Journal of Machine Learning Research 13 (2012) 775-779 Submitted 9/11; Published 1/12

GPLP: A Local and Parallel Computation Toolbox
for Gaussian Process Regression

Chiwoo Park CHIWOO.PARK@ENG.FSU.EDU
Department of Industrial and Manufacturing Engineering

Florida A&M - Florida State University College of Engineag

2525 Pottsdamer St

Tallahassee, FL 32310-6046, USA

Jianhua Z. Huang JIANHUA @STAT.TAMU .EDU
Department of Statistics

Texas A&M University

3143 TAMU

College Station, TX 77843-3143, USA

Yu Ding YUDING @IEMAIL .TAMU .EDU
Department of Industrial and Systems Engineering

Texas A&M University

3131 TAMU

College Station, TX 77843-3131, USA

Editor: Mikio Braun

Abstract

This paper presents th@etting-startedstyle documentation for the local and parallel computa-
tion toolbox for Gaussian process regressiGRLP), an open source software package written in
Matlab (but also compatible witBctave). The working environment and the usage of the software
package will be presented in this paper.

Keywords: Gaussian process regression, domain decomposition mgtha@l independent con-
ditional, bagging for Gaussian process, local probahiliggression

1. Introduction

The Gaussian process regression (GP regression) has recemlyml/to be a useful tool in ma-
chine learning (Rasmussen and Williams, 2006). A GP regression prdhiglegst unbiased linear
estimator computable by a simple closed form expression and is a popular rfathdrpolation
or extrapolation. A major limitation of GP regression is its computational complexigjed by
O(N3), whereN is the number of training observations.

Many fast computation methods have been introduced in the literature to téleevemputation
burden: matrix approximationWilliams and Seeger, 2000; Smola and Bartlett, 200&&Jihood
approximation(Seeger et al., 2003; Snelson and Ghahramani, 2006, 200T)eaiided regression
(Tresp, 2000; Schwaighofer et al., 2003; Urtasun and Darrell, 2R88mussen and Ghahramani,
2002; Gramacy and Lee, 2008; Chen and Ren, 2009; Park et al).2011

©2012 Chiwoo Park, Jianhua Z. Huang and Yu Ding.

PARK, HUANG AND DING

Many of the computation methods have been implemented as software, whiaeis8DGP,
GPME, SPGP, TGP andGPStuff °. However, many of the methods are still not implemented,
because of various complexities involved in the methods as well as in their imgkinan In
particular, most of the localized regression methods are not implemented irobfitr unique
advantages such as adaptivity to non-stationary changes and ea$ineisg) parallelized for faster
computation.

TheGPLPis theOctave andMatlab implementation of several localized regression methods:
the domain decomposition method (Park et al., 2011, DDM), partial indepeodeditional (Snel-
son and Ghahramani, 2007, PIC), localized probabilistic regressidagiur and Darrell, 2008,
LPR), and bagging for Gaussian process regression (Chen an®@&&3 BGP). Most of the lo-
calized regression methods can be applied for general machine learnbigms although DDM
is only applicable for spatial data sets. In addition, @RLPprovides two parallel computation
versions of the domain decomposition method. The easiness of being pagdllislione of the
advantages of the localized regression, and the two parallel implementaiibpsowide a good
guidance about how to materialize this advantage as software.

This manual is written irGetting-startedstyle; it introduces the working environment@PLP
(in Section 2) and illustrates the usage with an simple example (in Section 3)u kieg@d more
detailed documentation, please refetdser Manualat./doc directory.

2. Implementation

TheGPLPis implemented itMatlab code such that it is executable and has been testddiiab
Version 7.7 or later versions, ar@ctave Version 3.2.4 or later versions. It might be executable
in any of Matlab Version 7.x and any oOctave \ersion 3.2.x, but it has not been tested on
those versions. One exception is the implementation of LPR that only wordailab 7.12.0,

in Matlab 7.7.0 or later versions with a compiler supporting mex-compile, or in Octave 3.2.4 o
later versions. For information on the list of compilers to support the mex-iterimpMatlab ,
please refer to the technical support webpagetigt//www.mathworks.com/support/
compilers/previous_releases.html :

The GPLPalso includes the parallel computation version of DDM, which requires tlkes op
source message passing interfag&atMP| Version 1.2, to be pre-installed before executing the
parallel version. All of theMatlab , Octave and MatMPI are working in many versions of
Windows andUnix , soGPLPis virtually OS-independent.

The implementation consists of six different main modules for the six differettiads imple-
mented, but all of the main modules are structured in the common form havingnher sSnput
and output arguments. In addition, the implementation partially supports theatepaf the main

1. Implementation of SOGP (Smola and Bartlett, 2001) is availalt@t/cs.brown.edu/people/dang/
code.shtml

2. Implementation of GPML (Williams and Seeger, 2000) is availablétgd:/gaussianprocess.org/
gpml/code/matlab/doc/index.html

3. Implementation of SPGP (Snelson and Ghahramani, 2006) is avaitadiitp:#www.gatsby.ucl.ac.uk/
~snelson .

4. Implementation of TGP (Gramacy and Lee, 2008) is availablehtgp://users.soe.ucsc.edu/
~ rbgramacy/tgp.html

5. Implementation of GPStuff (Snelson and Ghahramani, 2006, 2@biwyéBghofer et al., 2003) is availabletstp:
/Iwww.Ice.hut.fi/research/mm/gpstuff/

776

A LoCAL AND PARALLEL COMPUTATION TOOLBOX FORGP REGRESSION

logic from the specification of the covariance function and the mesh gamefanction (the spec-
ification of mesh generation function is only applicable for DDM and its two lfr@omputation
versions; the explanation of the mesh generation function will be in the eretibr). With such
separation, users can easily extend the functioBBEPby adding a new covariance function and
adding a new mesh generation function without major modification of the main logic.

The code and documentation GPLPare publicly available on the JMLR MOSS website at
http://www.jmlr.org/mloss under GNU General Public License version 3.0 (GPL-3.0).

3. GPLP: A software Package for Localized and Parallel Computation of GP
Regression

The GPLPprovides an individual function for calling each one of the six localizggagsion meth-
ods (including two parallel implementations. The individual functions hawenancon structure of
input and output arguments so that users can easily use all functioagtayclearn the common
structure. In this section, we will explain the common structure by means of desaxgmple.

Consider a unknown random functidn: X — R. The GP regression predicts the realization
of the random function at test locatioms, given a set of observations from the realization.
The localized GP regression partitionsnto many smaller chunks_j s, and it does localized
predictions aks with each one ok _j ’s as the training data for evely Finally, the localized GP
regression combines the localized predictions to make a global prediction indifeerent ways.
The key design parameters for the localized GP regression are (1) onegtioh and covariance
function defining the GP, and (2) mesh generation function for partitioxiimgo x_j ’s.

1 % define the structure of local regions

2 paraml.meshfunc = ‘rectMesh' ; % mesh generation function

3 paraml.mparam = [14 21]; % mesh generation function parameters

4 paraml.p = 3; paraml.q = 3; % parameters defining the interaction

5 % between local regions for improving

6 % prediction accuracy

7

8 % set the prior GP by specifying a covariance function

9 param2.covfunc = { ‘covSum' , { 'covSEard" ,'covNoise' }}; %covariance function
10 D = size(x, 2);

11 logthetaO = log(ones(D+2,1));

12 logthetaO(D+2) = log(0.3);

13 param?2.logtheta0 = logthetaO; % initial value of log hyperparameters

14 param?2.frachyper = 0.5; % fraction of training data used for learning

15 % hyperparameters
16 paramz2.nlter = 100; % maximum number of iterations in optimizing the

17 % log hyperparameters

18

19 % train the localized regression model for Gaussian process regression

N
o

[model, elpasedTrain] = ddmGP(x, y, paraml, param2);

NN
N P

% predict at test inputs
23 [meanPred, varPred, elapsedPred] = ddm_pred(model, xs);

In line 2 and 3, we specify the mesh generation functioneatMesh with its input parameter
(14, 21) . The mesh generation function decompa&gslomain off) into 14-by-21 rectangular
meshes{X;}, and it partitions< intox_j s such thak_j belongs taX;.

77

PARK, HUANG AND DING

In line 4, there are two parameters that defines how many localized prediatielcombined to
produce a global prediction. In the domain decomposition method (DDM) gdized prediction is
available for each meslhjj;, which becomes the global prediction if the test input is in the interior
of local domainXj. If the test input is over the common boundary.Jgf and X, the localized
predictions are constrained by two factors: (1) the two local prediction®dth of Xj and X
should have limited degrees of freedom on the common boundary (¢kdieblility of boundary
prediction); and (2) the two localized predictions should produce the same valueg @otimdary
(calledconsistency of boundary predictipiTheparaml.q is the the number of control points on
the boundary where the DDM checks ttensistency of boundary predictioand theparam1.p
is the number of degrees of freedom to constrairfldebility of boundary prediction

In line 9 through 13, we specify theovSum composite covariance function. The compos-
ite covariance function generates the covariance by summing two basgaooeafunctions: the
anisotropic version of squared exponential covariance functiongEard) and the noise covari-
ance function¢ovNoise). ThecovSEard is parameterized byD + 1) hyperparameters as fol-

lows:
K(x,X) = 9D+lexp{ 2; (xd Xd> }

whereD is the dimension ak’. ThecovNoise is parameterized by noise variance parameters
K(x,x") = ad(x,x’). In total, the composite covariance function is parameterizé@by?2) param-
eter values, so the initial guess of hyperparamdogthetaOd , should be(D + 2)-dimensional.
In line 11 and 12, the firgtD + 1) elements ofogthetaO are initialized for the hyperparameter
values ofcovSEard , and the last one elementlofythetad s initialized for the value o62.

In line 14 and 15param2.frachyper and paramz2.nlter are the process parameters
used in maximizing the likelihood function with respect to the hyperparametbesmBximization
is an iterative process that updates the log hyperparameter values gstdttirthe initial guess
logtheta0 . Theparam?2.nlter=100 implies that the number of the iterations allowed for the
iterative maximization is at most one hundred. In each iteration, the likelihoudifun is evaluated.
Since the evaluation is computationally expensive with big size of training datalg@usually uses
only a subset of the training data for the evaluation. paemz2.frachyper = 0.5 implies
that only half of the training data will be used for the evaluation of the likelihood function.

Last, in line 20, the functioddmGPtrains the domain decomposition method for the localized
GP regression with training data seaind the previously specified parameters, ddchGPreturns
the trained modeinjodel) and the elapsed timelpasedTrain). The number of the parameters
to be specified depends on the method used for the training. For more duatsile refer tdJser
Manualat./doc directory in this package. Inline 22, the functiddm_pred produces the mean
predictionmeanPred and the variance predictiorarPred at test locationss, and also reports
the time used for predictiore(pasedPred).

References

Tao Chen and Jianghong Ren. Bagging for Gaussian processsiegréeurocomputing72(7-9):
1605-1610, 2009.

Robert B. Gramacy and Herbert K. H. Lee. Bayesian treed Gaussiaargs models with an appli-
cation to computer modelinglournal of the American Statistical Associatjid93(483):1119—

778

A LoCAL AND PARALLEL COMPUTATION TOOLBOX FORGP REGRESSION

1130, 2008.

Chiwoo Park, Jianhua Z. Huang, and Yu Ding. Domain decomposition apprior fast gaussian
process regression of large spatial data sétsirnal of Machine Learning Research?2:1697—
1728, 2011.

Carl E. Rasmussen and Zoubin Ghahramani. Infinite mixtures of Gaussiaasg experts. In
Advances in Neural Information Processing Systempgades 881-888. MIT Press, 2002.

Carl E. Rasmussen and Christopher K. I. WilliamSaussian Processes for Machine Learning
MIT Press, 2006.

Anton Schwaighofer, Marian Grigoras, Volker Tresp, and Clemengnibofn. Transductive and
inductive methods for approximate Gaussian process regressiddvémces in Neural Informa-
tion Processing Systems,Jfages 977-984. MIT Press, 2003.

Matthias Seeger, Christopher K. I. Williams, and Neil D. Lawrence. Fastdrd selection to speed
up sparse Gaussian process regressiomtarnational Workshop on Artificial Intelligence and
Statistics 9 Society for Artificial Intelligence and Statistics, 2003.

Alexander J. Smola and Peter L. Bartlett. Sparse greedy Gaussiaisgregeession. IAdvances
in Neural Information Processing Systems fi8ges 619—-625. MIT Press, 2001.

Edward Snelson and Zoubin Ghahramani. Sparse Gaussian proosssgggseudo-inputs. In
Advances in Neural Information Processing Systempages 1257-1264. MIT Press, 2006.

Edward Snelson and Zoubin Ghahramani. Local and global sparsssi@ayprocess approxima-
tions. InlInternational Conference on Artifical Intelligence and Statistics ddges 524-531.
Society for Artificial Intelligence and Statistics, 2007.

Volker Tresp. A Bayesian committee machiméeural Computation12(11):2719-2741, 2000.

Raquel Urtasun and Trevor Darrell. Sparse probabilistic regressiacfivity-independent human
pose inference. IMEEE Conference on Computer Vision and Pattern Recognition ,2088es
1-8, 2008.

Christopher K. I. Williams and Matthias Seeger. Using the Nymtmethod to speed up kernel
machines. IlAdvances in Neural Information Processing Systempages 682—688. MIT Press,
2000.

779

