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ON UPSCALING CERTAIN FLOWS IN DEFORMABLE POROUS
MEDIA∗

OLEG ILIEV† , ANDRO MIKELIĆ‡ , AND PETER POPOV§

Abstract. We consider certain computational aspects of upscaling fluid flows through deformable
porous media. We start with pore level models and discuss upscaled (homogenized) equations and
respective cell problems. Analytical solution of a cell problem in certain geometry, as well as an
accurate numerical procedure for the general case, are presented. A microscale (pore level) fluid-
structure interaction (FSI) problem is formulated in terms of incompressible Newtonian fluid and
a linearized elastic solid. At least three different macroscopic models can be derived from this
microscale formulation, depending on the assumptions on the fluid-structure interface. The first two
are the well-known linear poroelasticity model [M. Biot, J. Appl. Phys., 12 (1941), pp. 155–164] and
its nonlinear extension [C. K. Lee and C. C. Mei, Int. J. Eng. Sci., 35 (1997), pp. 329–352]. Both
are derived under the assumption of small (at pore level) displacements of the interface with the
difference that the first model excludes pore scale rigid body motions, while the second one accounts
for them. A third macroscopic model is explained below. It concerns a particular case, namely, a
porous medium formed by long parallel channels with thick elastic walls. An asymptotic solution to
the FSI problem is derived for such a geometry, allowing finite (at pore scale) displacements for the
interfaces. A nonlinear Darcy-type upscaled equation for the averaged pressure is obtained. The cell
problems for each of the above cases, as well as a numerical algorithm for solving these cell problems,
are discussed. The microscale cell FSI problems are treated numerically by an iterative procedure
which solves sequentially fluid and solid subproblems and couples them via the interface conditions.
Numerical and asymptotic solutions are found to converge to each other, thus validating both the
numerical solver and the analytical derivation.
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1. Introduction. Flows in rigid and in deformable porous media are an essen-
tial part of many engineering and environmental processes, such as groundwater flow,
reservoir engineering, various filtering devices, catalytic converters, microfluidic sen-
sors, etc. Many multiscale problems for slow flow in saturated rigid porous media
or media with a linear elastic skeleton are well understood (see, e.g., [7, 44]), and
the accumulated knowledge is widely used in practical applications. Flow in porous
media was first studied experimentally by [17] in the simplest possible setting of a
rigid skeleton. Proper upscaled models for Stokes flow based on the homogenization
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method appeared later [51, 8, 50] and rely on so-called unit cell solutions in order
to derive a diffusion equation at the macroscale. Darcy-type models in rigid porous
media have been extended to more general microscale flows such as faster laminar
flows (based on Navier–Stokes equations) [22, 7, 42, 21, 11], flows of viscoelastic flu-
ids [52], flows of generalized Newtonian fluids [38, 12, 13, 2], or slow laminar flow of
incompressible fluid over and within a porous bed [32, 34].

Considering flows in rigid porous media as multiscale problems allows us not
only to get a better understanding of the underlying processes but also provides
practical approaches for determining the coefficients of the macroscopic equations.
Under certain restrictions (e.g., periodicity or statistic homogeneity), one can calcu-
late coefficients in macroscopic equations by solving so-called cell problems [44, 30].
Fore example, solving Stokes problem at pore (micro-) level allows us to calculate
permeability at meso- scale, while solving Darcy problem at mesoscale allows to cal-
culate permeability tensor at macroscale. Discussions on numerical methods in Stokes
to Darcy upscaling can be found, for example, in [31, 46]. Proper cell problems in
the meso- to macroscale upscaling, as well as numerical methods for solving such
problems, can be found, for example, in [55, 47, 1].

The case of a deformable porous medium is more complicated, and much research
is still needed to better understand respective multiscale problems. At the microscopic
(pore) level one has a deformable skeleton surrounded by fluid flow. There exists a
wide range of macroscale equations, which are used in the simulation of industrial
and environmental problems involving flow in deformable porous media (cf., e.g., [36]
and the references therein). Most of these models are derived at macroscale in a
semiempirical way, and the coefficients are usually fitted on the basis of measure-
ments, when possible. Opposite to the above approach, our aim is to consider and
analyze the flow in deformable porous media as a multiscale problem. Depending on
the assumptions about the interface, we will distinguish three cases. Case A: Linear
poroelasticity. In this case the strains in the solid are small, allowing for the solid to
be described by the Lame equations, and the considerations are restricted to small
(even at pore level) displacements. Case B: Nonlinear poroelasticity. The displace-
ments here can be decomposed into a rigid body motion at pore level and small extra
displacements. Case C: Nonlinear Darcy. Here we consider finite displacement for
the interface at pore level. Let us briefly discuss the three cases.

Case A: Linear poroelasticity. Similar to the development of models for Darcy
flows, the problem was first studied experimentally by Biot [9] and Bear [7], who
formulated the macroscopic equations for the effective medium. The application of
the asymptotic homogenization method [8, 50, 6, 56] has led to theoretical justification
of Biot’s equation [3, 50, 15, 43] along with appropriate cell problems from which
the macroscopic parameters can be computed numerically. These derivations rely on
infinitely small fluid-solid interface displacements relative to the pore size. This allows
the application of interface conditions at the initial position of the fluid-solid interface,
and important properties such as periodicity of the unit cell are preserved. A wide
range of applications, for example, in soil consolidation, acoustics, tissue modeling,
etc., fall within these limits. However, many other important engineering problems
cannot be considered under such restrictions.

Case B: Nonlinear poroelasticity. Under more relaxed assumptions, Lee and Mei
[35] have derived a nonlinear macroscopic governing equation by assuming periodic
media and allowing the interface displacements to be of the same order as the pore
size. It is also assumed that the total deformation of a unit cell can be decomposed into
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a rigid body motion of each unit cell after which the interface displacement becomes
infinitely small in the new reference frame. Under certain symmetry assumptions of
the unit cell prior to the deformation it is shown that macroscopic equations reduce
to Biot’s law.

Case C: Nonlinear Darcy. The most general and least studied problem of flow in
deformable porous media occurs when due to problem parameters such as microscopic
pressure, the fluid-solid interface deforms considerably at the pore level. In such cases
the interface cannot be approximated by a rigid body motion of its initial position,
and it is necessary to consider the fluid-structure interaction (FSI) problem at pore
level as a problem with an unknown interface. This microscale FSI problem is non-
linear despite the fact that the solid and fluid are described by linear equations. To
our knowledge, rigorous upscaling for such a case is not known, even in very simple
geometries.

The main targets of this paper are to contribute to a better understanding of the
upscaling for porous media flow problems falling into Case C and to present a proper
numerical procedure for solving cell problems associated with Case A, Case B, and
Case C.

For Case C, we present and discuss analytical and numerical approaches for simple
geometries. We restrict ourselves to such two-/three-dimensional microscale geome-
tries, which in turn lead to one-dimensional macroscopic equations. Such porous
media can be formed from long straight channels with thick deformable walls (see
Figure 7), from channels with partially rigid/partial elastic walls (Figure 9), from
channels with rigid walls in the presence of deformable obstacles, etc.

For Case A, the rigorous derivation via homogenization theory goes along the
same lines as in the nonstationary case (see [23, 16, 20, 45]) and relies on the 2-scale
convergence. For the formal derivation using 2-scale expansions we refer the reader
to [15, 50, 3]. Formal derivation of the homogenized equations for Case B is in the
article [35]. Rigorous justification of the result is still an open challenging problem.
In Case C we use a combination of the 2-scale expansion and singular perturbation
with respect to the ratio between the width and the length of the channel. In this way
an effective nonlinear PDE for the pressure is derived. We note that the permeability
in the corresponding Darcy law depends on the pressure in a nonlinear way. The
derived equation was validated in comparison with the results from a direct numerical
simulation, i.e., from the solution of the microscopic FSI problem.

An advantage of the numerical procedure presented here for the microscopic FSI
is that it can also be applied when the scale separation is impossible. That is, for
certain geometries, this procedure can become a basis of an efficient iterative scheme
between different scales. Such a procedure was successfully used in [18] in connection
with a nonlinear diffusion equation.

The reminder of the paper is organized as follows. The microscopic FSI problem
is described in the next section. In the third section, macroscopic models and cell
problems corresponding to Cases A and B are recalled. In the fourth section, an
asymptotic solution for a Case C cell problem is derived. The fifth section presents the
discretization and the numerical algorithm used to solve the FSI problems. Numerical
results are summarized in the sixth section. Finally, some conclusions are drawn.

2. The microscopic governing equations. Before we present the fluid-structure
problem at the microscale we begin with a brief summary of the notation used, the
formulation of the fluid, and solid problems alone. Consider a continuum body at the
pore level. The material points in the body are associated with points p in R

3. A
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body is defined as an open subset Ω ⊂ R
3. We denote the reference configuration by

Ω0, which represents the body (solid or fluid) before the deformation has begun, and
the deformed configuration by Ω. We will use p to denote material coordinates and
x to denote spatial ones.

In a FSI problem one has both a solid and a fluid which in this paper will be
referred to as phases. We will need several basic concepts on the kinematics of con-
tinuum motion which are relevant to both the fluid and solid phase. The notation
followed is the one from Gurtin [28], and the reader is referred to this classical text
for more details. Consider a continuous, reversible deformation (cf., e.g., [28, 40])

x = x(p),

so that the reference and deformed configurations (of either the fluid or solid phase)
are linked by Ω = x(Ω0). The deformation gradient is denoted by F:

(2.1) F(p) = ∇x(p).

The deformation of solids is naturally described in the reference configuration, and
the appropriate stress measure [28, Chapter V, pp. 97–114 ] in that case is the first
Piola–Kirchhoff stress tensor S(p), a material field.1 The motion of fluids is naturally
described by the Cauchy stress tensor T(x), a spatial field. The two are related by
the identity [28, 40]

(2.2) S(p) = det(F(p))T(x(p))F−T (p).

Finally, in order to simplify notation throughout the paper, it is convenient to intro-
duce the symmetric part of the gradient operator:

(2.3) e(w) =
1
2
(
∇w + (∇w)T

)
for some field w (spatial or material). The solid and fluid problems, and the coupling
interface conditions, are presented in the next three subsections.

2.1. Solid. Let u(p) be the displacements in the solid domain,

(2.4) u(p) = x(p) − p,

and let E(p) be the usual infinite small strain [28]:

(2.5) E(p) = e(u) =
1
2
(
∇u(p) + ∇u(p)T

)
.

We restrict our attention to linearized elastic solids only, that is, solids for which

(2.6) S = C : E,

where C is a fourth order elasticity tensor which defines the linear elastic solid, and C :
E is well established in the mechanics literature notation for the double contraction,

1A material field is a scalar, vector, or tensor field which is specified on the reference configuration;
that is, it is a function of p. A spatial field is defined on the deformed configuration; that is, it is a
function of x. All derivatives are implicitly assumed over the appropriate variable. In that respect,
a more detailed, but unnecessary, notation would be ∇xF(x) instead of ∇F(x) and ∇pT(p) instead
of ∇T(p), etc.



UPSCALING OF DEFORMABLE POROUS MEDIA 5

C : E = CijmnEmngi ⊕gj. The constitutive relation (2.6) is known as the generalized
Hooke law. For a formal definition of the tensor C, as well as various other issues
concerning this constitutive relation, the reader is referred to the classical work of
Gurtin [28].

Then, given a body force b0 in the reference configuration, the boundary value
problem for a linear elastic solid is stated (in the reference configuration) as follows:
Find u(p) such that

(2.7) ∇ · (C : E) + b0 = 0 in Ω0,

with Dirichlet

(2.8) u = û on ΓD
0 ,

and/or Neumann

(2.9) Sn0 = ŝ on ΓN
0

boundary data, with the usual conditions ΓD
0
⋂

ΓN
0 = ∅ and ΓD

0
⋃

ΓN
0 = Γ0.

As will be seen in section 2.3, a traction interface condition similar to (2.9) will
be given on the part of the solid boundary which is an interface with the fluid.

2.2. Newtonian fluid at low Reynolds number. Newtonian fluids are best
described using spatial fields. For stationary problems (the spatial description of all
involved quantities is time independent), one has a velocity v(x) and, correspondingly,
the symmetric part of the velocity gradient, namely, the stretching tensor D(x) given
by

(2.10) D(x) = e(v) =
1
2
(
∇v(x) + ∇v(x)T

)
.

By definition, a Newtonian fluid is one for which

(2.11) T = −pI + 2µD,

where µ is the absolute viscosity of the fluid.2 The fluid must satisfy conservation of
mass,

(2.12) ∇ · v = 0,

and conservation of momentum. For a slow moving fluid, conservation of momentum
reads

(2.13) −µ∆v + ∇p = b,

where b is a distributed body force (per unit volume) acting on the fluid.

2.3. The coupled FSI problem. Consider now the stationary fluid-structure
problem (Figure 1) in the deformed configuration Ω = Ωf ∪ Ωs, where the fluid
occupies Ωf , the solid occupies Ωs, and Ωf ∩ Ωs = ∅. The part of the boundary
shared between the fluid and the solid is denoted by ΓI = ∂Ωf ∩ ∂Ωs. Further, only
open flow problems are considered, that is, ones for which there is a nonempty part of

2To be precise, this is a definition of a Newtonian fluid which is also independent under a change
in observer. (Cf., e.g., [28, pp. 147–151].)
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(b) Deformed configuration

Fig. 1. Schematic of the fluid and structure domains.

the boundary ∂Ω\ΓI through which fluid is allowed to pass. It is also assumed that
the deformation x(p) is such that contact problems or breakup of the boundary do not
occur. There are two conditions on the interface. The first is kinematic compatibility;
that is, the velocity of the fluid on the interface should be equal to the velocity of the
interface itself. This, for a stationary problem, implies that

(2.14) v = 0 on ΓI .

The second condition is continuity of tractions, namely (cf., e.g., [35]),

(2.15) Tfn = Tsn on ΓI ,

where n = ns and ns is the outward normal to the solid domain. The stress Tf in
the fluid is given by (2.11). The Cauchy stress Ts can be expressed in terms of the
Piola–Kirchhoff stress using (2.2), which together with Hooke’s law (2.6) implies that

(2.16) −pn + 2µDn = det(F)−1(C : E)FT n on ΓI .

The stationary FSI problem therefore consists of finding the interface between
the two domains, a velocity, pressure, and displacements which solve the Stokes equa-
tions (2.12), (2.13) and Lamé equation (2.7), respectively, and also satisfy the interface
conditions (2.14) and (2.16). More formally, the FSI boundary value problem is sum-
marized below in terms of the unknowns ΓI , v, p, and u: Find ΓI , v, p, and u such
that

(2.17) ΓI =
{
p + u(p)|∀p ∈ ΓI

0
}

,

(2.18)
−µ∆v + ∇p=b in Ωf ,

∇ · v=0 in Ωf ,
−∇ · (C : E)=b0 in Ωs

0,

(2.19) det(∇u + I)(−pI + 2µD(x(p))) (∇u + I)−T n0 = (C : E)n0 on ΓI
0,

and v satisfies the kinematic interface condition (2.14); in addition v, p, and u should
also satisfy any boundary conditions that might be specified on ∂Ω\ΓI . Equation
(2.19) is the continuity of tractions (2.16) expressed on the reference position ΓI

0 of
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Fig. 2. Several possible types of FSI problems at the pore level. The reference configuration
(a), infinitesimal displacements of the representative element of volume which corresponds to Biot’s
model (b), infinitesimal displacements superimposed on a rigid body motion (c), and a general case
(d) of large pore-level interface displacements.

the interface. Observe that the position of the interface is part of the boundary value
problem, and the solid-fluid coupling term (2.19) makes it a nonlinear one. Note
that since only open flow problems are considered, there is no conservation of volume
involved.3

It should be noted that a linear constitutive relationship for the solid imposes a
certain restriction on the deformation gradient F in the solid. The constitutive relation
(2.6) provides an accurate description of a hyperelastic material [28] if there are no
large rotations involved. However, this relation does not preclude the analysis of large
pore-level deformation of the fluid domain and related consequences when upscaling
the flow in such media—the deformation in the solid can easily be described by a
linearized relationship, and yet the corresponding deformation of the fluid part of the
body at the microscale can be significant. Examples of this type can be found in
section 6. On the other hand, the use of the linear relationship significantly simplifies
the asymptotic analysis of section 4.

3. Upscaling of deformable porous media. As was already mentioned in
the introduction, at least three macroscopic models can be derived starting from the
microscopic model formulated above. Let us briefly recall them. Depending on the
assumptions about the interface, these are linear poroelasticity, nonlinear poroelastic-
ity, and nonlinear Darcy models. In this section we will briefly discuss the first two
cases; the third one will be considered in detail in the next section.

In the classical linear poroelasticity it is assumed that the solid is governed by
the linearized constitutive relationship (2.6). The form of the homogenized equations
depends on the magnitude of the displacements of the microscopic interface ΓI

0. If
one assumes infinitesimal displacements (Figure 2(b)), the media is described by the
classical Biot law (cf., e.g., [9, 35]). Biot’s law for the quasi-steady-state regime is

3If the fluid domain Ωf is completely surrounded by solid, due to the incompressible nature of
the Stokes flow, one will have to consider only fluid motions which are volume preserving. In such
cases the additional constraint det(F) = 1 is required (cf., e.g., [28, 26]), which is a necessary and
sufficient condition for the fluid motion to be volume preserving.
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(a) REV geometry and
solid domain mesh (inte-
rior)

(b) Displacements,
cell problem for the
coupling term A∗

(c) Velocity component,
one of the three Darcy
cell problems for K∗

Fig. 3. An example of typical Biot cell solutions for a nickel foam.

given by

∇ · (C∗ : e (〈u〉) − A∗〈p〉) = 0,(3.1)

∇ ·
(
K∗∇〈p〉 − ρ

∂〈u〉
∂t

)
= γ∗ : e

(
∂〈u〉
∂t

)
+ β∗ ∂〈p〉

∂t
.(3.2)

Here 〈p〉 and 〈u〉 are the macroscopic pressure and displacements. In the above
equation the inertia effects in both the solid and fluid are disregarded. The interface,
however, is assumed to change with time (at time scales much longer than what is
required for transients to pass through either the solid and/or fluid), which leads to
the time-dependent terms on the right-hand side of (3.2). These equations form the
phenomenological theory of [9]. Later, they were rederived via asymptotic homoge-
nization (cf., e.g., [3, 50]). The reader is referred to [30] for a comprehensive review of
several other forms of Biot’s equations which incorporate various inertia and memory
effects.

Equations (3.1) and (3.2) involve three different sets of cell problems defined
on a representative element of volume (REV) and used to determine the effective
properties C∗, A∗, K∗, γ∗, and β∗. These cell problems are standard in the literature
on linear poroelasticity, and their exact form can be found, for example, in [19, 35].
They are typically solved numerically, as in the example of a nickel foam, shown in
Figure 3. The coefficient C∗ is simply the average macroscopic elastic properties of
the porous skeleton, while K∗ is the Darcy permeability for a rigid skeleton. The
fluid-solid coupling coefficient A∗ gives the solid stress due to a unit pressure on the
interface. Observe that in the stationary case, the time derivatives of the displacement
will disappear from (3.2), and it will decouple from (3.1). In that case one simply
solves the linear Darcy flow (3.2) and substitutes the macroscopic pressure 〈p〉 into the
elasticity equation (3.1), which can then be solved to obtain the average displacements
〈u〉.

Various extensions of the linear poroelasticity model have been proposed, based
on less restrictive assumptions about the displacements of the interface ΓI . Lee and
Mei [35] have recently obtained a generalization of Biot’s equations by assuming that
the cell displacement can be decomposed into a rigid body motion plus infinitely small
deformation (Figure 2(c)) and that this rigid body motion is of the same order as the
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cell size. Using asymptotic expansions, the following nonlinear Biot-type equation on
the macroscale was obtained:

(3.3) ∇ · (C∗ : e (〈u〉) − 〈A〉〈p〉) = C (G∗ : e (〈u〉) + α∗〈p〉) : ∇〈u〉,

(3.4)

∇·
(
K∗∇〈p〉 − ρ

∂〈u〉
∂t

)
= γ∗ : e

(
∂〈u〉
∂t

)
+β∗ ∂〈p〉

∂t
+C (〈J〉 : e (〈u〉) + 〈M〉〈p〉) ∇〈p〉.

Here C, G∗, J∗, and M∗ are four additional macroscopic parameters. The reader
is referred to [35] for details on the derivation of these macroscopic parameters and
the means for their computation. Note that the left-hand side of (3.3) and (3.4) is
the same as in Biot’s equations and the rigid body motion of the REV introduces
convective-like terms only at the right-hand side.

The combination of poroelasticity with large pore-level deformation (Figure 2(d))
is a complex problem. The first step in deriving upscaled models is to identify the rel-
evant macroscopic upscaling parameters on a simple geometry. Traditionally, models
such as Darcy and Biot have first been based on experimental observations; then so-
lutions for the microscopic equations were obtained in channel-like geometries. Later
the macroscopic equations were derived in general pore geometries using asymptotic
expansions with well-defined cell problems. In the next section an asymptotic solution
is derived for a fluid channel, sandwiched between two elastic slabs, undergoing large
interface displacements. The resulting equation can be viewed as a one-dimensional,
nonlinear Darcy flow.

4. An asymptotic solution for an elastic channel. In this section we con-
sider the stationary laminar flow of incompressible Newtonian fluid through a two-
dimensional channel with linearly elastic walls. The reference geometry of the channel
is shown in Figure 4. Denote by L the length of the channel, by � the half of the channel
width in the undeformed state, and by δ the thickness of the walls in the undeformed
state. It is assumed that the channel is long, compared to its height; that is, the
parameter ε

(4.1) ε =
�

L

x

y

l

δ

l

δ

L

( )xγ
fΩ

sΩ

sΩ

Fig. 4. Schematic of a section of length L, a long elastic channel. The fluid is driven by the
pressure gradient.
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is small. Further, it is assumed that � ∼ δ. The fluid is driven by a pressure gradient,
and the outer walls of the channel are fixed. Due to symmetry, only the upper half
of the fluid geometry will be considered; that is, the fluid and solid occupy

Ωf
0 = {(x, y), 0 < x < L, 0 < y < �} ,(4.2)

Ωs
0 = {(x, y), 0 < x < L, l < y < � + δ} ,(4.3)

respectively. Further, the height of the unknown boundary of the fluid-solid interface
is denoted by γ(x). As a result, the fluid in the deformed configuration will occupy

(4.4) Ωf = {(x, y), 0 < x < L, 0 < y < γ(x)} .

To derive an asymptotic solution to the FSI problem first, the system of equations
(2.17)–(2.19) will be normalized for this particular geometry (section 4.1). Then, in
section 4.2, a formal expansion of the field variables (pressure, velocity, and displace-
ments) with respect to the small parameter ε will be used to obtain an asymptotic
solution of (2.17)–(2.19). This asymptotic solution will further be interpreted as a
one-dimensional Darcy flow with a nonlinear permeability.

4.1. Dimensionless form. Consider the dimensionless variables

x = Lx̃, y = �ỹ, p(x, y) = P̄ p̃(x̃, ỹ),(4.5)
v1(x, y) = V̄1ṽ1(x̃, ỹ), v2(x, y) = V̄2ṽ2(x̃, ỹ),(4.6)
u1(x, y) = Ū1ũ1(x̃, ỹ), u2(x, y) = Ū2ũ2(x̃, ỹ).(4.7)

In these notations the fluid (4.4) and solid (4.3) domain are given by

Ωf = {(x̃, ỹ) : 0 < x̃ < 1, 0 < ỹ < γ̃(x̃)} ,

Ωs =
{

(x̃, ỹ) : 0 < x̃ < 1, γ̃(x̃) < ỹ < 1 +
δ

�

}
,

respectively, where

(4.8) γ̃(x̃) =
γ(x)

�
.

Further, we also have (i = 1, 2):

∂p

∂x
=

P̄

L

∂p̃

∂x̃
,

∂p

∂y
=

P̄

�

∂p̃

∂ỹ
,(4.9)

∂vi

∂x
=

V̄i

L

∂ṽi

∂x̃
,

∂vi

∂y
=

V̄i

�

∂ṽi

∂ỹ
,(4.10)

∂ui

∂x
=

Ūi

L

∂ũi

∂x̃
,

∂ui

∂y
=

Ūi

�

∂ũi

∂ỹ
.(4.11)

It is clear that the scaling parameters cannot be chosen independently. Below we will
discuss the relations between different scaling parameters.

4.1.1. Dimensionless Stokes equations. We first rewrite the Stokes system
(2.12), (2.13) with respect to dimensionless variables. With the help of (4.9) and
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(4.10) we get

−
(

ε2 ∂2ṽ1

∂x̃2 +
∂2ṽ1

∂ỹ2

)
+ ε2 P̄L

µV̄1

∂p̃

∂x̃
= 0,(4.12)

−
(

ε2 ∂2ṽ2

∂x̃2 +
∂2ṽ2

∂ỹ2

)
+ ε

P̄L

µV̄2

∂p̃

∂ỹ
= 0,(4.13)

∂ṽ1

∂x̃
+

V̄2

εV̄1

∂ṽ2

∂ỹ
= 0.(4.14)

In general, velocity components and pressure cannot be scaled independently. We
choose V̄1 in accordance with maximal velocity of Poiseuille flow in a rigid channel:

(4.15) V̄1 = 4V1,max�2.

The other two scales, V̄2 and P̄ , are expressed by V̄1. In our case, the x-derivative
of the pressure is the driving force for the flow; therefore, we want to keep it of unit
size. Thus, without loss of generality,

(4.16)
P̄L

µV̄1
ε2 = 1,

that is,

(4.17) P̄ =
µV̄1

Lε2 =
µ4V1,max�2L

�2
= 4µV1,maxL.

Further, we want to have strong conservation of mass. Therefore, we require

(4.18)
V̄2

εV̄1
= 1,

which gives us

(4.19) V̄2 = εV̄1.

The Stokes system (4.12)–(4.14) can now be rewritten as

−ε2 ∂2ṽ1

∂x̃2 − ∂2ṽ1

∂ỹ2 +
∂p̃

∂x̃
= 0,(4.20)

−ε2 ∂2ṽ2

∂x̃2 − ∂2ṽ2

∂ỹ2 + ε−2 ∂p̃

∂ỹ
= 0,

∂ṽ1

∂x̃
+

∂ṽ2

∂ỹ
= 0.

Here we have used the fact that under the assumptions (4.16) and (4.18) we have

P̄L

µV̄2
ε
∂p̃

∂ỹ
=

µV̄1

ε2L

L

µV̄2
ε
∂p̃

∂ỹ
=

V̄1

ε2εV̄1
ε
∂p̃

∂ỹ
= ε−2 ∂p̃

∂ỹ
.
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4.1.2. Dimensionless elasticity problem. Let us now consider the elastic
domain. We restrict our attention only to isotropic solids. For an isotropic material,
the elasticity tensor (2.6) is necessarily expressed in terms of the two Lamé constants,
λs and µs (cf., e.g., [40, 28]), and so the stress tensor reduces to

(4.21) S = λstr (E) I + 2µsE.

With the help of (4.11), S of (4.21) can be expressed in terms of the nondimen-
sional variables (4.7) as

Ss =




(λs + 2µs)
Ū1

L

∂ũ1

∂x̃
+ λs

Ū2

l

∂ũ2

∂ỹ
µs

(
Ū1

l

∂ũ1

∂ỹ
+

Ū2

L

∂ũ2

∂x̃

)

µs

(
Ū1

l

∂ũ1

∂ỹ
+

Ū2

L

∂ũ2

∂x̃

)
(λs + 2µs)

Ū2

l

∂ũ2

∂ỹ
+ λs

Ū1

L

∂ũ1

∂x̃


 .

Further, assume that

Ū2 = δ, Ū1 = ε0Ū2 = δ.

Using this scaling for the displacements, the stress in the solid becomes

(4.22) Ss =
δ

�




(λs + 2µs)ε
∂ũ1

∂x̃
+ λs

∂ũ2

∂ỹ
µs

∂ũ1

∂ỹ
+ µsε

∂ũ2

∂x̃

µs
∂ũ1

∂ỹ
+ µsε

∂ũ2

∂x̃
(λs + 2µs)

∂ũ2

∂ỹ
+ λsε

∂ũ1

∂x̃


 .

Further, it is also necessary to write the system of elasticity equations (2.7) in
nondimensional form. For an isotropic solid, and in the absence of a body force, it is
easy to see that (2.7) reduces to

(4.23) ε2δ(λs + 2µs)
∂2ũ1

∂x̃2 + εδ(λs + µs)
∂2ũ2

∂x̃∂ỹ
+ δµs

∂2ũ1

∂ỹ2 = 0,

(4.24) ε2δµs
∂2ũ2

∂x̃2 + εδ(µs + λs)
∂2ũ1

∂x̃∂ỹ
+ δ(λs + 2µs)

∂2ũ2

∂ỹ2 = 0.

4.2. Asymptotic expansion. Consider now an asymptotic expansion of the
field variables with respect to the small parameter ε:

ṽi = ṽ0
i + εṽ1

i + ε2ṽ2
i + · · · ,(4.25)

p̃ = p̃0 + εp̃1 + ε2p̃2 + · · · ,

ũi = ũ0
i + εũ1

i + ε2ũ2
i + · · · .(4.26)

4.2.1. Asymptotic expansion for Stokes system. Substituting these expan-
sions into Stokes system (4.20) and collecting terms corresponding to different powers
of ε, we get

at order ε−2 :
∂p̃0

∂ỹ
= 0,(4.27)

at order ε−1 :
∂p̃1

∂ỹ
= 0.(4.28)
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Next, at order ε0 we obtain

−∂2ṽ0
1

∂ỹ2 +
∂p̃0

∂x̃
= 0,(4.29a)

−∂2ṽ0
2

∂ỹ2 +
∂p̃2

∂ỹ
= 0,(4.29b)

∂ṽ0
1

∂x̃
+

∂ṽ0
2

∂ỹ
= 0.(4.29c)

Hence, from (4.27) and (4.28) the first two terms in the pressure expansion are found
to depend only on the x-coordinate:

(4.30) p̃0 = p̃0(x), p̃1 = p̃1(x).

Next, (4.29a) is integrated with respect to ỹ. The integration limits are from 0
(symmetry line) to ỹ, and using the symmetry condition this yields

∂ṽ0
1

∂ỹ
= ỹ

∂p̃0

∂x̃
.

This equation, after another integration with respect to ỹ, from ỹ to γ̃(x̃), becomes

(4.31) ṽ0
1(x̃, γ̃(x̃)) − v0

1(x̃, ỹ) =
1
2
(
γ̃2(x̃) − ỹ2) ∂p̃0

∂x̃
.

In light of the no-slip boundary condition ṽ0
1(x̃, γ̃(x̃)) = 0, it reduces to

(4.32) ṽ0
1(x̃, ỹ) = − γ̃2(x̃) − ỹ2

2
∂p̃0

∂x̃
.

Equation (4.32) leads to the following expression for the x̃-derivative of ṽ0
1 :

(4.33)
∂ṽ0

1

∂x̃
= − γ̃2(x̃) − ỹ2

2
∂2p̃0

∂x̃2 − γ̃(x̃)
∂γ̃(x̃)

∂x̃

∂p̃0

∂x̃
.

Integrating the continuity equation (4.29c) from 0 to γ̃, using the symmetry condition
v0
2(x̃, 0) = 0, the interface condition v0

2(x̃, γ̃) = 0, and (4.33), one obtains

0 =
∫ γ̃

0

∂ṽ0
1(x̃, s)
∂x̃

ds = − 1
2

∂2p̃0

∂x̃2

(
γ̃3(x̃) − γ̃3(x̃)

3

)
− γ̃2(x̃)

∂γ̃(x̃)
∂x̃

∂p̃0

∂x̃

= − ∂2p̃0

∂x̃2

γ̃3(x̃)
3

− 1
3

∂γ̃3(x̃)
∂x̃

∂p̃0

∂x̃
= −1

3
∂

∂x̃

(
γ̃3(x̃)

∂p̃0

∂x̃

)
.

Therefore, the following equation is obtained with respect to p0(x):

(4.34) − ∂

∂x̃

(
1
3
γ̃3(x̃)

∂p̃0

∂x̃

)
= 0.

Observe that (4.34) can be interpreted as a Darcy flow in a one-dimensional porous
medium. To do this, fix x̃ and define the ỹ-average operator 〈·〉ỹ:

(4.35) 〈φ̃(x̃, ỹ)〉ỹ :=
1
2

∫ γ̃(x̃)

−γ̃(x̃)
φ̃(x̃, ỹ))dy,
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where φ̃(x̃, ỹ) is a generic function. The average is with respect to the reference width
of the fluid channel. Then, after taking the average of (4.32), one obtains

(4.36) 〈ṽ1(x̃)〉 = −1
3
γ̃3(x̃)

∂p̃0

∂x̃
.

One would now recognize that (4.34) is the conservation of mass for a flow with flux
〈ṽ1(x̃)〉, driven by a pressure gradient ∂p̃0

∂x̃ . Furthermore, the quantity K̃,

(4.37) K̃ := K̃(γ̃(x̃)) = −µ
〈ṽ1(x̃)〉
∂x̃p̃0(x̃)

=
µ

3
γ̃3(x̃),

defined as the ratio of the mass flux and the pressure gradient, can be interpreted as
permeability of the channel. The permeability is scaled, as usual, by the fluid viscosity,
and so it does not depend on the fluid properties. In the rigid case (γ̃(x̃) = 1) it will
coincide with the standard Darcy permeability. When the channel is deformable,
however, it is not constant but will depend on the third power of the channel opening.
With the definition (4.37) in mind, (4.34) can be rewritten as

(4.38) − ∂

∂x̃

(
K̃(γ̃(x̃))

∂p̃0

∂x̃

)
= 0.

The remainder of this section is devoted to obtaining an expression for γ̃ in terms
of p̃0 which will close (4.38), so that it can be solved for p̃0 with some appropriate
boundary conditions. To do this the asymptotic expansion for elasticity system is
considered next.

4.2.2. Asymptotic expansion for elasticity system. Now the asymptotic
expansion for u1, u2 is substituted into the elasticity system (4.23), (4.24). From the
first elasticity equation (4.23), at order ε0, one obtains

µs
∂2ũ0

1

∂ỹ2 = 0.

After integration with respect to ỹ, this equation becomes

(4.39) µs
∂ũ0

1

∂ỹ
= c1(x̃).

Integrating again from ỹ to (1 + δ
� ) and using the fact that ũ0

1 = 0 at the upper
boundary, one gets

(4.40) ũ0
1(x̃, ỹ) = −

(
1 + δ

� − ỹ
)

µs
c1(x̃).

Similarly, by considering the second elasticity equation (4.24) from the elasticity sys-
tem at order ε0, integrating twice with respect to ỹ, and using the boundary condition
ũ0

2 = 0, one gets

(4.41) ũ0
2(x̃, ỹ) = −

(
1 + δ

� − ỹ
)

λs + 2µs
c2(x̃).
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4.2.3. Expansion of solid-fluid interface condition. The last step in obta-
ining an expression for the boundary γ̃(x̃), and thus a closed-form expression for the
upscaled equation (4.38), is to consider the interface condition (2.19) for the continuity
of the normal component of the stress tensor. Consider first the fluid stress Tf . Using
(4.9) and (4.10) as well as (2.10) and (2.11), Tf becomes

(4.42) Tf = P̄


 2ε2 ∂ṽ1

∂x̃
− p̃ ε

∂ṽ1

∂ỹ
+ ε3 ∂ṽ2

∂x̃

ε
∂ṽ1

∂ỹ
+ ε3 ∂ṽ2

∂x̃
2ε2 ∂ṽ2

∂ỹ
− p̃


 .

Next, the expansions for velocity and pressure from (4.25) are substituted into (4.42)
to obtain

(4.43) Tf =
µV̄1L

�2

[
−p̃0(x̃) 0
0 −p̃0(x̃)

]
+ O (ε) .

Second, consider the solid stresses Ss and substitute the asymptotic expansion
(4.26) for ũ1, ũ2 into (4.22) to obtain, at order ε0,

Ss,0 =
δ

�




λs
∂ũ0

2

∂ỹ
µs

∂ũ0
1

∂ỹ

µs
∂ũ0

1

∂ỹ
(λs + 2µs)

∂ũ0
2

∂ỹ


 .

Then ũ0
1, ũ0

2 as given by (4.40) and (4.41), respectively, are substituted into the last
equation to obtain

Ss,0 =
δ

�


 λs

λs + 2µs
c2(x̃) c1(x̃)

c1(x̃) c2(x̃)


 .

Using this last result, the normal component of the zeroth order term for the stress
tensor can be calculated at the interface. This is done at the reference configuration,
for which the normal is simply n0 = e2:

Ss,0n0 =
δ

�
(c1(x̃)e1 + c2(x̃)e2) .(4.44)

Note that the last equation cannot be compared directly with (4.43), as the first is
in Lagrangian coordinates, while the former is in Eulerian coordinates. However, the
point (x̃, 1), at the interface in the reference configuration, corresponds to the interface
point (x̃E , γ̃(x̃E)) in the Eulerian formulation, where

(4.45) x̃E = x̃ + ũ0
1(x̃) and γ̃(x̃E) = 1 + ũ0

2(x̃).

The fluid stress force at the interface in the reference configuration is given by the
expression at the left-hand side in the formula (2.19). To use (2.19) one needs the
leading order of the deformation gradient:

(4.46) F = ∇u + I =




1 +
∂u1

∂x

∂u1

∂y
∂u2

∂x
1 +

∂u2

∂y


 =




1 + ε
∂ũ1

∂x̃

δ

l

∂ũ1

∂ỹ

ε
∂ũ2

∂x̃
1 +

δ

l

∂ũ2

∂ỹ


 ;
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therefore, F = F0 + O (ε), where
(4.47)

F0 =




1
δ

l

∂ũ0
1

∂ỹ

0 1 +
δ

l

∂ũ0
2

∂ỹ


 and

(
F0)−T

=
(

1 +
δ

l

∂ũ0
2

∂ỹ

)−1




1 +
δ

l

∂ũ0
2

∂ỹ
0

−δ

l

∂ũ0
1

∂ỹ
1


 .

The insertion of (4.43), (4.44), and (4.47) into (2.19) now results in

(4.48) −P̄ p̃0(x̃)e2 =
δ

�
(c1(x̃)e1 + c2(x̃)e2) + O(ε).

A direct consequence of (4.48) is that we do not have a longitudinal displacement at
zero order, i.e., ũ0

1 = c1(x̃) = 0. This result greatly simplifies the link (4.45) between
the Lagrangian and the Eulerian formulations. Now (x̃, 1) transforms into (x̃, γ̃(x̃)),
and hence

c2(x̃) = −P̄
l

δ
p̃0(x̃).

Next, with the help of (4.41), the vertical displacement is found to be

(4.49) ũ0
2(x̃, ỹ) =

1 +
�

δ
(1 − ỹ)

λs + 2µs
P̄ p̃0(x̃).

Equation (4.49) leads to the following expression for the interface position:

(4.50) γ̃(x̃) = 1 + ũ0
2(x̃, 1) = 1 +

P̄

λs + 2µs
p̃0(x̃).

Equivalently, in dimensional variables,

(4.51) γ(x) = � +
�

λs + 2µs
p0(x).

4.2.4. Permeability of a long elastic channel. When the formula for γ(x)
given in (4.50) is substituted into (4.37), the permeability K̃ is found to be

(4.52) K̃ = K̃(p̃0(x̃), x̃) =
µ

3
γ̃3(x̃) =

µ

3

(
1 +

P̄

λs + 2µs
p̃0(x̃)

)3

.

The last expression is a function only of the pressure p̃0, which implies that upscaled
Darcy equation (4.38) can now be closed, and so it is fully defined in terms of p̃0:

(4.53) − ∂

∂x̃

(
1
3

(
1 +

P̄

λs + 2µs
p̃0(x)

)3
∂p̃0(x̃)

∂x̃

)
= 0.

This section is concluded by giving the dimensional form of the permeability K̃
and the upscaled equation (4.38). Let the generic function φ̃ (cf. (4.35)) be given in
dimensional form φ(x, y) = Φ̄φ̃(x̃, ỹ) with some scaling factor Φ̄. It is straightforward
to check that the y-average operator 〈·〉y satisfies

(4.54) 〈φ(x, y)〉y :=
1
2l

∫ γ(x)

−γ(x)
φ(x, y)dy =

1
2

∫ γ̃(x̃)

−γ̃(x̃)
φ(x̃, ỹ)dỹ = Φ̄〈φ̃(x̃, ỹ)〉ỹ.
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Therefore, the permeability K, in dimensional form, is obtained, with the help of
(4.6), (4.9), (4.54), (4.37), (4.8), and (4.16), as
(4.55)

K := −µ
〈v1(x)〉
∂xp0(x)

= −µV̄1L

P̄

〈ṽ1(x̃)〉
∂x̃p̃0(x̃)

=
µV̄1L

P̄

1
3
γ̃3(x̃) =

µV̄1L

P̄ l2
1
3l

γ3(x) =
1
3l

γ3(x).

Now, using (4.51), K is expressed as a function of pressure:

(4.56) K = K(p0(x), x) =
1
3�

(
l +

l

λs + 2µs
p0(x)

)3

=
�2

3

(
1 +

p0(x)
λs + 2µs

)3

,

and the upscaled equation (4.53) (or, equivalently, (4.38)) in dimensional variables
becomes

(4.57) − ∂

∂x

(
K(p0(x), x)

∂p0(x)
∂x

)
= 0 in (0, L).

Equations (4.57) and (4.56) form a closed, nonlinear system, which, along with some
appropriate boundary conditions, for example, Dirichlet data,

(4.58) p0(0) = Pleft, p0(L) = Pright,

becomes a well-posed boundary value problem for the upscaled pressure p0. It is
important to emphasize that in deriving this PDE equation we do not pass to the
limit when ε = �/L → 0. Rather, we calculate the leading-order terms for the
longitudinal velocity and for the pressure field.

It is also useful to give some physical interpretation to the system (4.56), (4.57).
Observe that using the expression (4.56) along with the first equality in (4.55), we see
that the effective velocity (in dimensional form) is

(4.59) 〈v1(x)〉 = − �2

3µ

(
1 +

p0(x)
λs + 2µs

)3
∂p0(x)

∂x
.

This means that for a fixed pressure drop ∂xp0(x), the ability of fluid to flow through
a channel is proportional to a cubic function of the pressure p0(x) and to the reference
channel half-width �2 divided by the fluid viscosity µ. In the situation of flow through
a slit with rigid walls one has λs, µs → ∞; that is, the dependence on the pressure
p0(x) disappears, and reduces to the classical case:

(4.60) 〈v1(x)〉 = − �2

3µ

∂p0(x)
∂x

.

The difference comes from the proportionality factor (1+ p0(x)
λs+2µs

)3, which, in the case
of elastic walls, is different from identity and could be important. Thus, the nonlinear
filtration law (4.59) distinguishes the flow through an elastic channel and includes the
rigid walls channel as a special limiting case.

As a final remark, if we model our porous medium as a network of parallel capillary
tubes, then their number will be of order �−2 and the mass flow will remain constant
when the tube diameter tends to zero.

5. Discretization of the coupled FSI system. In this section we present a
numerical method for the solution of the FSI problem. First, the continuum prob-
lems are recast in weak form in section 5.1 and then, in section 5.2, are discretized,
giving rise to a nonlinear system of algebraic equations. Further, in section 5.3 an
iterative procedure is presented, which solves the coupled FSI problem. It relies on
the consecutive solution of solid and fluid subproblems.
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5.1. Weak form of the elasticity, Stokes, and FSI problems. Consider
a generic (either fluid or solid) bounded Lipschitz domain Ω, and let (·, ·)Ω be the
usual inner product on L2(Ω) and, as there is no chance of confusion, also the inner
product on

[
L2(Ω)

]d, where d = 2, 3 is the size of the spatial dimension. Let Hm(Ω),
m = ±1, be the standard Sobolev spaces and L2

0(Ω) be the Hilbert space of functions
in L2 having zero mean. Also, denote by H1

D(Ω) ⊂ H1(Ω) the subspace of functions
in H1(Ω) which vanish on part of the boundary (∂Ω)D. For a complete development
a discussion on these subjects, including fractional Sobolev spaces, see [37]. Suppose
that both Ωs

0 and Ωf are Lipschitz domains.
Next, the standard elasticity bilinear form (cf. (2.3)) is introduced for the elas-

ticity part of the FSI problem:

aΩs
0
(u,w) =

∫
Ωs

0

(C : e(u)) : e(w)dp.

For the Stokes part the bilinear form

DΩf (v,w) =
∫

Ωf

µ∇v : ∇wdx

is introduced. To write a weak form of the FSI problem, observe that the interface
condition (2.19) can be treated as a nonlinear Neumann boundary condition for the
solid problem only. Accordingly, we introduce the nonlinear form:

(5.1) gΓI
0
(v,u, p,w) =

∫
ΓI

0

{
det(∇u + I)(−pI + 2µe(v)) (∇u + I)−T n0

}
· wds.

Finally, let b0 ∈
[
H−1(Ωs)

]d be a distributed body force in the solid domain (specified

in the reference configuration) and b ∈
[
H−1(Ωf )

]d be a distributed body force in
the fluid domain (specified in the deformed configuration). After integrating by parts
the balance of linear momentum for the solid and fluid, it is trivial to check that
the boundary value problems (2.18)–(2.19) can be restated in the following weak
form: Find the interface ΓI , the deformed configuration of the fluid domain Ωf , the
displacements u ∈

[
H1(Ωs

0)
]d, velocity v ∈

[
H1(Ωf )

]d, and pressure p ∈ L2
0(Ω

f ) such
that

(5.2)

DΩf (v,w) − (p, ∇ · w)Ωf =(b,w)Ωf ∀w∈
[
H1

D(Ωf )
]d

,
(∇ · v, q)Ωf =0 ∀q ∈L2

0,

aΩs
0
(u,w)=(b0,w)Ωs

0
+ gΓI

0
(v,u, p,w) ∀w∈

[
H1

D(Ωs
0)
]d

,

Γ={p + u(p)|∀p ∈ Γ0} .

In addition v, p, and u should also satisfy the appropriate boundary conditions spec-
ified on ∂Ω\ΓI .

5.2. Discretization of the field variables. In this section the finite element
method (FEM) approximation for the FSI problem is introduced. Both the solid and
the fluid problems are discretized using the FEM method. The elasticity problem is
solved by standard linear triangular elements. That is, given a triangulation T s

h of
Ωs

0, the finite-dimensional approximation space for the displacements is chosen to be

(5.3) Uu =
[{

u ∈ C0(Ωs
0)|u is linear on ∀τ ∈ T s

h

}]d ⊂
[
H1(Ωs

0)
]d

.
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The Stokes problem is solved using the P2P1 (Taylor–Hood) element pair. Given a
triangulation T f

h of Ωf the approximation spaces for the velocity and pressure are
defined by

Uv =
[{

v ∈ C0(Ωf )|v is quadratic polynomial ∀τ ∈ T f
h

}]d

⊂
[
H1(Ωf )

]d
,(5.4)

Up =
{
p ∈ C0(Ωf )|p is linear ∀τ ∈ Th

}
⊂ H1(Ωf ) ⊂ L2(Ωf ),(5.5)

respectively. This element pair satisfies the so-called inf-sup condition (cf., e.g., [24]);4

that is, it provides a stable approximation to the Stokes problem alone. While many
other elements are known to be LBB stable [27], the Taylor–Hood element was chosen
because it provides a balanced approximation for both velocity and pressure [5].

Having defined the finite-dimensional subspaces for the displacements, velocity,
and pressure, Uu, Uv, and Up, respectively, the first three equations in (5.2) lead to
the following nonlinear system of algebraic equations:

(5.6)


 A(u) CT (u) 0

C(u) 0 0
0 0 K





 v

p
u


 =


 bf (u)

d
bs + g(u,v,p)


 ,

where the blocks A(u) and K correspond to the bilinear forms DΩf (·, ·) and aΩs
0
(·, ·),

while the blocks C(u) and C(u)T couple the velocity and pressure unknowns. Since
the position of ΓI and hence Ωf depends on u, both A and C are functions of the
displacement. The vector columns bf (u) and bs correspond to the body force in the
fluid and solid, respectively, modified by application of essential (Dirichlet, periodic,
etc.) boundary conditions. Note that the vector d appears in the right-hand side of
(5.6) when the essential boundary conditions are applied by matrix transformations.
If, for example, they are applied by a penalty method, then d ≡ 0.

It is important to observe that the coupling between the fluid and the struc-
ture (2.16) appears on the right-hand side of (5.6) as the nonlinear vector function
g(u,v,p) which corresponds to the form gΓI

0
(·, ·, ·, ·).

5.3. Iterative solution to the FSI problem. One way to solve the boundary
value problems (2.18), (2.17) is to use an iterative scheme which successively solves
separate problem on the two domains. Consider the following iterative process: Set
u0 = 0, v0 = 0, p0 = 0; given (uk,vk, pk)T , find (uk+1,vk+1, pk+1)

T such that

(5.7)


 A(uk) CT (uk) 0

C(uk) 0 0
0 0 K





 vk+1

pk+1
uk+1


 =


 bf (uk)

d
bs + g(uk,vk+1,pk+1)


 .

Continue the iteration until the interface ΓI
k → ΓI .

Since the matrix on the left-hand side of the above equation is block diagonal,
the block corresponding to the fluid is solved first:

(5.8)
(

vk+1
pk+1

)
=

(
A(uk) CT (uk)
C(uk) 0

)−1 ( bf (uk)
d

)
.

This step corresponds to solving the Stokes equation in the fluid domain, treating
the solid as a rigid body. Once vk+1 and pk+1 are available, one can evaluate the

4The inf-sup condition is also referred to as the Ladyzhenskaya–Babuska–Brezzi (LBB) condition.



20 OLEG ILIEV, ANDRO MIKELIĆ, AND PETER POPOV

nonlinear form g(· · · ). This is equivalent to computing the forces sk acting on the
boundary of the solid part of the domain. Note that by definition of g (5.1), it correctly
transfers the fluid stresses tk = Tknk defined by (2.11) in the deformed configuration
to their equivalent sk = Skn0 in the reference configuration of the solid. Then the
block corresponding to the solid, i.e.,

(5.9) uk+1 = K−1 (bs + g(uk,vk+1,pk+1)) ,

is solved (in the reference solid configuration), leading to a new iterate uk+1 which
satisfies the balance of linear momentum (2.7) in Ωs

k with Sn0 = sk. Once uk+1 is
available, the new position of the interface can be computed:

ΓI
k+1 =

{
p + uk+1(p)|∀p ∈ ΓI

0
}

.

This implies that a new fluid domain Ωf
k+1 is available and the iterative step (5.7) can

be repeated again, until the interface converges to a fixed position. It is clear that if
the interface converges, we will have a velocity and a pressure field which satisfy the
Stokes equations (2.12), (2.13) and a displacement field which satisfies the elasticity
equation (2.7), and, as a result of the converged interface, the interface condition
(2.16) will also be satisfied.

The two discretized domains have piecewise straight boundaries, and so the use
of linear approximation for the displacement field (5.3) simplifies things because ΓI

k

will remain piecewise straight at each iteration (5.7) and the two meshes will be
pointwise conforming at all times. The interface condition (2.14), however, is en-
forced only weakly, because the stresses in the solid are piecewise constants while the
stresses in the fluid are piecewise linear functions.5 Note that both are discontinuous
across elements. Investigation of curvilinear interface boundaries and/or higher-order
approximation spaces for the elasticity problem was outside the scope of this work.

5.3.1. Solution methods for the fluid and solid subproblems. Clearly the
above iteration (5.7) requires the solution, at each step, of the linear systems (5.8)
and (5.9), corresponding to the Stokes and elasticity subproblems, respectively. In
general, the block matrices appearing in, (5.7) are large sparse matrices, and so they
can be stored efficiently in machine memory; however, inverting them explicitly is
computationally expensive, and the resulting matrices are dense. Therefore, at each
iteration (5.7) instead of computing and applying directly the inverse matrices in (5.8)
and (5.9) one solves the equivalent linear systems by an iterative method. Since these
two systems have to be solved once at each iteration of (5.7), it is important that this
is done efficiently.

The solution of linear systems arising in standard FEM discretizations such as
linear triangles is a fairly standard subject (cf., e.g., [4]). The method used here for
solving (5.9) is the one of [10, 41]. It uses a preconditioned conjugate gradient (PCG)
method ([29, 33, 25, 49]), with a particular MIC(0) factorization on the diagonal
blocks of K. For a detailed description of the MIC(0) preconditioner the reader
is referred to [10]. The Stokes system (5.8) is more complicated to solve efficiently
[14, 53, 5]. The method used in this work is to solve it with a PCG iteration for
the pressure Schur complement [53, 39]. The preconditioner is a mass matrix on the
pressure space [53]. Each PCG iteration requires an inversion of the velocity matrix
A, which is done by a second, internal PCG, preconditioned by an ILU preconditioner
[49]. A detailed description of the entire solution procedure can be found in [48].

5Since the contributions to the stresses in the fluid come both from the pressure and the velocity
gradients, things will not change if one uses other approximations for the fluid, e.g., P2P0.
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(a) Degenerated mesh (b) Regenerated mesh

Fig. 5. A two-dimensional degenerate mesh. In this example an elastic obstacle deforms to
the left in response to flow in the channel. The solid lines indicate its initial configuration. If only
the boundary nodes of the fluid mesh are moved, it degenerates (left). The second mesh (right) is
obtained after remeshing the fluid domain.

5.3.2. Fluid mesh regeneration. At the beginning of the iteration (5.7) one
has a conforming triangulation of both the solid and the fluid domains. At the end
of each iterative step the fluid domain is updated, and as a result, the mesh also has
to change. On the other hand, the elasticity equation is always solved in the original
configuration, and so the elastic mesh remains unchanged. Since only conforming
meshes are considered, the modification of the fluid mesh must be such that conformity
is maintained on ΓI . That is, when the interface is deformed using the computed
displacement uk+1, solid vertices will coincide with fluid vertices, and solid segments
(faces in three dimensions) should coincide with fluid ones.

The easiest approach is to move the interface vertices of the fluid mesh, which will
affect only the elements which contain them. This will work as long as the interface
displacements are small compared to the local mesh size. If the mesh size near the
interface is comparable to the displacements of the interface, the mesh can lose quality
or completely degenerate if a vertex is moved into another element (Figures 5 and 6).
As a result, given the domain and boundary condition, the mesh size in the fluid
domain cannot be too small. Such a restriction is clearly unacceptable. It can be
overcome either by globally modifying the existing mesh, for example, by solving an
artificial elasticity problem in the fluid domain, or by remeshing it (locally or globally).

The global remeshing approach is selected here because of the ready availability
of mesh generators which could do that. As the new fluid domain Ωf

k+1 is computed
at the end of each step (5.7), the elements with vertices on the interface are modified,
and if the resulting mesh has poor quality and/or it degenerates, then the entire fluid
domain is remeshed, retaining the same boundary segments in two dimensions and
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(a) Flow external to an elastic skeleton (b) Degenerated mesh after the first iter-
ation

Fig. 6. A three-dimensional degenerate mesh. Another case when the mesh degenerates after
a new position of the interface is computed. Shown are the initial (transparent shade) and final
position (darkest shade) of the interface ΓI (a) and the degenerated mesh after the first iteration
(b). The domain is the unit cube, and the solid geometry is formed by the intersection of three
perpendicular cylinders and a central circle. The flow is from left to right and is exterior to the
solid (the caps on the cylinders are not shown), and the boundary conditions allow the caps of the
two cylinders perpendicular to the flow direction to slide on the side of the unit cube. Unlike the
two-dimensional case, the regeneration of the mesh involves both the interior and part of the surface
mesh.

the same interface faces in three dimensions. Note that in three dimensions, in addi-
tion to the entire volume mesh, one also has to modify part of the surface mesh, as
can be seen from Figure 6, while keeping the interface conforming. In principle local
regeneration of the mesh (after removing low quality/degenerate elements) is an in-
teresting possibility which can significantly speed up the process; however, developing
the software necessary to utilize this strategy was outside the scope of this work.

6. Numerical examples. Several numerical tests related to upscaling of flow
in deformable porous media are discussed here. It is shown that the developed solver
can be used for solving cell problems related to the poroelasticity as well as for solving
microscale problems related to the above derived nonlinear Darcy law.

Three model problems are considered in order to test the iterative scheme of sec-
tion 5.3. The first two model problems involve flow in the elastic channel geometry of
section 4, while the third one is for a channel with an elastic segment. The first model
problem is used to demonstrate the convergence properties of the iterative scheme
with regard to various problem parameters. The second problem is set up in the same
type of geometry, but with slightly different boundary conditions, so that a compar-
ison can be made between the numerical solutions and the asymptotic solution of
section 4. The last problem of flow in a channel with an elastic segment demonstrates
the highly nonlinear dependence of permeability on the pressure gradient across the
channel.
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Fig. 7. Model problem geometry.

6.1. Flow through an elastic channel. The first model problem to be consid-
ered is one for a flow through an elastic channel. The geometry is shown on Figure 7.
The channel has length 5 and thickness 1. The thickness of each of the elastic slabs is
0.2. The material parameters used for the solid are E = 1.44 and ν = 0.2, while the
fluid has viscosity µ = 0.1 and density ρ = 1. The velocity distribution at the inlet is
that of a developed Poiseuille flow: vx = 4 ∗ Vmaxy(1 − y), where the constant Vmax

is the maximal inflow velocity (achieved at y = 0.5).
First, the numerical algorithm is tested for Vmax = 1/4 and a (triangular) mesh

with h ∼ 16 ∗ 10−2 in the fluid domain and h ∼ 4 ∗ 10−2 in the solid domain.
No triangle had internal angles less than 30 degrees. The mesh is chosen coarser
in the fluid domain because of the higher-order accuracy of the fluid discretization
in comparison with the piecewise linear approximation for the solid problem.6 The
computed pressure and velocity profiles are displayed in Figure 8(a)–8(b).

Next, the problem is solved for several values of Vmax and three different mesh
sizes. This is done in order to get a preliminary idea of the convergence rate sensitivity
of the iterative scheme to the inflow velocity and mesh size. The number of iterations it
took to reach relative precision 10−6 is reported in Table 6.1. Also given in the table
is the maximum vertical displacement in the solid. Based on the nondimensional
analysis of section 4 for this problem, varying input velocity Vmax is the same as
varying the elastic stiffness E or fluid viscosity µ.

It can be concluded from this table that the iteration numbers depend on the inlet
velocity which in turn directly affects the magnitude of the interface displacement.
In general, numerical experiments suggest that the important parameter is the mag-
nitude of the interface displacements. On the other hand, the iteration convergence
rate does not seem to depend on the mesh parameters. The iteration numbers for the
remaining numerical examples in sections 6.2 and 6.3 followed a similar pattern and
are not reported.

Finally, the authors are not aware of any general results on the convergence of
the iterative algorithm of section 5.3. However, using, for example, the maximum dis-
placement of the interface one sees that it stabilizes as h decreases for each case of inlet
velocity, which can be interpreted as an indication that the algorithm is convergent.

6It is difficult to access the overall accuracy of the complete FSI scheme. The Taylor–Hood ap-
proximation of the fluid problem alone, given sufficiently smooth data, is third-order accurate for the
velocity and second-order accurate for the pressure [54]. However, the piecewise linear discretization
of the interface should decrease the overall order of the scheme.
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(a) Pressure profile

(b) Horizontal velocity profile

Fig. 8. Solution of the FSI problem for Vmax = 1/4. Shown are the velocity and pressure in
the deformed configuration of the fluid domain Ωf .

Table 6.1

Vmax h h/2 h/4

Iterations max uy Iterations max uy Iterations max uy

1/4 9 0.0894687 9 0.0894628 9 0.0894809
1/8 7 0.0504095 7 0.0505136 7 0.0505101
1/16 6 0.0271444 6 0.0271742 6 0.0271846
1/32 5 0.0141473 5 0.0141589 5 0.0141654
1/64 5 0.0072323 5 0.0072312 5 0.0072402

The next example verifies this much more rigorously by using the asymptotic solution
developed in section 4.

6.2. Permeability of porous medium formed by parallel arrangement of
long elastic channels. Recall that one of the first derivations of Darcy’s law for flow
in rigid porous media was done for a medium which is an arrangement of long parallel
channels with rigid walls: Darcy’s law follows by averaging Poiseuille flow in these
channels. In a similar way, we will evaluate the pressure drop/flow rate dependence
for a single long channel with elastic walls; permeability of a porous medium formed
by such channels can be obtained straightforwardly.
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While the figures presented in the previous numerical example look reasonable
from a physical standpoint, in the absence of exact analytical solutions it is difficult
to verify the quality of the numerical solution. It may happen that the continuous
problem (5.2) is not well posed. It may also happen that the selected numerical
approximations (5.3)–(5.5) are not stable ones; that is, the stationary FSI problem
(5.2) does have a unique solution, but the FEM subspaces (5.3)–(5.5) do not lead to
a convergent method.

The asymptotic solution developed in section 4 for a long elastic channel can,
however, be compared with a numerical one. The asymptotic formulae (4.51) and
(4.56) are derived based on several assumptions (see section 4) and without analysis
of the rate of convergence with respect to the small parameter ε. However, if both
the asymptotic solution and the numerical one converge to the actual one, then we
should also observe convergence between the two of them. In this section we use
the numerical method described in section 5.3 in order to validate the asymptotic
formulae (4.51) and (4.56) and vice versa.

To do this, the elastic channel of Figure 4 is discretized for l = δ = 0.5. In
this way, a y-periodic arrangement of this geometry will have solid and fluid regions
of equal unit width. The boundary conditions are also modified, compared to the
previous model problem. Instead of fixing both displacements at x = 0 and x = L
we constrain only u1; i.e., the end of the channel is now free to move in the vertical
direction. Note that this does not represent a y-periodic boundary value problem,
because u1 = 0 at y = ±(l + δ). Also, the boundary condition for the fluid at the
inlet x = 0 is a prescribed pressure, i.e, p(0, y) = P 0. As in section 4 the half-width
of the channel in the deformed configuration is denoted by γ(x).

The asymptotic expansion depends on two parameters: P 0 and ε = l/L. Several
numerical results comparing the computed values for γh, Kh with the analytical ones
γ, K are given in Tables 6.2 and 6.3. The first shows the L2 norm of the error and

Table 6.2

L2 error along the interface between the numerical and asymptotic results of a long elastic
channel.

P 0 ε = 1
10 (l = 0.5, L = 5) ε = 1

20 (l = 0.5, L = 10)

||γh−γ||
L2

||γ||
L2

|Kh−K|
K

||γh−γ||
L2

||γ||
L2

|Kh−K|
K

0.32 2.41 × 10−3 6.63 × 10−3 8.47 × 10−4 1.82 × 10−3

0.16 1.19 × 10−3 3.33 × 10−3 4.21 × 10−4 1.06 × 10−3

0.08 5.96 × 10−4 1.65 × 10−3 2.10 × 10−4 5.34 × 10−4

0.04 2.98 × 10−4 8.19 × 10−4 1.05 × 10−4 2.68 × 10−4

Table 6.3

Pointwise comparisons of numerical and asymptotic results of a long elastic channel.

P 0 ε = 1
10 (l = 0.5, L = 5) ε = 1

20 (l = 0.5, L = 10)

|γh(1)−γ(1)|
|γ(1)|

|Kh(1)−K(1)|
|K(1)|

|γh(2)−γ(2)|
|γ(2)|

|Kh(2)−K(2)|
|K(2)|

0.32 2.59 × 10−4 6.02 × 10−4 8.97 × 10−5 2.57 × 10−4

0.16 4.58 × 10−5 1.71 × 10−5 2.49 × 10−5 8.15 × 10−5

0.08 5.02 × 10−6 5.79 × 10−5 5.85 × 10−6 6.56 × 10−6

0.04 1.06 × 10−5 4.38 × 10−5 4.76 × 10−7 1.00 × 10−6
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the second one the error at a fixed point x = 0.2 ∗ L. The numerical solutions used
were consequently refined, until the discretization error did not influence the first two
digits of the results. It can be seen from Table 6.2 that formulae (4.51) and (4.56) are
in very good agreement with the numerically computed solution to the FSI problem.
This indicates that as ε → 0 and h → 0 both the asymptotic and the numerical
solution to the FSI problem converge to the actual one.

6.3. Flow through a channel with an elastic segment. In this problem a
channel with a deformable segment (Figure 9) is considered. The channel has height
H = 1 and length L = 14, and an elastic segment is located in the middle of the
top channel wall. The segment has length 10, thickness 0.1, and elastic properties
E = 12 ∗ 106 and ν = 0.2. The fluid viscosity and density are again µ = ρ = 1. The
segment is built into the rest of the wall at its two ends. The appropriate boundary
conditions at the ends of the segment are therefore homogeneous Dirichlet boundary
conditions for both displacements. Natural boundary conditions (zero tractions) are
imposed on the top side of the segment. The lower side is the fluid-structure interface
ΓI

0. The input flow velocity is again a developed Poiseuille flow: vx = 6
14Qy(1 − y),

with

Q =
∫

Ω
vxdx

being the total volumetric flow rate. The right end of the channel has an outflow
boundary condition (Tf = 0). The purpose of this problem is to investigate the
permeability of the channel at various values for Q. In the case of an entirely rigid
channel the pressure drop ∆p/L is proportional to the mass flux Q. Since the coupled
problem is nonlinear it is expected that for sufficiently large deformations of the
interface the resulting mass flow for a given pressure drop will depart from the linear
relationship of the Darcy law. The FSI problem is solved for several different values
of Q, and the resulting pressure, pressure gradients in the fluid, and displacements in
the solid are computed. Two measures for permeability are considered. One is the
ratio of the average velocity and average pressure gradient:

K̄ =
Q∫

Ω
∂p
∂xdx

,

which is similar to the standard homogenization results for flow through a rigid skele-
ton. Since the geometry allows only nonzero net flow in the x-direction, it also makes
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Fig. 9. Geometry of a channel with an elastic segment (figure not drawn to scale).
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sense to consider the pressure drop as an alternative to the average pressure gradient:

K̂ =
Q

∆p/L
.

While the pressure gradient can be readily calculated from the flow solution, it is not
immediately clear how to evaluate the pressure drop across the channel. However,
thanks to the selection of material parameters and geometry dimensions the inlet
is sufficiently away from the segment, and so the change in the flow downstream
hardly affects the inlet pressure distribution, which is essentially constant along the
y-direction. Similarly, the outlet is sufficiently separated from the end of the elastic
segment, and the flow has time to redevelop to the parabolic Poiseuille distribution,
as can be seen in Figure 10(a)–(b). The results are summarized on Table 6.4, and it
is clear that both permeability measures behave nonlinearly as Q is varied. This can
also be seen in Figure 11, which shows K̄ and K̂ as functions of Q. As Q → 0 both
of them tend to the permeability of a straight, rigid channel which can be calculated
directly from the Poiseuille solution and in this case is equal to 1/12.

(a) Pressure profile (figure not drawn to scale)

(b) Profile of the horizontal velocity component (figure not drawn to scale)

Fig. 10. Final configuration of the fluid domain Ωf for Q = 15.
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Table 6.4

Q
∫
Ω

∂p
∂x

dx p|inlet Q/
∫
Ω

∂p
∂x

dx Q
∆p/L

max uy

14.0000 −106.0853266 −93.8605 0.13196 0.14916 1.161
7.0000 −60.3754287 −53.9478 0.11594 0.12975 0.651
3.5000 −33.6888175 −30.8411 0.10389 0.11348 0.373
1.7500 −18.3178061 −17.2482 0.09553 0.10146 0.209
0.8750 −9.7023494 −9.35044 0.09018 0.09358 0.113
0.4375 −5.0280238 −4.923492 0.08701 0.08889
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Fig. 11. Permeability of a channel with an elastic segment.

7. Conclusions. In this paper, a poroelastic medium is considered, and the FSI
problem at the microscale is presented. The displacements of the fluid-structure in-
terface at the pore level are assumed large enough so that standard homogenization
techniques leading to Biot-type equations on the macroscopic scale cannot be applied.
An asymptotic analysis is then performed on a long elastic channel, and a nonlinear
Darcy-type law for the y-averaged pressure is obtained. From this equation a non-
linear upscaled permeability-like functional is identified. This permeability is found
to depend on the initial channel geometry, Lamé’s constants for the solid, and the
y-averaged pressure in the channel.

A FEM-based FSI solver is also presented. The solver successfully utilized a
Dirichlet–Neumann iterative scheme for solving the FSI problem. Numerical compu-
tations are performed which are used to verify the numerical solutions in comparison
with an asymptotic solution to the FSI problem. This increases the degree of con-
fidence with which such numerical methods can be used. It also corroborates the
asymptotic derivation.
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Work on upscaling the poroelasticity problem and the related FSI equations can
progress in multiple directions. When no restrictions are placed on the pore-level
displacements, it is unlikely that closed-form macroscopic equations can be obtained
for general geometries. However, numerical upscaling can be attempted, and the
analysis in this work suggests that the average pressure at the pore level should be the
most important upscaling parameter. Further, it will be helpful to compare microscale
solutions to the FSI problem with macroscopic solutions of various macroscopic poro-
elastic equation and determine when the standard homogenization fails.

The iterative algorithm for the FSI problem can also be improved. At the end of
each solid solution, one can attempt to perform a line search along the direction of
the proposed interface displacement and try to correct it so that a certain residual is
always reduced. One can also attempt to keep track of several possible interface cor-
rection displacements and favor new interface positions which are orthogonal to past
displacements. Such work can improve both the convergence rate and the stability of
the algorithm.
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