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Abstract

Closed string tachyons have long been somewhat mysterious. We note that there is often
a regime in the classical moduli space in which one can systematically compute the effective
action for such fields. In this regime, the tachyon is light, and cannot be integrated out.
Instead, one must consider the combined dynamics of gravitons, moduli, tachyons and other
light fields. We compute the action and find that the quartic term for the tachyon is positive
in the field definition where the tachyon has no derivative coupling to the radion. We study
the evolution of isotropic, homogeneous configurations and find that typically the system is
driven to regions where the calculation is no longer under control.
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1 Introduction

Most known non-supersymmetric string theories contain tachyons. For years there seemed to

be no reliable technique in string theory to compute the potential for tachyonic fields (nor was

it clear that such a potential is meaningful), and so it was hard to tell whether they are similar

to familiar sorts of field theory instabilities, or represent some new phenomena. If the latter,

one could imagine that they might even signal some difficulty or inconsistency in these vacua,

which would be of great interest.

Luckily, for tachyons in open string theory, the questions above have been largely resolved

recently. In particular, the decay of a D-brane anti D-brane pair in the superstring [1], which

contains open string tachyons when the brane antibrane separation is smaller than a critical

value [2], has been interpreted as tachyon condensation. A similar interpretation applies to the

decay of an unstable D-brane of the bosonic string [4, 3]. The off-shell open string tachyon

potential can be calculated using the techniques of open string field theory [5], and it contains

a local minimum corresponding to the state where D-branes have decayed [3].

The fate of tachyons of closed string theory remains largely mysterious, however. In par-

ticular, it is not clear whether there exists a minimum of the tachyon potential similar to the

one found in the open string theory. The difficulty in computing the tachyon potential is well

known. The potential is a zero-momentum quantity, while the tachyon vertex operator is only

defined on shell, far from zero momentum. Closed string field theory is not known well-enough

to carry out the necessary off-shell calculations.

There is, however, one set of circumstances in which on can compute the tachyon potential

on shell. Many non-supersymmetric theories have, in their classical moduli spaces, critical

points where tachyons appear/disappear. The simplest such case to study is that due to Rohm

[6]; more extensive examples have been enumerated in [7]. In Rohm’s model, Type II string

theory is compactified on a circle (torus), with boundary conditions such that bosons are even

but fermions odd in the extra dimension (Scherk-Schwarz boundary conditions). At large radius,

there is no tachyon. As the radius decreases, however, a tachyon appears at a critical radius,

Ro. At the critical radius, the “tachyon to be” is a massless particle, and it is straightforward

to compute its effective action.

The analogous situation in the open superstring arises when a D-brane and an anti D-

brane are at a critical separation such that an open string connecting them is massless. The
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effective potential for such modes was calculated in [8] with the conclusion that the quartic term

is positive, in agreement with the idea that these modes start to condense when the D-brane

separation is reduced below the critical one.

In this paper we carry out an analogous calculation for the Rohm compactification of

the closed string at the critical radius, and find results similar to those found for the open

string. At leading order in α′, there is a quartic coupling of the tachyon, as well as a higher

derivative coupling to the radion. With suitable field redefinitions, the quartic term is positive.

If ∆ measures the distance to the critical point (in the tachyonic direction), for small ∆ these

results remains correct to order ∆.

Since, for small ∆, the tachyon potential has a local minimum, it is tempting to then

integrate out the tachyon, and obtain a potential, already at the classical level, for the moduli.

However, as we will see, this is not consistent. Near the critical point, the moduli and the

tachyon must be retained as light fields.1 Indeed, this is why the value of the quartic coupling

is convention-dependent. Field redefinitions can render the coupling negative, while introducing

various derivative couplings to moduli.

In light of these comments, we focus on the evolution of homogeneous field configurations

of tachyons, moduli and gravitons near the critical point. This evolution is independent of

possible field redefinitions. Not surprisingly, we find that the system is quickly driven out of

the regime where the effective action is calculable. One is driven to values of the radii where the

tachyon is no longer nearly marginal; in addition, one is driven to a regime where the theory is

strongly coupled and the metric is becoming singular.

The classical moduli, beyond the critical point, are not moduli at all. As one moves out of

the region of controlled approximation, the curvature of their potential is of order string scale.

In this interior region of the “moduli space,” in other words, not only is the system strongly

coupled, but it is not clear what degrees of freedom should be used to describe it.

Still, recent developments in string duality suggest some plausible speculations. Strong-

weak coupling duality of supersymmetric string theories suggests that in the very strongly

coupled region, the system becomes weakly coupled, and the potential again tends to zero (from

below). So there is likely some sort of minimum. The AdS/CFT correspondence suggests that

1A similar conclusion was reached in studies of effective actions for Melvin backgrounds, which are general-
izations of the Rohm compactifications [9]. It was found, after a T-duality transformation, the tachyon fits with
other fields into a low-energy effective action.
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this minimum is described by an isolated conformal field theory.2 One has no particular reason

to think that this system is supersymmetric, but one is free to speculate on this possibility.

What this analysis suggests is that the theory has some number of stable, possibly non-

supersymmetric, AdS states in its interior. Actually, AdS may, in some sense, be a misnomer,

since there is no parameter which makes a semiclassical, general relativistic analysis valid.

Perhaps one should refer to these systems simply as conformal field theories, in some strongly

coupled domain.

2 Rohm’s Compactification

Rohm proposed a simple model of supersymmetry breaking in string theory [6]. Take Type II

theory compactified on a circle, and impose antiperiodic (Scherk-Schwarz) boundary conditions

on fermions. This breaks supersymmetry. It leads, at one loop, to a potential for the moduli.

But for our purposes, what is more interesting is that, while for large radius there is no tachyon,

a tachyon does appear at a finite value of the radius. In the RNS formulation, for example,

the GSO projection is different in sectors with even and odd winding. Alternatively, in the

Green-Schwarz formulation, the Green-Schwarz fermions are antiperiodic in the odd winding

number sectors. In general, for bosons, the momenta are (α′ = 1
2)

kL =
m

2R
− nR , kR =

m

2R
+ nR. (1)

Thus, for example, in the sector with winding number one, the mass formula is (α′ = 1
2):

L0 = k2L − 1 = n2R2 − 1 (2)

where in the last expression we have taken m = 0. So at R = 1, a tachyon appears. At smaller

radius, more and more tachyonic modes appear. The small radius limit of the theory is in fact

T -dual to a ten-dimensional theory with a tachyon known as the type 0 string theory [11].

There may exist another interpretation of our results where the compact dimension is the

Euclidean time. This interpretation applies to the thermal string theory, and the critical radius

corresponds to the Hagedorn phase transition [12]–[15]. Formally, the calculations which follow

can be applied to the system near the Hagedorn transition. The interpretation of these results,

however, raises a number of subtle issues, which we leave for future work [16].

2For related ideas on the end-point of closed string tachyon condensation, see [10].
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3 The Effective Action

At the critical point, the would-be tachyon is massless, so we can calculate its effective action

using on-shell vertex operators. In the RNS formulation, for example, the tachyon vertex

operator in the minus one ghost number picture is particularly simple [17]:

V−1 = e2ikLXL+2ikRXReip·xe−γ (3)

whereas in the ghost number zero picture it is

V0 = (p · ψ − 2kLψ5)(p · ψ̃ − 2kRψ̃5)e
2ikLXL+2ikRXReip·x (4)

Take the initial momenta, (kL, kR, p) to be (1,−1, p1), (−1, 1, p2) and the final momenta

to be (−1, 1, p3), (1,−1, p4) (all momenta are defined to flow into the diagram). Then the

scattering amplitude is obtained from

< V−1(k1, p1, z1)V−1(k2, p2, z2)V0(k3, p3, z3)V0(k4, p4, z4) > (5)

=
|z1 − z4|

2

|z1 − z2|4
|z2 − z3|

2

|z2 − z4|2|z3 − z4|4|z1 − z3|2
Π|zi − zj |

−

pi·pj

2 (−4 + s/2)2

where the last factor comes from the contraction of the fermions, and s, t, u are the Mandelstam

variables:

s = −(−p1 + p2)
2, t = −(p1 + p3)

2, u = −(p1 + p4)
2.

Taking z1 = ∞, z2 = 0, z3 = 1, z4 = z, the amplitude is

A = c

∫

d2z
(1 + s/8)2

|1− z|4+s/4|z|2+t/4
(6)

= c′
Γ(−t/8)Γ(−s/8)(1 − u/8)Γ(1 − u/8)

Γ(−1 + u/8)Γ(1 + t/8)Γ(1 + s/8)

= c′
u

ts
(1− u/8)2

Γ(1− t/8)Γ(1 − s/8)Γ(1− u/8)

Γ(1 + u/8)Γ(1 + t/8)Γ(1 + s/8)

= c′
[

1

t
+

1

s
+ (

s

4t
+

t

4s
) + 1/2 +

s2

64t
+

t2

64s
+

3s

64
+

3t

64
+ . . .

]

.

In the last step, we have used energy-momentum conservation, u = −t− s; the terms we have

dropped are suppressed by two powers of s, t.

In order to obtain the contact terms in the effective action, we need to subtract the graviton,

gauge boson and radion exchanges. The graviton exchange (which we will use to normalize the
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string amplitude) can be obtained from the effective action, following closely the analysis of

[17]. Expanding the gravitational action, we find
∫

d9x
1

2
[hmn(∆ + ...)hmn +

1

2
φ∆φ∗ − Tmnhmn] (7)

where

∆ = −∂2, gmn = δmn + hmn,

and

Tmn =
1

2
[∂mφ

∗∂nφ+ ∂nφ
∗∂mφ− δmn(∂kφ

∗)(∂kφ)] . (8)

Integrating out the graviton to leading order, we get the exchange amplitude which may be

written as a contribution to the S-matrix generating functional S(φ)

S(φ) =

∫

d9x[
1

2
φ∆φ∗ +W ],

W = −
1

2
Tmn∆

−1
mn,klTkl,

where ∆−1
mn,kl = (δm(kδl)n − 1

D−2δmnδkl)∆
−1 is the graviton propagator in the harmonic gauge.

Evaluating the contractions, we find

W =

∫

Π
d9ki
(2π)9

eiki·xW(k1, k2, k3, k4)φ(k1)φ(k2)φ
∗(k3)φ

∗(k4), (9)

W =
1

32
[
s2 + u2

t
+
u2 + t2

s
− (t+ s)] .

The non-derivative radion coupling to the tachyon can be determined from the mass formula

for the tachyon: m2 = 4R2 − 1. There also may be derivative couplings which are not visible

in the on-shell 3-point function for φ, φ∗ and the radion. We can obtain both couplings by

examining the OPE of two tachyons directly. This includes:

V0(kL, kR, p)V0(−kL,−kR, p
′) ∼

4kLkR
|z − z′|2

[k2L +
p · p′

4
][k2R +

p · p′

4
]∂XL∂̄XRe

i(p+p′)·x + . . . . (10)

To get the gauge boson couplings, replace 2kL∂xL by pµ∂x
µ
L, and similarly for the right.

So radion exchange gives a contribution,

1

2s
(1 + s/8)4 +

1

2t
(1 + t/8)4 . (11)

Gauge boson exchanges give a contribution

t+ s/2

s
+
s+ t/2

t
.
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We can make these contributions manifest by rewriting the scattering amplitude as

c′[(1/t + 1/2) + (1/s + 1/2) + (
s

4t
+ 1/8) + (

t

4s
+ 1/8) − 1/4 (12)

+ (
(s+ u)2

32t
+

(t+ u)2

32s
−

(t+ s)

32
+

3s+ 3t

128
)] = c′[radion + gauge boson− 3/4 +

3s+ 3t

128
].

The −3/4 represents a non-derivative quartic interaction; the last term is a quartic interaction

with two derivatives. To determine the sign of the quartic term, one just has to compare with

the expected sign from, e.g. the radion exchange. A positive quartic coupling should give a

contribution of the same sign as the pole term; so we have found a negative quartic coupling.

4 Field Redefinitions

The effective action is only defined up to field redefinitions. The operator product expansion

of eqn. (10) suggests that one take the coupling

∂2R|φ|2 +
3

8
|φ|4 + four derivative terms. (13)

In this case, the quartic coupling is negative. Alternatively, one can make a field redefinition,

R→ R−
1

2
|φ|2 (14)

This yields

Leff =
1

16
(φ∗φ)2 +

1

64
φ∗φ∂µφ

∗∂µφ. (15)

This effective action, along with radion, gauge boson, and graviton exchanges reproduces the

amplitude of eqn. (6). In this form, the quartic coupling is positive.

This form of the action could be derived directly had we taken the radion exchange con-

tribution of the form

1

2s
+

1

2t
(16)

rather than (11). Then the amplitude with all massless exchanges subtracted is

1

4
+
s+ t

32
(17)

corresponding to Leff .

It is clear from this discussion that the sign of the quartic coupling is ambiguous. However,

the low energy dynamics is not. We will discuss these issues in section 6.
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5 Another Model

There are other models to which one can apply this sort of analysis. One example is provided

by the Rohm compactification, not for the Type II theory, but for the heterotic theory (for

definiteness, we can discuss the O(32) theory; it is convenient to use the fermionic formulation

for the left movers).

The analysis is quite similar to the Type II case. There is again a tachyon at the (same)

critical radius, in the vector representation of SO(32). In the ghost number −1 picture, we can

take the vertex operator to be

V−1 = λae
ikLXL+ikRXR+ip·xe−γ . (18)

We can now make the computation of the four point function very similar to that of the Type

II case, if we judiciously choose the quantum numbers of the tachyons. One can take, say, the

two operators in the −1 picture to carry gauge index 1, and the two in the zero picture to carry

gauge index 2. Then the calculation of the amplitude is identical to that in the Type II case,

except that the factor (1+s/8)2 is now (1+s/8). In extracting the quartic coupling, however, we

need to note that the massless exchanges are different. First, the couplings of the radial mode

are now proportional to (1+s/8), etc. The quantum numbers of the exchanged particles are also

different. In the t-channel, for example, the exchanged particle carries O(32) quantum numbers;

it is a dimensionally reduced gauge boson. Similarly, the quantum numbers of the exchanged

gauge bosons in the two channels are different. One again obtains derivative couplings of the

radion to the tachyon, and a negative quartic coupling. A suitable field redefinition eliminates

the derivative couplings, and yields a positive quartic coupling.

6 Tachyon and Moduli Dynamics; Speculations on the “Moduli

Potential”

We have seen in two examples that the question of whether the tachyon potential has a calculable

minimum is not unambiguous. Field redefinitions allow us to absorb part of the coefficient of

the quartic coupling into operators such as ∂2R|φ|2. The low energy physics should be invariant

under these redefinitions. If the quartic potential were positive, one might have hoped to find

the minimum of the tachyon potential and integrate it out. This would leave the puzzle of field

redefinitions. In fact, integrating out the tachyon in this way, at least in the regime where we

know how to calculate the tachyon effective action, is not consistent.
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To see this, suppose that the tachyon potential has a minimum. If for the moment we call

R2 = 1− σ, then minimizing with respect to the tachyon, the potential behaves as

V = −
σ2

g2
. (19)

This is a potential for the radion and the dilaton. But the effective mass for the σ field is of

order one. Before proceeding further, one observation about this potential is in order. It might

seem that this potential becomes arbitrarily negative for weak coupling. But there is no simple

meaning to energy in general relativity, and to interpret this result it is helpful to go to the

Einstein frame. There, in any dimension, the potential depends on g with a positive power. So

if there is a minimum, or even a regime where the potential is negative, the system is driven to

strong coupling, where any analysis is likely to break down.

In any case, given our result that the tachyon cannot consistently be integrated out near

the critical point, it is necessary to keep both the fields σ and φ (as well as the dilaton) in the

low energy effective action in this region of field space. We have solved for the evolution of

homogeneous and isotropic field configurations with the equations following from this action.

These equations are manifestly covariant under field redefinitions. We have studied a variety of

possible initial conditions. For example, we have taken the initial radius such that the tachyon

has a small negative mass-squared, and started the tachyon near the minimum of the effective

potential with the positive quartic coupling. Not surprisingly, the system is driven, with typical

initial conditions, to a regime in which the tachyon is no longer approximately marginal (and

in which there are, in fact, more tachyons) and in which the coupling is becoming strong.

To summarize: at this stage, one has generated, classically, a potential on the moduli

space. In other words, the moduli are not moduli past the critical point. It is necessary, near

the critical point, to study the dynamics of the original moduli and tachyon together. One is

quickly driven, however, to a regime where one does not have control of the calculation.

We can speculate on the form of the moduli potential in the strongly coupled region. If

we suppose that there is an S-duality, then we might expect that there is a minimum in this

region. It might be described by some suitable conformal field theory. There is no obvious

small parameter, so this minimum will occur when all scales are comparable and all couplings

of order one.

The alternative is that the potential is unbounded below. This would be an exciting

possibility, and would establish that these vacua are not sensible, but it seems unlikely. It is

true that at the minimum, if it exists, the appropriate degrees of freedom to describe the system
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are not the radion and dilaton, but others. An isolated CFT is probably a good model for this.
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