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Abstract

We consider Borcherds superalgebras obtained from semisimple finite-dimensional
Lie algebras by adding an odd null root to the simple roots. The additional Serre
relations can be expressed in a covariant way. The spectrum of generators at positive
levels are associated to partition functions for a certain set of constrained bosonic
variables, the constraints on which are complementary to the Serre relations in the
symmetric product. We give some examples, focusing on superalgebras related to
pure spinors, exceptional geometry and tensor hierarchies, of how construction of
the content of the algebra at arbitrary levels is simplified.
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1 Introduction

It is often useful in physics to describe a spectrum of states that appear at various
integer levels by means of an associated partition function, especially if the spectrum
is infinite. If the states at each level transform in a representation of a Lie algebra,
the spectrum of representations may also be obtained from an extended (possibly
infinite-dimensional) algebra by a level decomposition. In the present paper we will
relate these two approaches to each other, and also to a third important tool in
physics: the BRST treatment of reducible constraints.

Our main example is the spectrum of dynamical forms inD-dimensional maximal
supergravity, which transform in representations of the U-duality group1 En, where
n = 11−D. Remarkably, these representations form a Lie superalgebra, which can
be extended to an infinite-dimensional Borcherds superalgebra [1–3]. Decomposing
it with respect to the En subalgebra gives back the spectrum of dynamical forms at
the positive levels, and also precisely the additional non-dynamical forms allowed
by supersymmetry, first determined for D = 10 in refs. [4–6]. The consistency with
supersymmetry was shown in refs. [7–10] using a superspace formulation, general-
ising bosonic forms to superforms with arbitrary high degrees. However, already in

1Throughout the paper, we use the notation En for the split real form, and also for the corre-
sponding Lie algebra. All arguments are however equally valid for the complex Lie algebras.
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the restriction to the bosonic sector, the wedge product in the differential algebra,
with even and odd forms, naturally gives rise to a superalgebra structure. Up to an
arbitrary level p the representations can be also obtained from a level decomposition
of the Kac–Moody algebra En+p [3,10–12]. This generalises results for E11, which as
a special case contains the form spectrum up to p = D [13–15]. However, E11 is not
enough to accommodate forms with higher degrees, and a rendition of all the rep-
resentations coming from the Borcherds superalgebra would require a consideration
of the infinite-rank algebra E∞.

With a few exceptions, the level decomposition of the Borcherds superalgebra
furthermore agrees with the tensor hierarchy of form potentials, field strengths and
gauge parameters that arises in the embedding tensor approach to gauged super-
gravity [16–19]. The tensor hierarchy can be continued to infinity, but misses some
of the representations coming from the Borcherds superalgebra. Perfect agreement
is instead given by a tensor hierarchy algebra, where the embedding tensor is in-
terpreted as an element at level minus one [20]. Using this algebra all the Bianchi
identities and gauge transformations for the gauged theory can be derived in a sim-
ple way [10, 21]. This demonstrates the efficiency of organising representations into
a level decomposition of a Lie (super)algebra.

Yet another context where the same infinite sequence of representations appears,
and where it cannot be truncated, is exceptional geometry. The exceptional (gen-
eralised) diffeomorphisms have infinite reducibility, and the sequence arises as the
tower of ghosts for ghosts, describing this reducibility [22]. The connection to parti-
tion functions of constrained objects, of which pure spinors [23] is one example, was
conjectured already in ref. [22], and used there to correctly regularise the infinite
sums arising when counting the degrees of freedom. The same representations occur
for tensor fields in exceptional geometry [24], and in the tensor hierarchies consid-
ered in [25–28]. The somewhat heuristic approach of ref. [22] provided one of the
motivations for the present investigation, which puts the correspondence between
the algebra and the constrained objects on a firmer footing.

For 3 ≤ D ≤ 8 the U-duality algebra En is extended to the infinite-dimensional
Borcherds superalgebra B by adding an odd null root β0 to the simple roots of En.
This is the special case that we focus on in this paper, with En generalised to any
semisimple finite-dimensional Lie algebra g. The inner products of β0 with the simple
roots of g are assumed to be such that the Serre relations of the Borcherds super-
algebra are at most quadratic in the odd Chevalley generators e0, f0 corresponding
to β0. Denoting the representation at level p by Rp, the Serre relations quadratic
in e0 (say) thus belong to a representation of g contained in the symmetric tensor
product of R1 with itself, with R2 as its complement2. It generates an ideal of the

2With the complement of a representation R in another R′ we mean the quotient R′ −R.
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free Lie superalgebra generated by R1, and at each level p ≥ 2, the representation
Rp is the complement that is left when this ideal is factored out. A recursive study
of the ideal thus gives all information about the representations Rp at any level p. In
this paper, we will show that the representations Rp alternatively, and often more
directly, can be determined from the partition function for a bosonic object λ in
R1, subject to the constraint λ2|R2 = 0. As our main result, we will show that this
partition function is the inverse of the partition function for the universal enveloping
algebra of B+, the subalgebra of B at positive levels.

The paper is organised as follows. In Section 2 we describe in more detail the Lie
superalgebras that we consider, and how they are constructed from the Chevalley
generators and the Serre relations. In Section 3 we introduce the partition functions
that we use in Section 4 to state our results and give them an interpretation in
terms of a BRST operator. The argument of Section 4 corresponds roughly to the
heuristic argument of ref. [22]. We then prove the result in Section 5 using the
denominator formula for Borcherds superalgebras. Section 6 addresses the question
why the method is not applicable to Lie algebras (extensions by an additional even
real root). In Section 7 we present and discuss some examples.

2 The superalgebras

Let g be a semisimple finite-dimensional Lie algebra of rank r with simple roots αi

(i = 1, . . . , r). We recall that they form a basis of a euclidean space, and from their
mutual inner products we get the Cartan matrix aij of g by

aij = (αj , αi
∨) = 2

(αj, αi)

(αi, αi)
, (2.1)

where αi
∨ = 2αi/(αi, αi) is the coroot of αi.

The construction of a Lie algebra from a basis of simple roots can be generalised
to inner product spaces which are not necessarily euclidean, and even from Lie
algebras to Lie superalgebras. Semisimple finite-dimensional Lie algebras are then
generalised to Kac-Moody (super)algebras, which in turn are generalised further to
Borcherds (super)algebras. Thus Borcherds superalgebras is a very general concept,
but in this paper we only consider the special cases described below, motivated
by their simplicity and by their appearance in the examples that we will study in
Section 7. We refer the reader to refs. [29–32] for more general definitions and other
details about Borcherds and Kac-Moody (super)algebras.

The Borcherds superalgebras that we consider are infinite-dimensional superex-
tensions of semisimple finite-dimensional Lie algebras, obtained by adding an odd
null root to the simple roots. Let B be such an extension of g, with simple roots
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βI (I = 0, 1, . . . , r). Thus β0 is odd and null, (β0, β0) = 0, whereas βi = αi are even
and real, (βi, βi) > 0. The Cartan matrix BIJ of B is obtained from aij by adding
an extra column

Bi0 = (β0, βi
∨) = 2

(β0, βi)

(βi, βi)
(2.2)

and an extra row B0I = (βI , β0), including the diagonal entry B00 = (β0, β0) = 0.
The additional off-diagonal entries Bi0 are required to be non-positive integers, like
Bij = aij for i 6= j. We assume furthermore that BIJ is non-degenerate, and for each
i = 1, . . . , r, either B0i = 0 or B0i = −1.

Adding an extra column and row to the Cartan matrix of g corresponds to
adding an extra node to the Dynkin diagram of g, connected with |Bi0| lines to
node i. Following ref. [29] we indicate that β0 is both null and odd by painting the
corresponding node “grey” (which means that it looks like ⊗), and let the other
nodes, representing real even roots, be white. For example, the Dynkin diagram

0 1 2 3

4

corresponds to the Cartan matrix

BIJ =













0 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 −1
0 0 −1 2 0
0 0 −1 0 2













. (2.3)

We will come back to this algebra, among other examples, in Section 7.
To each simple root βI of B we associate Chevalley generators eI , fI and hI , and

B is then defined as the Lie superalgebra generated by these elements (of which e0
and f0 are odd and the others even) modulo the Chevalley relations

[hI , eJ ] = BIJeJ , [hI , fJ ] = −BIJfJ , [eI , fJ} = δIJhJ , (2.4)

and the Serre relations

(ad eI)
1−BIJ (eJ) = (ad fI)

1−BIJ (fJ) = 0 (2.5)
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for I 6= J . For I = 0 the Serre relations (2.5) can equivalently be replaced by

{e0, e0} = {f0, f0} = 0 , (2.6)

since, by the Jacobi identity,

1
2
[{e0, e0}, eJ ] = {e0, [e0, eJ ]},

1
2
[{f0, f0}, fJ ] = {f0, [f0, fJ ]} , (2.7)

which gives

[{e0, [e0, eJ ]}, fJ ] = {e0, e0}, [{f0, [f0, fJ ]}, eJ ] = {f0, f0} (2.8)

if BJ0 = −1. Thus in this case the ideal generated by (2.5) is contained in the ideal
generated by (2.6), and conversely. If BJ0 = 0, there is already a redundance in (2.5)
because of the antisymmetry of the bracket, so replacing (2.5) by (2.6) in this case
simply amounts to removing one of two equivalent relations in (2.5).

For any integer p, let Bp be the subspace of B spanned by all root vectors
corresponding to roots β = pβ0 + α, where α is a linear combination of the real
simple roots βi = αi, and, if p = 0, by the Cartan elements hI . Since B is the
direct sum of all these subspaces, and [Bp,Bq} ⊆ Bp+q, this decomposition is a
Z-grading of B, leading to a level decomposition of its adjoint representation under
the subalgebra g ⊂ B0, with Bp consisting of a (maybe reducible) representation3

of g at level p. We will throughout the paper denote this representation Rp.
Let B+ and B− be the subalgebras of B spanned by elements at positive and

negative levels, respectively, and let B̃± be the free Lie superalgebra generated by
B±1. The Serre relations (2.6) generate an ideal of B̃ which is the direct sum of two
subalgebras D±, where D± ⊂ B̃± (and is the maximal such ideal). The Borcherds
superalgebra B is then obtained by factoring out this ideal from B̃, and in particular
B+ is obtained by factoring out D+ from B̃+, the free Lie superalgebra generated
by B1. The ideal D+ of B̃ is generated by the element {e0, e0} at level two, which is
set to zero in one of the Serre relations (2.6). However, considered as an ideal of B̃+

only, it is generated by all elements at level two in D+, which are not only {e0, e0}
but also those obtained from {e0, e0} by successively acting with g. These elements
form a representation R2

⊥, which is the complement of R2 in ∨2R1 (the symmetrised
tensor product of R1 with itself) with a lowest weight vector {e0, e0}. It then follows
from the Chevalley relations that the Dynkin labels of the lowest weight of R2

⊥ are
given by λi = 2Bi0.

Using a basis EM of B1 (so that the index M corresponds to the representa-
tion R1), we can summarize the above construction of B+ by saying that it is the

3Following the physics terminology, we use the term “representation” also for the module of the
representation, i.e., the vector space it acts on.
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Lie superalgebra generated by the odd elements EM modulo the “covariant Serre
relations”

{EM , EN}|R2
⊥ = 0 . (2.9)

Recursive use of these relations (and of course of the Jacobi identity) gives complete
information about the representation Rp at arbitrarily high levels p. In Section 4 we
will describe how this information can be efficiently encoded into partition functions,
which will be discussed next.

3 Partition functions

The purpose of this section is to introduce and define notation for the partition
functions we use to state our results.

The partition functions we will consider count the number of bosonic and fermi-
onic objects occurring with some Z-weight, or level, and some additional quantum
numbers. In an “unrefined” partition function, only counting the number of states
per level, the presence of some set of N linearly independent objects with weight
p corresponds to a term σpNtp, where σ = 1 for bosons and σ = −1 for fermions.
This means we are really considering partition functions twisted by fermion number,
which of course has the advantage that the partition function for a fermionic variable,
or “creation operator”,

ZF (t) = 1− t , (3.1)

and that of a bosonic one,

ZB(t) = (1− t)−1 , (3.2)

are each other’s inverses.
More refined partition functions may be defined if additional quantum numbers

are available. In a typical case, a variable or operator will transform in some rep-
resentation R of a Lie algebra g. A refined partition function encodes completely
the representations of all states, and is a formal power series in a variable t (cor-
responding to the grading) with coefficients in the unit ring of g-representations
(under tensor product).

The basic examples are the refined partition functions for fermionic and bosonic
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creation operators in R:

Z
F
R (t) =

|R|
⊕

p=0

(−t)p∧pR ,

Z
B
R (t) =

∞
⊕

p=0

tp∨pR . (3.3)

Here, we use ∧ and ∨ for antisymmetric and and symmetric products, respectively,
and |R| denotes the dimension of a representation R. These two functions are also
the inverses of each other, when multiplication is taken as the tensor product with
the trivial representation as the identity. This can be seen explicitly at any order in t
by observing that the tensor product (∧pR)⊗ (∨qR) generically contains exactly the
plethysms described by the two different “hook” Young tableaux of sl(|R|) obtained
by gluing together the column and the row describing the two factors. One thus has

Z
F
R (t)⊗ Z

B
R (t) = 1 , (3.4)

It is then reasonable to use the formal notation

Z
F
R (t) = (1− t)R ,

Z
B
R (t) = (1− t)−R . (3.5)

A fermion in R can be seen as a boson in −R and vice versa. It is important to
understand the notation of eq. (3.5) as the shorthand it is, with eq. (3.3) being its
defining expression.

All considerations of the refined partition functions may also be performed using
characters, since they provide a ring homomorphism. Writing the character of the
representation R as χ(R) =

∑

µ∈ΛR
eµ, where ΛR is the set of weights for R, counting

weights with multiplicities m > 1 as m “distinct” weights, we have

χ(∧kR) =
∑

{µ1,...,µk}

eµ1+···+µk , (3.6)

where the sum is over sets of distinct (in the sense above) weights in ΛR. Thus,

χF
R(t) ≡ χ(Z F

R (t)) =

|R|
∑

k=1

(−t)k
∑

{µ1,...,µk}

eµ1+···+µk =
∏

µ∈ΛR

(1− teµ) , (3.7)

which of course is just the product of the characters for the individual fermions
making up the representation R. It then follows that

χB
R(t) ≡ χ(Z B

R (t)) = (χF
R(t))

−1 =
∏

µ∈ΛR

(1− teµ)−1 . (3.8)
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The character picture will be used for a proof of our result in Section 5.
The examples above used for setting the notation are valid only for unconstrained

variables (creation operators). We will use such refined partition functions to encode
the spectrum of generators in the Borcherds superalgebras described in Section 2.

Before going into the construction of partition functions for algebras and for
constrained objects, we will consider two other situations, which will be of use later.
The first is when a fermionic or bosonic variable is “maximally constrained”, so that
any bilinear vanishes. Then the partition function just contains a linear term:

Z (t) = 1 + σRt (3.9)

(where again σ = ±1 for bosons and fermions, respectively). The second situation
concerns variables of “indefinite statistics”, meaning that both symmetric and an-
tisymmetric products of R occur (but with odd levels still labeled as bosonic or
fermionic by a sign σ). Then the partition function is

Z (t) =
∞
⊕

p=0

(σt)p⊗pR = (1− σRt)−1 . (3.10)

The observation that the partition functions (3.9) and (3.10) are each other’s inverses
for opposite choices of σ is one, somewhat trivial, example of our main result which
will be demonstrated in the following sections. In this case the algebra is freely
generated by the representation at level one.

4 BRST operator and coalgebra

Consider the subalgebra B+ of elements at positive levels of a Z-graded Borcherds
superalgebra B, as defined in Section 2. In the generic case, the algebra will be
infinite-dimensional, and contain elements at arbitrarily high levels. However, as we
saw in Section 2, all this information is contained in the covariant Serre relations

{EM , EN}|R⊥

2
= 0 , (4.1)

where R2
⊥ is the complement to R2 in ∨2R1. At level two, we thus have generators

EMN = {EM , EN} in R2.
As announced in Section 1, we will argue that all information about the repre-

sentations occurring at each level can be obtained in an alternative way, which often
provides a more direct answer, namely by considering a bosonic object λM in R1,
subject to the constraint

λ2|R2 = 0 . (4.2)
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Notice that the object λM has opposite statistics (bosonic) to EM (thinking of odd
elements in a superalgebra as fermionic), and that its constraint is in the symmetric
representation complementary to that of the Serre relations. The precise relation we
will establish, and which is the main result of this paper, is:

The partition function of the universal enveloping algebra U(B+) is the in-
verse of the partition function for the constrained object λ, i.e.,

ZU(B+)(t)⊗ Zλ(t) = 1 . (4.3)

Since the partition functions used are completely refined, in the sense of Section 3,
this provides complete information of the generators at each level of the Borcherds
superalgebra B. The refined partition function for λ, if λ is seen as a complex object,
can be seen as encoding holomorphic functions of λ.

The way we will argue for this equality in the present section is by identifying
the action of the BRST operator for the (conjugated) constraint with the operation
“d” of the coalgebra B∗

+. This will not constitute a full proof (which would require
a consideration of cohomology of B∗

+), but provides a clear picture of the correspon-
dence. The proof, based on the denominator formula for Borcherds superalgebras,
is given in Section 5.

Let us first consider the coalgebra, repeat some well known facts and set the
notation. For simplicity, we do this for the case of an ordinary Lie algebra; the
generalisation to graded brackets and Lie superalgebras is trivial. The coalgebra of
a Lie algebra a is defined on the vector space a∗ dual to a. It is equipped with a
map d : a∗ → a∗ ∧ a∗, which is dual to the Lie bracket [·, ·] in the sense that for any
A,B ∈ a and X ∈ a∗,

〈 dX |A ∧ B 〉 = 〈X | [A,B] 〉 , (4.4)

where 〈·|·〉 is the canonical scalar product, naturally extended to tensor products. If
Ea and E∗a are dual bases for a and a∗, and [Ea, Eb] = fab

cEc, eq. (4.4) reads

dE∗a = fbc
aE∗b ∧ E∗c . (4.5)

The action of d is naturally extended to tensor products of elements by defining it
to act as a derivation. The Jacobi identity is equivalent to the nilpotency, d2 = 0, of
d. The above can be generalised to a Lie superalgebra with the appropriate graded
interpretation of wedge products, brackets and derivations.

We now specialise on the Borcherds superalgebras at hand. The first two levels
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of the coalgebra B∗
+ read

dE∗M = 0 ,

dE∗MN = E∗M ∨ E∗N |R̄2
. (4.6)

The Serre relations manifest themselves as the absence of generators in R̄2
⊥ at level

two. What is the procedure for the continued construction? Of course, knowledge
of the algebra directly provides the full information of the coalgebra. But it is also
possible to use eq. (4.6) as a starting point for recursively deriving the content
at each level as well as the coproduct. One must then allow for the most general
representation for E∗(3) and the most general form of dE∗(3) ∼ E∗(2)∧E∗(1) consistent
with d2 = 0. A general Ansatz consists of letting E∗MNP belong to a representation
R3 ⊂ R1 ⊗ R2 and writing

dE∗MNP = E∗M ∧ E∗NP |R̄3
. (4.7)

The nilpotency of d then determines the allowed representation R3. For example,
a totally symmetric representation is always excluded from R3, since it will van-
ish due to the Jacobi identity. This procedure can then be continued to all levels,
where dE∗(p) will contain sums of terms E∗(q)∧E∗(p−q) (wedge here denoting graded
antisymmetrisation).

The unique result of the procedure can be understood by the following argu-
ment, which also provides a conceptual idea behind the result stated in eq. (4.3).
Everything starts from, and is generated from, the basic set of generators EM in the
g-representation B1. Since they are odd elements of a superalgebra, they are nor-
mally thought of as fermionic. It is however useful to think of EM as not carrying a
definite statistics. Indeed, considering the Serre relations (4.1), the only constraint
on a bilinear in EM (including both symmetric and anti-symmetric parts) is that
a certain representation R2

⊥ of the symmetric bilinear vanishes. The identification
of the symmetric part in the complement R2 with “new” generators EMN is in
this sense optional. Without this identification, and corresponding identifications
at higher levels, the universal algebra U(B+) can be constructed from the tensor
algebra of B1 by factoring out the ideal generated by EM ⊗EN |R2

⊥ . This provides a
way of constructing an arbitrary element, not in the algebra B+, but in its universal
enveloping algebra U(B+), in terms of powers of EM only. The partition function
of the universal enveloping algebra will be that of an object EM in R1 of indefinite
statistics (although the elements at odd levels are labelled as fermionic in the par-
tition function, see Section 3), modulo the ideal generated by the Serre relations.
Seen this way, our main result can be phrased in the following way:

The partition function for a bosonic object (λ) in R1 subject to a bilinear con-
straint in R2 is the inverse of the partition function for an object (the set of level-one
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generators in B) with indefinite statistics, where odd powers are labeled as fermionic,
subject to a bilinear constraint in R2

⊥.
This statement provides an interpolating generalisation for partitions of con-

strained objects of the ones made for unconstrained and maximally constrained
ones in Section 3. However, unlike in those limiting cases, the statistics here may
not be switched, which we will comment on in Section 6.

Now, consider an object λ̄ in R̄1, with the constraint λ̄2|R̄2
= 0. The constraint

can be treated using a BRST formalism. For convenience, we change our notation and
use cM instead of λ̄M . The first term in the BRST operator Q is Q(2) = bMNc

McN ,
where bMN in R2 is the ghost for the constraint

4. However, if the constraint happens
to be reducible, there will be higher order ghosts compensating for the reducibility.
Such reducibility will be captured by the introduction of a new bc pair, and a term
Q(3) = bMNP c

MNcP inQ. The representation of bMNP is everything that is allowed by
Q2 = 0. This should be continued, as long as the reducibility continues, i.e., as long
as further such terms can be added. A generic term will be of the form b(p+q)c

(p)c(q),
where the ghosts are alternatingly fermionic and bosonic. From this trilinear form of
the BRST operator it is immediately clear that its action on the c ghosts defines the
coalgebra of a Lie superalgebra. An infinite reducibility5 corresponds to an infinite-
dimensional algebra.

We now recognise the exact parallel between on one hand the construction of the
coalgebra, given the Serre relations (and nothing more), and on the other hand the
construction of the BRST operator. The difference is only a matter of notation. The
cogenerators E∗(p) correspond to the ghosts c(p), and the graded wedge products are
automatically implied by the “wrong” statistics of the ghosts. The operator d is the
adjoint action (graded commutator) of Q, so that dE∗(p) ↔ [Q, c(p)}.

This means that if we calculate the partition function of λ as a constrained
object, which is obtained as the conjugate of the tensor product of the partition
functions of all the ghosts,

Zλ(t) =

∞
⊗

p=1

(1− tp)(−1)pRp , (4.8)

it will coincide with the inverse partition function of the universal enveloping algebra

4It would maybe be more conventional to use a notation where c is the ghost multiplying the
constraint, and b its conjugate. Here, however, it turns out that all terms will be of the form bcc,
which corresponds to the standard form of “algebra” ghost terms in a BRST operator.

5The concept of reducibility is not absolute, but may depend on the degree of covariance. Here,
we always consider reducibility as expressed in terms of representations of the finite-dimensional Lie
algebra g (but should of course not be confused with the possible reducibility of the representations
themselves).
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U(B+), which by definition is

ZU(B+)(t) =

∞
⊗

p=1

(1− tp)(−1)p+1Rp , (4.9)

using the shorthand notation of (3.5). The inverse simply appears since the corre-
spondence E∗(p) ↔ c(p) changes statistics.

The above argument does not provide a strict proof of eq. (4.3). The missing
step is the proof that the BRST operator Q ∼ bcc correctly encodes the degrees of
freedom of the constrained object, or, equivalently, that no other unwanted coho-
mology arises. We refrain from doing this, but we will present a different proof in
Section 5.

Neither of the two above methods of finding the spectrum of generators has an
advantage over the other, since we just demonstrated that they contain exactly the
same calculational steps. However, knowing that the partition function is that of a
constrained object λ can often provide an alternative, more direct, and simpler way
of obtaining the answer. Provided that we know from the constraint which repre-
sentation Sp appear at any power λp, the partition function is directly constructed
as

Zλ(t) =
∞
⊕

p=0

Spt
p . (4.10)

Expanding this partition function in a product form6 gives information about all the
ghost representations, and thus about the generators of the algebra. This calculation
becomes especially simple in cases where S1 = R1 is an irreducible representation
of some Lie algebra with highest weight λ, and S2 = R2

⊥ = ∨2R1 ⊖ R2 is the
representation with highest weight 2λ. Then Sp will have highest weight pλ. Indeed,
the class of Borcherds superalgebras we consider all have this property, as will be
shown in Section 5. We will give some examples of such situations in Section 7,
among which are pure spinors and their associated superalgebras. Although the
representations Rp are complicated, they can be calculated from the more readily
available representations Sp by inserting eqs. (4.9)–(4.10) into (4.3), which gives

∞
⊗

p=1

(1− tp)(−1)pRp =
∞
⊕

q=0

Sqt
q . (4.11)

The explicit solution of this relation for the spectrum of the Borcherds superalgebra,
i.e., the representations Rp in terms of the known Sp, can be obtained by recursion,

6This is the method used by Berkovits and Nekrasov in ref. [23] to obtain detailed information
on the partition functions of pure spinors.
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or by a Möbius inversion. By comparing the left and right hand sides for the first
few powers of t we get

R1 = S1 ,

R2 = ∨2R1 ⊖ S2 ,

R3 = (R1 ⊗R2)⊖∨3R1 ⊕ S3 ,

R4 =
(

(R1 ⊗ R3)⊕∧2R2

)

⊖ (∨2R1 ⊗ R2)⊕∨4R1 ⊖ S4 . (4.12)

We will display some explicit examples of varying complexity in Section 7.

5 A proof from denominator formulas

This section will provide a proof of our main result (4.3), using the denominator
formula for Borcherds superalgebras [31–34]. It is known for general Borcherds su-
peralgebras but here we only need a simplified version given below, valid for the
special cases of Borcherds superalgebras under consideration.

Let Φ be the root system of B, and for any integer p, let Φp be the subset of Φ
consisting of all roots β = pβ0+α, where α is a linear combination of the real simple
roots βi = αi. Thus Φ0 is the root system of the subalgebra g, and Bp is the direct
sum of all root spaces Bβ such that β ∈ Φp, and, if p = 0, the Cartan subalgebra.

We will show that the eq. (4.11), with the lowest weights of the representations
Sq given by the Dynkin labels

λi = q(β0, βi
∨) = q · 2

(β0, βi)

(βi, βi)
= qBi0 , (5.1)

is equivalent to the denominator formula for B [31–34], which reads
∏

β∈Φ+
(0)
(1− e−β)multβ

∏

β∈Φ+
(1)
(1 + e−β)multβ

=
∑

w∈W

∞
∑

q=0

(−1)|w|(−1)qew(ρ−qβ0)−ρ . (5.2)

Here Φ+
(0) and Φ+

(1) consist of all even and odd positive roots, respectively, ρ is the
Weyl vector of B, defined by

(ρ, βI) =
(βI , βI)

2
, (5.3)

and the Weyl group W of B is generated by all fundamental Weyl reflections

ri : β 7→ β − (αi
∨, β) = β − 2

(αi, β)

(αi, αi)
. (5.4)
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The length |w| of an element w in W is the minimal number of fundamental Weyl
reflections (not necessarily distinct), which, applied after each other, give w.

Note that the representations Sp are given by the Dynkin labels λi of their
lowest weights, since we consider positive levels of B. However, we are going to
relate the denominator formula (5.2) for B to the character formula for g, which is
usually expressed in terms of the highest weight of a representation. Therefore it is
convenient to replace eq. (4.11) by the equivalent equation obtained by conjugating
all representations,

∞
⊗

p=1

(1− tp)(−1)pR̄p =
∞
⊕

q=0

S̄qt
q , (5.5)

where now the highest weight of S̄q is −λi = −qBi0. What we will actually show is
that this eq. (5.5) is equivalent to the denominator formula (5.2).7

Let Λ̃0 be the element in the weight space of B such that (Λ̃0, αi) = 0 for all
i = 1, . . . , r, and the componenent of Λ̃0 corresponding to β0 in the basis of simple
roots is equal to one (this element exists uniquely since both BIJ and Bij = aij are
non-degenerate). Thus Λ̃0 − β0 is an element in the weight space of g (considered as
a subspace of the weight space of B). More generally, a root β ∈ Φp can be written
β = pΛ̃0+µ, where µ = β− pΛ̃0 is an element in the weight space of g. We then get

∏

β∈Φp

(1− e−β)multβ =
∏

µ∈Rp

(1− e−pΛ̃0e−µ)multµ

=

|Rp|
∑

k=0

(−1)k
∑

e−(µ1+···+µk)(e−Λ̃0)kp , (5.6)

where the second sum goes over all sets of k distinct weights µ1, . . . , µk among the
weights of Rp, counting (as in Section 3) a weight with multiplicity m asm “distinct”
weights. This sum can be obtained from the character for ∧kRp by inverting each
term, which corresponds to conjugating the representation Rp. Thus

∏

β∈Φp

(1− e−β)multβ =

|R̄p|
∑

k=0

(−1)kχ(∧kR̄p)s
kp (5.7)

where we have set s = e−Λ̃0 . In the same way,

∏

β∈Φp

(1 + e−β)multβ =

|R̄p|
∑

k=0

χ(∧kR̄p)s
kp (5.8)

7Instead of considering positive levels in B and conjugating the representations we could of
course also have considered negative levels and only highest weights from the beginning.
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and we know that the inverse of this is

∏

β∈Φp

(1 + e−β)−multβ =

∞
∑

k=0

(−1)kχ(∨kR̄p)s
kp . (5.9)

Here the character of ∨kR̄p is given by the sum of all terms e−(µ1+···+µk), where
µ1, . . . , µk are weights ofRp, this time not necessarily distinct. Following the notation
in Section 3, we write this as

∏

β∈Φp

(1± e−β)∓multβ = χ
(

(1± sp)∓R̄p
)

, (5.10)

and the left hand side of eq. (5.2) becomes
∏

β∈Φ+
(0)
(1− e−β)multβ

∏

β∈Φ+
(1)
(1 + e−β)multβ

=
∏

α∈Φ+
0

(1− e−α)multα

∞
∏

p=1

χ
(

(

1− (−1)psp
)(−1)pR̄p

)

, (5.11)

where Φ+
0 consists of the positive roots of g.

We now turn to the right hand side of the denominator formula,

∑

w∈W

∞
∑

q=0

(−1)|w|(−1)qew(ρ−qβ0)−ρ. (5.12)

Here W is the Weyl group of B, but since it is generated by the fundamental Weyl
reflections corresponding to the real roots only, it coincides with the Weyl group of
g. In order to use the character formula for g we also need to replace the Weyl vector
of B with the one of g, but this requires some more consideration. The Weyl vector
ρ = ρB of B is defined as the element in the weight space of B satisfying

(ρB, βI) =
(βI , βI)

2
, (5.13)

whereas the Weyl vector ρg of g only has to satisfy

(ρg, αi) =
(αi, αi)

2
, (5.14)

but on the other hand it must have a zero component corresponding to β0 in the
basis of simple roots. Thus the Weyl vectors of B and g are different (in general),
but since their difference ρB − ρg is orthogonal to the real roots, (ρB − ρg, αi) = 0,
it is invariant under the Weyl group, w(ρB − ρg) = ρB − ρg. We then get

w(ρB − qβ0)− ρB = w
(

ρg + (ρB − ρg)− qβ0

)

− ρg − (ρB − ρg)

= w(ρg − qβ0)− ρg + w(ρB − ρg)− (ρB − ρg)

= w(ρg − qβ0)− ρg (5.15)
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and we can indeed replace ρ = ρB by ρg in eq. (5.12). To simplify the notation, we
will henceforth write ρ = ρg. Furthermore, since also Λ̃0 is orthogonal to the real
roots, we have

w(ρ− qβ0)− ρ = w
(

ρ− qΛ̃0 + q(Λ̃0 − β0)
)

− ρ

= w
(

ρ+ q(Λ̃0 − β0)
)

− ρ− qΛ̃0 (5.16)

and then

∑

w∈W

∞
∑

q=0

(−1)|w|(−1)qew(ρ−qβ0)−ρ =
∑

w∈W

∞
∑

q=0

(−1)|w|(−1)qew(ρ+q(Λ̃0−β0))−ρ−qΛ̃0

=
∑

w∈W

∞
∑

q=0

(−1)|w|(−1)qew(ρ+q(Λ̃0−β0))−ρsq . (5.17)

Equating eqs. (5.11) and (5.17) we get

∞
∏

p=1

χ
(

(

1− (−1)psp
)(−1)pR̄p

)

=

∞
∑

q=0

∑

w∈W (−1)|w|ew(ρ+q(Λ̃0−β0))−ρ

∏

β∈Φ+
0
(1− e−β)multβ

(−1)qsq , (5.18)

where we recognise

∑

w∈W (−1)|w|ew(ρ+q(Λ̃0−β0))−ρ

∏

β∈Φ+
0
(1− e−β)multβ

(5.19)

as the character of the representation of g with highest weight q(Λ̃0 − β0) given by
the Dynkin labels

(

q(Λ̃0 − β0), βi
∨
)

= −q(β0, βi
∨) = −q · 2

(β0, βi)

(βi, βi)
= −qBi0 = −λi , (5.20)

and thus

∞
∏

p=1

χ
(

(

1− (−1)psp
)(−1)pR̄p

)

=
∞
∑

q=0

χ(S̄q)(−1)qsq. (5.21)

Finally, substituting s by −t we arrive at the equation

∞
∏

p=1

χ
(

(1− tp)(−1)pR̄p
)

=

∞
∑

q=0

χ(S̄q)t
q , (5.22)

which is the character version of (and thus equivalent to) eq. (5.5).
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6 Why is the method not applicable to Lie alge-

bras?

Let us replace β0 with an even simple root α0, which is real, (α0, α0) > 0, but oth-
erwise satisfies the same inner product relations as β0, thus (α0, αi) = (β0, αi). The
Chevalley-Serre relations (2.4)–(2.5), with all superbrackets being ordinary antisym-
metric brackets, and with the Cartan matrix BIJ replaced by

AIJ = (αJ , αI
∨) = 2

(αJ , αI)

(αI , αI)
, (6.1)

defines a Kac-Moody algebra A . This corresponds to adding an ordinary (white)
node to the Dynkin diagram of g instead of a grey one, and in analogy with B the
adjoint representation of A dcomposes into g-representations Rp. The representation
R1 is the same as in the case of B, but R2 is now a subrepresentation of ∧2R1, the
anti-symmetric tensor product of R1 with itself. Its complement is the direct sum of
representations with lowest weights given by the Dynkin labels λi = Aij + 2Ai0 for
all j such that A0j 6= 0.

One might imagine that the statement (4.3) would apply both for the Lie su-
peralgebra B and the ordinary Lie algebra A . This would potentially have made it
possible to extract precise information about the generators to all levels for classes of
infinite-dimensional (e.g. hyperbolic) Kac–Moody algebras. It turns out, however,
that statistics can not just be changed. This is because the constrained object λ
then would be fermionic. Having bilinear (bosonic) constraints on fermionic vari-
ables is generically a strange situation, and leads to complicated structures, as we
will explain.

Consider a fermionic λ in a representation R1 of g with a bilinear constraint in
R2 of A , thus complementary to some Serre relations in the anti-symmetric product
∧2R1. An algebraic “solution” to the constraints (in the sense that one considers a
power series in λ modulo the constraint) will result in a polynomial partition func-
tion, where the highest term is of order lower than or equal to |R1|. Its factorisation
in ghost contributions is however infinite. This is because the ghosts, like the original
variables, are fermionic, and so are the ghosts for reducibility. Instead of removing
fermionic degrees of freedom, the ghosts add more fermions, corresponding to the
removal of bosonic degrees of freedom (the constraint).

This somewhat pathological behaviour is in itself not an obstruction for the
existence of a relation like eq. (4.3) — one might well imagine that a properly
regularised sum with strictly positive terms yields a negative value (although it is
a valid argument against an analogous construction when the Lie algebra is finite-
dimensional). What makes things go wrong is the fact that a bilinear constraint
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on fermions inherently has some reducibility coming from the fermionic property
of the variables. Whatever the bosonic constraint is, it is e.g. obvious that raising
it to a sufficient power will give zero due to saturation of fermions. This has no
counterpart in the bosonic situation, and will introduce ghosts in a BRST treatment
which do not enter Q in the “bcc” form. Therefore, a correct BRST treatment can
not be given an interpretation in terms of a Lie algebra. We have observed in a
number of examples that a naive treatment of the Serre relations as complementary
to a constraint gives agreement in the spectrum to a number of low levels, before
the “saturation of fermions” becomes relevant. Whether there is a systematic way
of consistently defining partitions for fermions that circumvents this and correctly
encodes the Serre relations (and thereby the spectrum of the Lie algebra) is an open
question. In any case it seems reasonable that the occurrence, in the superalgebra
case, of the highest weights which are simply multiples of the defining one, has
particularly simple structure without counterpart in the Lie algebra situation.

Turning to the actual proof of the main result for the Lie superalgebra B in
Section 5, it is easy to identify the step where the argument fails for Lie algebras.
The Weyl group of the extended algebra A is not identical to that of g, and the
proof in its present form fails, although the denominator formula is known.

7 Examples

We will give a number of examples that illustrate the connection between the con-
strained bosonic variable and the spectrum of generators in the superalgebra.

We use the notation B+ for the subalgebra of generators at positive levels, al-
though in some examples (the freely generated algebras) it is not a subalgebra of a
Borcherds superalgebra of the precise type described in Section 2.

7.1 The extreme cases

Consider first a freely generated superalgebra. Then the Serre relations are empty,
and elements of the universal enveloping algebra U(B+) are given by arbitrary
tensor products of R1. Thus ZU(B+) is given by eq. (3.10) with σ = −1, which is the
inverse of the formal partition for a “maximally constrained” boson in R1. This is
one extreme case of the correspondence (in which the statistics can be interchanged).
It appears if the additional simple root is not a null root, but has negative length
squared.

The other extremal case is when the Serre relations fill the whole symmetric
product ∨2R1, so that {EM , EN} = 0. The superalgebra is then finite-dimensional
with EM forming a basis for B+ = B1. The partition function ZU(B+) is the par-
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tition function of fermions in R1, which is the inverse of the partition function for
an unconstrained boson. Also in this other special case the statistics can be inter-
changed.

Intermediary cases only work as a correspondence of the form (4.3) between
superalgebras and constrained bosons, and these provide less trivial illustrations of
our result.

7.2 D = 8 pure spinors and null vectors

Pure spinors provide well known and extensively studied examples of constrained
bosons. They lead to minimal spinor orbits under Spin groups, due to the fact that
only a single irreducible representation appears in a spinor bilinear (the one whose
highest weight is twice the one of a spinor), and by induction there is only one
representation for each positive power of the spinor. We will give two examples of
pure spinors, in this subsection and the next.

Let us first consider a pure spinor in D = 8, where the constraint is particularly
simple, λαλα = 0. This is via triality equivalent to a null vector. The Dynkin diagram
of the corresponding superalgebra is given below.

The analysis can equally well be performed for null vectors in general dimension D.
The refined partition function for λ reads

Zλ(t) =
∞
⊕

p=0

(p0 . . . 0)tp , (7.1)

where Dynkin labels of highest weights have been used for the representations, and
(10 . . . 0) denotes the vector representation. The representation (p0 . . . 0) consists of
symmetric and traceless multi-vectors. Its dimension is readily calculated to be

(

p+D − 1

p

)

−

(

p+D − 3

p− 2

)

=
(2p+D − 2)(p+D − 3)!

(D − 2)!p!
, (7.2)

so the unrefined partition function (just counting dimensions) is

Zλ(t) =

∞
∑

p=0

(2p+D − 2)(p+D − 3)!

(D − 2)!p!
tp =

1 + t

(1− t)D−1
=

1− t2

(1− t)D
. (7.3)
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The same result is obtained by constructing the partition function from the ghosts.
An (unconstrained) variable λ contributes to Z with (1−t)−(10...0), and the fermionic
ghost for the constraint with (1 − t2)(00...0). The constraint is irreducible, so there
are no higher ghosts. The correspondence (4.3) tells us that the spectrum of the
universal enveloping algebra U(B+) is given by

ZU(B+)(t) = (Zλ(t))
−1 = (1− t)(10...0) ⊗ (1− t2)−(00...0) , (7.4)

corresponding to a fermionic generator in (10 . . . 0) at level one and a bosonic one
in (00 . . . 0) at level two. The superalgebra B, which here comes with a 5-grading,
is finite-dimensional, B ≈ osp(D|2). A finite-dimensional superalgebra is obtained
when the reducibility of the constraint on λ is finite.

7.3 D = 10 pure spinors and supergravity forms

Let us turn to the more interesting cases of infinite-dimensional superalgebras, which
are related to the spectrum of forms in supergravity, and thereby also to the tensor
hierarchies in gauged supergravity (see the discussion in Section 1).

Pure spinors in D = 10 are relevant for the off-shell superfield formulation of
D = 10 super-Yang–Mills theory (see e.g. refs. [35–38]). The partition function is
described in some detail in ref. [23], and is given by

Zλ(t) =

∞
⊕

p=0

(0000k)tp

=
[

(00000)⊖ (10000)t2 ⊕ (00001)t3

⊖ (00010)t5 ⊕ (10000)t6 ⊖ (00000)t8
]

⊗ (1− t)−(00001) , (7.5)

or, just counting dimensions,

Zλ(t) =
1− 10t2 + 16t3 − 16t5 + 10t6 − t8

(1− t)16
=

(1 + t)(1 + 4t+ t2)

(1− t)11
. (7.6)

The power 11 of the pole at t = 1 signals 11 degrees of freedom in a pure spinor.
The Dynkin diagram of the corresponding superalgebra is given below.
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This algebra is infinite-dimensional. Still, we know that the spectrum is determined
by ZU(B+) = Zλ

−1. The generators at each level in B+ are obtained by rewriting
the partition function (7.5) on product form, which reflects the ghost structure
corresponding to the infinite reducibility:

(Zλ(t))
−1 =

∞
⊗

p=1

(1− tp)(−1)p+1Rp . (7.7)

This can be done recursively as in eq. (4.12), with the following result for the first
few representations:

R1 = (00001) = 16, R2 = (10000) = 10, R3 = (00010) = 16,

R4 = (01000) = 45, R5 = (10010) = 144,

R6 = (11000)⊕ (00020)⊕ (10000) = 320⊕ 126⊕ 10, . . . (7.8)

For the dimensionalities |Rp|, an explicit Möbius inversion formula can be found [23].
The case of D = 10 pure spinors is relevant to exceptional field theory with

U-duality group E5 ≈ Spin(5, 5). Generally, the infinite ghost tower in exceptional
field theory with U-duality group En (n ≤ 8) is identical to the infinite spectrum
of superforms in D-dimensional maximal supergravity (D = 11 − n), as was shown
for low levels in ref. [22]. Our results here, combined with those in refs. [8–10],
establish this correspondence for all levels. Here we have shown that the ghosts for a
constrained object give rise to a Borcherds superalgebra by the action of the BRST
operator, and in refs. [8–10] it was shown that the forms in the supergravity theory
similarly give rise to a Borcherds superalgebra by their Bianchi identities. In the
extended field theory the constraint is directly associated with the section condition,
and leads to the same Borcherds superalgebras as the supersymmetry constraint on
the supergravity side. Since the Borcherds superalgebras are the same, the sequences
of representations are the same as well.

The (unrefined) partition functions corresponding to the constraint in the ex-
ceptional field theories were give in ref. [22]. As an example, the E6 case gives a
Borcherds superalgebra defined by a λ belonging to a cône over the Cayley plane [39].
The partition function is

Zλ(t) =
∞
⊕

k=0

(k00000)tk

=
[

(000000)⊖ (000001)t2 ⊕ (010000)t3 ⊖ (001000)t5

⊕ (100001)t6 ⊖ (000002)t7 ⊖ (200000)t8 ⊕ (100001)t9

⊖ (000010)t10 ⊕ (010000)t12 ⊖ (100000)t13 ⊕ (000000)t15
]

⊗ (1− t)−(100000) , (7.9)
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and the spectrum of the Borcherds algebra is obtained recursively by rewriting Zλ

on product form.
With the same interpretation as gauge transformations and reducibility for gen-

eralised diffeomorphisms, our earlier example with null vectors, corresponding to a
finite-dimensional superalgebra, is relevant for double field theory with T-duality
group O(d, d).

7.4 Superalgebras and Lie algebras

A curious observation, somewhat besides the main focus of this paper, is that the
last Dynkin diagram of the previous subsection has the same form as the one for
E6, had the extra node been white instead of grey. Similarly, had the extra node in
the superalgebra of Subsection 7.2 been white, we would have had the Lie algebra
for SO(10), or in the general case SO(D + 2).

Polynomials of a pure spinor, the constrained object encoding the spectrum of
the Borcherds algebra in question, indeed form an infinite-dimensional “singleton”
representation of E6, which can be constructed as follows. Consider generators of
E6 ⊃ so(10) ⊕ u(1). The adjoint splits as 78 → 16−1 ⊕ (45 ⊕ 1)0 ⊕ 161. Call the
spinorial generators λα and µα. With the conventions

[Jab, λ
α] =

1

4
(γabλ)

α , [Q, λα] = λα , (7.10)

the only non-manifestly covariant non-vanishing commutator is

[µα, λ
β] = (γab)α

βJab +
3

2
δβαQ . (7.11)

The relative coefficient is fixed by demanding the Jacobi identity on the form

[[µα, λ
[β], λγ]] = 0 . (7.12)

Now, we start from an so(10)-scalar ”ground state” |0〉 annihilated by µα, and
use λα as ”creation operators”, giving a Verma module of polynomials in λ. Let the
ground state have charge q, Q|0〉 = q|0〉. We want to adjust the value of q so that
(λγaλ) generates an E6-invariant ideal. This happens if µα(λγ

aλ)|0〉 = 0. A short
calculation leads to

µα(λγ
aλ)|0〉 =

3

2
(2q + 1)(γaλ)α|0〉+

1

4
(γijγaγijλ)α|0〉

=

(

3

2
(2q + 1)−

27

2

)

(γaλ)α|0〉 . (7.13)
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If q = 4, this vanishes, and the ideal may be factored out without breaking E6.
This shows how the space of (holomorphic) polynomials in a pure spinor forms an
infinite-dimensional lowest-weight representation of E6. It may be called a singleton
representation, since it only consists of a “leading trajectory” of Spin(10) repre-
sentations with highest weights (0000k) at each U(1) charge 4 + k. The lowering
operator µα can be identified with the gauge invariant (in the sense that it respects
the ideal) derivative with respect to a pure spinor constructed in ref. [40].

In the same way a singleton representation of SO(D + 2) [41] is obtained by
starting from a ground state of a certain charge. We use the conventions

[Jab, λc] = 2λ[aηb]c , [Q, λa] = λa ,

[µa, λb] = Jab − ηabQ . (7.14)

The ideal generated by λ2 can be factored out for vacuum charge q = D−2
2

, leading
to a singleton representation.

At least in these particular cases, the constrained object, i.e., the pure spinor or
null vector, has a direct relation both to a Borcherds superalgebra and to a (finite-
dimensional) Lie algebra. Both algebras are obtained by adding a node, grey and
white, respectively, in the same position to the Dynkin diagram of a semi-simple
Lie algebra, but the rôle of the pure spinor is quite different in the two cases. The
phenomenon is certainly more general, but is in its present form limited to situations
where the λ’s commute, and thus are the only generators at positive level in the Lie
algebra. It holds e.g. for the constrained objects λ occurring in relation to tensor
hierarchies of En × R

+ with n ≤ 6, and the Borcherds superalgebras obtained by
extending En by an odd null root. The corresponding Lie algebra, having polynomials
of λ as a singleton representation is En+1 ⊃ En × R

+, which is a 3-grading.
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