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1 Introduction

Relaxing the requirement that supersymmetry breaking occurs in the true vacuum (see

e.g. [1]–[3]) can help overcome many of the constraints of dynamical supersymmetry break-

ing with no supersymmetric vacua [4]. Recently, Intriligator, Seiberg and Shih [5] have

shown that metastable dynamical supersymmetry breaking is rather generic and easy to
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achieve. They found that metastable vacua occur in supersymmetric QCD (SQCD), in the

free magnetic range, when the quarks have small masses,

W = tr
(

mQ̃Q
)

. (1.1)

This has opened many new avenues for model building and gauge mediation; see [6]–[21] for

some examples of recent work, and [22] for a review and a more complete list of references.

It is not possible to build a phenomenologically viable model of gauge mediation using

directly the ISS superpotential (1.1). This is due to an unbroken R-symmetry that forbids

non-zero gaugino masses. A natural question is then how the phenomenology changes when

the superpotential is a more general polynomial in Q̃Q. While this has been considered

before for some particular superpotential deformations (see e.g. [11, 14, 16, 20, 23]), a more

detailed account of the space of metastable vacua and the low energy phenomenology is

needed. For instance, the light fermions of the model have not been fully explored. The

aim of this work is to analyze the IR properties of the theory and its phenomenology in

the presence of a generic U(Nf )-preserving polynomial superpotential

W = m tr(QQ̃) +
1

2Λ0
tr
[

(QQ̃)2
]

+
1

2Λ0
γ
[

tr (QQ̃)
]2

+ . . . , (1.2)

where Λ0 ≫ Λ is some large UV scale, γ is an order one coefficient, and ‘. . .’ are sextic and

higher dimensional operators.

Deforming (1.1) by a generic polynomial in Q̃Q breaks R-symmetry explicitly at tree

level, and additional supersymmetric vacua are introduced [24]. The supersymmetric vacua

for a single trace superpotential were analyzed in detail in [16], where it was found that

the magnetic theory has classical supersymmetric vacua with various possible unbroken

subgroups of the magnetic gauge group. This should be contrasted with the case of ISS,

eq. (1.1), where the magnetic gauge group is completely Higgsed and supersymmetry is

broken classically by the rank condition.

After taking into account one loop quantum corrections in the magnetic theory, one

finds the deformed theory also has metastable vacua at low energies [16]. The dynamical

reason for this is that the deformations to the magnetic superpotential come from irrelevant

operators in the electric theory, which are parametrically suppressed. Therefore, we end

up with a controllable deformation of the ISS construction in the IR. These vacua break

R-symmetry spontaneously, and in phenomenologically interesting regions of parameter

space the spontaneous breaking is much larger than the explicit breaking.

Since supersymmetric vacua allow for unbroken magnetic gauge groups, one might

expect the same to occur for metastable vacua. However, the metastable vacua in the

theories we explore below have a completely broken magnetic gauge group; vacua with

unbroken subgroups of the magnetic gauge group do not occur. This is in some disagree-

ment with [16] and it would be interesting to see how this effect appears in the brane

constructions of metastable vacua [25].

Next we will analyze the phenomenological properties of the spectrum, with particular

attention to the light fermions, including the Standard Model gauginos and a multiplet of

fermions from the “meson” superfield M = Q̃Q. If the superpotential contains only single
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traces of powers of M , the singlet and adjoint parts of the meson superfield M = Q̃Q

have the same one loop effective action. The singlet fermion is the Goldstino, and must

be massless at one loop through a cancellation of its nonzero tree level mass against a one

loop correction. The adjoint fermions (or more precisely, a certain subset thereof) have the

same tree and one loop effective action, and so their masses arise only at two loops (and/or

through equally small mixing effects.) Consequently their masses are small compared with

those of the Standard Model gauginos, which arise at one loop.

In this paper we will be considering the case where the embedding of the Standard

Model gauge group into the U(Nf ) flavor group endows these fermions with Standard

Model quantum numbers. With such light masses, these fermions would already have been

observed, and so these models would be phenomenologically unacceptable.

We are therefore led to consider a multitrace deformation of the superpotential; in

particular, we must take γ 6= 0 in eq. (1.2). Then the cancellation between the tree level

and one loop masses for the Goldstino fails for the adjoint fermions, leaving them with

masses proportional to γ. The phenomenology of direct gauge-mediated models based

on this theory is quite rich, since the adjoint fermions may be lighter or heavier than

the Standard Model gauginos, depending on γ. Mixing between these fermions and the

gauginos is negligibly tiny, due to a charge-conjugation symmetry in (1.2). We will briefly

discuss some of the interesting phenomenological properties of such a scenario, leaving the

details to a forthcoming publication [26].

The various sections are arranged as follows. In section 2, we discuss the moduli space

of SQCD with the superpotential eq. (1.2), keeping only terms up to quartic order in the

electric fields. In section 3, we review SQCD without deformations (ISS), with emphasis

on the spectrum and associated phenomenological issues. In section 4, we study single

trace deformations of the ISS superpotential, that is, the case γ = 0. We show that all

metastable vacua have a magnetic gauge group that is completely Higgsed, and we discuss

the spectrum, showing it is unacceptable for phenomenology. Next, in section 5 we consider

γ 6= 0, describing the spectrum in detail. Finally, section 6 contains a brief overview of

the phenomenology of and constraints on such models. Various computations are shown

in detail in the appendix.

2 SQCD with a multitrace superpotential

In this section, we analyze the symmetries and supersymmetric vacua of SQCD in the

presence of a generic U(Nf )-preserving polynomial superpotential.

Supersymmetric QCD with gauge group SU(Nc) and Nf flavors (Qi, Q̃j) with equal

masses m has a global symmetry group

SU(Nf )V × U(1)V (2.1)

under which (Qi, Q̃i) transform as (�+1, �−1). There is also a discrete Z2 charge conju-

gation symmetry Qi ↔ Q̃i. For phenomenological applications we will later weakly gauge

a subgroup of SU(Nf )V and identify it with the Standard Model gauge groups. We will

also gauge U(1)V to remove a Nambu-Goldstone boson.

– 3 –
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The most general quartic superpotential preserving this symmetry is of the form

W = m tr(QQ̃) +
1

2Λ0
tr
[

(QQ̃)2
]

+
1

2Λ0
γ
[

tr (QQ̃)
]2
. (2.2)

We will typically consider Λ0 ≫ Λ ≫ m, and take γ to be of order one or smaller. We will

not consider sextic or higher operators, since they are suppressed by higher powers of Λ0

and would not affect our discussion. The nonrenormalizable superpotential (2.2) could be

generated from a renormalizable theory, for example by integrating out fields with masses

∼ Λ0 that couple to QQ̃.

Let us consider the theory in various limits. First, for W = 0 there is a moduli space

of vacua parameterized by mesons and baryons modulo classical constraints. The global

symmetry is enhanced to SU(Nf )L × SU(Nf )R × U(1)V , and there is a non-anomalous

U(1)R symmetry as well as an anomalous U(1)A axial current.

For m/Λ 6= 0 but Λ0 → ∞, the superpotential is renormalizable, and the theory

has an exact classical U(1)R symmetry which is anomalous at the quantum level.1 The

non-anomalous symmetries of the model are

SU(Nf )V U(1)R U(1)V
Qi � +1 +1

Q̃i � +1 −1

Λ3Nc−Nf 0 2Nc 0

plus the Z2 charge conjugation. The F-term relations lift the moduli space and the only

vacuum is at the origin.

On the other hand, for m 6= 0 and Λ0 large but finite, all R-symmetries are explicitly

broken at the classical level. New discrete supersymmetric vacua appear in the regime

Q̃Q ∼ mΛ0 .

2.1 Magnetic dual

Below the scale Λ, the theory is described by an effective theory, called the “dual mag-

netic theory”, with gauge group SU(Ñc), singlet mesons Φij, and Nf fundamental flavors

(qi, q̃j); we define Ñc ≡ Nf − Nc. The theory has a positive beta function and is weakly-

coupled in the infrared. After an appropriate change of variables, the classical tree level

superpotential reads

W = h tr(qΦq̃) − hµ2 tr Φ + +
1

2
h2µφ

(

tr Φ2 + γ(tr Φ)2
)

. (2.3)

where the first trace is over magnetic color and the remaining traces are over flavor indices.

The relation with the electric variables is (roughly)

ΛΦ ∼ Q̃Q, hµ2 ∼ Λm , h2 µφ ∼ Λ2

Λ0
.

1There is also an approximate non-anomalous R-symmetry “U(1)R′” which is restored as m → 0, but

we will not need to consider this symmetry.
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More details may be found in [5].

As in ISS, we restrict to small quark masses m≪ Λ. We will also restrict ourselves to

the range

Λ0 ≫
√

Λ

m
Λ , (2.4)

which guarantees that hµφ ≪ µ. This will be needed to have long-lived metastable vacua.

There are nonperturbative corrections to the superpotential (2.3), but they are all small

enough not to affect our calculations given (2.4).

Also, these conditions ensure that the symmetries of the model at the scale Λ are

approximately SU(Nf )L × SU(Nf )R × U(1)V × U(1)R′ , broken to SU(Nf )V × U(1)V only

by effects of order m/Λ and Λ/Λ0. Therefore, to an excellent approximation, both the

superpotential and the Kähler potential satisfy the larger symmetry group, under which

the trace and traceless parts of Φij transform as a single irreducible multiplet. We will

work only to leading non-vanishing order in the symmetry-breaking effects from non-zero

m and non-infinite Λ0.

Furthermore, the discrete Z2 charge-conjugation symmetry of the electric theory ap-

pears as the transformation

Φ → ΦT , qi ↔ q̃i . (2.5)

This transformation plays an important role in the phenomenology of gauge mediation

models based on (2.3), and indeed in other ISS-related models (see e.g. [32]).

As in the electric theory, the R-symmetry is explicitly broken, and we expect new

supersymmetric vacua parametrically at µ2/µφ. Indeed, the solutions to the F-term con-

straints

(

− hµ2 + h2µφγ tr Φ
)

INf×Nf
+ h2µφΦ + h q̃q = 0

qΦ = Φq̃ = 0 , (2.6)

are

〈hΦ〉 =
1

1 + (Nf − k)γ

µ2

µφ

(

0k×k 0k×(Nf−k)

0(Nf−k)×k I(Nf−k)×(Nf−k)

)

(2.7)

and

〈q̃q〉 =
1

1 + (Nf − k)γ
µ2

(

Ik×k 0k×(Nf−k)

0(Nf−k)×k 0(Nf−k)×(Nf−k)

)

(2.8)

with k = 1, . . . , Nf − Nc. (Here I represents the identity matrix, and a subscript r × s

indicates a block matrix of the corresponding size.) The appearance of the extra parameter

k classifying different classical vacua has been observed for γ = 0 by [16]. In particular,

for k < Nf −Nc there is an unbroken magnetic gauge group SU(Nf −Nc − k).

3 Metastable DSB in the R-symmetric limit

In the next three sections, we will analyze the IR dynamics of (2.3) in three steps. First, we

review the ISS model [5], the R-symmetric limit µφ = 0, which corresponds to an electric

– 5 –
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SQCD with massive flavors and no irrelevant operators. We will highlight the spectrum

and associated phenomenological problems. In section 4, we show how these problems are

not entirely solved by making µφ non-zero but leaving γ = 0. Finally, in section 5, we show

how the theory with γ 6= 0 resolves the remaining problems.

3.1 The model and its spectrum

The ISS model considers massive SQCD near the origin in field space in the free mag-

netic range Nc + 1 ≤ Nf <
3
2Nc, where the theory has a dual magnetic description with

superpotential

W = −hµ2 tr Φ + htr(qΦq̃) . (3.1)

At the classical level the theory breaks supersymmetry by the rank condition. We

parametrize the fields by

Φ =

(

YÑc×Ñc
ZT
Ñc×Nc

Z̃Nc×Ñc
XNc×Nc

)

(3.2)

qT =

(

χÑc×Ñc

ρNc×Ñc

)

, q̃ =

(

χ̃Ñc×Ñc

ρ̃Nc×Ñc

)

, (3.3)

where Ñc = Nf −Nc is the rank of the magnetic gauge group. The classical moduli space

of vacua is parametrized by 〈χχ̃〉 = µ2 IÑc×Ñc
and 〈X〉. The other fields have vanishing

expectation values. In the rest of the paper we will restrict to metastable vacua with

maximal unbroken global symmetry, by choosing the ansatz

〈X〉 = X0 INc×Nc , 〈χ〉 = q0 IÑc×Ñc
, 〈χ̃〉 = q̃0 IÑc×Ñc

. (3.4)

It will be checked that this is a self-consistent choice.

The vev for χχ̃ breaks the gauge group SU(Ñc)G completely, with the breaking pattern

SU(Ñc)G × SU(Nf )V × U(1)V → SU(Ñc)V × SU(Nc) × U(1)′ . (3.5)

(Here all groups except SU(Ñc)G are global; we remind the reader that Ñc = Nf − Nc).

The reduction of the global symmetry group leads to 2NcÑc+ 1 Nambu-Goldstone modes.

The fields (ρ, ρ̃, Z, Z̃) are charged under U(1)′, which plays the role of a messenger number

symmetry. See [5] for a more detailed discussion.

The flat directions X are not protected by holomorphy or symmetries and, as we

shall review shortly, become massive at one loop. (A field with these properties is called

a “pseudo-modulus” [5].) In particular, X is stablized at the origin. Near the origin of

moduli space the rank condition imposes

|FX | = |hµ2| , (3.6)

and the scale of supersymmetry breaking is

Vmin = Nc |h2µ4| . (3.7)

– 6 –
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To analyze the spectrum of the theory, it is convenient to rewrite the superpotential

in terms of the component fields,

W = −hµ2 trX + h tr
(

ρ Z
)

(

X µ

µ 0

)(

ρ̃

Z̃

)

+hµ tr
[

Y (χ+ χ̃)
]

+ h tr
(

χY χ̃+ ρZ̃χ̃+ χZρ̃
)

. (3.8)

The spectrum consists of three sectors, each consisting of fields satisfying StrM2 = 0.

(1) The (ρ,Z) sector: treating X as a background superfield, the (ρ, Z) supersymmet-

ric mass matrix is

Mf =

(

hX hµ

hµ 0

)

(3.9)

while the bosonic matrix is computed, as usual, including off-diagonal blocks with F-terms.

There are 2NcÑc Dirac fermions that come from (ψρ, ψZ) and (ψρ̃, ψZ̃). Near the

origin of field space, their masses are of order hµ, from (3.9). The scalars combine into

4NcÑc complex fields, which are linear combinations of (ρ, Z, ρ̃∗, Z̃∗). There are NcÑc

complex Nambu-Goldstone bosons from the combinations Re (ρ + ρ̃) and Im (ρ − ρ̃). The

3NcÑc remaining complex scalars have splittings of order, and centered around, hµ. The

numerical coefficients adjust to preserve StrM2 = 0.

This sector will play the role of the messenger sector in gauge mediation applications.

Once a subgroup of the flavor symmetry is identified with the Standard Model, and gauged

with couplings gSM, the Nambu-Goldstone modes will acquire a one loop mass of order

gSMµ/(4π). (In particular, we will study the case where SU(Nc) is gauged — see eq. (3.5).)

The lightest state will be stable in the full theory, since the messenger sector is protected

by the non-anomalous U(1)′ messenger number.

(2) The (Y, χ) sector: fermions from Y, (χ + χ̃) form Ñ2
c Dirac fermions with mass

∼ hµ. The traceless part2 of the chiral superfield (χ − χ̃), which contains the NG bosons

Im (χ′ − χ̃′), is eaten by the superHiggs mechanism when the magnetic group is gauged.

The field Im tr(χ − χ̃) is a NG boson associated to the breaking of U(1)V . The field

Re tr(χ−χ̃) corresponds to a pseudo-modulus, which will be lifted at one loop. The fermion

from tr (χ− χ̃) is massless. This sector has a supersymmetric spectrum at tree level.

The massless fields from tr (χ− χ̃) would be phenomenologically forbidden. This forces

us to gauge U(1)V , so that the superfield tr (χ− χ̃) is eaten by the U(1)V gauge boson and

at tree level acquires a mass of order gV µ.

(3) The X sector : X is a flat direction, with massless fermionic partner at tree level.

In particular, ψtrX is the Goldstino.

One loop contributions from heavy particles lift the pseudo-moduli. The fields (Y, χ, χ̃)

do not couple at tree level to the supersymmetry breaking sector, so they do not contribute

to the one loop effective potential for the pseudo-moduli. Because we are in the regime

where |FX | = |hµ2| is of order the square of the messenger masses, the effect of integrating

2We denote traceless fields with primes; for instance X ′ is the traceless part of X.
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out the messengers does not have a simple expression in superspace, and it is more con-

venient to work directly with nonsupersymmetric expressions. The bosonic action is given

by the usual Coleman-Weinberg formula [27]

VCW =
1

64π2
STrM4 log

M2

Λ2
. (3.10)

Near the origin of moduli space X ≪ µ, the potential is approximated by [5]

VCW ≈ a

2
|h4µ2| tr

(

Re
1√
2
[χ− χ̃]

)2

+ b|h4µ2| tr (X†X) (3.11)

with

a =
log 4 − 1

8π2
Nc , b =

log 4 − 1

8π2
Ñc . (3.12)

Therefore, in the ISS model the pseudo-moduli are consistently stabilized at the origin and

R-symmetry is preserved. In this approximation, the one loop mass of the bosonic field X

is given by

m2
CW = b|h4µ2| =

log 4 − 1

8π2
Ñc |h4µ2| . (3.13)

3.2 Phenomenological problems

One could try to use the ISS construction as the supersymmetry breaking sector in models of

direct gauge mediation. However, since R-symmetry is preserved in the metastable vacuum,

Majorana masses for the Standard Model gauginos are forbidden. The same applies to the

fermions ψX and ψχ−χ̃, which may have SM quantum numbers after embedding the SM

gauge group into the flavor symmetry group of the model. For these reasons, this model

does not give an acceptable phenomenology.

There are various ways of improving this situation (see, for instance, [28]–[31]). One

very interesting proposal [32] is that the gauginos could come from Dirac fermions, whose

mass is not constrained to vanish by an unbroken R-symmetry. This idea was applied to

the ISS model in [33], by adding new fields and interactions to the superpotential. Dirac

masses appear from one loop diagrams mixing the MSSM Weyl gauginos with the new

Weyl fermions. One problem with this approach is that doubling the number of fields (in

order to have Dirac fermions) creates a Landau pole close to the messenger scale. In this

case, corrections from the microscopic theory may become important.

Another possibility is to deform the superpotential by higher powers of the meson

superfield, explicitly breaking the R-symmetry at tree level [11, 14, 16]. We consider this

possibility in detail below.

4 Single trace deformation

We begin by considering the superpotential eq. (2.3) with γ = 0, that is, with only a single

trace perturbation:

W = −hµ2 tr Φ + htr(qΦq̃) +
1

2
h2µφ tr (Φ2) . (4.1)

– 8 –
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This model was discussed in [16], where it was suggested that new metastable vacua, with

unbroken magnetic group, appear around X ∼ µ. However, this region of parameter space

is subtle, because higher order corrections to (3.11) become important. We will have two

new things to say about this model.

(1) By considering the full logarithmic one loop potential (3.10), it is possible to show

that the metastable vacua with unbroken magnetic gauge group are actually unstable.

Thus, one is led to study only the ISS-like vacuum where the magnetic gauge group

is completely Higgsed.

(2) Gauginos indeed become massive at one loop in this model, as expected from the R-

symmetry breaking. However (ignoring some subtleties which we will discuss later)

the adjoint fermions ψX′ become massive only at two loops, because diagrammatic

cancellations that make the Goldstino ψtrX massless at one loop also force the adjoint

fermions ψX′ to be massless at this order. This provides the main motivation for

studying non-zero γ below.

4.1 Metastable supersymmetry breaking

The classical supersymmetric vacua are obtained by setting γ = 0 in (2.7) and (2.8). In

order to analyze the effect of the deformation on the ISS metastable vacuum, the cases

k = Nf −Nc and k < Nf −Nc have to be distinguished.

Case k = Nf −Nc. This is the analog of the ISS construction, with no unbroken gauge

group. The fields are parameterized as in eqs. (3.2) and (3.3). We will now review why a

metastable vacuum appears at a distance of order µφ/b away from the origin [16].

As a starting point, set VCW → 0. Due to the classical deformation, X is no longer a

flat direction, unlike the ISS case. Rather, the origin X0 ∼ 0 is at the side of a paraboloid

of classical curvature |h2µφ|2. In other words, the origin is unstable against classical flow

of X0 toward the supersymmetric vacua discussed before. The tree level spectrum near the

origin is shown in table 1.

In order to create a local minimum, the quantum contribution VCW ∼ mCW |X0|2
should overwhelm the curvature of the classical potential, i.e., mCW ≫ |h2 µφ|. This rather

interesting effect, where a one loop contribution stabilizes a classical runaway direction,

was analyzed in [15]. Here, the stabilization of X0 can occur naturally, since µφ, arising

from a nonrenormalizable operator in the microscopic theory, is parametrically small. The

condition that the one loop potential introduces a supersymmetry breaking minimum,

ǫ ≡ m2
cl

m2
CW

≈
∣

∣

∣

µ2
φ

bµ2

∣

∣

∣
≪ 1 , (4.2)

is naturally satisfied.

The potentials at tree level and at one loop, as a function of X0, are shown in figure 1.

As seen from the figure, the tree level potential (lower magenta curve), which is obtained

from the superpotential in (4.1), has no supersymmetry breaking minimum. A metastable
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Fermions Bosons

Weyl mass U(Nc) SU(Ñc)D Real mass U(Nc) SU(Ñc)D

mult. mult.

trX 1 h2µφ 10 1 2 h2µφ 10 1

X ′ N2
c − 1 h2µφ Adj0 1 2(N2

c − 1) h2µφ Adj0 1

Y , χ, χ̃ Ñ2
c O(hµ) 10 Adj 2Ñ2

c O(hµ) 10 Adj

Ñ2
c O(hµ) 10 Adj 2Ñ2

c O(hµ) 10 Adj

Ñ2
c − 1 gmagµ 10 Adj 2(Ñ2

c − 1) gmagµ 10 Adj
1 0 10 1 1 0NGB 10 1

1 0 10 1

Z,Z̃, ρ, ρ̃ 2NcÑc O(hµ) �1+�−1 �+� 2NcÑc 0NGB �1 �

2NcÑc O(hµ) �−1 �

2NcÑc O(hµ) �1+�−1 �+� 2NcÑc O(hµ) (�1+ (�+

2NcÑc O(hµ) �−1) �)

Table 1. The classical mass spectrum, grouped in sectors with StrM2 = 0. Since supersymmetry

is spontaneously broken only after including one loop effects, there is no Goldstino at tree level.

gmag is the magnetic gauge coupling. A subscript “NGB” indicates the particle is massless because

it is a Nambu-Goldstone boson. Subscripts in the third column indicate the charge under the U(1)

subgroup. Note this table gives the spectrum before the Standard Model gauge group is gauged.

minimum is created near the origin once the one loop quantum corrections in the form of

VCW are included (upper blue curve).

As a result of the competition between the classical and quantum contributions, a

metastable vacuum is created at

hX0 ≈
µ2µ∗φ

b|µ|2 + |µφ|2
, q0q̃0 = µ2 ; (4.3)

see eq. (3.4) for the notation. As expected, X0 is proportional to the explicit R-symmetry

breaking parameter µφ. However, it is larger than this by the inverse loop factor 1/b. This

follows from the fact that the minimum appears from balancing a tree level linear term of

order µ2 µφ against a one loop quadratic term of order bµ2.

The pattern of symmetry breaking in this vacuum is

SU(Ñc)G × SU(Nf )V × U(1)V → SU(Ñc)V × SU(Nc) × U(1)′ , (4.4)

where only the messengers transform under U(1)′. Unlike the ISS construction, here X0 6=
0, so that the R-symmetry is both explicitly and spontaneously broken, with the latter

dominating since |hX0| ≫ |µφ|.

Case k < Nf − Nc. The possibility of metastable vacua with k < Nf − Nc is very

interesting; coupling this to the MSSM, it would imply unbroken gauge groups in the

– 10 –



J
H
E
P
0
3
(
2
0
0
9
)
0
4
3

-

�HΜ
2
�ΜΦL

H
L�
H

c2 Μ4 L

Figure 1. Metastable vacuum near X ∼ 0, for a single trace quadratic deformation of the super-

potential (i.e. γ = 0). All parameters have been chosen to be real. The bottom (magenta) line

is the tree level potential, while the top (blue) line shows the tree level potential plus one loop

Coleman-Weinberg corrections. The X-axis has been normalized such that the position of the tree

level supersymmetric vacuum lies at X/(µ2/µφ) = 1. Notice how the one loop corrections create a

(metastable) minimum near the origin.

hidden sector. Properties of such configurations were discussed in [16]. Unfortunately, we

will now show that there are generically no metastable vacua in this regime.

Such vacua should be of the form

Φ =

(

0 0

0 X(Nf−k)×(Nf−k)

)

, q̃q =

(

µ2Ik×k 0

0 0

)

. (4.5)

The parametrization of the fluctuations is slightly more involved,

Φ =

(

Yk×k Zk×(Nf−k)

Z̃(Nf−k)×k X(Nf−k)×(Nf−k)

)

, q =

(

Vk×k Tk×(Ñc−k)

P(Nf−k)×k ϕ(Nf−k)×(Ñc−k)

)

(4.6)

and similarly for q̃. As in the case k = Nf − Nc, the expectation values are chosen to be

of the form

〈X〉 = X0 I(Nf−k)×(Nf−k) , 〈V 〉 = q0 Ik×k , 〈Ṽ 〉 = q̃0 Ik×k .

The new fields (ϕ, ϕ̃) and (T, T̃ ) do not exist for k = Nf − Nc. They are fundamental

flavors of the unbroken magnetic group SU(Nf −Nc − k).

As was found in [16], positivity of the bosonic mass matrix of (ϕ, ϕ̃) implies

|X0|2 ≥ |µ2 − hµφX0| .
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This places us in the regime X0 & µ. In this regime, the quadratic approximation (3.11)

to the Coleman-Weinberg potential is no longer valid. For X0/µ ∼ 1, all the higher order

terms in VCW give contributions comparable to (3.11). In other words, it is necessary to

use the full expression appearing in eq. (3.10).

Therefore, to establish the existence of such vacua, a detailed analysis of VCW is re-

quired. As shown in the appendix, all such vacua are unstable once the full form of VCW is

included. The intuitive reason for this is that at large X0 the logarithmic growth of VCW

cannot overwhelm the quadratic terms in the classical potential. A similar behavior was

found in [15].

The plot of Vtree + VCW for this case is almost the same as that of figure 1. For

sufficiently large |X0/µ| > 1, the classical falling potential dominates the logarithmic rise

of the VCW, and no critical points are found until the supersymmetric vacuum is reached.

Summarizing, metastable states occur only for k = Nf −Nc. The fields have expecta-

tion values eq. (4.3), breaking the magnetic gauge group completely at the scale µ.

4.2 Light fermions

We therefore return to the one remaining vacuum, the ISS-like case with k = Nf − Nc.

From the previous analysis, the bosons from X and the traceless part of χ − χ̃ acquire

masses of order mCW. The aim of this section is to compute the fermion masses at one

loop, and show that ψXij remains massless at this order, contrary to naive expectations

from R-symmetry breaking.

First we explore one loop effects involving the Goldstino ψtrX . At tree level it has

a nonvanishing mass h2µφ. We are not expanding around a critical point of the classical

potential, but rather one of the full one loop potential, and therefore the Goldstino should

become massless only once one loop effects are included. This implies that the one loop

diagram has to give

m1−loop
ψtr X

≈ −h2µφ , (4.7)

such that mtree
ψtr X

+m1−loop
ψtr X

≈ 0. Indeed, the explicit evaluation of the one loop diagram in

the appendix corroborates (4.7). These results are approximate because we are neglecting

(subleading) mixings with other singlet fermions; see below and the appendix.

At a first glance it is surprising that the one loop contribution can be equal to the tree

level one. This is so because the one loop diagram is of order

h2

16π2
hX0 .

However, since hX0 ∼ µφ/b, with b defined in eq. (3.12), we obtain the result (4.7). This is

another manifestation of the pseudo-runaway behavior discussed in the previous section.

Next, notice that within the classical superpotential (4.1), Xij only appears in single

traces. On the other hand, the one loop contribution is a single trace of a function of Xij ,

because it comes from exponentiating bosonic and fermionic determinants (denoted by ∆)

arising from messengers in the fundamental representation of SU(Nc). Therefore, the full

one loop effective action

Seff(X,ψX ) = Stree + Tr
(

log ∆
)
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can be written as a single trace of products of Xij and its superpartner. This means that

the tree level plus one loop contribution to the masses of the X fields must be of the form

Tr(X†X), and therefore the singlet and adjoint parts of X get identical masses through

one loop. The same is true for the fermionic partners of X: at one loop the masses of the

singlet ψtrX and the adjoint ψX′ are the same. Diagrammatically, there is a cancellation

between the tree level Weyl mass and the one loop correction.

We note two small subtleties. First, we have assumed here that the kinetic terms for

the singlet and adjoint parts of X have the same normalization. This is true to a very

good approximation. We assumed m ≪ Λ ≪ Λ0, which ensured that the high-energy

theory’s approximate SU(Nf ) × SU(Nf ) symmetry is only weakly broken to SU(Nf )V
at the scale Λ. Under this larger symmetry, the singlet and adjoint transform as a single

irreducible representation, assuring equally normalized kinetic terms, up to negligible order

(µ/Λ) corrections.

Second, and irreducibly, the Goldstino is not quite ψtrX . As discussed in more detail

in the appendix, it mixes slightly with the fields ψtr Y and ψtr (χ+χ̃), with mixing angles of

order a one loop factor, ∼ 1/16π2 and ∼ X0/(16π
2µ), respectively. Consequently the tree

level and one loop ψX masses fail to cancel precisely, though by an amount that is one

further loop-order suppressed. Thus our statement that the ψX masses vanish at one loop

is effectively correct.

4.3 Phenomenology of the γ = 0 model

After gauging a subgroup of the flavor group SU(Nc) — see eq. (3.5) — and identifying

it with the Standard Model gauge group, the adjoint fermions ψX′ will carry Standard

Model gauge charges. The fact that they are approximately massless at one loop is un-

acceptable phenomenologically. They do become massive at two loop order, through the

above-mentioned mixings, and through explicit two loop diagrams. For example, Standard

Model gauge bosons, which do not impact the singlet ψtrX , generate for the other fields a

two loop mass of order

mψX′
∼ g2 X0

(16π2)2
∼ g2 µφ

16π2
. (4.8)

But the Standard Model gauginos have a one loop mass of order X0/16π
2 ∼ µφ. Impor-

tantly, the charge conjugation symmetry discussed in section 2 forbids significant mixing

between λ and ψX , so the masses for the ψX′ fields cannot be raised through mixing effects.

Consequently, requiring the gauginos are at a scale ∼ 1TeV implies the ψX′ would be so

light that they would have already been observed.

5 The deformation with γ 6= 0

Clearly the root of this phenomenological problem lies in treating ψX′ and the Goldstino

ψtrX on the same footing in the tree level superpotential. A solution is to allow non-zero γ,

W = htr(qΦq̃) − hµ2 tr Φ +
1

2
h2µφ

(

tr (Φ2) + γ(tr Φ)2
)

. (5.1)
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such that the two have different tree level masses. Then the total one loop mass for ψX′

becomes proportional to γµφ.

The motivation for considering non-zero γ

W = −hµ2 tr Φ + htr(qΦq̃) +
1

2
h2µφ

(

tr (Φ2) + γ(tr Φ)2
)

, (5.2)

extends beyond phenomenological utility. No symmetry enforces γ = 0 once µφ or even µ

are non-zero, so it is quite natural for γ to be nonzero.3

Let us now analyze the metastable vacua of the theory. For hµφ ≪ µ (and for |γ|
roughly of order 1), the Coleman-Weinberg potential is approximately as in ISS. The only

stable local minimum occurs for k = Nf − Nc. The multitrace deformation adds a term

proportional to the identity matrix to WΦ, so we obtain

q0q̃0 = µ2 − hµφNc γ X0 . (5.3)

hX0 ≈
µ2µ∗φ(1 +Ncγ

∗)

b|µ2| + |µφ|2 + f(γ, γ∗)
(5.4)

with

f(γ, γ∗) = |µφ|2
[

Nc (γ + γ∗) +N2
c |γ|2

]

.

In the limit hµφ ≪ µ, the effect of γ is qualitatively unimportant:

hX0 ≈
µ2µ∗φ(1 +Ncγ

∗)

b|µ|2 , q0q̃0 ≈ µ2 , (5.5)

so that |hX0| ≫ |µφ|. While γ 6= 0 does not alter the qualitative features of the vacuum, it

is important, when computing the spectrum, that the precise values (5.3) and (5.4) be used.

5.1 Spectrum

We now analyze the spectrum in the metastable vacuum. As in section 4, the Goldstino

is not massless at tree level. Some of the one loop diagrams exactly cancel the tree level

contributions and for this reason we discuss directly the tree level plus one loop results.

We first consider the fermions of the pseudo-modulus X. The singlet fermion (the

Goldstino) is massless at one loop. For the adjoint fermions, the tree level mass h2µφ is

partially canceled against the one loop contribution, and the full mass is of order

mψX′
≈ h2µφNcγ . (5.6)

Of course this vanishes in the limit γ → 0, as required from section 4.

Interestingly, we will see in section 6 that the Majorana gaugino masses are propor-

tional to (1+Ncγ). By changing the dimensionless parameter γ, the adjoint fermions may

3 Considering the preserved symmetries, one might wonder why the coefficients of qΦq̃ should be taken

precisely equal. The point is that the physical couplings are constrained by the approximate SU(Nf )L ×
SU(Nf )R in the electric theory, which is still valid at and just below the scale Λ. In other words, the µ→ 0

and µφ → 0 limit implies equal couplings. Nothing comparable favors γ = 0.
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Fermions Bosons

Weyl mass U(Nc) SU(Ñc)D Real mass U(Nc) SU(Ñc)D

mult. mult.

trX 1 0 10 1 1 O(mCW ) 10 1

1 O(
√
bh2µ) 10 1

X ′ N2
c − 1 h2µφNcγ Adj0 1 2(N2

c − 1) O(mCW ) Adj0 1

Y , χ, χ̃ Ñ2
c O(hµ) 10 Adj 2Ñ2

c O(hµ) 10 Adj

Ñ2
c O(hµ) 10 Adj 2Ñ2

c O(hµ) 10 Adj

Ñ2
c − 1 gmagµ 10 Adj 2(Ñ2

c − 1) gmagµ 10 Adj
1 gV µ 10 1 2 gV µ 10 1

Z,Z̃, ρ, ρ̃ 2NcÑc O(hµ) �1+�−1 �+� 2NcÑc 0NGB �1 �

2NcÑc O(hµ) �−1 �

2NcÑc O(hµ) �1+�−1 �+� 2NcÑc O(hµ) (�1+ (�+

2NcÑc O(hµ) �−1) �)

Table 2. The mass spectrum, including one loop corrections (but without Standard Model gauge

interactions), grouped in sectors with StrM2 = 0. Notice the appearance of the Goldstino in the

tr (X) sector. The details of the spectrum are described further in the text. Notation is as in

table 1.

thus be made lighter or heavier than the gauginos. This allows a variety of spectra with

different phenomenological signatures, see section 6.

As for the bosons of X, both the adjoint and one component of the singlet acquire one

loop masses of ordermCW; see eq. (3.13). The other part of the singlet, Arg(X), is a massive

R-axion. This is because X has a large nonzero expectation value X0 ∼ 16π2µφ ≫ µφ,

which spontaneously breaks the approximate U(1)R symmetry at a scale much larger than

any explicit breaking. The mass of the R-axion is given by

m2
a =

2
√
Nc

Nc|X0|
Re
[

hµ2 (h2µφ)
∗
]

∼ b|h4 µ2| . (5.7)

This is of the same order as the one loop mass mCW, eq. (3.13).

Finally, the (Y, χ, χ̃) and (Z, Z̃, ρ, ρ̃) sectors are as in section 3.1. We remind the

reader that we have gauged the U(1)V symmetry, and gV denotes its gauge coupling. The

(otherwise massless) fields from tr(χ − χ̃) acquire masses of order gV µ, as shown in the

table. Furthermore, the NG bosons from (ρ, ρ̃, Z, Z̃) acquire a one loop mass of order

gSMµ/4π once the Standard Model is gauged, as a subgroup of the flavor symmetry group.

The lightest of these is stable due to the unbroken messenger number U(1)′ from eq. (4.4).

5.2 Lifetime of the metastable vacuum

Here we check that the metastable non-supersymmetric vacuum can be sufficiently long-

lived. This vacuum can decay to the ISS-like supersymmetric vacuum with k = Nf −Nc,
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or to the supersymmetric vacua with k < Nf−Nc (see section 2.1). The decay to the vacua

with k < Nf −Nc requires changing the expectation value of (some of the elements of) qq̃,

from hµ2 to 0. This is strongly suppressed by the quartic potential term V = . . .+ |hqq̃|2.
The dominant decay channel will be to the supersymmetric vacuum with k = Nf − Nc,

which we now analyze.

The lifetime of the vacuum may be estimated using semiclassical techniques and is

proportional to the exponential of the bounce action, eB [34]. We will see that the tun-

neling takes place in the direction of trX, in a region where qq̃ ≈ µ2 is almost constant.

The potential as a function of trX, including the one loop quantum corrections from the

Coleman-Weinberg potential, is given in the appendix and shown in figure 1. It may be

modeled as a triangular barrier, and the bounce action may be estimated using the results

in [35].

We will see in the next section that, in order to have large enough gaugino masses

but a low SUSY-breaking scale and low sfermion masses, the ratio µφ/µ cannot be made

too small. Nonetheless, it is useful to first analyze the bounce action in the limit µφ ≪ µ,

where it is clear the vacuum is parametrically stable.

The dimensionful parameters controlling the shape of the potential are µ and µφ. We

assume h, γ, Nf , and Nc are all of order 1. The SUSY vacua are parametrically far away

from the metastable vacua in the limit

ǫ ≡
∣

∣

∣

µ2
φ

bµ2

∣

∣

∣
≪ 1 . (5.8)

In this limit, the calculation of the bounce action is very similar to that done in [15], as

long as only trX varies. Let us assume qq̃ is essentially constant.

The metastable SUSY-breaking vacuum lies at X0 ∼ µφ/b, the peak of the potential is

near Xpeak ∼ bµ2/µφ, and the SUSY vacuum is at Xsusy ∼ µ2/µφ, where phases and O(1)

numbers have been ignored. Moreover, the potential difference between the peak and the

metastable SUSY-breaking minimum is roughly V (Xpeak) − V (X0) ∼ b µ4, much smaller

than V (X0)−V (Xsusy) ∼ µ4. The results of [35] then show that the field tunnels not to the

SUSY vacuum directly but rather to Xtunnel & Xpeak. For this value of Xtunnel, eq. (2.6)

implies qq̃ ≈ µ2, and thus qq̃ indeed stays approximately constant in the tunneling region.

This confirms that the results in [35] apply.

In the limit ǫ≪ 1, the bounce action scales parametrically as

B ∼ (Xtunnel)
4

V (Xpeak) − V (X0)
∼ b

1

ǫ2
, (5.9)

where we have neglected some numerical factors, see [35]. Thus, B → ∞ as ǫ→ 0, and the

metastable vacuum can be made parametrically long-lived.

In section 6, we will see that in order to obtain sfermion masses that are roughly of

the same size as gaugino masses, we need to take µφ ∼ bµ (and thus ǫ ∼ b.) In this

regime X0, Xpeak and Xtunnel are all parametrically of order bXSUSY. A numerical study

is required to determine the existence and lifetime of the metastable vacuum. Taking the

gaugino masses to lie at their experimental lower bound, of order 100 GeV, we find that the

– 16 –



J
H
E
P
0
3
(
2
0
0
9
)
0
4
3

existence of a metastable vacuum sets a lower bound on the sfermion masses — typically

a few TeV for the squarks and at least a few hundred GeV for the right-handed sleptons.

Once such a metastable vacuum is obtained, it is easy to make the bounce action larger

than the required 400 by a small increase (of order 5%) in the sfermion masses. The details

of the spectrum, together with a more precise estimate of the lower bound on the sfermion

masses, and the implications for the tuning of electroweak symmetry breaking, will be

given in [26].

6 Comments on the phenomenology

This section briefly discusses some of the phenomenology associated with the multitrace

deformation of the ISS model, equation (5.1). The details will be left to a forthcoming

publication [26].

The ISS-like supersymmetry breaking models are interesting from a phenomenological

point of view due to the presence of the large global symmetry group

SU(Ñc)V × SU(Nc) × U(1)′ . (6.1)

A model of direct gauge mediation can be built by weakly gauging a subgroup of (6.1)

and identifying it with the Standard Model (SM) gauge group. The fields ρ, Z, ρ̃, and

Z̃ in (3.2) and (3.3) act as messengers that mediate the supersymmetry breaking effects

to the visible sector. Loops involving these messengers can give non-zero masses to the

scalar superpartners of the SM fermions and, provided there is no unbroken R-symmetry,

non-zero Majorana fermion masses to the gauginos.

In this section, we will consider gauging the SU(3)×SU(2)×U(1) subgroup of SU(Nc)

for Nc = 5 in the γ 6= 0 model, and identifying it with the SM gauge group. (The effect of

gauging a subgroup of SU(Ñc)V will be discussed in [26].)

Under the SM gauge group SU(3)C×SU(2)L×U(1)Y , the adjoint fieldX ′ decomposes as

X ′ = X24 = X(8,1)0 ⊕X(1,3)0 ⊕X(3,2)
−5/6

⊕X(3̄,2)5/6
⊕X(1,1)0. (6.2)

The fermions from the superfieldsX(8,1)0 , X(1,3)0 , and X(1,1)0 carry the same gauge charges

as the gluino, wino, and bino, respectively, and the first two could be directly produced at

colliders.4 Also, there are new light fermions from the superfields X(3,2)
−5/6

and X(3̄,2)5/6
;

these are stable unless given new interactions, and require a special discussion below.

6.1 Phenomenology of ψX′ and λ

A very important property of the model is that the gauginos and the adjoint ψX′ do not

mix. This is due to the fact that λ and ψX′ have charge conjugation transformations that

differ by a sign,

C(ψX′

ij
) = ψX′

ji
, C(λij) = −λji . (6.3)

4The X bosons in (6.2) get a mass of order
√
bh2µ ∼ O(10TeV) from the Coleman-Weinberg potential

and are thus rather heavy. If produced in the early Universe, they would have decayed promptly into ψX

and a gaugino, excepting gauge singlets which would decay a bit more slowly through higher dimension

operators.
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This discrete symmetry forbids any mixing at low orders between the two sets of fermions.

More precisely, C-violation in the SM allows λ and ψX′ to mix, but this occurs only at

three loops and is thus negligibly small.

Let us estimate the gaugino and ψX′ masses. As discussed in section 5.1, the metastable

vacuum has an approximate R-symmetry that is spontaneously broken through the non-

zero vev X0 ∼ (1 + Ncγ)µφ/b, where b ∼ 1/(16π2) is a loop factor (3.12). Therefore,

gauginos obtain a one loop mass of order

mλ ∼ g2

16π2
X0 ∼ g2 (1 +Ncγ)µφ . (6.4)

Neglecting O(1) numbers and factors of the gauge coupling g, an interesting phenomenology

is obtained for

mλ ∼ O (1 TeV) , (6.5)

i.e. for

µφ ∼ O(1 TeV). (6.6)

The ψX′ also obtain a mass at one loop, which, using equation (5.6), is of order

mψX′
∼ h2 µφNc γ ∼ γ × O (1 TeV) , (6.7)

neglecting factors of h and g and other O(1) numbers. By adjusting γ, ψX′ can be made

heavier or lighter than λ, leading to very different collider signatures as we will discuss next.

The ψX′ do not mix with the Standard Model gauginos at a level that determines their

decays. Instead, if they are heavy enough, they can decay (promptly) into a gaugino and

a gauge boson through the dimension five operator ψX′σµνλFµν :

ψX′ → λ+ gauge boson . (6.8)

The gauginos can decay through all the usual supersymmetric decay modes, and/or through

the standard coupling of each gaugino to a gauge boson and Goldstino:

λ→ ψtrX + gauge boson (6.9)

If instead the ψX′ are lighter than the gauginos, then the gauginos will decay into

the ψX′ plus a gauge boson via the above-mentioned operator. The ψX′ decays to a gauge

boson and an off-shell gaugino. The precise decay modes and the lifetime of the ψX′ depend

on the details of the spectrum, and will be discussed further in [26].

From (6.2), we see that there are new (3,2) fermions, with charges (3,2)−5/6 and

(3̄,2)5/6. By binding to quarks, these form hadrons, some of which are charged. The

lightest of these novel hadrons, whether charged or neutral, would be stable in the model as

described so far. But this would be ruled out, since these hadrons would have been created

in the early Universe, violating the bounds on the existence of heavy stable particles [36, 37].

These fermions must thus be made to decay through additional baryon-number violating

operators in the superpotential and/or the Kähler potential. In [26], we will show that

additional dimension five Kähler potential terms, coupling the adjoint X ′ to SM quarks and

leptons, can allow the (3,2) fermions to decay without affecting Big-Bang Nucleosynthesis

or violating current bounds on proton decay.
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6.2 Sfermion masses, the SUSY-breaking scale and a light gravitino

Since the supersymmetry breaking scale is |
√
F | = |

√
hµ| and the mass scale of the mes-

sengers is of the same order, the soft scalar masses are roughly given by

mS ∼ g2

16π2
µ . (6.10)

Comparing this to (6.4), the sfermions and gauginos have similar masses if

µφ ∼ µ/(16π2). (6.11)

We recall that the existence and longevity of the metastable vacuum requires µφ ≪ µ, see

section 5.2.

More concretely, there is an interesting parameter region characterized by (6.11) and

a low supersymmetry breaking scale

√
F ≈ µ ∼ O (100 − 200 TeV) . (6.12)

In this case, one can show (see [26]) that the heaviest sfermions (squarks) have masses of

a few TeV, the lightest sfermions (right-handed sleptons) haves masses of a few hundred

GeV, the gaugino masses are of order several hundred GeV, and there is a large enough

lifetime for the metastable vacuum. The gravitino mass is

m3/2 ∼ F√
3MPl

∼ O(1–10 eV) , (6.13)

where MPl ≃ 2.4 × 1018 GeV is the reduced Planck mass. Such a light gravitino does not

violate any cosmological or astrophysical constraints [43].

6.3 Further comments on the spectrum

As discussed in section 5, the messenger sector (ρ, ρ̃, Z, Z̃) contains 2NcÑc real NG bosons,

all of which become massive at one loop after weakly gauging the flavor symmetry. In the

parameter range (6.12), this mass is of order of several TeV. The U(1)′ messenger number

in (4.4) forbids the decay of the lightest of these messenger particles, which is thus stable.

If the lightest messenger is neutral and weakly interacting and has an appreciable relic

density, it would have a tree-level coupling to nuclei via Z-boson exchange and would

have been seen at a dark matter direct detection experiment [38]–[42]. If the stable state

is charged and/or colored, the experimental constraints are even stronger [36, 37]. Thus

experimental constraints rule out the possibility that the lightest messenger is dark matter;

this will be investigated further in [26].

We also note that the SM gauge couplings have a Landau pole well below the GUT

scale, due to the presence of extra matter charged under the SM gauge group. As one runs

up to the high scale, the SU(3)C gauge coupling blows up first at about 109 (107) GeV for

Ñc = 1 (3), so that new physics has to enter at or below this scale. Larger values of Ñc

lower this scale to the point that it affects our discussion materially. See [44] for a recent

discussion of the Landau pole problem in ISS-like SUSY-breaking models.
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6.4 Illustrative choices of parameters

We postpone a careful study of the various constraints to [26], but preliminarily it appears

possible to satisfy simultaneously all of the conditions considered above. For example, for

Ñc = 1,5 the parameters of the electric theory eq. (2.2) that are consistent with (6.11)

and (6.12) are m of order 0.01–10 TeV, Λ ∼ 103−5 TeV, and Λ0 ∼ 106−9 TeV. With these

choices, the models appear to have no insuperable problem below the scale of the Lan-

dau pole.

On the other hand, for Ñc ≥ 3, Λ has to be below 103 TeV, and the ratio m/Λ is

not parametrically small. In this case, the corrections from the microscopic theory are not

guaranteed to be small, and the violations of the approximate symmetries may be large.

In particular, the cancellations described in section 4.2 may be imperfect, requiring a more

elaborate analysis. However, the argument for nonzero γ still holds, and its effects can still

dominate, in which case the phenomenology outlined here will be largely unchanged.

6.5 Summary

While these models are not yet entirely plausible, they represent an advance over the

models with SU(Nc) gauged and γ = 0, which as we showed are excluded by the presence

of overly-light charged and colored fermions. We have demonstrated that with γ 6= 0,

it is possible to obtain models with a long-lived metastable vacuum, a spectrum with all

standard model superpartners in the TeV range, and with no obvious unresolvable conflict

with any experiment.

The minimal versions of these models have new TeV-scale fermions in the adjoint

representations of the Standard Model gauge group that do not mix with standard model

gauginos. They also have squarks and sleptons significantly heavier than the gauginos,

and exotic stable hadrons which must be made to decay through additional interactions.

They also suffer from the ubiquitous intermediate-scale Landau pole for standard model

gauge couplings. We will pursue various associated model-building issues, and study in

more detail the phenomenology of these models in [26].
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A One loop calculations

In this appendix we collect the one loop calculations for the ISS model with multitrace

quadratic deformations. The superpotential is

W = h tr qΦq̃ − hµ2 tr Φ +
1

2
h2µφ tr Φ2 +

1

2
h2µφγ (tr Φ)2 (A.1)

where Φ = ΦNf×Nf
, q = qÑc×Nf

and q̃ = q̃Nf×Ñc
.

A.1 Messenger sector

Let us consider separately the cases k = Nf −Nc and k < Nf −Nc (see section 4.1).

Case k = Nf −Nc. The parametrization of the metastable minima is given by eqs. (3.2)

and (3.3). Around these minima the superpotential is

W = hq0q̃0 trY − hµ2 trY − hµ2 trX + h tr q0Y χ̃+ hq̃0 trχY

+hq0 trZρ̃+ hq̃0 tr ρZ̃ +
1

2
h2µφ

(

trY 2 + γ(tr Y )2
)

+ h2µφ trZZ̃

+
1

2
h2µφ

(

trX2 + γ(trX)2
)

+ h2µφγ trX trY

+h trχY χ̃+ h tr ρXρ̃+ h tr ρZ̃χ̃+ h trχZρ̃ (A.2)

and the non-zero F-term is

∂XijW =
(

−hµ2 + h2µφ(1 +Ncγ)X0

)

δij . (A.3)

We recall the ansatz (3.4),

〈X〉 = X0 INc×Nc , 〈χ〉 = q0 IÑc×Ñc
, 〈χ̃〉 = q̃0 IÑc×Ñc

. (A.4)

The q0q̃0 vev completely Higgses the dual gauge group SU(Ñc)G and the U(1)V . To deter-

mine X0, one must compute the Coleman-Weinberg potential from the tree level masses of

the messenger sector. The ansatz (A.4), which will be checked self-consistently, simplifies

the computations since the mass eigenstates are then independent of their flavor index.

One can thus suppress color and flavor indices in the following.

The messenger sector contains the fields ρ, ρ̃, Z and Z̃, that couple to the non-zero

F-term. Let us define

ψ̂ = ( ψρ ψZ )T
ˆ̃
ψ =

(

ψρ̃ ψZ̃
)T

φ̂ =
(

ρ Z ρ̃∗ Z̃∗
)T

(A.5)

for the messenger gauge eigenstates. The Weyl fermions combine into Dirac fermions and

the messenger masses can be written as

Lmess,mass = − ˆ̃ψMmess,f ψ̂ − h.c. − φ̂†M2
mess,bφ̂ (A.6)

where the messenger mass matrices are

Mmess,f = h

(

X0 q0
q̃0 hµφ

)

, M2
mess,b =

(

M †
mess,fMmess,f −h∗F ∗

X

−hFX Mmess,fM
†
mess,f

)

(A.7)
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and

− F ∗
X = h

(

−µ2 + hµφ(1 +Ncγ)X0 0

0 0

)

. (A.8)

For q̃0 = q0 the fermionic and bosonic messenger masses are (σ = ±1 and η = ±1)

m2(X0) = |h|2
(

|q0|2 +
1

2
|X0|2 +

1

2
|hµφ|2 (A.9)

+
1

2
σ

√

(|X0|2 − |hµφ|2)2 + 4|q0X∗
0 + q∗0hµφ|2

)

m̃2(X0) = |h|2
(

|q0|2 +
1

2
|X0|2 +

1

2
|hµφ|2 +

1

2
η|µ2 − hµφ(1 +Ncγ)X0| (A.10)

+
1

2
σ

√

(|X0|2−|hµφ|2+η|µ2−hµφ(1+Ncγ)X0|)2+4|q0X∗
0 + q∗0hµφ|2

)

.

The fermion masses have multiplicity 4NcÑc while the complex boson masses have multi-

plicity 2NcÑc.

The messenger mass matrices can be diagonalized by unitary matrices Uf , Ũf and Ub
such that

ψ = Uf ψ̂ ψ̃ = Ũf
ˆ̃ψ φ = Ubφ̂ (A.11)

where ψ, ψ̃ and φ are messenger mass eigenstates. The quadratic lagrangian for the

messengers is therefore of the canonical form

Lmess = −
4
∑

a=1

φ†a
(

D2 + m̃2
a

)

φa +
2
∑

a=1

(

ψ̄aiσ̄
µDµψa + ¯̃ψaiσ̄

µDµψ̃a −ma(ψ̃aψa + ¯̃ψaψ̄a)
)

.

(A.12)

Due to the charge conjugation symmetry, it is possible to write the mixing matrices such

that (Ub)a{1,2} = (Ub)
∗
a{3,4} and Ũf = Uf . This can be easily seen from the mass matrices for

q̃0 = q0. This property will be useful when computing one loop corrections to light masses.

Case k < Nf −Nc. The fluctuations are parametrized as in eq. (4.6), so there are extra

messenger superfields (ϕ, ϕ̃). The analysis of (ρ, ρ̃, Z, Z̃) proceeds along the same lines as

in the case k = Nf −Nc, except that the fermion messenger masses have now multiplicity

4(Nf − k)k while the complex boson messenger masses have multiplicity 2(Nf − k)k.

The masses of ϕ and ϕ̃ are (η = ±1)

m2
ϕ(X0) = |hX0|2

m̃2
ϕ(X0) = |h|2

(

|X0|2 + η|µ2 − hµφX0|
)

. (A.13)

The fermion masses have multiplicity 4(Nf − k)(Ñc − k) while the complex boson masses

have multiplicity 2(Nf −k)(Ñc−k). Importantly, in the limit of small deformation, (A.13)

forces |X0| & |µ| to avoid tachyons.
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A.2 One loop bosonic action

The tree level pseudo-moduli are given by X0 and Re tr(χ− χ̃), and they are stabilized by

one loop contributions. For µφ ≪ µ, the one loop effective potential for Re tr(χ− χ̃) is the

same as in [5] (see eq. (3.11).) As a result, this field is stabilized at the origin and acquires

a mass of order |h4µ2|/(8π2).

Let us now analyze the pseudo-modulusX0; for k ≤ Nf−Nc, this is a (Nf−k)×(Nf−k)
matrix. The ISS-type vacua correspond to k = Nf −Nc. We will argue here that the new

metastable vacua corresponding to the case k < Nf −Nc do not exist, as they are located

in a region where some of the fields become tachyonic. The only remaining metastable

vacua will be the ISS-type vacua.

The one loop correction from integrating out the messenger fields is

VCW =
(Nf − k)k

32π2

∑

σ,η=±1

[

m̃(X0)
4 log

m̃(X0)
2

Λ2
−m(X0)

4 log
m(X0)

2

Λ2

]

(A.14)

+
(Nf − k)(Ñc − k)

32π2

∑

η=±1

[

m̃ϕ(X0)
4 log

m̃ϕ(X0)
2

Λ2
−mϕ(X0)

4 log
mϕ(X0)

2

Λ2

]

.

with masses given in section A.1. We find that the full potential

V = Vtree + VCW (A.15)

has a metastable vacuum if k = Nf−Nc, but there are no metastable vacua for k < Nf−Nc.

Let us discuss in more detail how this occurs.

For k = Nf − Nc, the messengers are non-tachyonic for any X0; see eq. (A.9). As

explained in section 4.1, the metastable vacuum appears because quantum corrections

at small X0 are large enough to overwhelm the slope of the classical potential, which

would otherwise push X0 toward the supersymmetric vacua. The supersymmetry breaking

vacuum is located in the range |X0/µ| . 1, far from the supersymmetric vacuum.

The situation for k < Nf − Nc is very different, because the messengers (ϕ, ϕ̃) are

tachyonic at small X0; see eq. (A.13). For |X0/µ| & 1 these tachyons are absent, but in this

regime the one loop corrections VCW(X0) grow only logarithmically with |X0|, and cannot

compete with the classical potential to create a metastable vacuum. One may directly

check that the Hessian of the potential always has a negative eigenvalue for |X0| & |µ| (and

all values of k). Notice that if one used the quadratic expansion of VCW around the origin

X0/µ = 0, instead of the full logarithmic form, it would suggest the existence of metastable

vacua with k < Nf −Nc and |X0/µ| ∼ 1 [16]. But this approximation is inconsistent, and

when the full logarithmic dependence of VCW is included, these vacua become unstable

and disappear.

Summarizing, only the ISS-type minima with k = Nf − Nc survive, and the adjoint

(X ′) and singlet (trX) components of the pseudo-modulus X acquire one loop masses

m2
X′ ≈ b |h2µ|2 + |h2µφ|2 (A.16)

m2
trX ≈ b |h2µ|2 + |h2µφ(1 +Ncγ)|2. (A.17)
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The R-axion, discussed in section 5.1, has a mass of this same order, eq. (5.7). All

bosons which were light at tree level thus become heavy at one loop, with masses of

order mCW =
√
b |h2µ|.

A.3 One loop fermionic action

In this section we discuss the low energy fermionic spectrum of the theory, taking into

account one loop effects.

Goldstino. At one loop, the Goldstino appears as a combination of ψtrX , ψtr Y and

ψtr (χ+χ̃), which we now determine. The charge conjugation symmetry forbids mixings

with ψtr (χ−χ̃), which is eaten by the U(1)V gauge fermion and has mass gV µ.

First, at tree level, in the limit µφ = 0, ψtr Y and ψtr (χ+χ̃) form a Dirac fermion of

mass hµ, while ψtrX is massless; see eq. (A.2). When µφ and γ are nonzero, ψtrX acquires

a mass term proportional to µφ, and there is a ψtrX -ψtr Y mixing of order γµφ. There is

no linear combination of the fields ψtr Y , ψtr (χ+χ̃) and ψtrX that is massless at tree level.

Once one loop effects are taken into account, supersymmetry is spontaneously broken,

so we should get a massless Goldstino. Since the dominant F-term comes from FtrX , the

Goldstino will be approximately aligned with ψtrX . Indeed, the tree level plus one loop

ψtrX ψtrX mass element is (using the messenger mass eigenbasis),

mψtr X
= h2µφ(1 +Ncγ) −

2h2Ñc

16π2

4
∑

j=1

2
∑

k=1

(U∗
f )k1 (Ũ∗

f )k1 (U∗
b )j1 (Ub)j3 I[m̃j,mk] (A.18)

where the sums are over messenger fields and

I(m̃j ,mk) = mk

[

ln

(

Λ2

m2
k

)

−
m̃2
j

m̃2
j −m2

k

ln

(

m̃2
j

m2
k

)]

. (A.19)

It can be checked that the tree and one loop terms in (A.18) largely cancel, leaving only a

term of order µφ/(16π
2), of the same size as two loop corrections.

There are also one loop mixings between ψtrX and ψtr Y , ψtr (χ+χ̃). For simplicity,

let us consider first the ISS model, corresponding to the limit µφ = 0. The mass-mixing

comes from the two-point function ψtrX ψtr (χ+χ̃), which is allowed by R-symmetry. A

calculation along the same lines as in (A.18) shows that this mass-mixing is of order

µ/(16π2). The Goldstino is hence predominantly in the ψtrX direction, with a small (of

order 1/(16π2)) component along ψtr Y . This implies that in ISS, one loop corrections

generate a nonzero F-term

|Ftr Y | ∼
|FtrX |
16π2

.

For µφ/µ nonzero but small, the Goldstino also has a small component along ψtr (χ+χ̃),

with mixing angle of order |X0/(16π
2µ)|. This is smaller than the mixing of ψtrX and

ψtr Y , and is consistent with a one loop F-term

|Ftr (χ+χ̃)| ∼
∣

∣

∣

X0

16π2µ

∣

∣

∣
|FtrX | .
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Gauginos and the fermions ψX′ . There are no mixings between the gauginos and the

ψX′ fermions at one and two loops, because they are forbidden by charge conjugation. The

expression for the one loop gaugino mass is

mλ =
2g2Ñc

16π2

2
∑

c=1

2
∑

d=1

4
∑

j=1

2
∑

k=1

(U∗
f )kc (Ũ

∗
f )k,d (Ub)jc (U

∗
b )j,d+2 I[m̃j ,mk] . (A.20)

which is of order g2µφ. The one loop computation for the masses of ψX′ is nearly identical

to that of ψtrX , given in (A.18), since they have the same interactions with the messenger

fields. The result is

mψX′
= h2µφ −

2h2Ñc

16π2

4
∑

j=1

2
∑

k=1

(U∗
f )k1 (Ũ∗

f )k1 (U∗
b )j1 (Ub)j3 I[m̃j,mk] (A.21)

The cancellation that occurs in (A.18) occurs here as well, but leaves over a large remainder,

of order |γµφ|.
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