz for this two-scalar truncation:

dŝ210 = ∆
1
2 coshϕds25 +

X ∆
1
2

coshϕ
dξ2 +

c2X−1

4∆
1
2 coshϕ

(σ21 + σ22)

+
c2X ∆

1
2 coshϕ

4Ω
σ23 +

s2Ω

∆
3
2 coshϕ

(
dφ3 −

c2 sinh2 ϕ

2Ω
σ3

)2
. (75)
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3.2 The field-strength Ansätze

There does not seem to be any straightforward way to determine the Ansatz for the Kaluza-

Klein reduction other fields of the ten-dimensional type IIB theory, in this two-scalar reduc-

tion. We know that when ϕ is taken to be zero, the Ansatz must reduce to one encompassed

by the results in [22]. In particular, the remaining scalar field X enters in the Ansatz for

the self-dual 5-form, whilst the dilaton, axion and 3-form field strengths of the type IIB

theory vanish when ϕ = 0. Since it is a pseudoscalar, the field ϕ enters at the linearised

level in the Ansatz for the NS-NS and R-R 2-form potentials Â(2) ≡ ÂNS
(2) and ÂRR

(2) [23].

The relevant bosonic equations of motion of the type IIB theory are

R̂MN = 1
96Ĥ

2
MN + 1

4

(
(F̂ 1

(3))
2
MN − 1

12 (F̂
1
(3))

2ĝMN

)
+ 1

4

(
(F̂ 2

(3))
2
MN − 1

12 (F̂
2
(3))

2ĝMN

)
,

d∗̂F̂(3) = −i Ĥ(5) ∧ F̂(3) , (76)

dĤ(5) = − i
2 F̂(3) ∧

ˆ̄F(3) , Ĥ(5) = ∗̂Ĥ(5) ,

where we have introduced the notation that

Â(2) ≡ ÂNS
(2) + i ÂRR

(2) . (77)

We are assuming here that the dilaton and axion of the type IIB theory vanish in the

reduction. For this to be consistent with the type IIB equations of motion, it is necessary

that

∗̂F̂(3) ∧
ˆ̄F(3) = 0 , ∗̂F̂(3) ∧ F̂(3) = ∗̂ ˆ̄F(3) ∧

ˆ̄F(3) . (78)

We shall restrict our discussion from now on to the linearised level.

In the notation that we are using here, the linearised Ansatz for pseudoscalars ϕ will be

of the form

Â(2) = ϕY(2) , (79)

where Y(2) is a complex 2-form spherical harmonic satisfying

d∗Y(2) = iλY(2) (80)

on the unit round 5-sphere. The Ansatz for the self-dual 5-form Ĥ(5) ≡ Ĝ(5)+ ∗̂Ĝ(5) includes

a Freunnd-Rubin term Ĝ(5) = 4ǫ(5) (we have set the gauge coupling g = 1 here). Substitut-

ing into the type IIB equations of motion, one finds that the pseudoscalar ϕ satisfies the

linearised equation of motion

[d∗dϕ + λ(λ− 4)ϕ ǫ(5)] ∧ ∗Y(2) = 0 . (81)
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A 2-form harmonic with eigenvalue λ gives a pseudoscalar ϕ with m2 = λ(λ− 4). We want

the mass for the 10 and 10 members of the massless multiplet, namely m2 = −3, which

therefore requires λ = 1 or λ = 3. In fact, the required harmonics are those with λ = 3

(there are none with λ = 1).

There are ten such harmonics on S5, which can be written in terms of the Killing spinors.

There are Killing spinors η± satisfying Daη± = ± i
2 Γa η±. It turns out that the required

2-form harmonics are given by the construction

Yab = η̄− Γab η+ , (82)

where η− and η+ are any two Killing spinors of the minus and plus kinds respectively.

Solving for the Killing spinors, and substituting into (82), we find that one of the ten

harmonics has a structure that is particularly naturally adapted to our parameterisation of

the sphere, namely

Y(2) = eiφ3
(
c dξ ∧ σ3 +

1
2s c

2 σ1 ∧ σ2 − i s c2 σ3 ∧ dφ3

)
. (83)

One may expect that this harmonic, or a closely related construction, will play a significant

rôle in the construction of the reduction Ansatz at the full non-linear order, but we have

not yet completed this investigation.

3.3 Oxidation of five-dimensional solutions

Given the conjectured metric reduction Ansatz, we can oxidise the metric in any solution

of the two-scalar truncation of five-dimensional maximal gauged supergravity back to a

solution of type IIB supergravity in D = 10. In principle, one can solve the equations of

motion in this two-scalar sector to obtain a supersymmetric domain wall solution, which

has an interpretation as the RG-flow equations on the strongly coupled field theory side,

as discussed in [21]. Unfortunately the equations seem not to allow an explicit solution in

terms of elementary functions.

One simple oxidation that we can perform is to take the D = 5 solution corresponding to

the second (non-trivial) supersymmetric stationary point of the potential. This corresponds

to the stationary point of (62) with [4]

X = 2−
1
3 , sinhϕ = 1√

3
. (84)

(The fully-supersymmetric stationary point is at X = 1, ϕ = 0.) Substituting into (73), we

find that the internal 5-sphere metric dŝ25 at this stationary point is given by

dŝ25 =
3

27/3

[
dξ2+

c2

2(1 + s2)
(σ21+σ

2
2)+

2c2

3 + 5s2
σ23+

s2 (3 + 5s2)

3(1 + s2)2

(
dφ3−

c2

3 + 5s2
σ3

)2]
. (85)
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4 Conclusion

In this paper, we have obtained the metric Ansätze for two examples of Kaluza-Klein sphere

reductions, both of which involve pseudoscalar as well as scalar fields. The first example is

the S7 reduction of eleven-dimensional supergravity, with a truncation from N = 8 to the

N = 2 theory with U(1)4 gauge fields, three dilatons and three axions. Among other uses

this reduction allows one to study the eleven-dimensional geometries corresponding to the

lifting of the four-dimensional BPS AdS black hole and domain-wall solutions [13] of gauged

supergravity. Our results generalise those obtained previously in [2], where the problem was

studied in the absence of the three axionic scalars.

Our second example is a truncation of five-dimensional maximal gauged supergravity,

to a subsector in which two spin-0 fields are retained, one of which is a scalar, and the

other a pseudoscalar. This truncation retains the fields necessary for describing a second

supersymmetric vacuum inD = 5, with N = 2 supersymmetry and SU(2)×U(1) invariance,

in addition to the maximally-supersymmetric one with SO(6) invariance [4]. The metric

reduction Ansatz that we obtain here allows one to study the ten-dimensional geometries

corresponding to the lifting of solutions of the five-dimensional theory. In principle, this

can include the renormalisation-group flow [21] associated with the second supersymmetric

extremum, although the explicit form of this five-dimensional solution is not known.
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Appendix A

In this appendix, we present the explicit form of the SO(8) triality rotation that we used

in section 2.1 in order to simplify the Kaluza-Klein metric reduction Ansatz:

K12 −→
1
2(K12 +K34 +K56 +K78) , K13 −→

1
2(K13 −K24 +K57 −K68) ,

K14 −→
1
2(K14 +K23 +K58 +K67) , K15 −→

1
2(K15 −K26 +K37 −K48) ,

K16 −→
1
2(K16 +K25 +K38 +K47) , K17 −→

1
2(K17 −K28 +K35 −K46) ,

K18 −→
1
2(K18 +K27 +K36 +K45) , K23 −→

1
2(K23 +K14 −K58 −K67) ,

K24 −→
1
2(K24 −K13 +K57 −K68) , K25 −→

1
2(K25 +K16 −K38 −K47) ,

K26 −→
1
2(K26 −K15 +K37 −K48) , K27 −→

1
2(K27 +K18 −K36 −K45) ,
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K28 −→
1
2(K28 −K17 +K35 −K46) , K34 −→

1
2(K34 +K12 −K56 −K78) ,

K35 −→
1
2(K35 +K17 +K28 +K46) , K36 −→

1
2(K36 +K18 −K27 −K45) ,

K37 −→
1
2(K37 +K15 +K26 +K48) , K38 −→

1
2(K38 +K16 −K25 −K47) ,

K45 −→
1
2(K45 +K18 −K27 −K36) , K46 −→

1
2(K46 +K35 −K17 −K28) ,

K47 −→
1
2(K47 +K16 −K25 −K38) , K48 −→

1
2(K48 +K37 −K15 −K26) ,

K56 −→
1
2(K56 +K12 −K34 −K78) , K57 −→

1
2(K57 +K13 +K24 +K68) ,

K58 −→
1
2(K58 +K14 −K23 −K67) , K67 −→

1
2(K67 +K14 −K23 −K58) ,

K68 −→
1
2(K68 +K57 −K13 −K24) , K78 −→

1
2(K78 +K12 −K34 −K56) .(86)

Appendix B

In this Appendix, we collect some results on the geometry of the 7-sphere. We can describe

S7 as the unit sphere in R8, with 8 real coordinates xI ;

xI xI = 1 . (87)

As such, it has a manifest SO(8) symmetry, with 28 Killing vectors KIJ given by

KIJ = xI
∂

∂xJ
− xJ

∂

∂xI
. (88)

We can also describe S7 as the unit sphere in C4, with 4 complex coordinates zi:

z̄i zi = 1 . (89)

We can relate these complex coordinates to the previous real ones as follows:

z1 = x1 + ix2 , z2 = x3 + ix4 , z3 = x5 + ix6 , z4 = x7 + ix8 . (90)

We can parameterise these complex coordinates as

z1 = µ1 e
iφ1 , z2 = µ2 e

iφ2 , z3 = µ3 e
iφ3 , z4 = µ4 e

iφ4 , (91)

where (89) implies that
4∑

i=1

µ2i = 1 . (92)

These (µi, φi) coordinates are precisely the ones used for describing higher-dimensional

rotating black holes in [24], and in the S7 reduction Ansatz obtained in [2].

From the coordinate transformations above, it is straightforward to establish that the

real derivatives ∂/∂xI that appear in the Killing vectors (88) are given by

∂

∂x1
= cosφ1

∂

∂µ1
−

sinφ1
µ1

∂

∂φ1
,

∂

∂x2
= sinφ1

∂

∂µ1
+

cosφ1
µ1

∂

∂φ1
, (93)
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with analogous expressions involving (µ2, φ2), (µ3, φ3) and (µ4, φ4) for the pairs (x3, x4),

(x5, x6) and (x7, x8) respectively. It is easy to see from this that the four Killing vectors

K12, K34, K56 and K78 are simply of the form:

K12 =
∂

∂φ1
, K34 =

∂

∂φ2
, K56 =

∂

∂φ3
, K78 =

∂

∂φ4
. (94)

These are the four commuting U(1) generators. It is convenient to write them as ∂φ1 , etc.

We also note that the Killing-vector bilinears in the top 3 lines in (14) are also relatively

simple, when expressed in terms of the µi and φi coordinates. After some algebra we find,

for example, that

K2
13 +K2

14 +K2
23 +K2

24 = (µ1 ∂µ2 − µ2 ∂µ1)
2 +

µ22
µ21

∂2φ1 +
µ21
µ22

∂2φ2 (95)

with analogous results for the other five combinations.
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[14] M. Cvetič, S. Gubser H. Lü and C.N. Pope, Symmetric potentials of gauged supergrav-

ities in diverse dimensions and Coulomb branch of gauge theories, hep-th/9909121, to

appear in Phys. Rev. D.

[15] P. Kraus, F. Larsen and S.P. Trivedi, The Coulomb branch of gauge theory from

rotating branes, JHEP 9903 (1999) 003, hep-th/9811120.

[16] D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Continuous distributions of

D3-branes and gauged supergravity, hep-th/9906194.

[17] A. Brandhuber and K. Sfetsos, Nonstandard compactification with mass gaps and

Newton’s Law, hep-th/9908116.

[18] I. Bakas and K. Sfetsos, States and curves of five-dimensional gauged supergravity,

hep-th/9909041.

[19] I. Bakas, A. Brandhuber and K. Sfetsos, Domain walls of gauged supergravity, M-

branes and algebraic curves, hep-th/9912132.

[20] M. Gunaydin, L.J. Romans and N.P. Warner, Gauged N = 8 supergravity in five

dimensions, Phys. Lett. B154 (1985) 268.

[21] D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows

from holography, supersymmetry and a C-theorem, hep-th/9904017.

23

http://arxiv.org/abs/hep-th/9906221
http://arxiv.org/abs/hep-th/0002028
http://arxiv.org/abs/hep-th/9901149
http://arxiv.org/abs/hep-th/9909121
http://arxiv.org/abs/hep-th/9811120
http://arxiv.org/abs/hep-th/9906194
http://arxiv.org/abs/hep-th/9908116
http://arxiv.org/abs/hep-th/9909041
http://arxiv.org/abs/hep-th/9912132
http://arxiv.org/abs/hep-th/9904017
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