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Abstract

We carry out the holographic renormalization of Einstein-Maxwell theory with curvature-squared

corrections. In particular, we demonstrate how to construct the generalized Gibbons-Hawking sur-

face term needed to ensure a perturbatively well-defined variational principle. This treatment

ensures the absence of ghost degrees of freedom at the linearized perturbative order in the higher-

derivative corrections. We use the holographically renormalized action to study the thermodynam-

ics of R-charged black holes with higher derivatives and to investigate their mass to charge ratio

in the extremal limit. In five dimensions, there seems to be a connection between the sign of the

higher derivative couplings required to satisfy the weak gravity conjecture and that violating the

shear viscosity to entropy bound. This is in turn related to possible constraints on the central

charges of the dual CFT, in particular to the sign of c− a.
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I. INTRODUCTION

Higher derivative corrections to pure Einstein gravity have seen renewed interest with the

development of the AdS/CFT correspondence. In particular, they have played an important

role in many of the thermodynamic and hydrodynamic studies that have emerged from

applications of AdS/CFT to strongly coupled gauge theories. Since the Einstein-Hilbert

action is only the leading term in the string theory expansion, higher derivative corrections

are natural from an effective field theory point of view. In the gravitational sector, such

corrections generally take the form (α′)nRn+1, where R denotes schematically the Riemann

tensor and its contractions. On the field theory side of the correspondence they describe

finite ’t Hooft coupling λ and finite N corrections.

In theories that are maximally supersymmetric (e.g. IIB theory in ten dimensions), the

first corrections do not enter until α′ 3R4 order. However, generically the first non-trivial

terms appear at curvature-squared level. This has motivated numerous recent holographic

studies with R2 terms parameterized by

e−1δL = α1R
2 + α2R

2
µν + α3R

2
µνρσ . (1)

In the absence of matter fields, the Einstein equation takes the form Rµν = −(d − 1)g2gµν ,

where g = 1/L is the inverse AdS radius. As a result, the α1 and α2 terms in (1) may be

shifted away by an on-shell field redefinition of the form

gµν → gµν + λ1[Rµν + (d− 1)g2gµν ] + λ2gµν [R + d(d− 1)g2], (2)

for appropriate choices of λ1 and λ2. In particular, such a field redefinition allows (1) to be

replaced by the well-known Gauss-Bonnet combination

e−1LGB = α3(R
2 − 4R2

µν +R2
µνρσ), (3)

which is the unique curvature-squared combination that nevertheless yields equations of

motion that are no higher than second derivative in the metric.

Many of the positive features of the Gauss-Bonnet combination, including exact Gauss-

Bonnet black hole solutions, have been exploited in recent investigations of AdS/CFT hy-

drodynamics [1, 2]. However, it is important to realize that the α1 and α2 terms in (1) are

not always unphysical once matter fields are turned on. For example, in an Einstein-Maxwell
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theory, shifting away the α1 and α2 terms in (1) would at the same time generate new mixed

terms of the form RF 2 and RµνF
µλF ν

λ. This is especially relevant in studies of R-charged

backgrounds in five-dimensional gauged supergravity, where the natural curvature-square

correction arises as the Weyl-tensor squared, as opposed to the Gauss-Bonnet combination

[3, 4].

A. Perturbative approach to higher-derivative terms

The purpose of this paper is to revisit the holographic renormalization of R-squared

AdS gravity and to demonstrate the systematic construction of both generalized Gibbons-

Hawking surface terms and local boundary counterterms in theories with higher derivatives.

It is well known that higher derivative theories generically lead to unpleasant features such

as ghosts and additional propagating degrees of freedom. However, since the theories we are

interested in arise from the low energy limit of string theory, it is only consistent to treat the

higher derivative terms perturbatively, as part of the α′ expansion. In this way, these terms

will not generate additional ghost modes, and thus will not drastically alter the dynamics

of the lowest order two-derivative theory.

As an example of what we mean by the perturbative treatment of higher derivative terms,

consider a toy model of a simple harmonic oscillator with a four-derivative addition [5]

L = 1
2
ẋ2 − 1

2
ω2x2 − 1

2
α(ẍ2 − ω2ẋ2). (4)

The resulting equation of motion is

(1 + αω2)ẍ+ ω2x2 + αx(4) = 0, (5)

and has solution

x(t) = A1e
iωt + A2e

−iωt + A3e
it/

√
α + A4e

−it/
√
α . (6)

The first two terms are conventional, while the last two arise because of the higher derivative

nature of the model. This demonstrates that additional degrees of freedom are present in

this theory, and in particular it is no longer sufficient to specify only two boundary conditions

when constructing the Green’s function. This is also clear when considering the variation of

the action

δS = −
∫ t2

t1

[EOM]dt+
[

((1 + αω2)ẋ+ α
...
x )δx− αẍδẋ

]t2

t1
. (7)
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In order to have a well-defined variational principle, we must hold both x and ẋ fixed at the

endpoints of the time interval.

In general, for finite non-zero α, there is no possibility of avoiding the complications of the

higher-derivative theory. However, it is instructive to consider the limit α → 0. In this case,

it is clear that the second solution, with frequency 1/
√
α, is not perturbatively connected

to the α = 0 theory. Assuming the toy Lagrangian (4) arises from an O(α) expansion of a

more complete theory, it is then clear that the second solution would never have appeared

in the full theory, and thus must be discarded for perturbative consistency. A simple way of

arriving at the perturbative solution is to rewrite the equation of motion (5) as

ẍ+ ω2x2 = −α
d2

dt2
(ẍ+ ω2x), (8)

We may then substitute in the lowest order equation of motion to obtain ẍ+ω2x2 = O(α2),

and in general iterate to any arbitrary order of α (our choice of shifting the kinetic term in

(4) leads to vanishing perturbative corrections in α, but in general they could be present).

While perturbative solutions to the equation of motion are routinely investigated, it is

often equally important to construct a well-defined variational principle at the perturbative

level. Looking at the toy model, the difficulty here arises from the −αẍδẋ surface variation

in (7). In general, no surface term exists that can remove the dependence on δẋ on the

boundary (after all, this is a four derivative theory). However, at the perturbative level, we

may use the lowest order equation of motion to rewrite −αẍδẋ = αω2xδẋ + O(α2). This

variation can then be canceled at O(α) by adding a surface term of the form

Ssurface =
[

−αω2xẋ
]t2

t1
. (9)

In principle, this can be continued order by order in α.

Using this toy model, we have motivated the fact that there is a consistent perturbative

treatment of higher derivative gravitational theories arising out of string theory. In par-

ticular, the gravitational analog of (9) is a generalized Gibbons-Hawking surface term, and

this was constructed in a particular case in [6] when examining the effect of the IIB R4

term on the shear viscosity to entropy density ratio η/s in N = 4 super-Yang-Mills theory.

The construction in [6] was based on scalar channel fluctuations, and hence focused on an

effective scalar field theory. Our present aim is to extend this construction to the full gravity

theory, and hence to demonstrate that (perturbative) holographic renormalization of higher

derivative gravity theories is indeed consistent.
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Allowing for a gauge field, we focus on the holographic renormalization of d-dimensional

Einstein-Maxwell theory with generic curvature-squared corrections given by

e−1L = R− 1
4
F 2 + (d− 1)(d− 2)g2 + α1R

2 + α2R
2
µν + α3R

2
µνρσ. (10)

The bulk action from this Lagrangian must be supplemented by a set of surface terms,

whose goal is to ensure that the variational principle is well defined. In fact, when defined

on a space with boundary, the two-derivative Einstein-Hilbert action itself requires the

addition of the Gibbons-Hawking surface term to cancel boundary variations which would

otherwise spoil the variational principle. The presence of higher derivative corrections leads

to additional boundary terms which need to be canceled, and therefore requires the inclusion

of an appropriate generalization of the Gibbons-Hawking term.

For particular combinations of curvature corrections, the so-called Lovelock theories where

the equations of motion involve no higher than second derivatives of the metric – which in-

clude the Gauss-Bonnet combination as a special case – proper boundary terms have already

been constructed [7, 8]. However, for more general corrections, we must treat the corrections

perturbatively, and only in this case does the construction of a generalized Gibbons-Hawking

term become feasible1. We demonstrate below how this is done, and furthermore construct

the set of local counterterms removing the leading divergences from the action. This gener-

alizes the case of Gauss-Bonnet gravity, for which all the counterterms needed to regularize

the action were constructed in [14, 15, 16, 17].

B. R-charged black holes and the mass-charge relation

For an application of the counterterm corrected action, we will look at R-charged black

hole thermodynamics. In fact, one of the driving forces behind the studies of AdS/CFT

at finite temperature has been the close resemblance of the laws of black hole physics with

those of standard thermodynamics. To extract thermodynamic quantities from black hole

backgrounds one typically evaluates the on-shell action I and the boundary stress tensor,

given by

T ab =
2√
−h

δI

δhab
, (11)

1 A similar construction has also been done for F (R) theories of gravity in [9] and also for more general

higher derivative theories in [10, 11, 12, 13].
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where hab denotes the boundary metric. The on-shell value of the gravitational action may

then be identified with the thermodynamic potential Ω according to I = βΩ, where in the

grand canonical ensemble

Ω = E − TS −QIΦ
I . (12)

Here QI are a set of conserved R-charges and ΦI their respective potentials. Holographic

renormalization ensures that both Ω and E are finite in the above expression.

Below we will perturbatively construct the d-dimensional spherically symmetric R-

charged black hole solutions to the R-squared theory (10) and study their thermodynamic

properties using the holographically renormalized action. Extracting the higher curvature

effects on the black hole mass will also allow us to discuss the weak gravity conjecture in

the context of AdS black holes. In fact, according to the conjecture, the linear mass-charge

relation for extremal (not necessarily SUSY) black holes cannot be exact, but should receive

corrections as the charge decreases. For extremal R-charged black-holes, we find a deviation

from the leading relation m = q of the form

m

q
=

(

m

q

)

0

[

1− 1

r2+

(

α1f1(r+) + α2f2(r+) + α3f3(r+)

)]

, (13)

where r+ is the horizon radius, and the fi(r+) are all positive functions. Thus, m/q will

necessarily decrease when all the couplings αi are positive. Clearly, it is still possible for the

ratio to decrease if some of the αi are negative, and in this respect it is important to be able

to determine the precise form of the couplings from UV physics.

A feature which we would like to emphasize is that the deviation from the m = q relation

seems to be tied to the correction to some of the transport coefficients which have been

computed holographically in the context of the quark gluon plasma. In particular, the sign

of the correction to the shear viscosity to entropy ratio η/s has received a lot of attention,

precisely because curvature-squared terms have been shown to lead to a violation of the

KSS bound [18]. For the examples that have been studied thus far, the sign of the higher

derivative couplings responsible for the bound violation is precisely the same as that needed

by the weak gravity conjecture. For instance, for the special case of Weyl-squared corrections,

where α1 =
1
6
α, α2 = −4

3
α, α3 = α, the mass-charge relation becomes

m

q
=

(

m

q

)

0

[

1− α
f(r+)

r2+

]

, (14)
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where the function f(r+) is positive, while the expression for η/s takes the form

η

s
=

1

4π

[

1− α g(Q)

]

, (15)

where g(Q) is a non-negative function of the R-charge.

The outline of the paper is as follows. Section II is dedicated to the construction of the

perturbative generalization of the Gibbons-Hawking surface term for the R2 action (10).

Following this, in Section III we present the local counterterms needed to render this action

finite in dimensions d ≤ 7. We then present the R-charged black hole solution in Section IV

and explore their thermodynamics in Section V, where we also discuss the implications of

the mass to charge ratio for the weak gravity conjecture.

II. GENERALIZING THE GIBBONS-HAWKING SURFACE TERM

Before considering the higher derivative gravitational action, it is worth recalling that

the ordinary Einstein-Hilbert action

Sbulk = − 1

2κ2
d

∫

M
ddx

√−gR (16)

contains explicitly second derivatives of the metric gµν . Thus, on a space with a boundary,

variation with respect to the metric yields, in addition to the standard δgµν factors, terms

involving the normal derivative of the metric. In order to have a well-defined variational

principle where the metric, but not its derivative, is held fixed at the boundary, the Einstein-

Hilbert action must be supplemented by the Gibbons-Hawking surface term

SGH = − 1

κ2
d

∫

∂M
dd−1x

√
−hK . (17)

Here K denotes the trace of the extrinsic curvature tensor, Kµν = ∇(µnν), where nµ specifies

the normal direction to the boundary surface, and hab is the boundary metric. With the

inclusion of the Gibbons-Hawking term, the unwanted normal derivative terms are canceled,

and the variational principle is well-defined.

We now consider the addition of curvature-squared terms, and take the bulk action to be

of the form

Sbulk = − 1

2κ2
d

∫

M
ddx

√−g
[

R− 1

4
F 2 + (d− 1)(d− 2)g2 + α1R

2 + α2R
2
µν + α3R

2
µνρσ

]

. (18)
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In general, this four-derivative action gives rise to higher order equations of motion. How-

ever, for the special choice of coefficients α1 = α3 and α2 = −4α3, the higher derivative

terms combine to form the well-known Gauss-Bonnet term R2 − 4R2
µν +R2

µνρσ, which is the

unique combination that gives rise to equations of motion involving no higher than second

derivatives of the metric. This motivates us to rewrite (18) in the equivalent form

Sbulk = − 1

2κ2
d

∫

M
ddx

√−g
[

R − 1

4
F 2 + (d− 1)(d− 2)g2

+α̃1R
2 + α̃2R

2
µν + α3(R

2 − 4R2
µν +R2

µνρσ)
]

, (19)

where

α̃1 = α1 − α3, α̃2 = α2 + 4α3. (20)

For the special case of Gauss-Bonnet gravity, where α̃1 = α̃2 = 0, the Gibbons-Hawking

surface term can be generalized [7, 8], and takes the form

SGauss-Bonnet
GH = − 1

κ2
d

∫

∂M
dd−1x

√
−hα3

[

− 2

3
K3 + 2KKabK

ab − 4

3
KabK

bcKc
a

−4(Rab −
1

2
Rhab)K

ab
]

, (21)

where Rab is the boundary Ricci tensor. However, no equivalent term exists for α̃1 and

α̃2 non-vanishing, because in this case the equations of motion are of higher order, and

in general it is no longer sufficient to specify only the metric (and not derivatives) on the

boundary.

This issue is unavoidable whenever we are faced with higher order equations of motion.

However, we are really only interested in viewing the higher order terms as corrections to the

two-derivative action. In this case, we only need to develop a perturbative expansion where

the higher derivative terms do not generate their own dynamics, but instead contribute

merely correction terms, thus effectively maintaining a two-derivative equation of motion.

In this case, it should be possible to write down an effective Gibbons-Hawking term, not just

for the Gauss-Bonnet combination, but also for the R2 and R2
µν terms in the action. This

has been done for R2 corrections in d = 5 by introducing auxiliary fields [13]. However, one

can avoid the complications involved in utilizing auxiliary fields by working directly with

the perturbative expansion.

To see how this may be done, we begin with the observation that the ordinary Gibbons-

Hawking term (17) is designed to cancel the appropriate part of the variation of the Einstein-

8



Hilbert term, namely
√−ggµνδRµν . With this in mind, consider the variation

δ[R + α̃1R
2 + α̃2R

2
µν ] = δR + 2α̃1RδR + 2α̃2(R

µνδRµν +RµρR
µ
σδg

ρσ)

= (gµν + 2α̃1Rgµν + 2α̃2R
µν)δRµν

+(Rµν + 2α̃1RRµν + 2α̃2RµρR
ρ

ν )δgµν . (22)

Substituting in the lowest order equation

Rµν = −(d − 1)g2gµν +
1

2

(

FµλFν
λ − 1

2(d− 2)
gµνF

2

)

+O(αi) (23)

results in

δ[R + α̃1R
2 + α̃2R

2
µν ] = (1− 2α̃1g

2d(d− 1)− 2α̃2g
2(d− 1))gµνδRµν

+
1

2(d− 2)
(α̃1(d− 4)− α̃2)F

2gµνδRµν + α̃2F
µλF ν

λδRµν + · · · ,

(24)

where we have ignored higher order terms as well as terms not related to the variation δRµν .

For the terms in (24) involving simply gµνδRµν , it is straightforward to generalize the

usual Gibbons-Hawking term, (17), to obtain a corresponding surface term canceling the

variation of the normal derivative of the metric

S1
GH = − 1

κ2
d

∫

∂M
dd−1x

√
−h

[

(1− 2α̃1g
2d(d− 1)− 2α̃2g

2(d− 1))K

+
1

2(d− 2)
(α̃1(d− 4)− α̃2)KF 2

]

. (25)

However, the last term in (24) is a not as straightforward to deal with, and the variation

δRµν must be computed explicitly. We find,
∫

M
ddx

√−gF µλF ν
λδRµν

=

∫

M
ddx

√−gF µλF ν
λ

(

∇σδΓ
σ
µν −∇µδΓ

σ
νσ

)

=
1

2

∫

M
ddx

√−gF µλF ν
λ

(

2nρ∇(µδgν)ρ − nρ∇ρδgµν − nµg
ρσ∇νδgρσ

)

=
1

2

∫

M
ddx

√−g [bulk] +
1

2

∫

∂M
dd−1x

√
−h

(

−ha
ch

b
dF

cλF d
λ

−habnµF
µλnνF

ν
λ

)

nρ∇ρδgab + · · · , (26)

where in the last line we have kept only the terms on the boundary coming from integration

by parts and including normal derivatives of the metric. The proper Gibbons-Hawking
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boundary term associated with this variation is then simply:

S2
GH = − 1

κ2
d

∫

∂M
dd−1x

√
−h

α̃2

2

(

KnµF
µλnνF

ν
λ +KabF

aλF b
λ

)

. (27)

It is now clear that the full effective Gibbons-Hawking term generalizing (17) is just the sum

of (25) and (27), which handles the α̃1 and α̃2 terms, and (21), which takes care of the α3

Gauss-Bonnet combination:

SGH = − 1

κ2
d

∫

∂M
dd−1x

√
−h

[

(

1− 2α̃1g
2d(d− 1)− 2α̃2g

2(d− 1)
)

K

+
1

2(d− 2)

(

α̃1(d− 4)− α̃2

)

KF 2 +
α̃2

2

(

KnµF
µλnνF

ν
λ +KabF

aλF b
λ

)

−2α3

(1

3
K3 −KKabK

ab +
2

3
KabK

bcKc
a + 2(Rab −

1

2
Rhab)K

ab
)]

. (28)

We note that the Gibbons-Hawking term now involves the gauge field strength evaluated

on the boundary. Variation of SGH then results in δF terms on the boundary, thus com-

plicating the variational principle for the potential Aµ. This can in principle be avoided by

working in the canonical ensemble, where the charge is held fixed, and which corresponds

to taking δ(nµF
µa) = 0 instead of δAµ = 0 on the boundary. A natural way to do this is

to add a Hawking-Ross boundary term of the form
∫

∂M dd−1x
√
−hnµF

µaAa to cancel the

boundary term which arises from the variation of the gauge kinetic term in the bulk action

[19]. However, for our present purposes, all terms involving the field strength in (28) are

actually subdominant and, in fact, vanish for all of the thermodynamic quantities discussed

below. Therefore, we will chose to work in the grand-canonical ensemble without adding the

Hawking-Ross term.

III. BOUNDARY COUNTERTERMS

It is well known that the gravitational action (18) evaluated on the background solution

is divergent. The divergences can be removed, however, using the method of holographic

renormalization, which involves introducing appropriate boundary counterterms Sct so that

the full action

Γ = Sbulk + SGH − Sct, (29)

remains finite on-shell. This method has become quite standard in the framework of

AdS/CFT, since the boundary counterterms have a natural interpretation as conventional

field theory counterterms in the dual CFT.
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Along with counterterms to remove divergences, one is also free to add an arbitrary

number of finite counterterms. While such terms shift the values of the action and boundary

stress tensor, they are natural from the CFT point of view, since they correspond to the

freedom to change renormalization prescriptions. Their inclusion has played a key role,

for example, in resolving the puzzle of the unusual mass/charge relation M ∼ 3
2
µ + Q −

1
3
g2Q2 observed in [20] for single R-charged black holes in AdS5, in apparent conflict with

the BPS bound M ≥ Q, saturated in this case when µ = 0. With the addition of an

appropriate finite counterterm, the expected linear relation M ∼ 3
2
µ+ 3Q may be restored

[21]. The finite counterterms are also necessary for maintaining diffeomorphism invariance

in the renormalized theory, and may be unambiguously generated using the Hamilton-Jacobi

approach to boundary counterterms.

In order to explore the appropriate counterterm structure needed to regulate the action

(18), we first note that it admits a vacuum AdS solution with

Rµν = −(d− 1)g2effgµν , (30)

where

g2eff = g2
(

1 + α̃1g
2d(d− 1)(d− 4)

d− 2
+ α̃2g

2 (d− 1)(d− 4)

d− 2
+ α3g

2(d− 3)(d− 4)

)

(31)

is the shifted inverse AdS radius. Writing the vacuum AdS metric as

ds2 = −(k + g2effr
2)dt2 +

dr2

k + g2effr
2
+ r2dΩ2

d−2,k, (32)

it is easy to see that
√−g ∼ rd−2, and hence that the leading divergence of the on-shell goes

as rd−1
0 where r0 is an appropriate cutoff.

The counterterm action for the theory (18) may be expanded in powers of the inverse

metric hab ∼ 1/r20:

Sct =
1

2κ2
d

∫

∂M
dd−1x

√
−h [A+BR+ C1R2 + C2R2

ab + C3R2
abcd + · · · ] . (33)

Note that we have ignored possible counterterms built out of Fµν since in the configurations

we are interested in the gauge field vanishes sufficiently rapidly at the boundary so that it

will not contribute to any potential counterterms. The A and B coefficients are chosen to

cancel the rd−1
0 and rd−3

0 power law divergences, respectively, while the Ci terms will cancel

the rd−5
0 divergence. Note, however, that at lowest order the asymptotic Einstein condition
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Rµν = −(d − 1)g2gµν along with the boundary symmetry implied by (32) ensures that the

boundary curvature satisfies the algebraic relation R2 = (d− 2)R2
ab. Furthermore, isotropy

of the transverse space relates R2
abcd to the other boundary curvature squared quantities

as well. What this means is that divergence cancellation by itself is insufficient to fix the

relative factors among the Ci coefficients.

An elegant way around this ambiguity in fixing the Ci coefficients is to use the Hamilton-

Jacobi method to obtain the counterterms. In particular, this was done in [17] to generate

the counterterms for the Gauss-Bonnet component of the action proportional to α3. (These

counterterms were previously constructed in [14, 15, 16] using more direct methods.) In

order to determine the α̃1 and α̃2 dependent counterterms, we may take a shortcut and

note that they may be absorbed by a field redefinition in the asymptotic limit. In this case,

their only effect is to rescale the usual counterterms for the two-derivative theory, which is

proportional to the combination

R2
ab −

d− 1

4(d− 2)
R2 (34)

at curvature squared order. At the linear level, we combine the various ingredients to obtain

Sct =
1

2κ2
d

∫

∂M
dd−1x

√
−h

[

2g(d− 2)

(

1− 1

2
α̃1g

2d(d− 1)(3d− 4)

d− 2

−1

2
α̃2g

2 (d− 1)(3d− 4)

d− 2
− 1

6
α3g

2(d− 3)(d− 4)

)

+
1

g(d− 3)

(

1− 1

2
α̃1g

2d(d− 1)(5d− 12)

d− 2

−1

2
α̃2g

2 (d− 1)(5d− 12)

d− 2
+

3

2
α3g

2(d− 3)(d− 4)

)

R

+
1

g3(d− 3)2(d− 5)

(

1− 1

2
α̃1g

2d(d− 1)(7d− 20)

d− 2
− 1

2
α̃2g

2 (d− 1)(7d− 20)

d− 2

−7

2
α3g

2(d− 3)(d− 4)

)(

R2
ab −

d− 1

4(d− 2)
R2

)

+
α3

g(d− 5)

(

R2 − 4R2
ab +R2

abcd

)

+ · · ·
]

. (35)

We have only explicitly worked out the counterterms up to O(rd−5
0 ). This is sufficient

to cancel divergences for d ≤ 7, but is insufficient for removing finite terms that spoil

diffeomorphism invariance in d = 7. Hence our results are explicit only for d < 7, although

the counterterm action can be extended to arbitrary dimension if desired.
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IV. THE R2 CORRECTED BLACK HOLE SOLUTION

The full theory we are interested in is determined by the bulk action (18) along with the

generalized Gibbons-Hawking term (28) and counterterm action (35). We now turn to the

construction of R2 corrected spherically symmetric black hole solutions to this system. Since

we are working to linear order in αi, we may substitute the lowest order equations of motion

wherever possible into the higher curvature terms. We find that the Einstein equation takes

the form

Rµν + (d− 1)g2gµν +
1

4(d− 2)
F 2gµν −

1

2
FµλFν

λ =

[

−g4(α1d+ α2)
(d− 4)(d− 1)2

d− 2
− g2

(

α1(d
2 − 8) + α2(3d− 8)

) (d− 1)

2(d− 2)2
F 2

+
(

α1(d− 4)(3d− 8)− α2(5d− 12)
) 1

16(d− 2)3
(F 2)2 +

α2

4(d− 2)
FγλF

λσFσρF
ργ

+
(

α1(d− 4) + α2(d− 3) + α3(3d− 8)
) 1

2(d− 2)2
∇λ∇λF 2 +

α3

d− 2
R2

γρλσ

]

gµν

+g2(α1d+ α2 − 2α3)(d− 1)FµλFν
λ + α3FµλF

λσFσρF
ρ
ν

−
(

α1(d− 4)− α2 + 2α3)
1

4(d− 2)
F 2FµλFν

λ − 2α3RµρλσRν
ρλσ

−(α2 + 2α3)RµρνλF
ρσF λ

σ −
1

2
(α2 + 4α3)∇λ∇λ(FµλFν

λ)

+(2α1 + α2 + 2α3)
(d− 4)

4(d− 2)
∇µ∇νF

2 , (36)

while the Maxwell equation is simply

∇µFµν = 0. (37)

The presence of F 4 terms in the Einstein equation indicates that we will end up with metric

terms up to O(Q4) where Q is the electric charge.

We now take the spherically symmetric metric ansatz

ds2 = −f1(r) dt
2 +

1

f2(r)
dr2 + r2dΩ2

d−2,k , (38)

where k = 1, 0,−1 specifies the curvature of the transverse space. Inserting this into the

13



Einstein equations yields the solution to linear order in the αi:

f1(r) = k + g2effr
2 − µ

rd−3

+
(

1 + 2g2(α̃1d(d− 1)− α̃2(d
2 − 6d+ 7) + α3(d− 3)(d− 4))

) Q2

2(d− 2)(d− 3)r2(d−3)

+
kQ2

r2d−4

(

2α̃1
(d− 4)

(d− 2)2
− α̃2

d2 − 6d+ 10

(d− 2)2

)

+ α3(d− 3)(d− 4)
µ2

r2d−4

− µQ2

r3d−7

(

α̃1
(d− 1)(d− 4)

(d− 2)2
− α̃2

(d− 2)2
+ α3

(d− 4)

(d− 2)

)

+
Q4

4r4d−10

(

α̃1
(d− 4)(11d2 − 45d+ 44)

(d− 2)3(d− 3)(3d− 7)
+ α̃2

4d3 − 33d2 + 83d− 64

(d− 2)3(d− 3)(3d− 7)

+α3
(d− 4)

(d− 2)2(d− 3)

)

f2(r) =

(

1− 2γ
Q2

r2d−4

)

f1(r) , (39)

where geff is defined in (31) and

γ = α̃1
(2d− 3)(d− 4)

(d− 2)2
+ α̃2

d2 − 5d+ 5

(d− 2)2
. (40)

The gauge field is given by

At =
Q

(d− 3)rd−3
+ γ

Q3

(3d− 7)r3d−7
, (41)

up to a possible constant.

Other than k, the black hole depends on two parameters: µ, which is related to the mass,

and Q, which is essentially the electric charge. Note that the mass parameter µ is shifted

from the conventional Gauss-Bonnet black hole mass parameter by a constant proportional

to α3. In particular, the Gauss-Bonnet theory (α̃1 = α̃2 = 0) admits an exact solution with

a corresponding mass parameter µ̂ of the form

ds2 = −fdt2 +
1

f
dr2 + r2dΩ2

d−2,k, (42)

where [22, 23, 24, 25]

f = k +
r2

2α̃3

[

1∓
√

1 + 4α̃3

(

µ̂

rd−1
− g2 − Q2

2(d− 2)(d− 3)r2(d−2)

)

]

, (43)

and α̃3 = α3(d− 3)(d− 4). Taking the ‘negative’ branch of (43), which is the only one that

14



admits a perturbative expansion, we find to linear order in α3

f = k + g2effr
2 − (1 + 2g2α̃3)

µ̂

rd−3
+ (1 + 2g2α̃3)

Q2

2(d− 2)(d− 3)r2(d−3)

+α̃3
µ̂2

r2(d−2)
− α̃3µ̂Q

2

(d− 2)(d− 3)r3d−7
+

α̃3Q
4

4(d− 2)2(d− 3)2r2(2d−5)
, (44)

where in this case g2eff = g2(1 + g2α̃3). Comparing this with (39) demonstrates the relation

µ = µ̂(1 + 2g2α̃3) = µ̂
(

1 + 2g2α3(d− 3)(d− 4)
)

. (45)

Note also that for Q = 0 the dependence of the solution (39) on α̃1 and α̃2 is indirect through

the shift in geff . This is related to the fact that these contributions may be removed at linear

order through a field redefinition. However, with nonzero charge, a field redefinition of the

form gµν → gµν + aRgµν + bRµν can in principle remove the R2 and R2
µν terms in the action

but also generates RF 2 and RµνF
µλF ν

λ terms, implying that the coefficients α̃1 and α̃2

remain physical [26].

V. THERMODYNAMICS

Given the holographically renormalized action, it is straightforward to study the thermo-

dynamics of the R-charged black holes. We begin with the temperature, which is given by

the surface gravity of the black hole, or equivalently by the requirement of the absence of a

conical singularity at the horizon of the Euclideanized black hole. The relevant part of the

Euclideanized metric has the form

ds2 = f1(r)dτ
2 +

dr2

f2(r)
, (46)

where both f1 and f2 have a zero at the outer horizon, f1(r+) = f2(r+) = 0. In this case,

the temperature is given by

T =
1

4π

[

√

f ′
1(r)f

′
2(r)

]

r=r+
. (47)
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For f1 and f2 given in (39), we find:

T =
1

4πr+

[

(d− 3)
µ

rd−3
+

+ 2g2effr
2
+ − Q2

(d− 2)r2d−6
+

− 2α3(d− 2)(d− 3)(d− 4)
µ2

r2d−4
+

−g2Q2

r2d−6
+

(

2α̃1
(d4 − 36d2 + 107d− 84)

(d− 2)2(d− 3)
− 2α̃2

(d4 − 14d3 + 65d2 − 121d+ 77)

(d− 2)2(d− 3)

+2α3
(d− 3)(d− 4)

(d− 2)

)

+
k Q2

r2d−4
+

(

−12α̃1
(d− 4)

(d− 3)
+ α̃2

2(d− 4)(d− 5)

(d− 3)

)

+
µQ2

r3d−7
+

(

α̃1
(d− 4)(d2 + 6d− 15)

(d− 2)(d− 3)
− α̃2

(d3 − 13d2 + 49d− 53)

(d− 2)(d− 3)
+ α3

(d− 4)(3d− 7)

(d− 2)

)

− Q4

r4d−10
+

(

α̃1
(d− 4)(10d3 − 49d2 + 84d− 57)

2(d− 2)2(d− 3)2(3d− 7)
+ α̃2

(2d4 − 14d3 + 31d2 − 32d+ 25)

2(d− 2)2(d− 3)2(3d− 7)

+α3
(2d− 5)(d− 4)

2(d− 2)2(d− 3)

)

]

. (48)

While this expression is written in terms of the parameters µ, r+ and Q, they are not all

independent. In particular, µ may be written in terms of r+ and Q through the horizon

condition f1(r+) = 0 (although µ enters quadratically in (39), it is only necessary to obtain

µ to first order in the αi).

The entropy can be obtained by using Wald’s formula

S = −2π

∫

horizon

Eµνρσǫµνǫρσd
d−2x, (49)

where

Eµνρσ =
δSbulk

δRµνρσ

∣

∣

∣

∣

gµν fixed

, (50)

and ǫµν is the binormal to the horizon. For the action (18), we have

Eµνρσ = − 1

2κ2
d

√−g
[

1
2
(1 + α1R)(gµρgνσ − gµσgνρ)

+1
2
α2(g

µρRνσ + gνσRµρ − gµσRνρ − gνρRµσ) + 2α3R
µνρσ

]

, (51)

in which case we find the entropy to be

S =
2πωd−2,k

κ2
d

rd−2
+

[

1− 2α̃1g
2d(d− 1)− 2α̃2g

2(d− 1) + 2α3(d− 2)(d− 3)
k

r2+

− Q2

r2d−4
+

(

α̃1
d− 4

d− 2
+ α̃2

d− 3

d− 2

)]

. (52)

Here ωd−2,k denotes the area of the transverse space given by dΩd−2,k.
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The next ingredient we are interested in is the energy, which can be extracted from the

time-time component of the boundary stress tensor,

Tab =
2√
−h

δS

δhab

=
1

2κ2
d

[

2
(

1− 2α̃1g
2d(d− 1)− 2α̃2g

2(d− 1)
)

(Kab −Khab)

+

(

α̃1
(d− 4)

d− 2
− α̃2

d− 2

)(

F 2Kab + 2KFλaF
λ
b −

1

2
KF 2

)

+α̃2

(

KabhcdnµF
µcnνF

νd +KnµF
µ
anνF

ν
b −

1

2
KhcdnµF

µcnνF
νdhab

)

+α̃2

(

KcdF
c
aF

d
b −

1

2
KcdF

cλF d
λhab

)]

+ TGB
ab + TCT

ab ,

(53)

giving us the refreshingly simple expression

E =
ωd−2

2κ2
d

(d− 2)µ
(

1− 2α̃1g
2d(d− 1)− 2α̃2g

2(d− 1)− 2α3g
2(d− 3)(d− 4)

)

, (54)

which we expect to be valid in arbitrary dimension d. Notice that in the absence of higher

derivative corrections this expression reproduces the familiar result E ∼ µ found in [27].

This also matches the Gauss-Bonnet black hole mass [25, 28] in the case α̃1 = α̃2 = 0, and

agrees with [13], with arbitrary αi coefficients (note that we have removed the k2 dependent

‘Casimir energy’ by the addition of finite counterterms, which was not done in [13]).

The final quantity we are interested in finding is the thermodynamic potential, which can

be obtained by evaluating the complete on-shell action:

βΩ = Sbulk + SGH + Sct. (55)
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Computing this explicitly we find the renormalized free energy:

Ω =
ωd−2,k

2κ2
d

[

µ
(

1− 2α̃1g
2d(d− 1)− 2α̃2g

2(d− 1)− 2α3g
2(d− 2)(d− 3)

)

−2g2rd−1
+

(

1− α̃1g
2d

2(d− 1)

d− 2
− α̃2g

2d(d− 1)

d− 2
− α3g

2d(d− 3)

)

− Q2

(d− 2)(d− 3)rd−3
+

+
kQ2

rd−1
+

(

4α̃1
(d− 1)(d− 4)

(d− 2)
+ α̃2

d(d− 4)

(d− 2)

)

+
g2Q2

rd−3
+

(

2α̃1
(d− 1)(d− 4)(2d− 3)

(d− 2)2
+ α̃2

d3 − 4d2 + 6

(d− 2)2
− 2α3

(d− 4)

(d− 2)

)

+
µQ2

r2d−4
+

(

−4α̃1
(d− 1)(d− 4)

(d− 2)
− α̃2

d(d− 4)

(d− 2)
+ 2α3

(2d− 5)

(d− 2)

)

− 2α3(d− 2)(d− 3)
µ2

rd−1
+

+
Q4

2r3d−7
+

(

α̃1
(d− 4)(12d2 − 45d+ 43)

(d− 2)2(d− 3)(3d− 7)
+ α̃2

(3d3 − 23d2 + 53d− 39)

(d− 2)2(d− 3)(3d− 7)

−α3
(3d− 8)

(d− 2)2(d− 3)

)]

, (56)

where we again recall that µ is a redundant parameter, and may be rewritten in terms of

r+ and Q.

Since the d-dimensional expressions are rather unwieldy, we have checked our calculations

by verifying that the thermodynamic potential and energy satisfy

Ω = E − TS −QΦ, (57)

and the first law,

dE = TdS + ΦdQ . (58)

Here Φ is the chemical potential, defined as the difference in the potential between the

horizon and spatial infinity,

Φ(r+) = At(r → ∞)−At(r = r+) , (59)

and Q = (ωd−2/2κ
2
d)Q is the normalized electric charge which is unmodified by the higher

derivative terms.

Finally, we note that a subtlety arises when applying the above thermodynamic expres-

sions in an AdS/CFT context. For the R-charged black hole solution, we have chosen a

parameterization of the background which is asymptotic to vacuum AdS given by (32).

Taking r → ∞, this has the form

ds2 ∼ −g2effr
2dt2 + r2dΩ2

d−2,k +
dr2

g2effr
2
. (60)
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Working on the Poincaré patch (k = 0), the natural spatial coordinates are written in terms

of the zeroth order AdS radius, so that

ds2 ∼ −g2effr
2dt2 + g2r2d~x 2 +

dr2

g2effr
2

∼ g2r2
(

−g2eff
g2

dt2 + d~x 2

)

+
dr2

g2effr
2
. (61)

The boundary CFT metric thus has a redshift factor

λ =
geff
g

, (62)

which may be removed by rescaling asymptotic time

t → t′ = λt . (63)

Thus, in the CFT, all thermodynamic quantities in this section ought to be rescaled via

{E, T,Φ,Ω} → 1

λ
{E, T,Φ,Ω} . (64)

We will only perform the scaling explicitly for the energy, since it is the quantity which plays

a key role in the discussion of the mass to charge relation.

VI. THE WEAK GRAVITY CONJECTURE AND M/Q

It is not surprising that the relation between the mass m and the charge q of extremal

black hole solutions is modified in the presence of curvature corrections. In light of the

weak gravity conjecture, which emerged from the ideas explored in [29] and later refined in

[30], it is interesting to examine the precise dependence of the mass on the R-charge for the

solutions we have constructed above.

One of the key points emphasized in [29] is the fact that string theory, or any theory

of quantum gravity, puts constraints on low energy physics, so that not every (consistent)

effective field theory can in fact be UV completed. Thus, the landscape of “good” theories

– those which are compatible with quantum gravity – is much smaller than the actual

swampland of all effective field theories which do not have a UV completion. Building on

the simple observation that “gravity is the weakest force,” the authors of [30] conjectured

that there should always be elementary objects whose mass to charge ratio is smaller than
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the corresponding one for macroscopic extremal black holes. The presence of such objects

would then provide a decay channel for extremal black holes, alleviating the problem of

remnants. Thus, according to the weak gravity conjecture, the mass/charge relation m = q

for extremal black holes cannot be exact, but must instead receive corrections as the charge

q decreases. Furthermore, the deviation from the extremal limit is expected to become more

pronounced as the charge becomes smaller.

An analysis of higher derivative corrections to the mass/charge ratio of four-dimensional,

asymptotically flat black holes was performed in [31]. In the examples where the sign of

the correction to m/q could be verified from UV physics, it was found to be negative, in

agreement with the claims of [30]. Similar results appeared more recently [32] in the context

of d-dimensional black holes with two electric charges, which are solutions corresponding to

fundamental strings with generic momentum and winding on an internal circle. While the

weak gravity conjecture was originally phrased in terms of four-dimensional, asymptotically

flat black holes, it is worth exploring its analog in the context of extremal black holes in

AdS. In particular, there have been suggestions in the literature that the correction to m/q

might be somehow tied to the correction to the shear viscosity to entropy density ratio η/s

(as well as to the charge conductivity) [33, 34, 35]. When discussing the effects of higher

derivatives on various transport coefficients, the authors of [34] included an analysis of m/q

for five-dimensional R-charged black holes, and their results were in qualitative agreement

with those of [31].

Given our analysis in this paper, we may extend some of these studies to R-charged

solutions in d-dimensions. As we will see, our results will be similar to those already found

in [31] and [34]. Moreover, we emphasize that in five dimensions the deviation from the

linear extremal mass-charge relation predicted by the weak gravity conjecture seems to be

intimately tied to the corrections observed in some of the hydrodynamic calculations in

AdS5/CFT4. Such a connection could be a consequence of gravity constraining the set of

allowed dual CFTs.

In Section V we extracted the energy of the corrected R-charge solutions from the bound-

ary stress tensor. In this case, the mass to charge ratio is given simply by

m

q
=

1

λ

E

Q , (65)

where the energy E is given in (54), but must be rescaled by the redshift factor λ introduced
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in (62) to ensure proper boundary asymptotics. Recall that the normalized charge Q is given

by Q = (ωd−2/2κ
2
d)Q. Since we are interested in m/q for extremal black holes, we make use

of the extremality condition T = 0 as well as the horizon condition f(r+) = 0.

Although we ultimately want to consider black holes in AdS, we start by setting g = 0

and k = 1 in order to examine m/q for asymptotically flat solutions with a spherical horizon,

as was done in [31]. We find

m

q
=

(

m

q

)

0

(

1− α1

r2+

(d− 3)2(d− 4)2

2(d− 2)(3d− 7)
− α2

r2+

(d− 3)2(2d2 − 11d+ 16)

2(d− 2)(3d− 7)

−α3

r2+

(d− 3)(2d3 − 16d2 + 45d− 44)

(d− 2)(3d− 7)

)

, (66)

where
(

m

q

)

0

=

√

2(d− 2)

d− 3
(67)

is the uncorrected mass to charge ratio. Note first of all that, independent of the number of

dimensions, the correction is always negative whenever the αi’s are positive. Furthermore,

as one can easily check by trading r+ dependence for Q dependence, the 1/r2+ factor in front

of the higher derivative corrections implies that the deviation from the linear relation m ∼ q

is enhanced as the charge decreases. This was precisely one of the predictions of the weak

gravity conjecture, and was also observed in [31]. Of course to say anything more about the

precise form of the correction, one needs to determine the couplings.

The expressions corresponding to spherical horizon black holes in AdS are significantly

more complicated. Here we quote the result in d = 5, and relegate the d = 4 and d = 6

cases to the appendix, since they are qualitatively the same:

(

m

q

)

d=5

=

(

m

q

)

0,d=5

(

1− α1
(816β3 + 1024β2 + 300β + 1)

6r2+(1 + 2β)(2 + 3β)

−α2
(336β3 + 392β2 + 132β + 11)

6r2+(1 + 2β)(2 + 3β)
− α3

(564β3 + 586β2 + 216β + 31)

6r2+(1 + 2β)(2 + 3β)

)

, (68)

where β = g2r2+ and
(

m

q

)

0,d=5

=

√
3(2 + 3β)

2
√
1 + 2β

. (69)

As in the asymptotically flat case, the corrections are sensitive to the sign of the couplings,

and will necessarily push the solution below the extremal limit when all the αi are positive.

Of course, if some of the couplings are negative the various terms can conspire to yield a

positive correction to the mass to charge ratio. However, if the weak gravity conjecture

21



holds, we would expect that, in an effective theory that is consistent with gravity in the UV,

the couplings would be constrained in such a way as to lower m/q. Again, this underlines

the importance of obtaining the higher derivative couplings from UV physics.

In the asymptotically Minkowski case we observed that m/q became smaller as the charge

decreased, since the overall 1/r2+ factor decreases monotonically as r+ increases. Here the

AdS black hole situation is similar only as long as r+ does not become too large. When

r+ ∼ 1/g, the coefficient of the α3 term reaches a minimum and starts growing as r+

increases. This effect was already noticed in [34] and is intrinsic to the AdS geometry – it

reflects the fact that the size of the black hole is becoming of the same order as the AdS

radius.

One of the results of the investigations of the hydrodynamic regime of four-dimensional

SCFTs has been the universality [36] of the shear viscosity to entropy ratio, η/s = 1/4π

in the leading supergravity approximation. Studies of R4 corrections [6, 37, 38] increased

the ratio, and seemed to favor the existence of a new bound in nature, η/s ≥ 1/4π, the

celebrated KSS bound. However, with the inclusion of curvature-squared corrections the

bound has been shown to be violated by 1/N effects on the CFT side [33, 34, 35, 39]. The

size of the violation is related to the two central charges a, c of the dual four-dimensional

CFT. Holographic Weyl anomaly matching demonstrates that the coefficient of the R2 terms

in the action is proportional to (c−a)/c, and it is precisely the quantity c−a which controls

the strength of the correction to η/s, with c−a > 0 necessarily giving violation of the bound.

Until recently, all the available CFT examples with a known gravity dual corresponded to

c− a > 0, so that violating the η/s bound seemed to be the rule rather than the exception.

However, a large class of four dimensional N = 2 CFTs was constructed recently in [40], and

shown in [41] to contain examples with c−a < 0 and a known dual gravitational description.

These are quiver gauge theories which can be viewed as arising from M5 branes wrapping a

Riemann surface. Furthermore, one can add non-compact branes that intersect the surface

at points (punctures on the Riemann surface). In the large N limit, these yield a large class

of AdS5 compactifications of M-theory with four-dimensional N = 2 supersymmetry, some

of which correspond to c− a < 0.

In light of these constructions, the requirement of c− a > 0 which seemingly arises from

the weak gravity conjecture is rather puzzling. Ideally, we may have expected the gravity

duals to restrict the set of allowed CFTs, effectively placing the ones with c − a < 0 into
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the swampland. However, such a statement would have to be reconciled with the results of

[41], which found no such sign restrictions. Still, it is remarkable that the issue of the sign

of c− a arises not only in the computation of transport coefficients, but also in the context

of the weak gravity conjecture. We illustrate this connection with a simple example.

To make contact with the AdS/CFT work on transport coefficients, we take d = 5 and

consider the Weyl-tensor-squared corrected action

Sbulk = − 1

2κ2
5

∫

M
d5x

√−g

[

R− 1

4
F 2 + 12g2 + α

(

1

6
R2 − 4

3
RµνR

µν +RµνρσR
µνρσ

)

]

. (70)

This choice is motivated by the general form of the supersymmetric higher derivative action

that was used in [35] to obtain the corrections to η/s in N = 1 SCFT. In fact, η/s for (70)

can be read off from [35], and takes the form

η

s
=

1

4π
[1− 4α(2− q)], (71)

where 0 ≤ q ≤ 2, and q is the R-charge in the notation of [35]. The main feature to point

out is that, since (2 − q) is non-negative, the condition α > 0 (or alternatively c − a > 0)

always leads to violation of the η/s bound, and also guarantees that the entropy increases.

But α > 0 is also the requirement needed to satisfy the weak gravity conjecture. In fact, for

the Weyl squared correction in d = 5, our result for m/q reduces to:

(

m

q

)

d=5

=

(

m

q

)

0

(

1− α
168β3 + 156β2 + 60β + 11

4 r2+ (1 + 2β)(2 + 3β)

)

. (72)

While here we have focused on five dimensions, these features are generic in other dimensions

as well (as can be inferred from the m/q expressions in the appendix).

For a less trivial example in d = 5 we can look at the most general four-derivative action

describing R-charged solutions, which has been studied in [34, 35], and can be reduced – via

appropriate field redefinitions – to the simple form:

e−1δL = c1RµνρσR
µνρσ + c2RµνρσF

µνF ρσ + c3(F
2)2 + c4F

4 + c5ǫ
µνρσλAµRνραβR

αβ
σλ . (73)

The effect of such terms on the shear viscosity to entropy density ratio can be read off from

[34, 35], and for the special case where the terms are constrained by supersymmetry (so that

all the ci’s are related to each other), one finds:

η

s
=

1

4π

[

1− c1 g(Q)
]

, (74)
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where g(Q) is a non-negative function of R-charge. The mass to charge relation for this

case has been worked out in [34] and exhibits the same behavior we found in the simpler

Weyl-tensor-squared case:

(

m

q

)

d=5

=

(

m

q

)

0

(

1− c1 f(r+)

)

, (75)

where again f(r+) is always positive. While the precise form of the corrections to m/q and

η/s is different, the behavior required by the weak gravity conjecture (in this case c1 > 0)

is again correlated with the violation of the viscosity to entropy bound.

The correlation between the behavior of η/s and the corrections to m/q is intriguing.

It hints, at least in the five-dimensional context, at a close connection between the sign of

c−a and possible fundamental constraints on the gravitational side of the duality. However,

in this case one would need to understand the role played by the strongly coupled theories

investigated in [41], which allow for negative c − a. We should also point out that studies

of causality in the CFT [2, 42] as well as the requirement of positive energy measurements

in collider experiments [43, 44] (also note the work of [45]) have resulted in bounds on the

central charges a and c, but so far have not lead to any restrictions on the actual sign of

c − a. Nevertheless, theories with c − a < 0 would naively seem to be in conflict with the

weak gravity conjecture, and thus may be expected to possess unusual features. We note

that these ideas have already been explored in several contexts. For example, [46] have

identified consistency conditions for effective field theories with a UV completion, based on

the idea that the signs of certain higher dimensional operators must be strictly positive.

Such arguments, however, still need to be fully extended to generic gravitational settings.

Having a geometrical understanding of the origin of the higher derivative couplings –

and of their sign in particular – would also be valuable. For example, for the case of

ungauged N = 2, d = 5 supergravity (obtained by reducing d = 11 supergravity on a

CY3), the coupling of the RµνρσR
µνρσ term can be shown to be related to the second Chern

class of the CY3, which is known to be positive. For the case of N = 2, d = 5 gauged

supergravity (which is needed to discuss black holes in AdS), the compactification manifold

would be a five-dimensional Sasaki-Einstein manifold, and the geometric origin of the higher

derivative couplings is less clear. While there is work [47, 48] relating geometric data of

generic supersymmetric AdS5 solutions of type IIB supergravity to the central charges a,

c of the dual CFTs, so far this applies only to the leading supergravity approximation,
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where a = c = O(N2). Thus, it would be valuable to generalize these constructions to

accommodate finite N corrections to the central charges. Whether through geometric data,

or through consistency arguments on the field theory side, a better understanding of the

signs of the higher derivative gravitational couplings is needed. This is especially relevant if

we want to achieve a deeper insight into the weak gravity conjecture, and how it is tied to

seemingly unrelated quantities such as hydrodynamic transport coefficients.
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APPENDIX A: THE MASS TO CHARGE RATIO IN ADS

For the case of asymptotically AdS solutions with a flat boundary, i.e. k = 0, g 6= 0, we

find that the mass to charge ratio is:

m

q
=

(

m

q

)

0

(

1− α̃1g
2 (d− 1)(7d3 − 27d2 + 8d+ 32)

2(d− 2)(3d− 7)

−α̃2g
2 (d− 1)(2d3 − 3d2 − 19d+ 32)

2(d− 2)(3d− 7)
− α3g

2 (d− 3)(d− 4)

2

)

=

(

m

q

)

0

(

1− α1g
2 (d− 1)(7d3 − 27d2 + 8d+ 32)

2(d− 2)(3d− 7)

−α2g
2 (d− 1)(2d3 − 3d2 − 19d+ 32)

2(d− 2)(3d− 7)

−α3g
2 (2d

4 − 10d3 + 21d2 − 37d+ 36)

(d− 2)(3d− 7)

)

, (A1)

where
(

m

q

)

0

= gr+

√

2(d− 2)3

(d− 1)(d− 3)2
. (A2)

We note that if the redshift factor λ had not been taken into account, the correction to the

mass/charge ratio for the k = 0 Gauss-Bonnet term (α̃1 = 0, α̃2 = 0) would have vanished.
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It is precisely the addition of the redshift factor which is responsible for generating the

correction.

For the case of asymptotically AdS solutions with a spherical horizon, i.e. k = 1, g 6= 0,

the expressions are rather more complicated. For d = 4, we find

(

m

q

)

d=4

=

(

m

q

)

0

(

1− 12α̃1g
2 − α̃2

(54β2 + 21β + 1)

5r2+(1 + 2β)

)

=

(

m

q

)

0

(

1− 12α1g
2 − α2

(54β2 + 21β + 1)

5r2+(1 + 2β)
− 4α3

(24β2 + 6β + 1)

5r2+(1 + 2β)

)

,(A3)

where β = g2r2+, and
(

m

q

)

0,d=4

=
2(1 + 2β)√

1 + 3β
. (A4)

For d = 5, we have

(

m

q

)

d=5

=

(

m

q

)

0

(

1− α̃1
(816β3 + 1024β2 + 300β + 1)

6r2+(1 + 2β)(2 + 3β)

−α̃2
(336β3 + 392β2 + 132β + 11)

6r2+(1 + 2β)(2 + 3β)
− α3

(3β2 + 2β − 2)

r2+(2 + 3β)

)

=

(

m

q

)

0

(

1− α1
(816β3 + 1024β2 + 300β + 1)

6r2+(1 + 2β)(2 + 3β)

−α2
(336β3 + 392β2 + 132β + 11)

6r2+(1 + 2β)(2 + 3β)
− α3

(564β3 + 586β2 + 216β + 31)

6r2+(1 + 2β)(2 + 3β)

)

, (A5)

where
(

m

q

)

0,d=5

=

√
3(2 + 3β)

2
√
1 + 2β

. (A6)

This result corresponds to (68) given in Section VI.

Similarly, for d = 6:

(

m

q

)

d=6

=

(

m

q

)

0

(

1− 1α̃1
(15500β3 + 23445β2 + 8325β + 81)

22r2+(3 + 4β)(3 + 5β)

−α̃2
(275β2 + 195β + 27)

4r2+(3 + 5β)
− 3α3

(20β3 + 27β2 − 7β − 9)

r2+(3 + 4β)(3 + 5β)

)

=

(

m

q

)

0

(

1− α1
(15500β3 + 23445β2 + 8325β + 81)

22r2+(3 + 4β)(3 + 5β)

−α2
(275β2 + 195β + 27)

4r2+(3 + 5β)
− 3α3

(3340β3 + 4549β2 + 2153β + 369)

22r2+(3 + 4β)(3 + 5β)

)

,(A7)

where
(

m

q

)

0,d=6

=
2
√
2(3 + 4β)

3
√
3 + 5β

. (A8)
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A general d-dimensional expression may be obtained in principle, although it is not expected

to be particularly illuminating.
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