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ABSTRACT

Several recent papers have made considerable progress in proving the existence of re-
markable consistent Kaluza-Klein sphere reductions of D = 10 and D = 11 supergravities,
to give gauged supergravities in lower dimensions. A proof of the consistency of the full
gauged SO(8) reduction on S” from D = 11 was given many years ago, but from a practical
viewpoint a reduction to a smaller subset of the fields can be more manageable and explicit,
for the purposes of lifting lower-dimensional solutions back to the higher dimension. The
major complexity of the spherical reduction Ansétze comes from the spin-0 fields, and of
these, it is the pseudoscalars that are the most difficult to handle. In this paper we address
this problem in two cases. One arises in a truncation of SO(8) gauged supergravity in
four dimensions to U(1)*, where there are three pairs of dilatons and axions in the scalar
sector. The other example involves the truncation of SO(6) gauged supergravity in D =5
to a subsector containing a scalar and a pseudoscalar field, with a potential that admits a
second supersymmetric vacuum aside from the maximally-supersymmetric one. We briefly
discuss the use of these embedding Ansétze for the lifting of solutions back to the higher

dimension.
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1 Introduction

In this paper, we discuss two examples where non-trivial subsets of the scalar sectors of
gauged supergravities are obtained by spherical reduction from a higher dimension. The first
example is the embedding of the scalars in the U(1)* maximal abelian truncation of SO(8)
gauged N = 8 maximal supergravity in D = 4, arising from D = 11 wvia compactification
on S7. The consistency of the full SO(8) reduction on S” was proven in [I], although
at a somewhat implicit level. The N = 2 truncation includes a total of six scalar fields,
comprising three dilaton/axion pairs. In terms of the original SO(8) representations of the
full theory, where there are 35 scalars in the 35,, and 35 pseudoscalars in the 35, of SO(8),
the three dilatons come from the 35,, and the three axions come from the 35.. In [fl], a
further simplifying truncation was performed, in which the three axions were set to zero.
The reduction Ansatz becomes considerably more complicated when axions are included,
as was already seen in the case of the single dilaton/axion pair of the N = 4 gauged SO(4)
truncation, discussed in [J]. In the present example, the inclusion of the three axions as well
as the three dilatons leads to a considerably more complicated structure in the reduction
Ansatz.

The second example is a truncation of the SO(6) gauged N = 8 maximal supergravity
in D = 5, arising from type IIB wia compactification on S°. In this case there are 42 spin-0
fields in total, comprising 20 scalars in the 20’ of SO(6), 20 pseudoscalars in the 10 and 10,
and two singlets corresponding to the original dilaton and axion of the type IIB theory. The
truncation we shall consider retains two spin-0 fields, comprising one scalar from the 20/,
and one pseudoscalar from the 10 and 10. This particular truncation is of interest because
it is large enough to include the fields that participate in two distinct supersymmetric vacua
of the D = 5 gauged theory [H], one with maximal N = 8, SO(6) symmetry, and the other
with N = 2, SU(1) x U(1) symmetry. Although an explicit interpolating solution is not
known it is in principle describable within the truncation we are making.

In both of our examples, we shall concentrate on elucidating the geometrical structure
of the embedding in D = 11 or type IIB supergravity. Specifically, we shall concentrate
on the Ansatz for the Kaluza-Klein reduction of the metric tensor. Strictly speaking, one
can only be sure that the reduction is fully consistent with all the equations of motion of
the higher-dimensional theory if one has the complete Ansatz for all the higher-dimensional
fields, including the antisymmetric tensor field strengths. (Or, alternatively, if an “existence
proof” for the consistency of the reduction Ansatz has independently been constructed.)

Obtaining the Ansatz for the antisymmetric tensor fields is notoriously difficult, and we



shall not complete this part of the analysis in this paper. In the case of our D = 4 example,
we can appeal to the results of [, in which a complete proof of the consistency of the
S7 reduction is exhibited. In principle it allows one to read off the Ansatz for the 4-form
field strength, although only an implicit procedure for its construction is presented. On the
other hand, the general Anstaz for the metric tensor is rather explicit, and it is by making
use of this expression that we are able to obtain the D = 4 results in this paper. These
results can be used in order to study the eleven-dimensional geometrical structure of general
domain-wall solutions in D = 4 supported both by the three dilatonic scalars and also the
three accompanying axions. Such solutions can be constructed from the purely dilatonic
ones by means of SL(2, R) transformations.

In D = 5 the situation is less clear, since no proof for the consistency of the full S°
reduction to SO(6) gauged N = 8 maximal supergravity currently exists. A conjecture
for the metric reduction Ansatz appears in [[]], which is closely analogous to the known
construction in D = 4 given in [f], and it is this that we use in order to obtain an explicit
expression for the metric embedding for our 2-scalar truncation. Again, the complexities
of the antisymmetric tensor embedding have prevented us from obtaining a full non-linear
result in that sector. Thus the status of our D = 5 embedding is that, subject to the
assumption of an ultimate consistency of the S® reduction Scheme,ﬂ and subject to the
assumption that the conjecture for the metric Ansatz in [fI] is correct, then our explicit
results for the 2-scalar metric Ansatz is valid. In principle, our result can then be used to
study the geometry of the RG flow describing the transition between the two supersymmetric

extrema of the associated scalar potential.

2 N =2 U(1)* Gauged Supergravity in D =4 From D = 11

2.1 The Three Dilaton/Axion Pairs in D =4

The 35, + 35, of spin-0 fields in SO(8) gauged supergravity in D = 4 are described in terms
of a 56-vielbein V, with the block-diagonal form

I
Vv Wi J VijKL 1
- keI ke ’ (1)

UKL

"Further evidence for the consistency of the S° reduction was obtained in [E], where certain scalar
plus gravity truncations in Kaluza-Klein sphere reductions were proved to be consistent. Additionally,
the complete consistent reductions of D = 11 supergravity on S* [E7 ﬂ] and massive type IIA supergravity on

54 [E] have been constructed. Recently, more evidence for the consistency of the S° reduction was presented

in [E]



which transforms under local SU(8) and rigid E; [[l0, [[I]]. In terms of the quantities u;;!’
and v;jkr, it was shown in [} (having been previously proposed in [1J]) that the Ansatz

for the inverse of the internal S7 compactifying metric is

gmn(gj’y) = A—l gmn(gj’y) — %(KmIJ KnKL+KnIJ KmKL) (uijIJ"i"UijIJ) (UinL+'UinL),
(2)
where K™/ are the 28 Killing vectors on the round S”, and
A2 — det(gmn(‘ray)) 7 (3)
det(gmn(y))
where g, (z,y) is the inverse of ¢™"(x,y), and gmn(y) iS gmn(z,y) with the scalar fields all

set to zero, so that it becomes the round S” metric. The eleven-dimensional metric Ansatz

will be given by [[L2, ]
st = A71dsE + gn(z,y) dy™ dy™ = A7 (ds] + Gon (2, y) dy™ dy™) (4)

where G (x,y) = Agmnmy) is the inverse of §""(x, ).

IJ and w;jx matrices described in [[J. In

We use the parameterisation of the wu;;
particular, we introduce three scalars );, and three associated pseudoscalars o;, whose
kinetic Lagrangian is

£=-33 ((8/\i)2+sinh2)\i(8ai)2>. (5)

To shorten the subsequent formulae, we make the following definitions:
c; = cosh \;, s; = sinh \; . (6)

Also, for future convenience, we introduce the “standard” dilaton/axion pairs (¢;, x;), re-

lated to (\;,04) by

cosh\; = coshy; + % X2 et
coso; sinh \; = sinhg; — $x7 e, (7)
sing; sinh \;, = y;e¥.

In terms of these fields, the scalar kinetic terms are

£=-53 (00 +* (0x)°) ®)

7

2For now, we shall leave out the Kaluza-Klein gauge fields from the construction of the metric. As
discussed in @7 EL the truncation to three dilaton/axion pairs is naturally accompanied by the four U(1)
gauge fields of the maximal abelian U(1)* subgroup of SO(8). These gauge fields are easily incorporated in
the Kaluza-Klein Ansatz, and we shall add them in at the end of the derivation. We shall also set the gauge

coupling constant g equal to 1 for now, and restore it later.



After some algebra, we find that uijl J and VKL are given by

%UinLPij QkL =c1 (Palag Qamz + Pusay Qa3a4) (9)
+C2 (Pa1a3 Qalag + Pa2a4 Qa2a4) + Cc3 (Pa1a4 Qa1a4 + Pa2a3 Qazag)

+Pi2 (c1¢263Qua + ¢1 5953 €723 Qa4 g 5153 N1 Qs+ 0351 52 €T Q)

+ Py (c1¢203Qaa + c1 5953 0213 Quo 4 ey 515371798 Qug + 351 5217172 Qi)
+Psg (c1¢2 ¢3 Q6 + €1 595372798 Qug 4 ¢ 51 537119 Q1 4 0351 59 €1 7T1H92) Q)
+Prs (c1¢263 Qs + ¢1 595377213 Qug 4 g 5153 €719 Qa5 51 53¢ Q)
ik LP Qkr = (10)
—5 (eial 6albl Eazbg Pa1a2 lebz + e—ial 6(131)3 6a4b4 Pa3a4 Qb3b4)

—52 (€77 €1 %3 Py 0y Quupg + €7 €27 €49 Py, Qi)

ios 6albl 6a4b4 P

—io3 _agbs _asb
aiaq Qb1b4 7173 122 1378 Pagag ngbg)

+Pro (518253 O1F92493) Q10 451 ¢y 3 €171 Qa4 + 59.¢1 €3 €72 Qs + 53 €1 ¢2 €7 Qi)

—s3 (e

Py (515953€O1792793) Qa4 51 co 3 €7 Qua + s9.¢1 c367 92 Qg 4 5361 ¢2 €717 Qs6)
+Psg (51 5253 771H92793) Ono 451 ey 367191 Qg + s9.¢1 63 €92 Qua + 5361 ¢2 6773 Q34)

+Prg (515953€771792F98) Que 51 ey c3€ 7171 Q6 + s9.¢1 367192 Q34 + 5361 ¢2€7° Qu2) -

Here, we have introduced P and @ simply as arbitrary antisymmetric tensors, in order to
provide a compact way of summarising all the components of the uijI 7 and v;j K I, matrices.
The index notation is as follows. Indices with a “1” subscript, such as aq, range over the
values (1,2); similarly ag ranges over (3,4), a3 ranges over (5,6) and a4 ranges over (7,8).

Next, we substitute these results into the Ansatz (@) for the inverse S” metric. It is

advantageous to introduce a new parameterisation for the dilaton/axion pairs, as follows:

Yi=ed®,  Vi=(1+3VHIY b=, (11)
and so
cosh); = (V7 + Y3),
coso; sinh \; = %(Yf — f/iz), (12)
sino; sinh \; = b;.

It is also advantageous to redefine the SO(8) basis relative to the one we have used so far.

The action of transformation, which amounts to a triality rotation under which K;; —

%(Fij)kf Ky, is given explicitly in Appendix A. After doing this, we find that the inverse



internal metric (f) takes the formf]

=" Om O = YT (Kiy+ Koy + Ky + K3) + VP (K37 + K3 + Kgp + Kg)
+YF (K5 + K + K35 + K35) + Y3 (K3 + K3y + K37 + Ki)
+YF (K + Kig + K37 + Kag) + Y3 (K35 + K3 + Kis + Kig)
HYPYRYS Ky + YR VS Y K3+ Y2 Y5 V3 Ko + Y2 Y7 Y3 Kig
—2bo by (Y2 K12 K34 — Y K6 Krs)
—2b; b3 (Y5 K12 K6 — Y K34 Krs)
—2by by (Y5 K12 K7s — Y3 K3y Ksg) . (14)
In order to proceed further, it is useful to look at the geometry of the 7-sphere in some

detail. Some useful results on this topic are collected in Appendix B.

2.2 The Metric Ansatz for the three dilaton/axion pairs

From the results in Appendix B, it follows that the inverse metric ([[4) for the system with
3 dilatons and 3 axions is a direct sum of a 4 x 4 part involving the 9, basis vectors, and a

3 x 3 part involving the 9, basis vectors (which are constrained by the fact that p; j; = 1):
02 =02 + 2. (15)
For the 4 x 4 inverse metric, we find
02, = D pi?Qi 05, — 2by by (YL 9y, Dy, — Y1 0, g,
i

—2b1 by (Y D, Oy — Y5 O, D) — 2b1 bo (Y Oy Dy — Y D, 0py) . (16)

where
Q1 = YPYSYPui+YP s+ Y5 s+ Y5 g,
Q = YEYRYE3+ Y2l + Y3+ Y,
Qs = YoYPYd 3+ Y3+ Ys s+ Y7 g,
Qi = YEVPYE 3+ Vil + Y23+ Y23, (17)

3The notation for writing the inverse metric is 82 = ¢™" 9y 0. The derivatives do not act on any

mn

other objects here; it is just a convenient way of writing all the components of ¢"*" in one formula, exactly

analogous to writing the downstairs metric as ds? = gmn dy™ dy™. For example, the inverse of the 2-sphere
metric ds®> = d6? + sin? 6 d¢? is written as
1

=05 + —=
9+sin20

3. (13)



For the 3 x 3 part, we find
333 = Y12 (Nl auz - M2 au1)2 + Y22 (1 am — M3 aul)z + }/:9)2 (11 alm — M4 aul)z (18)
Y2 (43 Oy — 1040u3)* + Y3 (12 Opuy — 114 0py)? + Vi (112 Oy — 113 0py)?

where p; u; = 1.
Because of the block-diagonal structure, we can invert the two parts separately. For the

4 x 4 part, we straightforwardly invert the inverse metric to obtain
g3 = % [Z 17 Zi A9 + 202 b3 (1 113 depr dbo — pi3 i dp depa) (19)
i
+2b1 bs (13 113 deby dps — pi3 13 depo dps)
+2b1 by (113 pf dpy dps — i i3 debo d¢3)] ;
where
7y = B+ Y YP s+ YRS g+ YEYS i,
Zy = pa+ Y3 Y+ Y2V 3+ Y2YS 1,
Zy = p+YPYP R+ YEYS s+ VP Y5
Zy = pi+ YRV +YRYS u3 4+ Y2 VS 5 (20)
The function Z is given by

= YPYZYPul+ YRS Y s+ Y YS VS s+ YPYS VS g

[1]

(Y3 YE + Y YF) (Y 41} 13+ YT 443 1)
Y Y? + Y5 V) (V3 4if 13 + Y5 415 1)
+(VEYE + Y3 Y3) (V3 41} i + Y5 13 453) - (21)
There remains the problem of inverting the 3 x 3 part 333 of the inverse metric. Since
we know the inverse metric in the form ([[§), expressed in terms of the four 9, basis vectors

formed from the the constrained pu;, it is helpul first to solve the constraint p; pu; = 1

explicitly, by introducing three angular coordinates as follows:

mzccos%@, mzcsin%@, /L3:SCOS%9~, ,u4:ssin% , (22)

where ¢ = cos§, s = sin&. It then follows that

Op = %(Nl 8#2 — M2 8ul) )
8@ = %(:u?ﬁ 8#4 — M4 8u3) s
O = —s¢ (1 Oy + p20yy) + 57 (13 Oy + 114 0p) - (23)



Substituting into ([[§), the inverse metric is then expressed in terms of the three uncon-
strained basis vectors (J¢, dp, J5), and hence it can be straightforwardly inverted. Having
done so, the downstairs metric can then be re-expressed elegantly in terms of the redundant

set of four du; differentials, in the form

2
d33 =

[ =

[Z Zi dpi + $b7 <(u1 dpn + iz dpz)? + (3 dpss + pa du4)2>

+3b3 <(m dpy + ps dps)® + (2 dpg + pa du4)2>

+5b3 ((m dpy + pa dpa)® + (2 dpg + ps dug)Qﬂ : (24)

Finally, adding this to the 4 x 4 metric d§? given in ([[9), we obtain the result for the
downstairs 7-metric, d32 = d§3 + ds3:

R 1
d52 = 2 | D0 Zi(du? + i dg) + 20y by (13 413 don doy — i dsg o)

—
—
—

+2b1 by (13 163 dpy dps — 13 113 dbo dpa) + 2b1 b (i 3 dpy da — 13 163 depa dep3)
+1b] ((Ml dpy + po dpg)® + (s dps + pia du4)2>
+5b3 <(m dpy + p dps)® + (2 dpg + pa du4)2>

+5b3 ((m dpn + pa dpa)® + (p2 dpg + ps dug)Qﬂ : (25)

We can now work out the eleven-dimensional metric Ansatz, given by (f). To do this,
we first note that the determinant of (RF), where it is understood that the u; coordinates
are expressed in terms of (£,6,8) using (P2), is

oy (MeEp3py (82N _ i pdpipistc?
det(gmn) = (MLEZLEI) (22) — MIBISILTC (26)

where in the first expression, the first factor is the determinant of 4 x 4 block involving the ¢;
coordinates, and the second factor is from the 3 x 3 block involving the (&, 0, 9~) coordinates.
From (f]), it follows that

A=z="3, (27)

and hence from () that the Ansatz for the eleven-dimensional metric takes the following

rather explicit form:

(1]
ol

(1]
il

a2
d87

92
grE [ZZZ' (du + 3 A7) + 2by by (113 p3 dy dpo — p3 i dos dey)

dsl, = dsj +
dsy +

BN RN

|
[:3

+2b1 by (13 13 den deps — p3 13 depo dpa) + 21 bo (i i dy da — pi i dpo deps)

+307 <(M1 dpy + pip dpiz)® + (s dps + pua du4)2>

7



+5b3 <(m dpy + p dps)® + (2 dpg + pa du4)2>

+5b3 ((ul dpy + pa dpia)® + (p2 dpg + i3 duafﬂ : (28)

Note that we have reinstated the gauge-coupling constant g in this expression.
Having obtained the Kaluza-Klein metric Ansatz for the three dilaton/axion pairs, it
is a simple matter to incorporate also the associated U(1)* gauge fields that naturally

%

accompany this truncation of the maximal supergravity. Denoting their potentials by Af,,,

for i = 1,2,3,4, we simply replace each occurrence of d¢; in (B§) by
dpi — dy — g Al . (29)

Finally in this section, we may note that our result (2§) is consistent with previously-
obtained special cases. In particular, if we set the three axions y; to zero, then the function

= reduces to

E=A%, (30)
where
Y1 2 3
A=YV, Y3l 3 3 7. 31
123M1+Y'2Y?,M2+Y1Y3M3+Y1Y2M4 (31)
In the absence of axions, it is natural to define
Y Y Y3
X1 =15V Xo=—— = —= = — 32
1 11213, 2 Y2Y73’ 3 Ylyé’ 4 Ylyév ( )
implying that we shall have
A= "Xipi, Zi=AX[ (33)
i

It can be seen that the metric Ansatz () therefore indeed reduces to the one given in [f]

if the axions are set to zero.

2.3 The Ansatz for the 4-form Field Strength

In principle, we should like to obtain also the Ansatz for the 4-form field strength 13’(4) of
eleven-dimensional supergravity. In spherical Kaluza-Klein reductions it is always much
more difficult to obtain the Ansatz for antisymmetric tensors than for the metric, and the
present case is no exception. Unfortunately, one can only obtain limited guidance from
those results that are presented in [EI] In other truncations, simpler than the case in hand,
it has been possible to determine the field-strength Ansatz by brute-force methods, and
up to a point, this technique is still useful here. (This method was used successfully in

B, where the complete and explicit Ansiitze for the S7 reduction to the bosonic sector of



N = 4, SO(4) gauged supergravity in D = 4 were obtained.) The contributions to the
4-form Ansatz can be organised into different sectors, and in all except one of these we have
obtained complete results. Since these are instructive and useful in their own right, it seems
to be worthwhile to present those results that we have obtained here.

We begin with a summary of the four-dimensional theory comprising gravity, the three

dilaton /axion pairs, and the associated U(1)* gauge fields.

2.3.1 D =4 Lagrangian

The complete Lagrangian for four-dimensional N = 8 SO(8)-gauged supergravity was ob-
tained in [[[(, [{]. In [[3, B, the truncation to the N = 2 U(1)*-gauged subsector was
discussed. Adapting these results to the notation of this paper, we find that the four-
dimensional bosonic Lagrangian for this N = 2 truncation is given by
3
L4=Rxl— % (xdp; A dp; + €291 sdy; /\dxi> —V*l+ Lrin+ Los, (34)
i=1
where V is the potential for the scalar fields, and L, and Log are the kinetic terms and
the Chern-Simons terms for the four U(1) gauge fields F(, = dA{, . The scalar potential is
given by
3
V=42 Y (V7 +YP). (35)
i=1
The kinetic terms for the gauge fields are
£Kin = _%|W|_2 [PO <Y2L2 Y22 Y32 *F(lz) A F(lz) + Y12 Y22 Y32 >'<F(22) A F(22)
VY2 Y2 YEAFS A FS

+2P; by b3 (}712 *F(12) VAN F(22)

+YRYEVE#FL A FL)
— Y7 *F(?;) A F(42))

+2Py by bs (Y «FL A F3

2 2 4
) (o) — Yo xF5) N F)

+2P3 b1 by (}732 «FL A F2

) @ — YB2 *F(22) A F(?;))] ) (36)

where

Po=1+b34+b3+b%, W =Py —2ib bybs,
Pi=1-b03403+b3, Po=1+b3 03403, P3=1+b3+b3-03. (37)
Finally, the Chern-Simons terms for the gauge fields are
Los = —|W| 2 [bl bo b (5712 Y2VZFL AFL +Y2Y2Y2F2 AF2

+Y2YPYEFS A FS

2v2v2 14 4
@ N o) + Y1 Yy Y5 Fg) A F(Z))



+by (Po+ 2b5b3) (Y2 Fioy ANFG) — YP Fiy A Fy)
+b2 (PO + Zb% b?&) (?22 F(lz) A F(32) - Y22 F(22) A Fé))
+bs (Po + 267 b3) (Y Fiyy A Flyy — Y5 Fo AFD))| (38)
From (B4)), we find that the equations of motion for the gauge fields are
d(|W| R;) =0, (39)
for i = 1,2,3,4, where
Ry = Y?Y5YJ[PyxFpy + 2b1bybs Fy] + Y7 [Prbybs #Fa + by (Po +20303) F3] (40)
Y [Poby by +F3 + ba (Po + 263 b3) F2 ] + Y3 [Py by by F4 + by (Py + 263 b3) FL ],
Ry = YPYFY{[PoxF2 +2b1byby F2| + Y [Prbybs xFh + by (Po+ 203 63) F)]
—Y3 [Pyby by xF s + by (P + 263 b3) Fi3)] — Y5 [Py by by xF ) + by (Py + 263 b3) Fi ]
Ry = YPYFY{[PoxFS +2b1bobg 3| — Y2 [Prbybs xS + by (Po + 203 63) Fib|
Y [Poby by +FL + by (Po + 263 03) FL] — Y3 [Py by by xF2) + by (Py + 263 b3) F2 ],
Ry = YPYFYF[PoxFQ +2b1bobs Fa] — Y2 [Prbobs xS + by (Po + 203 63) F3 |

—YZ [Py by by #F2% + by (Py + 263 b3) F2 ] + Y [P3 by by «F + by (Po + 203 03) F, ] .

2.3.2 The Ansatz for F(4)

In previous papers the Ansatz for the 4-form field strength F(4) was obtained for the U(1)*

truncation in absence of the three axions [f], and for the N = 4 gauged SO(4) truncation,

in which there is one scalar and one axion [[J]. Based on those results, it can be seen

to be natural to write the Ansatz for F(4) as the sum of three terms, each with its own

characteristic contribution to the whole.

Thus we are led to the following construction for the 4-form field strength:

F(4) = —29Ue€u + 13'('4) + 13’(’;)
+3- 2V, xdYy — xa Vit edxa) A d(pf + pi3)
+5 (V5 kdYy — X2 Y5 xdxa) A d(pf + 413)
+on (Y5 xdYs — x3 Y3 xdxa) Ad(pf + pf)

where

U =Y? (3+pd)+YE (3 +ud) +YE (13 +13)+Y5 (nG+ud)+Ys (3 +pd)+YF (13+13), (42)

10



and €y, denotes the volume form on the four-dimensional spacetime. The term 13’(’4) will be
given by

. 1 3 ;
Fiy = =352 W D duf A (doi = g ALy) AR (43)

(We shall justify these expressions below.) The remaining term is 13’(’4). This will be written
in terms of a potential Al , as F, = dA/,. It will be the determination of A/, that presents
the greatest difficulty.

It will be noted that F(4) does not identically satisfy dF(4) = 0. This feature was already
seen in the truncations in [F] and [f]. It is not possible, at least within the usual second-
order formulation of eleven-dimensional supergravity, to write an Ansatz for F(4) in the S7
reduction that identically satisfies dﬁ'(4) = 0. An implication from this is that one cannot
write the Ansatz directly on the potential 121(3), which in turn means that one cannot write
an Ansatz that can be substituted directly into the eleven-dimensional action. One must
work at the level of the equations of motion.

In fact the requirement that F(4) must satisfy the Bianchi identity dﬁ'(4) = 0 provides
us with very important clues as to the correct form of the reduction Ansatz, and we used
this in writing down our results in (1) and (). The point is that the Bianchi identity
will be satisfied by virtue of the D = 4 equations of motion for the scalar fields and the
U(1) gauge fields being satisfied. (To be precise, the scalar equations of motion in question
here are those of the three dilatons ¢;, in combination with certain non-linear admixtures
of the three axion equations of motion.) Of course the contribution to F(4) from 121{3), whose
precise form we have not been able to determine, does not enter into the discussion of the
Bianchi identity, since it gives a contribution 13’(’4) that identically satisfies dﬁ’(’4) = 0.

To see how the Bianchi identity dﬁ(4) = 0 implies the four-dimensional equations of
motion for the scalars and the gauge fields, we note from the structure of () and () that
after acting with d we shall have two distinct classes of terms. First, there will be terms of
the form du? A W), Where wy is a 4-form living entirely in the four-dimensional spacetime.
(wey will comprise terms of the form €, and of the form dxdY;, etc. Of course they are all
proportional to €(.) The requirement of the vanishing of these terms will imply the scalar
equations of motion. Secondly, there will be terms of the form du? A (d¢; — % g Afl)) A Wz
coming from the action of d on F(Z), where w(; is a 3-form living in the four-dimensional
spacetime. The vanishing of these terms will imply the four-dimensional equations of motion
for the gauge fields.

Let us consider the second type of contribution first, since it is the simpler one. The

11



terms of this type come only from dﬁ’(’g), and give
> dpi A (dei — g ALy) Ad(W| ™2 Ry) = 0. (44)

This can immediately be seen to imply precisely the equations of motion for the four U(1)
gauge fields, given in (BY).

It remains to check that the terms of the form d,u? Aw(4y coming from the Bianchi identity
vanish by virtue of the four-dimensional scalar equations of motion. The kinetic terms of
these scalar equations come from the action of d on the final three lines in ({]). Clearly, we

get the combinations of the form
A2y xdYy — x1 i xdxa) (45)

arising (with similar independent expressions involving the (Y3, x2) and (Y3, x3) pairs). This

is a combination of the ¢; and the y; equations of motion. In fact it is
[dxdpr 4 €271 xdx1 A dx1] — x1 [d(e?# xdx1)], (46)

where the first quantity in square brackets is the dilaton equation of motion, and the second
quantity in square brackets is the axion equation of motion.

This particular combination, of the dilaton equation plus an admixture of the axion
equation, is an especially simple one to compare with the scalar equations of motion coming
from the four-dimensional Lagrangian (B4). It means that we are looking at the combination

that comes from the following variation of the D = 4 Lagrangian:
0Ly =— —x1—. (47)

If we define a symbol § to denote this specific combination of field variations, i.e.

0 0

b= — —xy1—, 48
or o (48)

then we find the great simplification that
SYE=Y2, §YZ=-Y?, b =0. (49)

(Of course since we are focusing on the scalars with the index ¢ = 1 at the moment, all of
the scalar quantities with ¢ = 2 or ¢ = 3 labels are invariant under this transformation.)
The last equation in @), Sbl = 0, leads to an enormous simplification when we vary Lgin
and Lcg given by (BE) and (BY). It means that |[W|, the P,, and all the b; are invariant.
We need only consider Y; and }71, and these just vary by the very simple rules given in ([t)).

12



With these observations, it becomes a relatively straightforward matter to verify that
the terms of the form du? Aw, that arise in the Bianchi identity for F(4) vanish precisely as
a consequence of the scalar equations of motion following from (B4), to all orders in scalar
fields and gauge field strengths. Note that the contributions to the scalar equations of
motion from the potential V given in (BH) arise from the action of the exterior derivative on
the term —2g U €4 in (ET). This part of the calculation can be seen quite easily, and can be
examined in isolation from the more complicated contributions from the four-dimensional
gauge fields.

The contribution F @ = A( 3) in ([) remains undetermined. We know some aspects of

it structure, for example that it is of the general from

(3) - Z hl] lu’l d:uj /L] d:uz) (dqbl - gA%l)) N (d¢J - gA{l)) ’ (50)
i#]

where the functions h;; depend on the scalars ¢; and x;, and the direction cosines p;. At
leading order, these terms will give rise to the linearised Ansatz for the axions y;. If explicit
expressions for the complete Ansatz for the N = 8 SO(8) gauged supergravity embedding
were available, A{S) could in principle be determined by substituting the expressions for
u;; %L and vk, appearing in (f) and ([[0) into them. To the extent that such expressions
are implicit in the work of [, a procedure in principle exists for reading off A{S). It is not

clear that attempting such a substitution would be simpler than a brute-force direct attack

on the problem, of the type that has proved successful in previous (simpler) cases [, fl].

2.4 Domain wall solutions and their oxidation

The four-dimensional U(1)* Lagrangian (B4) supports a four-charge AdS black hole solution
[[3). In the extremal limit, the four U(1) gauge fields decouple and the solution becomes
AdS domain wall, supported by the scalar fields only. It is given by [[4]

dsy = (gr)*(HyHyHsH,;)™'/? da* day, + (HyHyHsHy)'/? ;l;;*?’
= YE=f =0, 1)
where
ho= (HzHy)'/? f _ (HyHy)'?
VT mm) 2 T (HH)
 (HyHy)'? o
BT g TR !

This solution can be oxidised back to D = 11 [E], where it acquires the interpretation of

being a continuous ellipsoidal distribution [[I5, [Ld, {7, [(§, [(4, [[d] of M2-branes.

13



The scalar kinetic terms in the Lagrangian (B4) are invariant under global SL(2, R)?
transformations, corresponding to the usual fractional-linear group action on each of the
axion /dilaton pairs. The scalar potential in (B4), on the other hand, is invariant only under
the SO(2)3 subgroup transformations

COS \; T + Sin\;

T T T Ai T+ cos \; (53)
where 7, == x; +ie”%. Applying these global transformations to the original domain walls
we obtain new solutions, with

1 5(fi—1)
Y2 =¥ = —(f2cos® \; +sin? ), = 2 ) 54
(3 fl (fl ) Z) XZ f22 COS2 )\Z + 51112 )\Z ( )
The }7; are hence given by
2,1 2 (in2
~ + 2(f — 1)7sin“(2\;

Y filfF cos? )\ 4 sin? \;)

Having obtained the SO(2)? rotated domain-wall solutions, they can be oxidised back
to D = 11. The eleven-dimensional metric is given by substituting the solution into (R§).
These solutions with non-vanishing y; no longer simply describe distributed M2-branes. To
see this we note from (p() that with non-vanishing axions the field strength F,, will involve
components lying purely in the internal S7. By contrast, in a distributed M2-brane solution
one has F,) = d*>xr AdH~!, where H is the harmonic function in the transverse space. Thus

for a distributed M2-brane the field strength F{,, always carries three world-volume indices.

3 The 2-scalar D =5 embedding in type 1IB

In this section, we consider the embedding of the 2-scalar truncation of D = 5 gauged
supergravity discussed in the introduction, and its embedding in the type IIB theory via an
S5 reduction. In the early stages of the derivation, we retain all four of the scalar fields of

the truncation discussed in [H].

3.1 The metric reduction Ansatz

The set of 42 spin-0 fields in the complete SO(6) gauged N = 8 supergravity in D =5 [2(]
are described by a 27-bein V, which transforms under local USp(8) and global Es. The
truncation to four spin-0 fields is described in [H], in terms of an SL(6, R) x SL(2, R) basis,
for which the components of the vielbein are decomposed as (VI Jab, Vfa“b). In terms of this

decomposition, the following conjecture for the inverse S° metric has been proposed H:

G, y) = AE g™ (2, y) = 2K K3 Vi Vic Lea 2°° QP (56)

14



where V is the inverse of the vielbein V, A2 = det(gpn (2, 1))/ det(gmn (1)), and gmn(y) is
the undeformed round S® metric where the scalar fields are set to zero. The ten-dimensional

metric Ansatz will then be
53y = A3 ds? + gon(w,y) dy™ dy" = A75 (ds? + G (2, y) dy™ dy'™) . (57)

The process of making the 4-scalar truncation in the vielbein V has been described in
detail in [PT]. Substituting this into the metric Ansatz (§) is a mechanical exercise that is
most conveniently implemented by computer. Since the final result is considerably simpler
than the intermediate stages we shall, without further ado, present the final answer. We
find that the inverse 5-sphere metric 3325 = §™" O, O is given by

5325 = x! (cosh 2yo (cosh 2r —sin @ sinh 2r) (K3 + K2 + K2 + K3)
4 cosh 2y (cosh 2r + sin 6 sinh 2r) (K7 + K35 + K3 + K3)
+2 cos 0 sinh 2r sinh 2y, (Ko K35 — Kos K36 + K16 K45 — K15 K46))
+X2 (i(3 —cos @ + 2cos? 0 coshdr) (K7, + K3,) + (K2, + K2;)
+ cosh? 2yy (K2, + K3,) + 2cos? 0 sinh? 21 K19 K3y — 2sinh? 2y K13 K24)
+ X KE. (58)

The scalars (X, r,ys,0) are related to the quantities (p, @1, 2, ) appearing in [R1]] by

1
p=X"2, r=3p2—91), va=3i(p1+ep2), 6=2¢. (59)

Note that the D = 5 scalar Lagrangian for this truncation is

3
L=-2% (dp;)* = sinh*(ip1 — 2) (90)* =V, (60)
=1

where X = e~ V6%3/2 and the scalar potential V takes the form l2]
vV o= ¢ <X2 [1 — cos? 6 (sinh? 1 — sinh? @5)] + X ! [cosh 2¢; + cosh 2¢3)] (61)
+4 X124 2sin® 0 — 2sin® 0 cosh(2(p1 — ¢2)) — cosh 4y — cosh 4@2]> .

At this stage, we impose the further truncation to the 2-scalar subsector that we really
want to consider. This corresponds to setting § = 0 and w9 = 0 [R1]]. It is easily verified
from (p() and (B1)) that this is a consistent truncation. Thus we shall have r = —%cp, and
Yo = %gp, where we now drop the “1” subscript on ;. The potential (f1) reduces to

V = cosh? ¢ [X2 (2 — cosh? ) +2X 1 — L X~ sinh? 4,0} . (62)
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It is convenient also at this stage to perform a labelling of indices on the Killing vectors Kj;
in (5§), under which the index values (2,3,4) are cycled: 2 — 3,3 — 4 and 4 — 2.

We now adopt a description of the round 5-sphere that is precisely analogous to the
one that we introduced in Appendix B for S7. This time, we shall end up with three
“direction cosines” p;, subject to the condition u; u; = 1, and three azimuthal angles ¢;.
After manipulations similar to those in section 2, we arrive at the following expression for

the inverse 5-sphere metric 55?

A2 A2 A2
05, = 05, + 05, , (63)
where the 2 x 2 and 3 x 3 blocks are given by
332 = cosh® ¥ (X_l [(111 Oy — p13 au1)2 + (2 Ops — 113 (9”2)2] + X? (111 Opy — p12 am)z) )
323 = A cosh®yp [X (y? 83,1 + py 2 83,2) + X2 ,u§2 83,3]
1.2 -2 2
—sinh” (X (Op, + 0py) — X 8¢3) , (64)
and
A=(pf+p3) X +p3 X2 (65)

Note that the 2 x 2 inverse metric 332 is just equal to the metric for the single-scalar
truncation when ¢ = 0, multiplied by a factor of cosh? ¢. The 3 x 3 inverse metric is equal
to cosh? ¢ times the ¢ = 0 metric, with the correction term appearing in its second line.

The inverse of the 3 x 3 block 333 is straightforward to calculate, and we find

. sech % _ tanh? ¢
dsi = A (X b (pf Aot + 3 de3) + X2 13 d¢§) R (13 1 + pis depy — i3 deb3)?
(66)
Note that the determinant of dé? is given by (u1 u2 p3)%/(A% cosh? ).
For the 2 x 2 block, the inversion gives the metric
h 2
g2 = 2% = L4 (X—l (dp + dp2) + X2 d;é) . (67)

It is helpfull at this stage to reparameterise the direction cosines u;, and make redefini-

tions of the azimuthal angles (¢1, ¢2) as follows:

m:cosﬁcos%ﬁ, ,ugzcosé’sin%ﬁ, 3 =sin,

p1=30+0), d2=350—9). (68)
In fact (¥, ¢, %) are just the Euler angles on S3. One can define left-invariant 1-forms o;, as
o1+ioy=e W (d0 +isinddp),  o3=di+ cosVdp. (69)
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These satisfy do; = —o9 A 03, and cyclically. Defining also
c=cosé, s =siné, (70)

we find that the 5-dimensional internal metric dég = Gin(z,y) dy™ dy™ = d33 —|—d§§ becomes

h2
2 — SeCA L4 [X Ade?+ 11X (07 + 0% + 02) + X2 5% dgs)
tanh?
4A2—(’D (c? o3 — 257 dg3)* (71)
where
A=Xc+ X262 (72)

In the absence of the pseudoscalar field ¢, this reduces to the metric Ansatz encountered
in the N = 4 gauged SU(2) x U(1) supergravity embedding obtained in [PJ]. In that case,
the scalar field X parameterises inhomogeneous deformations of S viewed as a foliation of
53 x S surfaces.

With the pseudoscalar ¢ non-vanishing, it is advantageous to rewrite the metric (1)) as
the sum of squares of just five quantities, by completing the square. After doing this, we

obtain the result

X X1 X s2Q ¢? sinh? ¢ 2
A8 = ———de® + ——— (03 +02) + 24 (dos - =25—F o)
% cosh? ¢ 4A cosh? ¢ (07 +02) 10 7 A2? cosh? ¢ & 20 7
(73)
where
Q= X3¢+ 5% cosh? . (74)

This expression reduces to the one found in P if ¢ = 0. In that case, the scalar X
parameterises deformations of S® corresponding to inhomogeneities of codimension 1 of the
foliation by S% x S'. When the pseudoscalar ¢ is included too, the inhomogeneities remain
of codimension 1, but with a slightly more complicated structure. In addition, there is a
sort of “twist” in the S% x S! product structure of the homogeneous foliating surfaces, as
indicated by the cross-term between the interval d¢s on S*, and the 1-form o3 on S3.
Finally, substituting our result for the internal hatted metric d3? into (57), we arrive at

the conjectured ten-dimensional metric Ansatz for this two-scalar truncation:

1 2 v—1

X Az X
g2, — Al h o ds? de? 2 2
570 2 cosh pdss + cosh &4+ AL cosh o (01 +03)
2 X A3 coshp o 520 ¢? sinh? ¢ 2
+ 4Q 0'3 + A% Coshgp <d¢3 — T 0'3) (75)
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3.2 The field-strength Ansatze

There does not seem to be any straightforward way to determine the Ansatz for the Kaluza-
Klein reduction other fields of the ten-dimensional type IIB theory, in this two-scalar reduc-
tion. We know that when ¢ is taken to be zero, the Ansatz must reduce to one encompassed
by the results in PJ]. In particular, the remaining scalar field X enters in the Ansatz for
the self-dual 5-form, whilst the dilaton, axion and 3-form field strengths of the type 1IB
theory vanish when ¢ = 0. Since it is a pseudoscalar, the field ¢ enters at the linearised
level in the Ansatz for the NS-NS and R-R 2-form potentials /1(2) = flg)s and flg? .
The relevant bosonic equations of motion of the type IIB theory are

Rux = g+ H((FY o = B anw ) + 3 (3 o — (82
dHy = —5Fa N F), Hyy = %Hg,

where we have introduced the notation that

We are assuming here that the dilaton and axion of the type IIB theory vanish in the
reduction. For this to be consistent with the type IIB equations of motion, it is necessary
that

$Eg AN Fly =0,  #Fg AEy =2Fy AFg. (78)

We shall restrict our discussion from now on to the linearised level.
In the notation that we are using here, the linearised Ansatz for pseudoscalars ¢ will be
of the form

Any = ¢ Yo, (79)
where Y, is a complex 2-form spherical harmonic satisfying
d+xY o) =1A Yy (80)

on the unit round 5-sphere. The Ansatz for the self-dual 5-form H;) = G5, 4+ %G5 includes
a Freunnd-Rubin term G5 = 4e;, (we have set the gauge coupling g = 1 here). Substitut-
ing into the type IIB equations of motion, one finds that the pseudoscalar ¢ satisfies the

linearised equation of motion
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A 2-form harmonic with eigenvalue \ gives a pseudoscalar ¢ with m? = A(\ —4). We want
the mass for the 10 and 10 members of the massless multiplet, namely m? = —3, which
therefore requires A = 1 or A = 3. In fact, the required harmonics are those with A = 3
(there are none with A = 1).

There are ten such harmonics on S°, which can be written in terms of the Killing spinors.
There are Killing spinors n4+ satisfying D,ny = £ % I'yne. It turns out that the required

2-form harmonics are given by the construction

Yoo =0-Tapny, (82)

where n— and 74 are any two Killing spinors of the minus and plus kinds respectively.
Solving for the Killing spinors, and substituting into (8), we find that one of the ten
harmonics has a structure that is particularly naturally adapted to our parameterisation of

the sphere, namely
Y =€ (cd&Aang%sczcnAa2—isc203/\d¢3)- (83)

One may expect that this harmonic, or a closely related construction, will play a significant
role in the construction of the reduction Ansatz at the full non-linear order, but we have

not yet completed this investigation.

3.3 Oxidation of five-dimensional solutions

Given the conjectured metric reduction Ansatz, we can oxidise the metric in any solution
of the two-scalar truncation of five-dimensional maximal gauged supergravity back to a
solution of type IIB supergravity in D = 10. In principle, one can solve the equations of
motion in this two-scalar sector to obtain a supersymmetric domain wall solution, which
has an interpretation as the RG-flow equations on the strongly coupled field theory side,
as discussed in [R1]. Unfortunately the equations seem not to allow an explicit solution in
terms of elementary functions.

One simple oxidation that we can perform is to take the D = 5 solution corresponding to
the second (non-trivial) supersymmetric stationary point of the potential. This corresponds

to the stationary point of (63) with [H]

X =275, sinhp= L. (84)

(The fully-supersymmetric stationary point is at X = 1, ¢ = 0.) Substituting into (7J), we
find that the internal 5-sphere metric d32 at this stationary point is given by

3
= 37

2 2 2 2 2
9 9 c 9. 9 2¢ 5 87 (3+5s7) _c 2
ds; dg +2 (01+02)+3 sl o3 307 52)° <d¢3 3152 O'3> } . (85)

(1+s?)
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4 Conclusion

In this paper, we have obtained the metric Ansétze for two examples of Kaluza-Klein sphere
reductions, both of which involve pseudoscalar as well as scalar fields. The first example is
the S7 reduction of eleven-dimensional supergravity, with a truncation from N = 8 to the
N = 2 theory with U(1)* gauge fields, three dilatons and three axions. Among other uses
this reduction allows one to study the eleven-dimensional geometries corresponding to the
lifting of the four-dimensional BPS AdS black hole and domain-wall solutions [[J] of gauged
supergravity. Our results generalise those obtained previously in [Pf], where the problem was
studied in the absence of the three axionic scalars.

Our second example is a truncation of five-dimensional maximal gauged supergravity,
to a subsector in which two spin-0 fields are retained, one of which is a scalar, and the
other a pseudoscalar. This truncation retains the fields necessary for describing a second
supersymmetric vacuum in D = 5, with N = 2 supersymmetry and SU(2) xU(1) invariance,
in addition to the maximally-supersymmetric one with SO(6) invariance [ff]. The metric
reduction Ansatz that we obtain here allows one to study the ten-dimensional geometries
corresponding to the lifting of solutions of the five-dimensional theory. In principle, this
can include the renormalisation-group flow [R1] associated with the second supersymmetric

extremum, although the explicit form of this five-dimensional solution is not known.
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Appendix A

In this appendix, we present the explicit form of the SO(8) triality rotation that we used

in section 2.1 in order to simplify the Kaluza-Klein metric reduction Ansatz:

Kio — 5(K12 + K34 + Ksg + Krs) Kiz — $(Ki3 — Koy + K57 — Kes)
Kig — (K14 + Koz + Kss + Ker) K15 — 3(K15 — Kog + Ka7 — Kus)
Kig — 3(K16 + Kas + Kss + Kur) K17 — 3(K17 — Kas + K35 — Kug) ,
Kis — 2(Kis + Ko7 + Ksg + Kus) Koz — 3(Kos + Kia — Kss — Ker)
Koy — 5(Koy — K13+ K57 — Kes) Kos — $(Kos + K16 — K3s — Kur)
Kog — 2(Kas — K15+ Ksr — Kus) Ko7 — 3(Kor + K1 — K36 — Kus)
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Kag — 5(Kas — K17 + K35 — Kug) , K3y — 5(Ksa + Kiz — Ksg — Krs)
Kzs — 5(K35 + K17 + Kog + Kuag),  Kas — 5(Kszs + Kig — Koy — Kus)
K37 — 2(Ka7 + K5 + Kog + Kus) Kss — 5(Kss + Kio — Kos — Kur),
Kys — 5(Kas + Ki1s — Ko7 — Ksg) , Kig — 5(Kag + Kss — Kiz — Kas),
Kyr — §(Kur + K1 — Kos — Kssg) Kis — 3(Kus + Ks7 — K5 — Kag) |
Kso — 2(Ks6 + Ko — Ksa — K1g),  Ksy — 3(Ks7 + K13 + Koa + Kgs)
Kss — 5(Kss + K1a — Koz — Kgr) Ker — 5(Ker + Kua — Kog — Kss)
Kos — (Kes + Koy — K13 — Ko), Krg — $(Krs + K12 — K34 — Ks) . (86)

Appendix B

In this Appendix, we collect some results on the geometry of the 7-sphere. We can describe

S7 as the unit sphere in R®, with 8 real coordinates zy;
xraxy=1. (87)

As such, it has a manifest SO(8) symmetry, with 28 Killing vectors Kr; given by

KIszfa%]—xJa%I. (88)
We can also describe S7 as the unit sphere in C*, with 4 complex coordinates z;:
Zizi=1. (89)
We can relate these complex coordinates to the previous real ones as follows:
21 =x1+1w9, 20=wx3+ixy, 23=1x5+1Tg, 24=aT7+1ix8. (90)
We can parameterise these complex coordinates as
2= e, = 2y =3l ® 2= pgel? (91)
where (BY) implies that \
> =1 (92)
i=1

These (ui, ¢;) coordinates are precisely the ones used for describing higher-dimensional
rotating black holes in [P4], and in the S” reduction Ansatz obtained in [J].
From the coordinate transformations above, it is straightforward to establish that the
real derivatives 0/0x; that appear in the Killing vectors (B§) are given by
0 sing; 0 0 0 cos¢y O

— =cos¢ =— — —, — =sing; — + —
0z b Op p1 o O0¢1 Oz b Oy p1 o 091

(93)

21



with analogous expressions involving (ug2, ¢2), (13, ¢3) and (u4, ¢4) for the pairs (z3,x4),
(x5,76) and (x7,xg) respectively. It is easy to see from this that the four Killing vectors

Ko, K34, K56 and Krg are simply of the form:

0 0 0 0
Keg=—. (94)

Kio=—, Ky=—, Ksp=—,
27 9y T 0, 07 D Db

These are the four commuting U(1) generators. It is convenient to write them as 0y, , etc.
We also note that the Killing-vector bilinears in the top 3 lines in ([[4]) are also relatively
simple, when expressed in terms of the u; and ¢; coordinates. After some algebra we find,

for example, that
2 2 2 2 2 M% 2 M% 2
Kiy + Kiy + Ki3 + Koy = (111 Oy — p20p,)" + 2 05, + 12 94, (95)
1 2

with analogous results for the other five combinations.
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