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S U M M A R Y
Elastic-electromagnetic mathematical equivalences, which here consist of recasting Maxwell’s
equations and the constitutive relations for an electromagnetic medium into a form that is
mathematically identical with that of the basic equations for elastic waves, are presented.
These equivalences allow us, for example, to use a finite-difference modelling code developed
for elastic wave propagation to model electromagnetic wave propagation. The reverse process,
which consists of using a finite-difference modelling code developed for electromagnetic wave
propagation to model elastic wave propagation, is valid only for particular forms of elastic
wave equations, such as acoustic wave equations in a 2-D medium (i.e. an infinitely long line
source in the cross-line direction and acoustic properties invariant in the cross-line direction).

Key words: Electromagnetic theory; Marine electromagnetics; Controlled source seismol-
ogy; Theoretical seismology; Wave propagation; Acoustic properties.

1 I N T RO D U C T I O N

Now that the controlled-source electromagnetic (CSEM) acquisition technique has taken hold as an oil and gas exploration and production
tool, there is a need to develop modelling and inversion methods for analysing CSEM data, and even to revamp classical petroleum-
seismology classes to include electromagnetic methods. These mathematical developments and numerical coding processes will greatly
benefit the progress made in the last four decades in seismic modelling and inversion and in centuries of electromagnetic-wave studies
when mathematical equivalences between Maxwell equations and elastic field equations are possible. These equivalences consist of recasting
Maxwell’s equations and the constitutive relations for an electromagnetic medium into a form of the basic equations for elastic waves, and
vice versa. We here present a derivation of these equivalences and a discussion of their limitations. Our derivation here differs from that of
Jain & Kanwal (1975) and of Carcione & Cavallini (1995) in that it is not limited to SH-wave propagation.

Let us emphasize that the elastic-electromagnetic equivalences described in this paper are only mathematical-based; they are not
equivalences from a physics point of view. An electromagnetic phenomenon and a seismic phenomenon can share the same partial differential
equation, or any another mathematical structures, while representing two totally different physical phenomena which operate at different
frequency ranges. Furthermore, because mathematical structures can be translated into a numerical code, an electromagnetic phenomenon
and a seismic phenomenon can share the same numerical code while representing two totally different physical phenomena. The physical
differences in numerical code are controlled by the construction of inputs and the requirements associated with the inputs on one side, and
on the other side by the selection of outputs and the analysis of these outputs. In other words, the effective use of the elastic-electromagnetic
mathematical equivalences and associated numerical codes requires that one be well familiar with the physics of seismic and/or electromagnetic
wave propagation, especially their differences. A discussion of the physical differences between seismic wave propagation and electromagnetic
wave propagation is not the subject of this tutorial. We refer the reader to Andreis & MacGregor (2008) for the physics of electromagnetic
systems and Ikelle & Amundsen (2005) for the physics of elastic systems.

In this paper, the position is specified by the coordinates

x = [x1, x2, x3]T (1)

with respect to a fixed orthonormal Cartesian reference frame with origin O and three mutually perpendicular base vectors {i1, i2, i3}, in
which each vector has unit length. The symbol T indicates a transpose. In our definitions of elastic and electromagnetic wave equations and
of the elastic-electromagnetic equivalences, the subscript notation for vectors and tensors as well as the Einstein summation convention (also
known as the summation over repeated indices) will be used. Lowercase Latin subscripts are employed for this purpose (e.g. vk , τ pq); they
are to be assigned the values 1, 2 and 3. Boldface symbols (e.g. v, τ ) will be used to indicate vectors or tensors. Partial differentiation with
respect to xi is denoted by ∂ i; ∂ t is a reserved symbol for partial differentiation with respect to time t. We will also use the Kronecker delta
function δpq in our definitions of wave equation; the Kronecker δpq is zero unless p = q. Note also that we will use the Levi-Civita symbol in
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1772 L. T. Ikelle

our definition of cross-products. We denote it by εijk and define it as follows:

εi jk = ( j − i)(k − i)(k − j)

2
; (2)

ε ijk = 1 if ijk is an even permutation, εijk = −1 if ijk is an odd permutation and εijk = 0 otherwise. One can verify that the cross product of
two vectors a and b (i.e. c = a × b) is

ci = εi jka j bk, (3)

and the curl of a (d = curl a = ∇ × a) is

di = εi jk∂ j ak . (4)

These notations will be used for the curl of the magnetic and electric fields in the Maxwell’s equations.

2 E L A S T I C WAV E E Q UAT I O N S

The fields involved in the elastic wave equations are the stress and strain tensors, particle momentum (also known as the mass flow density
rate) and the particle velocity vectors. The strain field, e, and the stress field, τ , can be represented as follows:

enm ⇔

⎡
⎢⎢⎣

e11 e12 e13

e12 e22 e23

e13 e23 e33

⎤
⎥⎥⎦ and τkl ⇔

⎡
⎢⎢⎣

τ11 τ12 τ13

τ12 τ22 τ23

τ13 τ23 τ33

⎤
⎥⎥⎦ . (5)

Note that these tensors are symmetric. The particle momentum, �, and the particle velocity, v, are defined as follows:

�i ⇔

⎡
⎢⎢⎣

�1

�2

�3

⎤
⎥⎥⎦ and vq ⇔

⎡
⎢⎢⎣

v1

v2

v3

⎤
⎥⎥⎦ . (6)

Using these quantities, the equations of elastic wave propagation can be written as (e.g. Aki & Richards 1980; de Hoop 1995; Gangi 2000;
Ikelle & Amundsen 2005)

−�+
i jkl∂ jτkl (x, t, xs) + ∂t�i (x, t, xs) = fi (x, t, xs) (7)

�+
nmpq∂pvq (x, t, xs) − ∂t enm(x, t, xs) = hnm(x, t, xs), (8)

with

�+
i jkl = 1

2
(δik δ jl + δil δ jk), (9)

where f is the volume source density of external forces and h is the volume source density of the external strain-source rate; ‘external’ here
indicates actions of external sources to the solid under consideration. The position of these sources is specified by xs. �+

i jkl is the unit tensor
of rank four. It satisfies the following symmetry relations: �+

i jkl = �+
i jlk = �+

j ilk = �+
j ikl and �+

i jkl = �+
kli j . This tensor is used to extract the

symmetrical part of a tensor of rank two; that is, for example,

�+
i jklτkl = 1

2
(τi j + τ j i ). (10)

The system made of eqs (7) and (8) actually contains nine scalar equations with 18 scalar unknowns, since f and h are assumed to be known.
The nine additional independent scalar equations are needed to render this system well posed. These additional equations are the constitutive
relations and can be written as

enm(x, t, xs) = snmpq (x)τpq (x, t, xs) (11)

and

�i (x, t, xs) = ρi j (x)v j (x, t, xs), (12)

where s is the elastic compliance tensor of the fourth rank, and ρ ij is the mass density of the medium. The compliance tensor s is symmetric
at each point x; that is, it satisfies snmpq = smnpq = smnqp = snmqp in addition to snmpq = spqmn. We also assume that the tensorial mass density
is symmetric; that is, ρ ij = ρ ji at each point x. Note that we have considered in eq. (12) that the mass density can be anisotropic. Studies of
composite materials (e.g. Willis 1985) have confirmed that the mass density can be indeed anisotropic. Substituting the constitutive relations
into eqs (7) and (8), we arrive at

−�+
i jkl∂ jτkl (x, t, xs) + ρir (x)∂tvr (x, t, xs) = fi (x, t, xs) (13)

�+
nmpq∂pvq (x, t, xs) − snmkl (x)∂tτkl (x, t, xs) = hnm(x, t, xs). (14)
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Elastic-electromagnetic equivalences 1773

3 M A X W E L L ’ S E Q UAT I O N S

The fields involved in Maxwell’s equations are the electric field, electric displacement, magnetic field and magnetic induction. If E, D, H and
B are the electric field, electric displacement, magnetic field and magnetic induction vectors, respectively, we can define them as follows

En ⇔

⎡
⎢⎢⎣

E1

E2

E3

⎤
⎥⎥⎦ , Di ⇔

⎡
⎢⎢⎣

D1

D2

D3

⎤
⎥⎥⎦ , Hk ⇔

⎡
⎢⎢⎣

H1

H2

H3

⎤
⎥⎥⎦ , Bj ⇔

⎡
⎢⎢⎣

B1

B2

B3

⎤
⎥⎥⎦ . (15)

Using these fields, we can write Maxwell’s equations as follows (e.g. de Hoop 1995):

−εi jk∂ j Hk(x, t, xs) + ∂t Di (x, t, xs) = −Ji (x, t, xs) (Ampere-Maxwell’s law), (16)

and

εnmp∂m E p(x, t, xs) + ∂t Bn(x, t, xs) = −Kn(x, t, xs) (Faraday’s law). (17)

The quantities J and K are the volume density of material electric current and the volume density of material magnetic current, respectively.
In a vacuum domain, J and K are zero. Again, εijk is the Levi-Civita symbol introduced early. The system made of eqs (16) and (17) has six
scalar equations with 12 scalar unknowns, since J and K are assumed to be known. The six additional equations are the constitutive relations,
which can be written as

Di (x, t, xs) = ε
(i p)
0 (x)E p(x, t, xs) (18)

Bn(x, t, xs) = μ
(nq)
0 (x)Hq (x, t, xs), (19)

where ε
(i p)
0 (x) and μ

(nq)
0 (x) are the permittivity and permeability tensors, respectively. These equations are quite general, as we have included

the anisotropy in the electric property of an electromagnetic medium. Substituting the constitutive relations into eqs (16) and (17) gives

−εi jk∂ j Hk(x, t, xs) + ε
(il)
0 (x)∂t El (x, t, xs) = −Ji (x, t, xs) (20)

εnmp∂m E p(x, t, xs) + μ
(nr )
0 (x)∂t Hr (x, t, xs) = −Kn(x, t, xs). (21)

Note that the electromagnetic system in eqs (20) and (21) has 12 scalar equations only, whereas the equivalent elastic system in eqs (13) and
(14) has 18 scalar equations. This difference will play a significant role in the discussion of the elastic-electromagnetic equivalences that we
will describe in the next section.

4 E L A S T I C - E L E C T RO M A G N E T I C E Q U I VA L E N C E S

The purpose of this section is to present an analysis of the equivalence between the basic equations governing elastic wave propagation
and electromagnetic wave propagation. We will seek to establish the mathematical similarities of and the differences between the physical
quantities in the two cases such that every quantity in one case is shown to have a counterpart in the other case.

Let us start by introducing the following magnetic field, magnetic induction and magnetic current tensors:

H̃ =

⎡
⎢⎢⎣

0 H3 −H2

−H3 0 H1

H2 −H1 0

⎤
⎥⎥⎦ , B̃ = 1

2

⎡
⎢⎢⎣

0 B3 −B2

−B3 0 B1

B2 −B1 0

⎤
⎥⎥⎦ ,

and

K̃ =

⎡
⎢⎢⎣

0 K3 −K2

−K3 0 K1

K2 −K1 0

⎤
⎥⎥⎦ . (22)

Note that, in contrast to the tensors for elastic stress, strain, and strain-source tensors which are symmetric, H̃, B̃ and K̃ are antisymmetric
(i.e. H̃T = −H̃, B̃T = −B̃, and K̃T = −K̃). Using these new tensors, eqs (16) and (17) can be written as

−�+
i jkl∂ j H̃kl (x, t, xs) + ∂t Di (x, t, xs) = −Ji (x, t, xs) (23)

�−
nmpq∂p Eq (x, t, xs) + ∂t B̃nm(x, t, xs) = −K̃nm(x, t, xs), (24)

with

�−
nmpq = 1

2
(δnp δmq − δnq δmp), (25)

where H̃kl , B̃nm and K̃nm are the components of the tensors H̃, B̃ and K̃, respectively. �−
nmpq is another unit tensor of rank four, just like the one
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1774 L. T. Ikelle

in eq. (9). But contrary to �+
nmpq , �−

nmpq is antisymmetric; that is, it satisfies the following symmetry relations: �−
nmpq = −�−

nmqp = �−
mnpq =

−�−
mnpq and �−

nmpq = �−
pqnm . This tensor is used to extract the antisymmetrical part of a tensor of rank two; that is, for example,

�−
nmpqτpq = 1

2
(τnm − τmn) . (26)

We can see that, except for a difference in the unit tensors of eqs (8) and (24), the system made of eqs (7) and (8) is identical in form to
one made of eqs (23) and (24). This sign difference is due to the fact that the strain tensor e is symmetric, whereas its counterpart in the
electromagnetic system, B̃, is antisymmetric. We now need the constitutive relations to completely describe in eqs (23) and (24). After some
algebra, we can verify that the relation in eq. (19) can be rewritten with the tensors H̃ and B̃, as follows:

B̃i j = μ̃i jkl H̃kl , (27)

with

μ̃i jkl = εi j pεklqμ
(pq)
0 , (28)

where μ̃i jkl are the components of the fourth-rank permeability tensor. If μ
(pq)
0 is symmetric, this tensor satisfies the following symmetries:

μ̃i jkl = −μ̃ j ikl = μ̃kli j . (29)

Substituting the constitutive relations in (18) and (27) in eqs (23) and (24), we arrive at

−�+
i jkl∂ j H̃kl (x, t, xs) + ε

(ir )
0 (x)Er (x, t, xs) = −Ji (x, t, xs) (30)

�−
nmpq∂p Eq (x, t, xs) + μ̃nmkl (x)∂t H̃kl (x, t, xs) = −K̃nm(x, t, xs). (31)

Again, we note that, except for a difference in the unit tensors in eqs (14) and (31), the systems made of eqs (30) and (31) is identical in form
to eqs (13) and (14). Table 1 summarizes this elastic-electromagnetic equivalence.

As we mentioned earlier, the mathematical equivalences between elastic and electromagnetic systems can be used to facilitate the use of
concepts and techniques from one area to the other. One such technique is the numerical coding of the finite-difference modelling that we also
mentioned earlier. In addition to solving the basic partial-differential equations described in this tutorial, the coding of the finite-difference
modelling requires the application of boundary conditions at the free surface. Therefore, it is useful to show that the equivalences that we
have just derived hold for boundary conditions; that is our next task.

Let us denote by S the interface separating two elastic media. We assume that for any point x on S, there is a unique tangent plane. We
denote by ni = ni(x) the components of the unit vector along the normal to the tangent plane at x. As described in Ikelle & Amundsen (2005),
for example, one of the boundary condition is that the traction vector in the direction of the normal vector n is continuous across the interface
S; that is,

Ti (x1, t, xs) = Ti (x2, t, xs) ⇐⇒ �+
i jkln j (x1)τkl (x1, t, xs) = �+

i jkln j (x2)τkl (x2, t, xs), (32)

where Ti are the components of the traction vector, x1 and x2 are two neighbouring points which lie on opposite sides of the interface S. The
other boundary condition is that the particle velocity v is continuous across the interface S; that is,

vi (x1, t, xs) = vi (x2, t, xs) ⇐⇒ �+
i j pq n p(x1)vq (x1, t, xs) = �+

i j pq n p(x2)vq (x2, t, xs). (33)

Suppose now that the S is the interface between two media with different electromagnetic properties. As described in de Hoop (1995), for
example, the boundary conditions are

εi jkn j (x1)Hk(x1, t, xs) = εi jkn j (x2)Hk(x2, t, xs) (34)

Table 1. Equivalence between the elastic and electromagnetic systems.

Elastic systems Electromagnetic systems

Basic −�+
i jkl∂ j τkl + �i = fi −�+

i jkl∂ j H̃kl + ∂t Di = −Ji

equations �+
nmpq∂pvq − ∂t enm = hnm �−

nmpq∂p Eq + ∂t B̃nm = −K̃nm

Constitutive enm = snmpqτ pq B̃nm = μ̃nmpq H̃pq

relations �i = ρirvr Di = ε
(ir )
0 Er

Free �+
i jkl n j (x1)τkl (x1, t, xs ) = 0 �+

i jkl n j (x1)H̃kl (x1, t, xs ) = 0
surface No restrictions on v No restrictions on the electric field

Stress: τ kl Magnetic field : H̃i j

Fields Strain: enm Magnetic induction : B̃nm

Particle momentum: �i Electric displacement: Di

Particle velocity: vr Electric field: Er

Source External forces: f i Electrical current: − J i

terms External strain-source rate: hnm Magnetic current : − K̃nm

Material Mass density: ρij Permittivity : ε
(i j)
0

parameters Elastic compliances: snmpq Permeability : μ̃nmpq
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Elastic-electromagnetic equivalences 1775

and

εnmpnm(x1)E p(x1, t, xs) = εnmpnm(x1)E p(x1, t, xs). (35)

By using the unit tensors in (9) and (25) and the magnetic field tensor in (22), these two boundaries can alternatively be written as

�+
i jkln j (x1)H̃kl (x1, t, xs) = �+

i jkln j (x2)H̃kl (x2, t, xs) (36)

and

�−
nmpq n p(x1)Eq (x1, t, xs) = �−

nmpq n p(x2)Eq (x2, t, xs). (37)

We can see that the boundary conditions of the electromagnetic system can also be recast in the form of the boundary conditions of the elastic
system.

For the case in which S is a free surface (i.e. S is an interface between a solid and air), the boundary condition (32) becomes

Ti (x1, t, xs) = �+
i jkln j (x1)τkl (x1, t, xs) = 0, (38)

where x1 is on the solid side of the interface S. No restrictions are imposed on the particle velocity in this case. There are two possible
electromagnetic equivalences for this boundary condition. One possibility is S as the interface between an electrically and magnetically
penetrable medium (i.e. its permittivity and permeability are not too large) and a magnetically impenetrable medium (i.e. its permeability
goes to infinity). The electromagnetic boundary condition in (36) becomes

�+
i jkln j (x1)H̃kl (x1, t, xs) = 0, (39)

with no restrictions on the electric field and where x1 is located in the penetrable medium. This is the boundary condition included in Table 1.
The other possible electromagnetic equivalences for this boundary condition is to consider S as the interface between an electrically

and magnetically penetrable medium and an electrically impenetrable medium (i.e. its permittivity goes to infinity). The electromagnetic
boundary condition in (37) becomes

�−
nmpq n p(x1)Eq (x1, t, xs) = 0 (40)

with no restrictions on the magnetic field.
So the elastic-electromagnetic equivalence that we have just described allows us to use any theoretical or numerical solutions developed

for the elastic system made of eqs (13) and (14) to solve the electromagnetic systems made of eqs (20) and (21). For example, a finite-difference
modelling computer code developed for solving the equations in (13) and (14) can also be used to solve the electromagnetic eqs (20) and
(21) by simply adjusting the code for the sign of the unit tensor in eq. (21). However, the reverse is not possible; that is, a finite-difference
modelling computer code developed for solving eqs (20) and (21) can be directly used for solving eqs (13) and (14). The problem in the
reverse operation comes from the fact that tensors H̃ and B̃ contain zero components that are not necessarily zero in τ or in e. This problem
stems from the fact that we have fewer equations in the electromagnetic case (i.e. 12 scalar equations) than the elastic case (i.e. 18 scalar
equations). However, there are some particular forms of the elastic wave equation, where we have fewer equations than in the electromagnetic
system. The acoustic case is one example.

In the acoustic case, the source-strain rate, the stress tensor and the compliance tensors can be written as hij = hvδij, τ ij = −pδij and
sijkl = κδijδkl, respectively, where hv is the volume density of the volume injection, p is the pressure, and κ is the compressibility. By using
these definitions, eqs (13) and (14) reduce to

ρil (x)∂tvl (x, t, xs) + ∂i p(x, t, xs) = fi (x, t, xs), (41)

κ(x)∂t p(x, t, xs) + ∂kvk(x, t, xs) = hv(x, t, xs). (42)

To recast these equations in a form identical to that of the Maxwell’s equations in (20) and (21), we assume that the mass density and the
compressibility are invariant along the x2-axis and that source terms describe an infinitely long line source along the x2-axis. This assumption
implies that the pressure, p, and the components of the particle velocity, v1 and v3, are invariant along the x2-axis and that v2 is zero. Based
on this assumption, we can rewrite eqs (41) and (42) as follows:

εi jk∂ jζk(x, t, xs) + ρil (x)∂twl (x, t, xs) = fi (x, t, xs) (43)

εnmp∂mwp(x, t, xs) + κ(x)∂tζn(x, t, xs) = bn(x, t, xs), (44)

with

ζk ⇔

⎡
⎢⎢⎣

0

p

0

⎤
⎥⎥⎦ , wl ⇔

⎡
⎢⎢⎣

−v3

0

v1

⎤
⎥⎥⎦ , and bn ⇔

⎡
⎢⎢⎣

0

hv

0

⎤
⎥⎥⎦ . (45)
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1776 L. T. Ikelle

Table 2. Equivalence between the acoustic and electromagnetic systems.

Acoustic systems Electromagnetic systems

Pressure: p Magnetic field: H2

Fields Particle velocity: v1 Electric field: E3

Particle velocity: v3 Electric field: − E1

Source External forces: f i Electrical current: − J i

terms Volume injection rate: hv Magnetic current: K2

Materials Mass density: ρij Permittivity: ε
(i j)
0

parameters Compressibility: κ Permeability: μ
(22)
0

We have an acoustic-electromagnetic equivalence between the system made of eqs (43) and (44) and the system made of eqs (20) and (21) if
we assume that

En ⇔

⎡
⎢⎢⎣

E1

0

E3

⎤
⎥⎥⎦ , Hk ⇔

⎡
⎢⎢⎣

0

H2

0

⎤
⎥⎥⎦ and Kk ⇔

⎡
⎢⎢⎣

0

K2

0

⎤
⎥⎥⎦ . (46)

Note that this equivalence is limited to one polarization of the electromagnetic field and to 2-D acoustic media only. Table 2 summarizes the
acoustic-electromagnetic equivalence.

As described in Ikelle & Amundsen (2005), for example, the fluid-air boundary condition is p(x1, t, xs) = 0 (with x1 in the fluid), and the
corresponding electromagnetic equivalences for the interface between an electrically and magnetically penetrable medium and a magnetically
impenetrable medium is H2(x1, t, xs) = 0 (with x1 in the penetrable medium).

Let us also consider the wave propagation of SH-waves, which is another particular case of elastic wave propagation encountered
in seismology studies, especially in earthquake seismology. If we assume that the material properties are invariant in the x2-direction, the
wave propagation in the (x1, x3)-plane is decoupled from the propagation in the (x1, x2)-plane. The P waves and SV waves propagate in the
(x1, x3)-plane and the SH waves propagate in the (x1, x2)-plane. The components of the stress tensor and particle velocity, τ 11, τ 22, τ 33,
τ 13, v1, and v3, are also decoupled from the components v2, τ 12, and τ 13. So if we assume that the wave propagation is taking place in the
(x1, x2)-plane and that the material properties are invariant in the x2-direction, then the equations of motions in (13) and (14) reduce to

−∂τ21(x, t, xs)

∂x1
− ∂τ23(x, t, xs)

∂x3
+ ρ22(x)

∂v2(x, t, xs)

∂t
= f2(x, t, xs) (47)

∂v2(x, t, xs)

∂x1
− s2121(x)

∂τ21(x, t, xs)

∂t
− s2123(x)

∂τ23(x, t, xs)

∂t
= h21(x, t, xs) (48)

∂v2(x, t, xs)

∂x3
− s2321(x)

∂τ21(x, t, xs)

∂t
− s2323(x)

∂τ23(x, t, xs)

∂t
= h23(x, t, xs). (49)

Just like in the acoustic case, we can recast these equations in a form identical to that of the Maxwell’s equations in (20) and (21) as follows:

εi jk∂ jζ
′
k(x, t, xs) + ρil (x)∂tw

′
l (x, t, xs) = fi (x, t, xs) (50)

εnmp∂mw′
p(x, t, xs) + s ′

nq (x)∂tζ
′
q (x, t, xs) = b′

n(x, t, xs), (51)

with

ζ ′
k ⇔

⎡
⎢⎢⎣

−τ23

0

τ21

⎤
⎥⎥⎦ , w′

l ⇔

⎡
⎢⎢⎣

0

v2

0

⎤
⎥⎥⎦ , b′

n ⇔

⎡
⎢⎢⎣

−h23

0

h21

⎤
⎥⎥⎦ (52)

and

s ′
nm ⇔

⎡
⎢⎢⎣

−s2323 0 s2321

0 0 0

s2123 0 −s2121

⎤
⎥⎥⎦ . (53)

We have an SH-elastic-electromagnetic equivalence between the system made of eqs (43) and (44) and the system made of eqs (20) and (21)
if we assume that

En ⇔

⎡
⎢⎢⎣

0

E2

0

⎤
⎥⎥⎦ , Hk ⇔

⎡
⎢⎢⎣

H1

0

H3

⎤
⎥⎥⎦ and Kk ⇔

⎡
⎢⎢⎣

K1

0

K3

⎤
⎥⎥⎦ . (54)
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Table 3. Equivalence between the SH-wave elastic and electromagnetic systems.

Elastic systems Electromagnetic systems

Stress: τ 21 Magnetic field: H3

Fields Stress: τ 23 Magnetic field: − H1

Particle velocity: v2 Electric field: E2

Source External forces: f i Electrical current: − J i

terms External strain-source rate: h21 Magnetic current: K3

External strain-source rate: h23 Magnetic current: − K1

Materials Mass density: ρij Permittivity: ε
(i j)
0

parameters Elastic compliances: s′
nq Permeability: μ

(nq)
0

Table 3 summarizes the SH-elastic-electromagnetic equivalence.
In more general terms, elastic-electromagnetic equivalences can be established as long as there is isomorphy between the elastic energy

density,

Wel = 1

2

[
si jkl ei j ekl + ρpqvpvq

]
(55)

and the electromagnetic energy density

Wem = 1

2

[
μ

(i j)
0 Bi Bj + ε

(pq)
0 E p Eq

]
. (56)

We can see that when the compliances can be grouped into a two-rank tensor, as in the case of SH-waves in the 2-D medium (i.e.
Wel = 1

2 [s2 j2l e2 j e2l + ρpqvpvq ]), we will have isomorphy between the elastic energy density and the electromagnetic energy density.

5 D I S C U S S I O N

5.1 The duality of the two Maxwell’s equations

One of the remarkable features of the Maxwell’s equations is that they stay the same under the duality transformation E → H, H → −E,
J → K and K → −J. We can verify this feature by replacing E with H, H with −E, J with K and K with −J in eqs (20) and (21). This
observation implies that there exist alternative forms of the elastic-electromagnetic mathematical equivalences described in Tables 1–3. These
alternative forms can be obtained by replacing the electric field and electric-displacement tensors with the magnetic ones. Based on the duality
of the two Maxwell’s equations, we provide in Table 4, as an example, the alternative acoustic-electromagnetic equivalence to the one in
Table 2. In Table 5, we provide an alternative SH-elastic-electromagnetic equivalence to the one in Table 3.

The existence of alternative equivalences to those in Tables 1–3 reinforces the notion that these equivalences are primarily mathematical,
although some physical interpretation can be used to prefer one to another. Such preferences are likely to be driven by the applications under
investigation.

As we mentioned earlier in the introduction section, Carcione & Cavallini (1995) have derived an elastic-electromagnetism equivalence
for SH-wave propagation. However, their equivalences are different from those in Table 3 but identical to those in Table 5 for all the quantities,
except for the volume density of the material magnetic current, which is considered zero in their derivations.

5.2 Conductivity in acoustic-electromagnetic equivalence

The source term J in eq. (20) can be decomposed into parts

Ji = σiq Eq + J (ext)
i . (57)

Table 4. An alternative equivalence between the acoustic and electro-
magnetic systems based on the duality of the two Maxwell’s equations.

Acoustic systems Electromagnetic systems

Pressure: p Magnetic field: − E2

Fields Particle velocity: v1 Electric field: H3

Particle velocity: v3 Electric field: − H1

Source External forces: f i Electrical current: − Ki

terms Volume injection rate: hv Magnetic current: − J2

Materials Mass density: ρij Permeability: μ
(i j)
0

parameters Compressibility: κ Permittivity: ε
(22)
0
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Table 5. An alternative equivalence between the SH-wave elastic and elec-
tromagnetic systems based on the duality of the two Maxwell’s equations.

SH-wave elastic systems Electromagnetic systems

Stress: τ 21 Magnetic field: E3

Fields Stress: τ 23 Magnetic field: − E1

Particle velocity: v2 Electric field: H2

Source External forces: f i Electrical current: − Ki

terms External strain-source rate: h21 Magnetic current: J3

External strain-source rate: h23 Magnetic current: − J1

Materials Mass density: ρij Permittivity: μ
(i j)
0

parameters Elastic compliances: s′
nq Permeability: ε

(nq)
0

J (ext)
i is the source that generates the field, and the part σ iqEq describes the reaction of matter to the presence of an electromagnetic field,

where σ iq is the conductivity tensor. In other words, the Maxwell’s eq. (20) can alternatively be written as

−εi jk∂ j Hk(x, t, xs) + ε
(il)
0 (x)∂t El (x, t, xs) + σiq Eq (x, t, xs) = −J (ext)

i (x, t, xs). (58)

By taking the Fourier transform of eq. (58) with respect to time, we can rewrite this equation in the same form as eq. (20) by introducing an
effective complex-valued permittivity, as follows:

−εi jk∂ j Hk(x, ω, xs) − iωε̂
(il)
0 (x, ω)El (x, ω, xs) = −J (ext)

i (x, ω, xs), (59)

with

ε̂
(il)
0 (x, ω) = ε

(il)
0 (x) + i

σil (x)

ω
, (60)

where ε̂
(il)
0 (x, ω) is the effective complex-valued permittivity. We can see that the conductivity can be taken into account in eq. (20) by simply

considering a complex-valued permittivity in which the imaginary part characterizes the conductivity. Note that, rather than defining a new
symbol to express this physical quantity after it has been Fourier-transformed, we have used the same symbol with different arguments, as
the context unambiguously indicates the quantity currently under consideration. For example, Hk(x, ω, xs) is the Fourier transform of Hk(x,
t, xs) with respect to time. We will use this convention for the remaining part of the paper.

The question that we now want to address is where the conductivity tensor fits in the acoustic-electromagnetic equivalence described in
Table 2, for example. The answer to this question is that we have modified the acoustic in eq. (41) to include a term that characterizes wave
attenuation in addition to the scattering and geometrical spreading effect. We can write the modified acoustic equation as follows:

ρil (x)∂tvl (x, t, xs) + ∂i p(x, t, xs) + ηiqvq (x, t, xs) = fi (x, t, xs), (61)

where ηiq is the tensorial coefficient of the attenuation parameter. By taking the Fourier of eq. (61) with respect to time, we can rewrite this
equation with an effective density as follows:

−iωρ̂il (x, ω)vl (x, ω, xs) + ∂i p(x, ω, xs) = fi (x, ω, xs), (62)

with

ρ̂il (x, ω) = ρil (x) + i
ηil (x)

ω
. (63)

We can see that the acoustic eq. (62) compares to the electromagnetic eq. (59) in the same way that the acoustic eq. (41) compares to the
electromagnetic eq. (20). In other words, the equivalences in Table 2, and even Table 1, hold even if the conductivity is not zero, as long as
the density is a complex-valued tensor of the form described in eq. (63). These results also show the importance of the source terms in the
derivations of the elastic-electromagnetic equivalences.

5.3 The physics of elastic-electromagnetic equivalences

Our focus in this review has been on mathematical equivalences between elastic and electromagnetic systems, and the potential use of these
equivalences for translating numerical solutions and techniques designed for electromagnetic systems to elastic systems, or vice versa. Let us
draw attention to the fact that these types of equivalences, especially acoustic-electromagnetic equivalences, have been studied in physics and
optics for a long time (e.g. MacCullagh 1839; Thomson 1847; Maxwell 1861, 1865) for a different purpose. The primary focus in these studies
of elastic-electromagnetic equivalences was to find a solid medium for which elastic equations reproduce precisely the solutions of Maxwell’s
equations; this objective is clearly different from that of this paper. The motivation of these studies was that the electromagnetic theory is too
abstract, especially the concepts of electric and magnetic fields. By developing analogies between elasticity and electromagnetism, we can
gain some understanding of these concepts and of the electromagnetic wave propagation. The famous ether (also known as aether) medium
was born of these studies. Ether is a hypothetical linear incompressible elastic medium for transmitting light and heat (radiation), filling all
unoccupied space. In 19th-century physics, all waves are propagated through a medium; for example, water waves through water, sound waves
through air. When Maxwell developed his electromagnetic theory of light, the 19th century physicists postulated ether as the medium that
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transmitted electromagnetic waves. Ether was held to be invisible, without odour, and of such a nature that it did not interfere with the motions
of bodies through space. The concept was intended to connect the elastic wave theory with Maxwell’s field theory. However, all attempts
to demonstrate the existence of ether, most notably the experiment reported by Michelson & Morley (1887), produced negative results and
stimulated a vigorous debate that was not ended until the special theory of relativity, proposed by Einstein (1905), became accepted. In other
words, the theory of relativity eliminated the need for a light-transmitting medium, so that today the term ether is used only in a historical
context.

Despite the failure of the ether model, the analogy between the propagation of electromagnetic waves in a vacuum and the propagation
of acoustic waves in ether is known to have played a crucial role in the origins of the electromagnetic theory of light (Whittaker 1952). The
term electric displacement in electromagnetism actually has its origin in this analogy.

Although more efforts to modify the ether models is continuing (e.g. Boulanger & Hayes 2003; Dmitriyev 2004), the focus in modern
physics regarding the elastic-electromagnetic analogy has shifted from the view of the electromagnetic energy propagation as an elastic
wave phenomenon. Nowadays, most of the focus in the physics of elastic-electromagnetic equivalences has reversed to the application
of electromagnetic concepts and techniques to systems involving elastic-wave propagation (Auld 1969; Oliner 1969, 1984; Peng 1973;
Li & Chan 2004; Torrent & Sanchez-Dehesa 2008; Lee et al. 2009). This modern focus is motivated by the need to take advantage of
recent developments of powerful techniques in the electromagnetic field, especially in the areas of the optics of composite materials and
in electromagnetic microwave engineering, for the design and development of electro-mechanical transducers, acoustic waveguides and
filters, and other applications which are equally useful for systems involving elastic waves. An example of this new focus that a number
of seismologists are aware of is the extension of the so-called perfect-match-layer absorbing boundary conditions, which was originally
designed for electromagnetic systems, to elastic systems. There are numerical modelling techniques, such as finite-difference modelling,
based on eqs (20) and (21), can be used to model electromagnetic synthetic data for a given electromagnetic model. For the specific case
of finite-difference modelling, we need to introduce absorbing boundaries to accommodate for the fact that the subsurface is a half-space
with infinite lateral boundaries, in addition to the computation of partial differential of the Maxwell’s equations in both time and space.
The perfectly matched layer (PML) absorbing conditions described in Berenger (1994) is probably the most powerful way of implementing
the absorbing boundaries today. Because of the equivalences in Table 2, it is straightforward to use the PML solution of electromagnetic
systems for acoustic systems. However, the extension of Berenger’s solution to elastic systems has taken years (Chew & Liu 1996) because
an electromagnetic finite-difference modelling computer code with PML boundary conditions, as most codes developed for solving eqs (20)
and (21), cannot be directly used for solving eqs (13) and (14), as we discussed earlier. However, if the original formulation of PML was
designed for elastic systems, the extension to EM systems will have been made straightforward by using Table 1.

6 C O N C LU S I O N S

We have shown how equivalences between an elastic system and an electromagnetic system can be derived. These mathematical equivalences
can be used to take advantage of formulations and techniques from one area to the other one. For example, one can use these equivalences
to model electromagnetic wave propagation from the computer code originally designed to model elastic wave propagation. Similarly, a
computer code designed for modelling code electromagnetic waves can be used to model acoustic wave propagation when the problem is
limited to a 2-D medium.
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