
Journal of Machine Learning Research 13 (2012) 775-779 Submitted 9/11; Published 1/12

GPLP: A Local and Parallel Computation Toolbox
for Gaussian Process Regression

Chiwoo Park CHIWOO.PARK@ENG.FSU.EDU

Department of Industrial and Manufacturing Engineering
Florida A&M - Florida State University College of Engineering
2525 Pottsdamer St
Tallahassee, FL 32310-6046, USA

Jianhua Z. Huang JIANHUA@STAT.TAMU .EDU

Department of Statistics
Texas A&M University
3143 TAMU
College Station, TX 77843-3143, USA

Yu Ding YUDING@IEMAIL .TAMU .EDU

Department of Industrial and Systems Engineering
Texas A&M University
3131 TAMU
College Station, TX 77843-3131, USA

Editor: Mikio Braun

Abstract

This paper presents theGetting-startedstyle documentation for the local and parallel computa-
tion toolbox for Gaussian process regression (GPLP), an open source software package written in
Matlab (but also compatible withOctave ). The working environment and the usage of the software
package will be presented in this paper.

Keywords: Gaussian process regression, domain decomposition method, partial independent con-
ditional, bagging for Gaussian process, local probabilistic regression

1. Introduction

The Gaussian process regression (GP regression) has recently developed to be a useful tool in ma-
chine learning (Rasmussen and Williams, 2006). A GP regression providesthe best unbiased linear
estimator computable by a simple closed form expression and is a popular methodfor interpolation
or extrapolation. A major limitation of GP regression is its computational complexity, scaled by
O(N3), whereN is the number of training observations.

Many fast computation methods have been introduced in the literature to relievethe computation
burden:matrix approximation(Williams and Seeger, 2000; Smola and Bartlett, 2001),likelihood
approximation(Seeger et al., 2003; Snelson and Ghahramani, 2006, 2007) andlocalized regression
(Tresp, 2000; Schwaighofer et al., 2003; Urtasun and Darrell, 2008; Rasmussen and Ghahramani,
2002; Gramacy and Lee, 2008; Chen and Ren, 2009; Park et al., 2011).

©2012 Chiwoo Park, Jianhua Z. Huang and Yu Ding.



PARK , HUANG AND DING

Many of the computation methods have been implemented as software, which includesSOGP1,
GPML2, SPGP3, TGP4 andGPStuff 5. However, many of the methods are still not implemented,
because of various complexities involved in the methods as well as in their implementation. In
particular, most of the localized regression methods are not implemented in spiteof their unique
advantages such as adaptivity to non-stationary changes and easinessof being parallelized for faster
computation.

TheGPLPis theOctave andMatlab implementation of several localized regression methods:
the domain decomposition method (Park et al., 2011, DDM), partial independent conditional (Snel-
son and Ghahramani, 2007, PIC), localized probabilistic regression (Urtasun and Darrell, 2008,
LPR), and bagging for Gaussian process regression (Chen and Ren, 2009, BGP). Most of the lo-
calized regression methods can be applied for general machine learning problems although DDM
is only applicable for spatial data sets. In addition, theGPLPprovides two parallel computation
versions of the domain decomposition method. The easiness of being parallelized is one of the
advantages of the localized regression, and the two parallel implementations will provide a good
guidance about how to materialize this advantage as software.

This manual is written inGetting-startedstyle; it introduces the working environment ofGPLP
(in Section 2) and illustrates the usage with an simple example (in Section 3). If you need more
detailed documentation, please refer toUser Manualat ./doc directory.

2. Implementation

TheGPLPis implemented inMatlab code such that it is executable and has been tested inMatlab
Version 7.7 or later versions, andOctave Version 3.2.4 or later versions. It might be executable
in any of Matlab Version 7.x and any ofOctave Version 3.2.x, but it has not been tested on
those versions. One exception is the implementation of LPR that only works inMatlab 7.12.0,
in Matlab 7.7.0 or later versions with a compiler supporting mex-compile, or in Octave 3.2.4 or
later versions. For information on the list of compilers to support the mex-compile in Matlab ,
please refer to the technical support webpage athttp://www.mathworks.com/support/
compilers/previous_releases.html .

The GPLPalso includes the parallel computation version of DDM, which requires the open
source message passing interface,MatMPI Version 1.2, to be pre-installed before executing the
parallel version. All of theMatlab , Octave and MatMPI are working in many versions of
Windows andUnix , soGPLPis virtually OS-independent.

The implementation consists of six different main modules for the six different methods imple-
mented, but all of the main modules are structured in the common form having the similar input
and output arguments. In addition, the implementation partially supports the separation of the main

1. Implementation of SOGP (Smola and Bartlett, 2001) is available athttp://cs.brown.edu/people/dang/
code.shtml .

2. Implementation of GPML (Williams and Seeger, 2000) is available athttp://gaussianprocess.org/
gpml/code/matlab/doc/index.html .

3. Implementation of SPGP (Snelson and Ghahramani, 2006) is available at http://www.gatsby.ucl.ac.uk/

˜ snelson .
4. Implementation of TGP (Gramacy and Lee, 2008) is available athttp://users.soe.ucsc.edu/

˜ rbgramacy/tgp.html .
5. Implementation of GPStuff (Snelson and Ghahramani, 2006, 2007; Schwaighofer et al., 2003) is available athttp:

//www.lce.hut.fi/research/mm/gpstuff/ .

776



A L OCAL AND PARALLEL COMPUTATION TOOLBOX FORGP REGRESSION

logic from the specification of the covariance function and the mesh generation function (the spec-
ification of mesh generation function is only applicable for DDM and its two parallel computation
versions; the explanation of the mesh generation function will be in the next section). With such
separation, users can easily extend the function ofGPLPby adding a new covariance function and
adding a new mesh generation function without major modification of the main logic.

The code and documentation ofGPLPare publicly available on the JMLR MOSS website at
http://www.jmlr.org/mloss under GNU General Public License version 3.0 (GPL-3.0).

3. GPLP: A software Package for Localized and Parallel Computation of GP
Regression

TheGPLPprovides an individual function for calling each one of the six localized regression meth-
ods (including two parallel implementations. The individual functions have a common structure of
input and output arguments so that users can easily use all functions once they learn the common
structure. In this section, we will explain the common structure by means of a simple example.

Consider a unknown random functionf : X → R. The GP regression predicts the realization
of the random function at test locationsxs , given a set of observationsx from the realization.
The localized GP regression partitionsx into many smaller chunks,x_j ’s, and it does localized
predictions atxs with each one ofx_j ’s as the training data for everyj. Finally, the localized GP
regression combines the localized predictions to make a global prediction in many different ways.
The key design parameters for the localized GP regression are (1) mean function and covariance
function defining the GP, and (2) mesh generation function for partitioningx into x_j ’s.

1 % define the structure of local regions
2 param1.meshfunc = 'rectMesh' ; % mesh generation function
3 param1.mparam = [14 21]; % mesh generation function parameters
4 param1.p = 3; param1.q = 3; % parameters defining the interaction
5 % between local regions for improving
6 % prediction accuracy
7

8 % set the prior GP by specifying a covariance function
9 param2.covfunc = { 'covSum' , { 'covSEard' , 'covNoise' }}; %covariance function

10 D = size(x, 2);
11 logtheta0 = log(ones(D+2,1));
12 logtheta0(D+2) = log(0.3);
13 param2.logtheta0 = logtheta0; % initial value of log hyperparameters
14 param2.frachyper = 0.5; % fraction of training data used for learning
15 % hyperparameters
16 param2.nIter = 100; % maximum number of iterations in optimizing the
17 % log hyperparameters
18

19 % train the localized regression model for Gaussian process regression
20 [model, elpasedTrain] = ddmGP(x, y, param1, param2);
21

22 % predict at test inputs
23 [meanPred, varPred, elapsedPred] = ddm_pred(model, xs);

In line 2 and 3, we specify the mesh generation function asrectMesh with its input parameter
(14, 21) . The mesh generation function decomposesX (domain of f ) into 14-by-21 rectangular
meshes,{X j}, and it partitionsx into x_j ’s such thatx_j belongs toX j .

777



PARK , HUANG AND DING

In line 4, there are two parameters that defines how many localized predictions are combined to
produce a global prediction. In the domain decomposition method (DDM), a localized prediction is
available for each meshX j , which becomes the global prediction if the test input is in the interior
of local domainX j . If the test input is over the common boundary ofX j andXk, the localized
predictions are constrained by two factors: (1) the two local predictions for both ofX j andXk

should have limited degrees of freedom on the common boundary (calledflexibility of boundary
prediction); and (2) the two localized predictions should produce the same values on the boundary
(calledconsistency of boundary prediction). Theparam1.q is the the number of control points on
the boundary where the DDM checks theconsistency of boundary prediction, and theparam1.p
is the number of degrees of freedom to constrain theflexibility of boundary prediction.

In line 9 through 13, we specify thecovSum composite covariance function. The compos-
ite covariance function generates the covariance by summing two base covariance functions: the
anisotropic version of squared exponential covariance function (covSEard ) and the noise covari-
ance function (covNoise ). ThecovSEard is parameterized by(D+1) hyperparameters as fol-
lows:

K(x,x′) = θ2
D+1exp

{

−
1
2

D

∑
d=1

(

xd −x′d
θd

)2
}

,

whereD is the dimension ofX . ThecovNoise is parameterized by noise variance parameterσ2 as
K(x,x′)=σ2δ(x,x′). In total, the composite covariance function is parameterized by(D+2) param-
eter values, so the initial guess of hyperparameter,logtheta0 , should be(D+2)-dimensional.
In line 11 and 12, the first(D+1) elements oflogtheta0 are initialized for the hyperparameter
values ofcovSEard , and the last one element oflogtheta0 is initialized for the value ofσ2.

In line 14 and 15,param2.frachyper andparam2.nIter are the process parameters
used in maximizing the likelihood function with respect to the hyperparameters. The maximization
is an iterative process that updates the log hyperparameter values, starting with the initial guess
logtheta0 . Theparam2.nIter=100 implies that the number of the iterations allowed for the
iterative maximization is at most one hundred. In each iteration, the likelihood function is evaluated.
Since the evaluation is computationally expensive with big size of training data, people usually uses
only a subset of the training data for the evaluation. Theparam2.frachyper = 0.5 implies
that only half of the training datax will be used for the evaluation of the likelihood function.

Last, in line 20, the functionddmGPtrains the domain decomposition method for the localized
GP regression with training data setx and the previously specified parameters, andddmGPreturns
the trained model (model ) and the elapsed time (elpasedTrain ). The number of the parameters
to be specified depends on the method used for the training. For more details,please refer toUser
Manualat ./doc directory in this package. In line 22, the functionddm_pred produces the mean
predictionmeanPred and the variance predictionvarPred at test locationsxs , and also reports
the time used for prediction (elpasedPred ).

References

Tao Chen and Jianghong Ren. Bagging for Gaussian process regression. Neurocomputing, 72(7-9):
1605–1610, 2009.

Robert B. Gramacy and Herbert K. H. Lee. Bayesian treed Gaussian process models with an appli-
cation to computer modeling.Journal of the American Statistical Association, 103(483):1119–

778



A L OCAL AND PARALLEL COMPUTATION TOOLBOX FORGP REGRESSION

1130, 2008.

Chiwoo Park, Jianhua Z. Huang, and Yu Ding. Domain decomposition approach for fast gaussian
process regression of large spatial data sets.Journal of Machine Learning Research, 12:1697–
1728, 2011.

Carl E. Rasmussen and Zoubin Ghahramani. Infinite mixtures of Gaussian process experts. In
Advances in Neural Information Processing Systems 14, pages 881–888. MIT Press, 2002.

Carl E. Rasmussen and Christopher K. I. Williams.Gaussian Processes for Machine Learning.
MIT Press, 2006.

Anton Schwaighofer, Marian Grigoras, Volker Tresp, and Clemens Hoffmann. Transductive and
inductive methods for approximate Gaussian process regression. InAdvances in Neural Informa-
tion Processing Systems 16, pages 977–984. MIT Press, 2003.

Matthias Seeger, Christopher K. I. Williams, and Neil D. Lawrence. Fast forward selection to speed
up sparse Gaussian process regression. InInternational Workshop on Artificial Intelligence and
Statistics 9. Society for Artificial Intelligence and Statistics, 2003.

Alexander J. Smola and Peter L. Bartlett. Sparse greedy Gaussian process regression. InAdvances
in Neural Information Processing Systems 13, pages 619–625. MIT Press, 2001.

Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processesusing pseudo-inputs. In
Advances in Neural Information Processing Systems 18, pages 1257–1264. MIT Press, 2006.

Edward Snelson and Zoubin Ghahramani. Local and global sparse Gaussian process approxima-
tions. In International Conference on Artifical Intelligence and Statistics 11, pages 524–531.
Society for Artificial Intelligence and Statistics, 2007.

Volker Tresp. A Bayesian committee machine.Neural Computation, 12(11):2719–2741, 2000.

Raquel Urtasun and Trevor Darrell. Sparse probabilistic regression for activity-independent human
pose inference. InIEEE Conference on Computer Vision and Pattern Recognition 2008, pages
1–8, 2008.

Christopher K. I. Williams and Matthias Seeger. Using the Nyström method to speed up kernel
machines. InAdvances in Neural Information Processing Systems 12, pages 682–688. MIT Press,
2000.

779


