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With 𝑁 → ∞ being fixed, 𝑅 → ∞, the free energy of the Matrix theory on a supergravity background 𝐹 is a functional of 𝐹,
𝑊 = 𝑊(𝑅, 𝐹). We try to relate this functional with 𝑆eff (𝑅, 𝐹), the effective action of 𝐹, where 𝐹 is translation invariant along 𝑥

−.The
vertex function is then associated with the connected correlation function of the current densities. From𝑊(𝑅, 𝐹), one can construct
an effective action Γ(𝑌) for the arbitrary matrix configuration 𝑌. Γ(𝑌) is 𝑅, and thus 𝑝+ independent. If 𝑊(𝑅, 𝐹) = 𝑆eff (𝑅, 𝐹), Γ(𝑌)

will give the supergravity interactions among 𝑀 theory objects with no light-cone momentum exchange. We then discuss the
Matrix theory dual of the 11𝑑 background generated by branes with the definite 𝑝

+ as well as the gauge theory dual of the 10𝑑

background arising from the 𝑥
− reduction. Finally, for SYM

4

with the 4𝑑 background field 𝐹
0

, we give a possible way to induce the
radial dependent 5𝑑 field 𝐹(𝜎).

1. Introduction

Up to present, two kinds of nonperturbative formulation of
𝑀/string theory are developed. The one is Matrix theory.
The typical examples are BFSS Matrix model [1] and the
plane wave Matrix model (PWMM) [2], describing a sector
of M theory with the definite light-cone momentum on flat
background and pp-wave background, respectively.M theory
on a generic weakly curved background is described by
BFSS Matrix model with the corresponding vertex operator
perturbations added [3, 4]. PWMM could just be derived
in this way [5]. For backgrounds that cannot be taken as
the perturbations of the flat spacetime, the corresponding
Matrix models are also known provided that certain amount
of supersymmetries is preserved. The other is the AdS/CFT
correspondence [6–9], for which the AdS

5

/SYM
4

correspon-
dence is intensively-studied. SYM

4

gives a nonperturbative
description of string theory onAdS

5

×𝑆
5. It is natural to expect

that SYM
4

with the 4𝑑 vertex operator perturbations added
then describes the string theory on AdS

5

× 𝑆
5 with the corre-

sponding 5𝑑 field perturbations turned on. Although Matrix
theory and AdS/CFT are obtained in entirely different ways,
both of them use a gauge theory to describeM/string theory

on a particular background. If the M theory background is
𝑅
11−𝑛

×𝑇
𝑛, the dual gauge theory will become SYM

𝑛+1

, which
is Matrix theory compactified on 𝑇

𝑛 [10–12].
As the nonperturbative description ofM/string theory on

a particular background, theHilbert space of the gauge theory
should be isomorphic to the Hilbert space of the M/string
theory on that background. For AdS

5

/SYM
4

, the one-to-one
correspondence should exist between the state (spectrum) of
the second-quantized string theory on AdS

5

×𝑆
5 and the state

(spectrum) of SYM
4

. ForMatrix theory, it is easier to establish
the correspondence between configurations. The transition
amplitude between the matrix configurations should be
equal to the transition amplitude between their M theory
counterparts. When 𝑁 → ∞, Matrix theory is the discrete
regularization of the supermembrane theory in light-cone
gauge [13]. The matching is explicit. It is natural that the
transition amplitude for membranes is defined in the same
way as the transition amplitude for strings, since the former,
when wrapping 𝑆

1 with the vanishing radius, reduces to the
latter. Matrix theory compactified on 𝑆

1 gives the Matrix
string theory [14, 15]. The off-diagonal degrees of freedom
are KKmodes of membrane along 𝑆

1 [16]. In strong coupling



2 Advances in High Energy Physics

limit (the radius of 𝑆1 approaches 0), matrices commute (KK
modes could be dropped), and Matrix string theory reduces
to the second quantized type IIA string theory in light-
cone gauge.The configurations aremultistring configurations
with the transition amplitude given by the integration of all
intermediate string joining and splitting processes [14, 15].

Since the state, the spectrum, and the transition ampli-
tude are all in one-to-one correspondence, the partition
function of the gauge theory equals the partition function of
theM/string theory. For SYM

4

, we have [8, 9]

𝑍SYM
4

(𝛽, 𝜙
0

) = 𝑍AdS
5
×𝑆

5 (𝛽, 𝜙
0

) , (1)

where 𝛽 = 1/𝑇 is the radius of the time direction. The zero
temperature partition function is only the functional of 𝜙

0

,
for which [8, 9]

𝑍SYM
4

(𝜙
0

) = 𝑒
𝑊[𝜙(𝜙

0
)]

. (2)

𝜙(𝜙
0

) is the on-shell supergravity solution with the boundary
value 𝜙

0

. 𝑊 is the type IIB supergravity action on AdS
5

× 𝑆
5.

If the gravity dual of SYM
4

with the source 𝜙
0

added is the
type IIB string theory on AdS

5

× 𝑆
5 with the background

field 𝜙(𝜙
0

) turned on, in zero temperature limit, the partition
function will only contain the contribution of the ground
state geometry, so 𝑍SYM

4

(𝜙
0

) = 𝑒
𝑊[𝜙(𝜙

0
)].

Except for (2), 𝑍SYM
4

(𝜙
0

) also has another expression on
AdS

5

× 𝑆
5. Let 𝑊

𝑠

be the free energy of the type IIB string
theory on AdS

5

× 𝑆
5 and 𝑍SYM

4

the partition function of
SYM

4

, it is expected that

𝑍SYM
4

= 𝑒
𝑊

𝑠 , (3)

where 𝑊 = ∑
𝑛

ℎ
=0

𝑊
𝑛

ℎ

. When the background field 𝜙
0

varies, SYM
4

undergoes a change of the coupling constants.
Correspondingly, there is also a change of the coupling
constants for strings living in AdS

5

× 𝑆
5, which is in fact a

modification of the 5𝑑 background. For (3) to be valid, a one-
to-one correspondence 𝜙

0

↔ 𝜙(𝜙
0

) should exist:

𝑍SYM
4

(𝜙
0

) = 𝑒
𝑊

𝑠
[𝜙(𝜙

0
)]

. (4)

On AdS
5

side, the string free energy 𝑊
𝑠

[𝜙(𝜙
0

)] cannot be
defined without a definite 5𝑑 background 𝜙(𝜙

0

). Also, for
the state (spectrum) correspondence to be valid, the definite
5𝑑 background is necessary; otherwise, it is impossible to
determine the string spectrum. If (2) and (4) both hold,

𝑊[𝜙 (𝜙
0

)] = 𝑊
𝑠

[𝜙 (𝜙
0

)] . (5)

The free energy of the string theory on a given background
equals the effective action of the background fields.

For Matrix theory, similarly,

𝑍Matrix (𝛽, 𝑝
+

, 𝐹) = 𝑍
𝑀

(𝛽, 𝑝
+

, 𝐹) . (6)

𝐹 is the 11𝑑 supergravity background and is the translation
invariant along the 𝑥

− direction. 𝑍
𝑀

(𝛽, 𝑝
+

, 𝐹) is the par-
tition function of the M theory sector with the light-cone
momentum 𝑝

+, which is supposed to be the supermembrane.

Equation (6) is trivially satisfied sinceMatrix theory is just the
regularization of the supermembrane with the definite light-
cone momentum. When 𝛽 = ∞,

𝑍Matrix (𝑝
+

, 𝐹) = 𝑒
𝑊(𝑝

+
,𝐹)

. (7)

𝑊(𝑝
+

, 𝐹) is the 𝑝
+-parameterized functional of 𝐹 with the

10𝑑 covariance.
In string theory, one can also calculate the free energy of

the strings on a given background 𝐹:

𝑊
𝑠

(𝐹) =

∞

∑

𝑚=0

𝑒
𝜙(2−2𝑚)

∫
𝑀

2−2𝑚

[𝑑𝑋] 𝑒
−𝑆

𝐹 . (8)

In [17, 18], it was shown that, for 𝐹 satisfying the free field
equation, 𝑊

𝑠

(𝐹) could be taken as the effective action of
the renormalized background field 𝐹(𝐹); that is, 𝑊

𝑠

(𝐹) =

𝑆eff[𝐹(𝐹)].
It is tempting to establish a relation between𝑊(𝑝

+

, 𝐹) and
the effective action of the 11𝑑 supergravity. However, Matrix
theory, no matter if it was taken as the DLCQ formulation
of the M theory or as the discrete regularization of the
supermembrane theory in light-cone gauge, only describes
the sub-Hilbert space of theM theory with the definite light-
cone momentum 𝑝

+ without capturing all the information of
the covariant theory. For different 𝑝+, 𝑊(𝑝

+

, 𝐹) is different.
Nevertheless, let𝐹 = {𝐹

0

, 𝐹
−

, 𝐹
−−

}, where𝐹
0

,𝐹
−

,𝐹
−−

represent
fields with zero, one, and two 𝑥

− indices, respectively; one can
find that 𝑊(𝑝

+

, 𝐹) = 𝑊(𝐹
0

, 𝐹
−

/𝑝
+

, 𝐹
−−

/𝑝
+2

). Let 𝑝+ = 𝑁/𝑅

with 𝑅 being the radius of 𝑥
−, 𝑁 → ∞, 𝑅 → ∞, and

𝑊(𝑅, 𝐹) = 𝑊(𝐹
0

, 𝑅𝐹
−

, 𝑅
2

𝐹
−−

). On the other hand, for 11𝑑

supergravity fields 𝐹 that are translation invariant along 𝑥
−,

suppose 𝑆eff(𝑅, 𝐹) is the effective action of 𝐹, and there is
also 𝑆eff(𝑅, 𝐹) = 𝑆eff(𝐹0, 𝑅𝐹

−

, 𝑅
2

𝐹
−−

). The 𝑅 dependence of
𝑊(𝑅, 𝐹) is consistent with 𝑆eff(𝑅, 𝐹).

One may want to consider the complete partition func-
tionwith all light-conemomentum taken into account, which
is roughly 𝑒

𝑊(𝐹)

= ∫𝑑𝑝
+

𝑒
𝑊(𝑝

+
,𝐹). Each 𝑊(𝑝

+

, 𝐹) only differs
by a rescaling of (𝐹

−

, 𝐹
−−

), so the summation does not give
more information. It is enough to consider 𝑊(𝑝

+

, 𝐹) with
the definite 𝑝

+. In fact, 𝐹 is the translation invariant along
𝑥
−; as a result, a sector with the definite 𝑝

+ has the enough
degrees of freedom to produce 𝑆eff(𝑅, 𝐹). The complete M
theory degrees of freedom including sectors with all light-
cone momentum is necessary only when 𝐹 is the field with
the 11𝑑 spacetime dependence.

For the arbitrary matrix configuration 𝑌, we may define
Γ(𝑌) via

𝑒
Γ(𝑌)

= ∫ [𝑑𝑌̃] 𝑒
−𝑆

𝑅,𝐹
(

̃

𝑌)+𝑆

𝑅,𝐹
(𝑌)

= 𝑒
𝑊(𝑅,𝐹)+𝑆

𝑅,𝐹
(𝑌)

,

(9)

with 𝐹(𝑥) solved from

−
𝛿𝑊 (𝑅, 𝐹)

𝛿𝐹 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐹

=
𝛿𝑆

𝑅,𝐹

(𝑌)

𝛿𝐹 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐹

. (10)

It is easy to see that Γ(𝑌) is 𝑅 independent.
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To describe the supergravity interactions among 𝑀 the-
ory objects with no light-conemomentum exchange, and one
may define Γ

𝑔

(𝑌) through

𝑒
Γ

𝑔
(𝑌)

= ∫ [𝑑𝐹] 𝑒
𝑆

𝑅,𝐹
(𝑌)−𝑆cla(𝑅,𝐹), (11)

with 𝐹 being the zero mode of the 11𝑑 supergravity along
𝑥
− and 𝑆cla the classical action of 11𝑑 supergravity. The

integrating out of F induces the effective action for the 𝑀

theory object 𝑌 with the supergravity interaction (without
transferring the light-cone momentum) taken into account.

Γ
𝑔

(𝑌) = ∑

𝑛

1

𝑛!
∫ 𝑑

10

𝑥
1

⋅ ⋅ ⋅ ∫ 𝑑
10

𝑥
𝑛

𝐺Fc (𝑥1, . . . , 𝑥𝑛)

× 𝑉
𝐹(𝑌)

(𝑥
1

) ⋅ ⋅ ⋅ 𝑉
𝐹(𝑌)

(𝑥
𝑛

) ,

(12)

where 𝐺Fc(𝑥1, . . . , 𝑥𝑛) is the connected Green’s function of
supergravity in light-cone gauge with the zero light-cone
momentum and 𝑉

𝐹(𝑌)

(𝑥) is the current density of the con-
figuration 𝑌 coupling with the supergravity field 𝐹(𝑥). Under
a Legendre transformation, Γ

𝑔

(𝑌) could be written as

Γ
𝑔

(𝑌) = 𝑆eff (𝑅, 𝐹)

+ ∫𝑑
10

𝑥𝐹 (𝑥)𝑉
𝑅,𝐹(𝑌)

(𝑥) ∼ 𝑆eff (𝑅, 𝐹) + 𝑆
𝑅,𝐹

(𝑌) ,

(13)

with 𝐹(𝑥) solved from

−
𝛿𝑆eff (𝑅, 𝐹)

𝛿𝐹 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐹

= 𝑉
𝑅,𝐹(𝑌)

(𝑥) =
𝛿𝑆

𝑅,𝐹

(𝑌)

𝛿𝐹 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐹

. (14)

So, if𝑊(𝑅, 𝐹) = 𝑆eff(𝑅, 𝐹), Γ(𝑌) = Γ
𝑔

(𝑌).
Although M theory/Matrix theory correspondence and

AdS/CFT correspondence are very different, it is possible
to construct the connection between the two. In [19–21], it
was shown that PWMM expanded around the certain 1/2

BPS states gives SYM
𝑅×𝑆

2 , SYM
𝑅×𝑆

3
/𝑍

𝑘

, and SYM
𝑅×𝑆

3 , while
the backreaction of the corresponding 1/2 BPS states on
pp-wave produces the gravity dual. We will investigate the
correspondence in more detail.

In (7), 𝐹 is the generic 11𝑑 supergravity field with the 𝑥
−

isometry. 𝑊(𝑅, 𝐹), if is indeed equal to 𝑆eff(𝑅, 𝐹), gives the
effective action of the field 𝐹. On the other hand, in (2), only
the 4𝑑 field 𝜙

0

(𝑥) is given, from which the 5𝑑 field 𝜙(𝑥, 𝑟) is
obtained from the equation of motion or from the RG flow.
𝑊[𝜙(𝜙

0

)] is the action of 𝜙(𝑥, 𝑟). This is the holography of
AdS/CFT. One may want to turn on the arbitrary 𝜙(𝑥, 𝑟) on
AdS

5

and try to find the corresponding 4𝑑 gauge dual. The
dual gauge theorymay not be SYM

4

, since 𝜙
0

can only encode
a subset of 5𝑑 fields, which are in one-to-one correspondence
with the 4𝑑 fields. In fact, since the transverse space of
AdS

5

×𝑆
5 is 𝑆5 other than 𝑅

6, the gauge theory dual may have
the scalar fields 𝑋

𝐼 other than 𝑋
𝐼. Suppose the coordinate

of AdS
5

× 𝑆
5 is (𝑥, 𝑟, Ω), for a 10𝑑 scalar 𝐻

𝑛

(𝑥, 𝑟, Ω) =

ℎ
𝑛

(𝑥, 𝑟)𝑌
𝑛

(Ω) with 𝑌
𝑛

(Ω) = 𝐶
𝑎

1
⋅⋅⋅𝑎

𝑛

(𝑦
𝑎

1 ⋅ ⋅ ⋅ 𝑦
𝑎

𝑛)/|𝑦|
𝑛 the

spherical harmonic of 𝑆5; the operator counterpart is

𝐻
𝑛

(𝑥, 𝑟, 𝑋) = ℎ
𝑛

(𝑥, 𝑟) 𝐶
𝑎

1
⋅⋅⋅𝑎

𝑛

(𝑋
𝑎

1 ⋅ ⋅ ⋅ 𝑋
𝑎

𝑛) . (15)

ℎ
𝑛

(𝑥, 𝑟) can be the arbitrary 5𝑑 function. In SYM
4

, we
only have ℎ

𝑛

(𝑥)𝐶
𝑎

1
⋅⋅⋅𝑎

𝑛

(𝑋
𝑎

1 ⋅ ⋅ ⋅ 𝑋
𝑎

𝑛) to represent such fields.
Nevertheless, for SYM

4

with the scalar field 𝑋 and the
4𝑑 background 𝐹

0

(𝑥), a 𝑋 → 𝑋, 𝐹
0

(𝑥) → 𝐹(𝑥, 𝑟)

transformation can be made, under which the partition
function remains invariant. If the SYM

4

with the scalar field𝑋

and the 5𝑑 background𝐹(𝑥, 𝑟) is the gauge theory description
of the string theory onAdS

5

×𝑆
5 with the background𝐹(𝑥, 𝑟),

its partition function will then equal 𝑒𝑊[𝐹(𝑥,𝑟)] with 𝑊 being
the 10𝑑 supergravity action. So we arrive at (2). 𝑋 → 𝑋

is a Weyl transformation, under which 𝐹
0

(𝑥) must evolve as
𝐹(𝑥, 𝑟) to preserve the partition function. We will show that,
for such 𝐹(𝑥, 𝑟), 𝛿𝑊[𝐹(𝑥, 𝑟)]/𝛿𝐹(𝑥, 𝑟) = 0, so if 𝑊[𝐹(𝑥, 𝑟)]

is the action of the supergravity, 𝐹(𝑥, 𝑟) will be the on-
shell solution. The discussion can also be extended to SCFT

3

and SCFT
6

. With no source term added, under the 𝑋 →

𝑋 transformation, the induced fields give the near horizon
geometry of 𝑀2 and 𝑀5, respectively. The holography in
AdS/CFT is very similar to the holography in noncritical
string coupling with 2𝑑 being the gravity and with 𝑔 → 𝑔

replaced by𝑋 → 𝑋.
This paper is organized as follows. In Section 2, we

consider the free energy of the Matrix theory on super-
gravity background 𝐹 that is translation invariant along
the 𝑥

− direction, and its relation with the 11𝑑 effective
action of 𝐹. In Section 3, we consider Matrix theory on the
configuration representing branes and its gravity dual. The
discussion will then be specified to the PWMM, from which,
SYM

𝑅×𝑆

2 , SYM
𝑅×𝑆

3
/𝑍

𝑘

, and SYM
𝑅×𝑆

3 can be obtained [19–
21]. In Section 4, we give a possible way to induce the radial
dependent 5𝑑 fields from the 4𝑑 background fields in SYM

4

.

2. Free Energy and the Effective
Action of Supergravity

In this section, we will consider 𝑊(𝑅, 𝐹), the free energy
of the Matrix theory on a generic 11𝑑 supergravity back-
ground 𝐹 that is translation invariant along 𝑥

−. Since the
supermembrane action in light-cone gauge only contains
one free parameter 𝑝

+, as the discrete regularization of the
supermembrane action,Matrix theory action 𝑆

𝑅,𝐹

(𝑌) also has
one free parameter which could be taken as 𝑅, the radius
of 𝑥−. 𝑝+ = 𝑁/𝑅, and 𝑁 → ∞ is fixed. The concrete 𝑅

dependence of 𝑆
𝑅,𝐹

(𝑌) is 𝑆
𝑅,𝐹

(𝑌) = 𝑆
𝐹

0
,𝑅𝐹

−
,𝑅

2
𝐹

−−

(𝑌), where 𝐹
0

,
𝐹
−

, 𝐹
−−

represent fields with zero, one, and two 𝑥
− indices.

As a result, 𝑊(𝑅, 𝐹) = 𝑊(𝐹
0

, 𝑅𝐹
−

, 𝑅
2

𝐹
−−

). On the other
hand, due to the coordinate invariance, the 𝑅 dependence
of the effective action of the supergravity field 𝐹 is also
𝑆eff(𝑅, 𝐹) = 𝑆eff(𝐹0, 𝑅𝐹

−

, 𝑅
2

𝐹
−−

). From 𝑊(𝑅, 𝐹), we can
define Γ(𝑌) = 𝑆

𝑅,𝐹

(𝑌) + 𝑊(𝑅, 𝐹), with 𝐹 solved through
𝛿[𝑆

𝑅,𝐹

(𝑌) + 𝑊(𝑅, 𝐹)]/𝛿𝐹 = 0. Γ(𝑌) is 𝑅, or equivalently, 𝑝+,
independent. Γ(𝑌) could be taken as the effective action of the
matrix configuration𝑌. In fact, at the one-loop level, Γ(𝑌) and
the standard effective action of the Matrix theory coincide.
If 𝑊(𝑅, 𝐹) = 𝑆eff(𝑅, 𝐹), we will have Γ(𝑌) = Γ

𝑔

(𝑌) with
Γ
𝑔

(𝑌) being the effective action describing the supergravity
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interactions among theM theory objects with the zero light-
cone momentum exchange.

2.1. The Action of the MatrixTheory on a Generic Background.
TheMatrix theory action in flat spacetime is

𝑆
𝑅

= 𝑅∫𝑑𝑥
+

× Tr( 1

2𝑅2
𝐷
+

𝑋
𝐼

𝐷
+

𝑋
𝐼

+
1

4𝑙6
𝑝

[𝑋
𝐼

, 𝑋
𝐽

]
2

−
𝑖

𝑅
𝜃𝐷

+

𝜃 +
1

𝑙3
𝑝

𝜃𝛾
𝐼

[𝑋
𝐼

, 𝜃]) ,

(16)

where𝑋𝐼, 𝜃, and𝐴
0

are𝑁×𝑁 hermitianmatrices with𝑁 →

∞, and 𝐼 = 1 ⋅ ⋅ ⋅ 9. 𝑅 → ∞, 𝑝+ = 𝑁/𝑅, 𝑙
𝑝

is the Planck
length.

𝑋
𝐼, 𝑥

+, and 𝑅 have the dimension of length, so each
commutator is multiplied by a factor 1/𝑙3

𝑝

to make the action
dimensionless. With the replacement 𝑋

𝐼

→ 𝑙
𝑝

𝑋
𝐼, 𝑥+ →

𝑙
𝑝

𝑥
+, 𝑅 → 𝑙

𝑝

𝑅, we get the action

𝑆
𝑅

= 𝑅∫𝑑𝑥
+

× Tr( 1

2𝑅2
𝐷
+

𝑋
𝐼

𝐷
+

𝑋
𝐼

+
1

4
[𝑋

𝐼

, 𝑋
𝐽

]
2

−
𝑖

𝑅
𝜃𝐷

+

𝜃 + 𝜃𝛾
𝐼

[𝑋
𝐼

, 𝜃]) ,

(17)

in which 𝑙
𝑝

is cancelled and 𝑋
𝐼, 𝜃, 𝑥+, and 𝑅 are all dimen-

sionless. In the following, we will still adopt this convention,
so 𝑙

𝑝

will not appear explicitly.
The 11𝑑 supergravity field, after the gauge fixing, has the

nonzero components (𝑔
+−

, 𝑔
++

, 𝑔
𝐼+

, 𝑔
𝐼𝐽

), (𝐶
𝐼𝐽+

, 𝐶
𝐼𝐽𝐾

), and
(𝜓

+

, 𝜓
𝐼

) [22]. Based on the Hamiltonian in [22], one can
write down the action of the bosonic membrane on such
supergravity background:

𝑆
𝑏

𝐹

0

= ∫𝑑𝑥
+

𝑑
2

𝜎
𝑔
+−

𝑃+

× [
𝑃
+2

𝐷
+

𝑋
𝐼

𝐷
+

𝑋
𝐽

2𝑔2
+−

𝑔
𝐼𝐽

+
𝑃
+

𝐷
+

𝑋
𝐼

𝑔
+−

(𝐶
𝐽

+
𝑃
+

𝑔
𝐽

+

𝑔
+−

)𝑔
𝐼𝐽

+
𝑃
+2

𝑔
++

2𝑔2
+−

− {𝑋
𝐼

, 𝑋
𝐽

} {𝑋
𝐾

, 𝑋
𝐿

} 𝑔
𝐼𝐾

𝑔
𝐽𝐿

+
𝑃
+

𝐶
+

𝑔
+−

] ,

(18)

where 𝐶
𝐼

= {𝑋
𝐽

, 𝑋
𝐾

}𝐶
𝐼

𝐽𝐾

and 𝐶
+

= {𝑋
𝐽

, 𝑋
𝐾

}𝐶
+𝐽𝐾

. Note that
it is 𝑔

+−

/𝑃
+ that appears. The Matrix theory version is

𝑆
𝑏

𝐹

0

= ∫𝑑𝑥
+

× Tr(𝑅𝑔
+−

{
𝐷
+

𝑋
𝐼

𝐷
+

𝑋
𝐽

2(𝑅𝑔
+−

)
2

𝑔
𝐼𝐽

+
𝐷
+

𝑋
𝐼

𝑅𝑔
+−

(𝐶
𝐽

+
𝑔
𝐽

+

𝑅𝑔
+−

)𝑔
𝐼𝐽

+
1

4
[𝑋

𝐼

, 𝑋
𝐽

] [𝑋
𝐾

, 𝑋
𝐿

] 𝑔
𝐼𝐾

𝑔
𝐽𝐿

+
𝑔
++

2(𝑅𝑔
+−

)
2

+
𝐶
+

𝑅𝑔
+−

}) ,

(19)

where 𝐶
𝐼

= −(𝑖/2)[𝑋
𝐽

, 𝑋
𝐾

]𝐶
𝐼

𝐽𝐾

and 𝐶
+

= −(𝑖/2)[𝑋
𝐽

, 𝑋
𝐾

]

𝐶
+𝐽𝐾

. Without the gauge fixing, 𝑔
𝐼−

, 𝑔
−−

, 𝐶
−𝐼𝐽

, 𝐶
+−𝐼

, 𝜓
−

̸= 0,
so terms involving them can also be added:

𝑆
𝑏

𝑔

𝐼−

= ∫𝑑𝑥
+

× Tr(𝑅𝑔
+−

{
𝐷
+

𝑋
𝐼

𝐷
+

𝑋
𝐽

𝐷
+

𝑋
𝐾

2(𝑅𝑔
+−

)
3

𝑔
𝐽𝐾

−
𝐷
+

𝑋
𝐼

4𝑅𝑔
+−

[𝑋
𝐾

, 𝑋
𝐿

] [𝑋
𝑀

, 𝑋
𝑁

]

× 𝑔
𝐾𝑀

𝑔
𝐿𝑁

+
𝐷
+

𝑋
𝐿

𝑅𝑔
+−

[𝑋
𝐽

, 𝑋
𝑀

] [𝑋
𝐼

, 𝑋
𝑁

]

×𝑔
𝐿𝐽

𝑔
𝑀𝑁

}

× 𝑅𝑔
𝐼−

)

(20)

and similarly for 𝑆𝑏
𝑔

−−

, which is the sum of the 4th order terms
(𝐷

+

𝑋)
4, (𝐷

+

𝑋)
2

[𝑋,𝑋]
2, and [𝑋,𝑋]

4. The current densities
for𝑔

−−

, 𝑔
𝐼−

,𝐶
−𝐼𝐽

,𝐶
+−𝐼

,𝜓
−

were derived in [3, 23–25] through
the calculation of the one-loop effective action. Otherwise,
in the light-cone quantization of the membrane, one may
add 𝐷

+

𝑋
−

= (1/2)𝐷
+

𝑋
𝐼

𝐷
+

𝑋
𝐼

+ (1/]2){𝑋𝐼

, 𝑋
𝐽

}{𝑋
𝐼

, 𝑋
𝐽

} and
𝐷
𝑎

𝑋
−

= 𝐷
+

𝑋
𝐼

𝐷
𝑎

𝑋
𝐼

into the action, which could couple with
the 𝑥

− indexed fields.
In all these terms, it is 𝑅𝑔

+−

, 𝑅𝑔
𝐼−

, 𝑅2𝑔
−−

, 𝑅𝐶
−𝐼𝐽

, 𝑅𝐶
+−𝐼

,
𝑅𝜓

−

that are involved. (Similarly, in supermembrane action,
it is 𝑔

+−

/𝑃
+, 𝑔

𝐼−

/𝑃
+, 𝑔

−−

/𝑃
+2, 𝐶

−𝐼𝐽

/𝑃
+, 𝐶

+−𝐼

/𝑃
+, 𝜓

−

/𝑃
+ that
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will appear.)𝑅 is the radius of 𝑥−. Under the parameterization
transformation 𝑥

+

= 𝑓(𝑥
󸀠+

), 𝑥− = 𝛼𝑥
󸀠−

⇔ 𝑅 = 𝛼𝑅
󸀠,

𝑔
󸀠

++

= 𝑓
󸀠2

(𝑥
󸀠+

) 𝑔
++

, 𝑔
󸀠

+−

= 𝛼𝑓
󸀠

(𝑥
󸀠+

) 𝑔
+−

,

𝑔
󸀠

+𝐼

= 𝑓
󸀠

(𝑥
󸀠+

) 𝑔
+𝐼

, 𝑔
󸀠

−𝐼

= 𝛼𝑔
−𝐼

,

𝑔
󸀠

−−

= 𝛼
2

𝑔
−−

,

𝐶
󸀠

+−𝐽

= 𝛼𝑓
󸀠

(𝑥
󸀠+

) 𝐶
+−𝐽

, 𝐶
󸀠

+𝐼𝐽

= 𝑓
󸀠

(𝑥
󸀠+

) 𝐶
+𝐼𝐽

,

𝐶
󸀠

−𝐼𝐽

= 𝛼𝐶
−𝐼𝐽

,

(21)

the action is invariant. This is consistent with the coordinate
transformation

𝑑𝑠
2

= 𝑔
++

𝑑𝑓 (𝑥
󸀠+

) 𝑑𝑓 (𝑥
󸀠+

) + 2𝑔
𝐼+

𝑑𝑥
𝐼

𝑑𝑓 (𝑥
󸀠+

)

+ 𝑔
𝐼𝐽

𝑑𝑥
𝐼

𝑑𝑥
𝐽

+ 2𝛼𝑔
+−

𝑑𝑓 (𝑥
󸀠+

) 𝑑𝑥
󸀠−

+ 2𝛼𝑔
𝐼−

𝑑𝑥
𝐼

𝑑𝑥
󸀠−

+ 𝛼
2

𝑔
−−

𝑑𝑥
󸀠−

𝑑𝑥
󸀠−

= 𝑔
++

𝑓
󸀠2

(𝑥
󸀠+

) 𝑑𝑥
󸀠+

𝑑𝑥
󸀠+

+ 2𝑓
󸀠

(𝑥
󸀠+

) 𝑔
𝐼+

𝑑𝑥
𝐼

𝑥
󸀠+

+ 𝑔
𝐼𝐽

𝑑𝑥
𝐼

𝑑𝑥
𝐽

+ 2𝛼𝑔
+−

𝑓
󸀠

(𝑥
󸀠+

) 𝑑𝑥
󸀠+

𝑑𝑥
󸀠−

+ 2𝛼𝑔
𝐼−

𝑑𝑥
𝐼

𝑑𝑥
󸀠−

+ 𝛼
2

𝑔
−−

𝑑𝑥
󸀠−

𝑑𝑥
󸀠−

,

𝐶 = 𝐶
𝐼𝐽𝐾

𝑑𝑥
𝐼

∧ 𝑑𝑥
𝐽

∧ 𝑑𝑥
𝐾

+ 𝐶
𝐼𝐽+

𝑑𝑥
𝐼

∧ 𝑑𝑥
𝐽

∧ 𝑑𝑓 (𝑥
󸀠+

)

+ 𝛼𝐶
𝐼𝐽−

𝑑𝑥
𝐼

∧ 𝑑𝑥
𝐽

∧ 𝑑𝑥
󸀠−

+ 𝛼𝐶
𝐼+−

𝑑𝑥
𝐼

∧ 𝑑𝑓 (𝑥
󸀠+

) ∧ 𝑑𝑥
󸀠−

= 𝐶
𝐼𝐽𝐾

𝑑𝑥
𝐼

∧ 𝑑𝑥
𝐽

∧ 𝑑𝑥
𝐾

+ 𝐶
𝐼𝐽+

𝑓
󸀠

(𝑥
󸀠+

) 𝑑𝑥
𝐼

∧ 𝑑𝑥
𝐽

∧ 𝑑𝑥
󸀠+

+ 𝛼𝐶
𝐼𝐽−

𝑑𝑥
𝐼

∧ 𝑑𝑥
𝐽

∧ 𝑑𝑥
−

+ 𝛼𝐶
𝐼+−

𝑓
󸀠

(𝑥
󸀠+

) 𝑑𝑥
𝐼

∧ 𝑑𝑥
󸀠+

∧ 𝑑𝑥
−

.

(22)

𝑆
𝑅,𝐹

, the supersymmetric extension of (19) and (20), is not
constructed yet.With 𝑆

𝑅,𝐹

given, the current density for𝐹 can
be defined as

𝑉
𝐹(𝑌)

(𝑥) =
𝛿𝑆

𝑅,𝐹

(𝑌)

𝛿𝐹(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐹

. (23)

In particular, when 𝐹 is the flat background, for which, the
only nonvanishing fields are 𝑔

+−

= −1 and 𝑔
𝐼𝐽

= 𝛿
𝐼𝐽

,𝑉
𝐹(𝑌)

(𝑥)

reduces to the localized vertex operator of the supergravity
field 𝐹. In [3, 4, 23–25], the vertex operators for various
supergravity fields are constructed. Although the exact 𝑆

𝑅,𝐹

is unknown, with the vertex operators at hand, one can write

down theMatrix theory action onweakly curved background
in linear gravity approximation [3, 4, 23, 24]:

𝑆
𝑅,𝐹

= 𝑆
𝑅

− 𝑅∫𝑑𝑥
+

× STr [𝑉
ℎ

𝐼𝐽
(𝑋)

ℎ
𝐼𝐽

(𝑋) + 𝑉
ℎ

𝐼+
(𝑋)

ℎ
𝐼+

(𝑋)

+ 𝑉
ℎ

++
(𝑋)

ℎ
++

(𝑋) + 𝑉
ℎ

𝐼−
(𝑋)

ℎ
𝐼−

(𝑋)

+ 𝑉
ℎ

+−
(𝑋)

ℎ
+−

(𝑋) + 𝑉
ℎ

−−
(𝑋)

ℎ
−−

(𝑋)

+ 𝑉
𝐶

𝐼𝐽𝐾
(𝑋)

𝐶
𝐼𝐽𝐾

(𝑋) + 𝑉
𝐶

+𝐽𝐾
(𝑋)

𝐶
+𝐽𝐾

(𝑋)

+ 𝑉
𝐶

𝐼𝐽−
(𝑋)

𝐶
𝐼𝐽−

(𝑋) + 𝑉
𝐶

+−𝐾
(𝑋)

𝐶
+−𝐾

(𝑋)

+ 𝑉
𝜓(𝑋)

𝜓 (𝑋) + 𝑉
𝜓

+
(𝑋)

𝜓
+

(𝑋)

+ 𝑉
𝜓

−
(𝑋)

𝜓
−

(𝑋) ] ,

(24)

where, for example,

𝑉
ℎ

𝐼+
(𝑋)

ℎ
𝐼+

(𝑋) = (
𝐷
+

𝑋
𝐼

𝑅
−

1

4
𝜃𝛾

𝐼𝐽

𝜃
𝜕

𝜕𝑋𝐽

)
ℎ
𝐼+

(𝑋)

𝑅
. (25)

ℎ
𝐼𝐽

(𝑋), . . . , 𝜓
−

(𝑋) are 11𝑑 background fields with the 𝑐-
number coordinate 𝑥 replaced by the matrix coordi-
nate 𝑋. The background fields are only the functions of
(𝑥
+

, 𝑥
1

, . . . , 𝑥
9

); they are the zeromodes of the 11𝑑 supergrav-
ity along 𝑥

−.
The vertex operator can take three different forms. First,

it can be the operator defined in a 1𝑑 SYM theory, just as that
in AdS/CFT.Then, the background fields, like ℎ

𝐼+

(𝑋), should
be expanded as the Taylor series:

ℎ
𝐼+

(𝑥
+

, 𝑋
1

, . . . , 𝑋
9

)

=

∞

∑

𝑛=0

1

𝑛!
(𝜕
𝑘

1

⋅ ⋅ ⋅ 𝜕
𝑘

𝑛

ℎ
𝐼+

) (𝑥
+

, 0, . . . , 0)𝑋
𝑘

1 ⋅ ⋅ ⋅ 𝑋
𝑘

𝑛 ,

(26)

with (𝜕
𝑘

1

⋅ ⋅ ⋅ 𝜕
𝑘

𝑛

ℎ
𝐼+

)(𝑥
+

, 0, . . . , 0) the derivative of ℎ
𝐼+

(𝑥
+

, 𝑥⃗)

at (𝑥+, 0) [3, 23–25].

STr [𝑉
ℎ

𝐼+
(𝑋)

ℎ
𝐼+

(𝑋)]

=

∞

∑

𝑛=0

1

𝑛!
(𝜕
𝑘

1

⋅ ⋅ ⋅ 𝜕
𝑘

𝑛

ℎ
𝐼+

) (𝑥
+

, 0, . . . , 0)

× STr[ 1

𝑅
(
𝐷
+

𝑋
𝐼

𝑅
−

1

4
𝜃𝛾

𝐼𝐽

𝜃
𝜕

𝜕𝑋𝐽

)𝑋
𝑘

1 ⋅ ⋅ ⋅ 𝑋
𝑘

𝑛]

=

∞

∑

𝑛=0

1

𝑛!
(𝜕
𝑘

1

⋅ ⋅ ⋅ 𝜕
𝑘

𝑛

ℎ
𝐼+

) (𝑥
+

, 0, . . . , 0) 𝐼
𝑘

1
⋅⋅⋅𝑘

𝑛

ℎ

𝐼+

(𝑥
+

) .

(27)

Since all background fields enter into the action in the formof
𝑓(𝑥

+

, 0, . . . , 0), the 𝑈(𝑁) SYM
1

lives at (𝑥+, 0, . . . , 0). When

𝑋
𝑖

󳨀→ 𝑋
𝑖

− 𝑎
𝑖

,

𝑓 (𝑥
+

, 0, . . . , 0) 󳨀→ 𝑓(𝑥
+

, 𝑎
1

, . . . , 𝑎
9

) ,

(28)
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SYM
1

undergoes a translation. Nothing specifies where the
SYM

1

should be, so one may put it at any point in 𝑅
9.

Similar to AdS/CFT, there is a one-to-one correspondence
between operators and fields. However, no holography is
present here. Fields living on SYM

1

are Taylor series coef-
ficients, which uniquely determines the 11𝑑 background.
The background fields are arbitrary and are not necessarily
on shell. On the other hand, in AdS/CFT, fields living on
CFT are boundary values, from which the full background
is solved through the equations of motion or the RG flow. In
contrast to the chiral primary operators Φ𝑘

1
⋅⋅⋅𝑘

𝑛 in AdS/CFT,
the moment operators 𝐼𝑘1 ⋅⋅⋅𝑘𝑛 do not need to be traceless. As a
result, {1, 𝐼𝑘1 , . . . , 𝐼𝑘1 ⋅⋅⋅𝑘𝑛 , . . .} couples with the 10𝑑 field, while
{1, Φ

𝑘

1 , . . . , Φ
𝑘

1
⋅⋅⋅𝑘

𝑛 , . . .} only couples with the 9𝑑 field.
In the second form, the vertex operator is defined in 10𝑑

spacetime:

𝛿

𝛿𝐹 (𝑥)
𝐹 (𝑥

+

, 𝑋
1

, . . . , 𝑋
9

) = 𝛿 (𝑥
0

− 𝑥
+

) 𝛿
9

(𝑥
𝐼

− 𝑋
𝐼

)

= 𝛿
10

(𝑥
𝜇

− 𝑋
𝜇

) ,

(29)

where 𝑋
𝐼 are 𝑁 × 𝑁 matrices and for uniformity; we have

set 𝑋0

= 𝑥
+1

𝑁×𝑁

. This is a matrix generalization of the 𝛿-
function. In special situations, when all of the𝑋𝐼 are diagonal,
that is,𝑋𝐼

= diag{𝑥𝐼
1

, 𝑥
𝐼

2

, . . . , 𝑥
𝐼

𝑁

}, (29) becomes

𝛿

𝛿𝐹 (𝑥)
𝐹 (𝑥

+

, 𝑋
1

, . . . , 𝑋
9

)

= diag {𝛿
10

(𝑥
𝜇

− 𝑥
𝜇

1

) , 𝛿
10

(𝑥
𝜇

− 𝑥
𝜇

2

) , . . . , 𝛿
10

(𝑥
𝜇

− 𝑥
𝜇

𝑁

)} .

(30)

With the generalized 𝛿-function, it is straightforward to write
down the current densities for various fields. For ℎ

𝐼+

, we have

𝑉
ℎ

𝐼+
(𝑥) =

𝛿

𝛿ℎ
𝐼+

(𝑥)
{−𝑅∫𝑑𝑥

+STr [𝑉
ℎ

𝐼+
(𝑋)

ℎ
𝐼+

(𝑋)]}

= −𝑅∫𝑑𝑥
+STr [𝑉

ℎ

𝐼+
(𝑋)

𝛿
10

(𝑥 − 𝑋)] .

(31)

It is not convenient to deal with the 𝛿-function. One may
want to do a Fourier transformation, which gives the third
representation of the vertex operator:

𝑉
ℎ

𝐼+

(𝑝) = ∫𝑑
10

𝑥𝑉
ℎ

𝐼+
(𝑥) 𝑒

𝑖𝑝𝑥

= −𝑅∫𝑑𝑥
+STr [𝑉

ℎ

𝐼+
(𝑋)

𝑒
𝑖𝑝𝑋

]

= −𝑅∫𝑑𝑥
+STr{[−

𝐷
+

𝑋
𝐼

𝑅
+

𝑖

4
𝜃𝛾

𝐼𝐽

𝜃𝑝
𝐽

] 𝑒
𝑖𝑝𝑋

} .

(32)

2.2. Partition Function of Matrix Theory on Curved Back-
ground. Suppose the exact form of 𝑆

𝐹

is given, and the par-
tition function of Matrix theory on supergravity background
is

𝑍 (𝑅, 𝐹) = 𝑒
𝑊(𝑅,𝐹)

= ∫ [𝑑𝑋𝑑𝜃 𝑑𝐴
0

] 𝑒
−𝑆

𝑅,𝐹
(𝑋,𝜃,𝐴

0
)

= ∫ [𝑑𝑌] 𝑒
−𝑆

𝑅,𝐹
(𝑌)

,

(33)

where 𝐹 is the 11𝑑 background field (𝑔
+−

, 𝑔
++

, 𝑔
𝐼+

, 𝑔
𝐼𝐽

, 𝑔
−−

,
𝑔
𝐼−

), (𝐶
𝐼𝐽+

, 𝐶
𝐼𝐽𝐾

, 𝐶
𝐼𝐽−

, 𝐶
𝐼+−

), and (𝜓
+

, 𝜓
𝐼

, 𝜓
−

) mentioned
before, and 𝑌 collectively represents (𝑋𝐼

, 𝜃, 𝐴
0

).
In gauge/string correspondence, partition function is an

important quantity, the value of which should be equal on
both sides. For AdS

5

/CFT
4

correspondence, it is expected
that

𝑍SYM
4

= exp {−𝐹} (34)

should hold, where 𝐹 = ∑
𝑛

ℎ
=0

𝐹
𝑛

ℎ

is the free energy of the
strings on AdS

5

× 𝑆
5, 𝑍SYM

4

and exp{−𝐹} are the partition
function of SYM

4

and the partition function of the second
quantized type IIB string theory on AdS

5

× 𝑆
5, respectively.

For the present situation, the comparison is relatively trivial.
On one side, we have a gauge theory with the partition
function given by (33); on the other side, the𝑀-theory sector
with the light-conemomentum 𝑝

+ is described by theMatrix
model with 𝑝

+

= 𝑁/𝑅, for which the partition function is
again (33).

Suppose 𝑆𝑀
𝑃

+
,𝐹

(𝑌) is the membrane action on background
𝐹. 𝑆𝑀

𝑃

+
,𝐹

(𝑌) should be general covariant, so, for 𝑃
+

= 𝑃
󸀠+

/𝛼,
𝑥
+

= 𝑓(𝑥
󸀠+

), and 𝑋 = 𝑔(𝑋
󸀠

), there is 𝑆
𝑀

𝑃

+
,𝐹

(𝑌) =

𝑆
𝑀

𝑃

󸀠+
,𝐹

󸀠(𝑌
󸀠

), where 𝐹
󸀠 is the field coming from the coordinate

transformation:

𝑥
−

= 𝛼𝑥
󸀠−

, 𝑥
+

= 𝑓 (𝑥
󸀠+

) , 𝑥 = 𝑔 (𝑥
󸀠

) . (35)

For the bosonic action, we can see this is indeed the case. If
[𝑑𝑌] = [𝑑𝑌

󸀠

], that is, the path integral measure is coordinate
independent, we will have

∫ [𝑑𝑌] 𝑒
−𝑆

𝑀

𝑃
+
,𝐹
(𝑌)

= ∫ [𝑑𝑌
󸀠

] 𝑒
−𝑆

𝑀

𝑃
󸀠+
,𝐹
󸀠 (𝑌
󸀠
)

. (36)

After thematrix regularization, themembrane configurations
𝑌(𝑥

+

, 𝜎
1

, 𝜎
2

) and 𝑌
󸀠

(𝑥
+

, 𝜎
1

, 𝜎
2

) become the matrix configu-
rations 𝑌(𝑥

+

) and 𝑌
󸀠

(𝑥
+

), and there is

𝑍 (𝑅, 𝐹) = 𝑒
𝑊(𝑅,𝐹)

= ∫ [𝑑𝑌] 𝑒
−𝑆

𝑅,𝐹
(𝑌)

= ∫ [𝑑𝑌
󸀠

] 𝑒
−𝑆

𝑅
󸀠
,𝐹
󸀠 (𝑌
󸀠
)

= 𝑒
𝑊(𝑅

󸀠
,𝐹

󸀠
)

= 𝑍 (𝑅
󸀠

, 𝐹
󸀠

) .

(37)

𝑊(𝑅, 𝐹) = 𝑊(𝑅
󸀠

, 𝐹
󸀠

). At least restricted to (35), 𝑊(𝑅, 𝐹) is
the diffeomorphism invariant functional of 𝐹.
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Let 𝐹
0

, 𝐹
−

, 𝐹
−−

represent fields with zero, one, and two 𝑥
−

indices. Since

𝑆
𝑅,𝐹

(𝑌) = 𝑆
𝐹

0
,𝑅𝐹

−
,𝑅

2
𝐹

−−
(𝑌) , (38)

𝑊(𝑅, 𝐹) = 𝑊(𝐹
0

, 𝑅𝐹
−

, 𝑅
2

𝐹
−−

) . (39)

For the 11𝑑 supergravity fields (𝐹
0

, 𝐹
−

, 𝐹
−−

), which are trans-
lation invariant along the 𝑥

− direction, 𝑥− ∈ [0, 2𝜋𝑅), the
11𝑑 supergravity effective action is 𝑆eff(𝑅; 𝐹

0

, 𝐹
−

, 𝐹
−−

). 𝑆eff is
invariant under the coordinate transformation:

𝑥
−

󳨀→
𝑥
−

𝑅
, 𝐹

0

󳨀→ 𝐹
0

, 𝐹
−

󳨀→ 𝑅𝐹
−

,

𝐹
−−

󳨀→ 𝑅
2

𝐹
−−

,

(40)

so

𝑆eff (𝑅; 𝐹
0

, 𝐹
−

, 𝐹
−−

) = 𝑆eff (1; 𝐹0, 𝑅𝐹
−

, 𝑅
2

𝐹
−−

) . (41)

The radius of 𝑥− is absorbed in 𝐹
−

, 𝐹
−−

, as is in (39). In this
respect,𝑊 is consistent with 𝑆eff.

Let 𝐹 = 𝐹 + 𝐹, where 𝐹 is the flat background with 𝑔
+−

=

−1, 𝑔
𝐼𝐽

= 𝛿
𝐼𝐽

, and the rest fields being zero.𝑊(𝑅, 𝐹) = 0:

𝑊(𝑅, 𝐹) = ∫𝑑
10

𝑥Γ
𝑐

𝑅,𝐹

(𝑥) 𝐹 (𝑥)

+
1

2!
∫ 𝑑

10

𝑥
1

× ∫𝑑
10

𝑥
2

Γ
𝑐

𝑅,𝐹

(𝑥
1

, 𝑥
2

) 𝐹 (𝑥
1

) 𝐹 (𝑥
2

) + ⋅ ⋅ ⋅

= ∑

𝑛

1

𝑛!
∫ 𝑑

10

𝑥
1

⋅ ⋅ ⋅ ∫ 𝑑
10

𝑥
𝑛

Γ
𝑐

𝑅,𝐹

(𝑥
1

, . . . , 𝑥
𝑛

)

× 𝐹 (𝑥
1

) ⋅ ⋅ ⋅ 𝐹 (𝑥
𝑛

) ,

(42)

where (𝐹 collectively represents supergravity fields. For
example, Γ𝑐

𝑅,𝑔

++
,𝑔

−−

(𝑥
1

, 𝑥
2

) = 𝛿
2

𝑊(𝑅,𝐹)/𝛿𝑔
++

(𝑥
1

)𝛿𝑔
−−

(𝑥
2

)|
𝐹=𝐹

.)

Γ
𝑐

𝑅,𝐹

(𝑥
1

, . . . , 𝑥
𝑛

) =
𝛿
𝑛

𝑊(𝑅, 𝐹)

𝛿𝐹(𝑥
1

) ⋅ ⋅ ⋅ 𝛿𝐹 (𝑥
𝑛

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐹=𝐹

. (43)

For the same𝐹, the 11𝑑 supergravity effective action 𝑆eff(𝑅, 𝐹)

is

𝑆eff (𝑅, 𝐹) = ∑

𝑛

1

𝑛!
∫

2𝜋𝑅

0

𝑑𝑥
−

1

× ∫𝑑𝑥
+

1

𝑑
9x
1

⋅ ⋅ ⋅ ∫

2𝜋𝑅

0

𝑑𝑥
−

𝑛

∫𝑑𝑥
+

𝑛

𝑑
9x
𝑛

× Γ
𝑐

𝐹

(𝑥
−

1

, 𝑥
+

1

, x
1

; . . . ; 𝑥
−

𝑛

, 𝑥
+

𝑛

, x
𝑛

)

× 𝐹 (𝑥
+

1

, x
1

) ⋅ ⋅ ⋅ 𝐹 (𝑥
+

𝑛

, x
𝑛

) .

(44)

Γ
𝑐

𝐹

(𝑥
−

1

, 𝑥
+

1

, x
1

; . . . ; 𝑥
−

𝑛

, 𝑥
+

𝑛

, x
𝑛

) is the vertex function of the 11𝑑

supergravity. If 𝑆eff(𝑅, 𝐹) = 𝑊(𝑅, 𝐹), there will be

Γ
𝑐

𝑅,𝐹

(𝑥
1

, . . . , 𝑥
𝑛

)

= Γ
𝑐

𝑅,𝐹

(𝑥
+

1

, x
1

; . . . ; 𝑥
+

𝑛

, x
𝑛

)

= ∫

2𝜋𝑅

0

𝑑𝑥
−

1

⋅ ⋅ ⋅ ∫

2𝜋𝑅

0

𝑑𝑥
−

𝑛

Γ
𝑐

𝐹

(𝑥
−

1

, 𝑥
+

1

, x
1

; . . . ; 𝑥
−

𝑛

, 𝑥
+

𝑛

, x
𝑛

) .

(45)

In linear gravity approximation, 𝛿𝑉
𝐹

(𝑥)/𝛿𝐹(𝑦) = 0,
where 𝑉

𝐹

is the current density coupling with 𝐹(𝑥) as is
defined in (23):

Γ
𝑐

𝑅,𝐹

(𝑥
1

, . . . , 𝑥
𝑛

) = (−1)
𝑛

⟨𝑉
𝐹

(𝑥
1

) ⋅ ⋅ ⋅ 𝑉
𝐹

(𝑥
𝑛

)⟩
𝑐

. (46)

⟨𝑉
𝐹

(𝑥
1

) ⋅ ⋅ ⋅ 𝑉
𝐹

(𝑥
𝑛

)⟩
𝑐

is the connected correlation function of
the current density, in contrast to

⟨𝑉
𝐹

(𝑥
1

) ⋅ ⋅ ⋅ 𝑉
𝐹

(𝑥
𝑛

)⟩

= ∫ [𝑑𝑋𝑑𝜃 𝑑𝐴
0

] 𝑒
−𝑆

0𝑉
𝐹

(𝑥
1

) ⋅ ⋅ ⋅ 𝑉
𝐹

(𝑥
𝑛

)

=
(−1)

𝑛

𝛿
𝑛

𝑍 (𝑅, 𝐹)

𝛿𝐹 (𝑥
1

) ⋅ ⋅ ⋅ 𝛿𝐹 (𝑥
𝑛

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐹=𝐹

,

(47)

which is the correlation function of the current density. In
(42),𝑊(𝑅, 𝐹) is expanded around the flat background𝐹. One
can of course expand 𝑊(𝑅, 𝐹) on a different background,
giving rise to the different Γ𝑐

𝑅,𝐹

(𝑥
1

, . . . , 𝑥
𝑛

).
In terms of 𝑉

𝐹

(𝑝),

⟨𝑉
𝐹

(𝑥
1

) ⋅ ⋅ ⋅ 𝑉
𝐹

(𝑥
𝑛

)⟩
𝑐

= ∫𝑑
10

𝑝
1

⋅ ⋅ ⋅ ∫ 𝑑
10

𝑝
𝑛

𝑒
−𝑖(𝑝

1
𝑥

1
+⋅⋅⋅+𝑝

𝑛
𝑥

𝑛
)

× ⟨𝑉
𝐹

(𝑝
1

) ⋅ ⋅ ⋅ 𝑉
𝐹

(𝑝
𝑛

)⟩
𝑐

(48)

Note that 𝑉
𝐹(𝑋)

(𝑥
+

, 𝑥
𝐼

− 𝑎
𝐼

) = 𝑉
𝐹(𝑋+𝑎)

(𝑥
+

, 𝑥
𝐼

), 𝑆
0

(𝑋 + 𝑎) =

𝑆
0

(𝑋), so

⟨𝑉
𝐹

(𝑥
1

) ⋅ ⋅ ⋅ 𝑉
𝐹

(𝑥
𝑛

)⟩
𝑐

= ⟨𝑉
𝐹

(𝑥
1

+ 𝑎
1

) ⋅ ⋅ ⋅ 𝑉
𝐹

(𝑥
𝑛

+ 𝑎
𝑛

)⟩
𝑐

.

(49)

The correlation function is translation invariant.
⟨𝑉

𝐹

(𝑝
1

) ⋅ ⋅ ⋅ 𝑉
𝐹

(𝑝
𝑛

)⟩
𝑐

= 0 if 𝑝
1

+ ⋅ ⋅ ⋅ + 𝑝
𝑛

̸= 0.
Let us first consider the one point function

⟨𝑉
𝐹

(𝑥)⟩ = −
𝛿𝑊 (𝑅, 𝐹)

𝛿𝐹 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐹=𝐹

= V
𝐹

. (50)

V
𝐹

is the vacuum expectation value of the current density,
when the background field is 𝐹, and is a constant in
spacetime. 𝑆

𝑅

is 𝑆𝑂(9) invariant, so V
𝐹

should also be 𝑆𝑂(9)

invariant. As a result,

V
𝑔

𝐼+

= V
𝑔

𝐼−

= V
𝐶

𝐼𝐽𝐾

= V
𝐶

𝐼𝐽+

= V
𝐶

𝐼𝐽−

= V
𝐶

𝐼+−

= V
𝜓

𝐼

= 0.

(51)
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V
𝑔

𝐼𝐽

= 0 if the traceless condition is imposed. V
𝜓

+

=

V
𝜓

−

= 0 due to the supersymmetry.The nonvanishing current
densities are V

ℎ

++

, V
ℎ

−−

, and V
ℎ

+−

. In particular, V
ℎ

++

= 𝑝
+

/𝐿
9 is

the vacuum expectation value of the light-cone momentum
density. For the generic value of 𝐹,

⟨𝑉
𝐹

(𝑥)⟩
𝐹

= −
𝛿𝑊 (𝑅, 𝐹)

𝛿𝐹 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐹=𝐹+

̃

𝐹

= V
𝐹

(𝑥)

= ∑

𝑛

−
1

(𝑛 − 1)!

× ∫𝑑
10

𝑥
1

⋅ ⋅ ⋅ ∫ 𝑑
10

𝑥
𝑛−1

Γ
𝑐

𝑅,𝐹

(𝑥, 𝑥
1

, . . . , 𝑥
𝑛−1

)

× 𝐹 (𝑥
1

) ⋅ ⋅ ⋅ 𝐹 (𝑥
𝑛−1

)

(52)

is the vacuum expectation value of the current density
in presence of the background field. In string theory, the
vanishing of the one point function, the tadpole, for vertex
operators gives the equations of motion for background
fields. Similarly, here, if 𝑊(𝑅, 𝐹) is the effective action of the
supergravity fields, on SUGRA solution background, there
will be ⟨𝑉

𝐹

(𝑥)⟩
𝐹

= 0 except for ℎ
++

, whose vertex operator
is the same as the tachyon in bosonic string.We will return to
this problem later.

2.3. Another Effective Action of Matrix Theory. For the given
𝐹(𝑥), V

𝐹

(𝑥) is uniquely determined. Conversely, different
𝐹(𝑥) may result in the same V

𝐹

(𝑥). This is quite like the
source-gravity coupled system. For the given gravity field, the
density of the source can be obtained through 𝛿𝑆

𝑔

/𝛿𝑔
𝜇]

=

−𝑇
𝜇]. On the other hand, with the given source, the gravity

solution is not unique. Nevertheless, with the proper bound-
ary condition imposed, there is always a privileged solution.
Wewill choose the boundary condition so that, for V

𝐹

(𝑥) = 0,
𝐹(𝑥) = 0. 𝐹(𝑥) could be interpreted as the field generated
by the current density V

𝐹

(𝑥). Other boundary conditions
correspond to adding the external supergravity background,
for example, the plane wave background, in addition to fields
generated by source. We will discuss this situation later.

Then, there is a one-to-one correspondence between V
𝐹

and 𝐹, and so a Legendre transformation is possible. Before
that, we will first define Γ(𝑌):

Γ (𝑌) = 𝑆
𝑅,𝐹

(𝑌) + 𝑊 (𝑅, 𝐹) , (53)

𝑒
Γ(𝑌)

= ∫ [𝑑𝑌̃] 𝑒
−𝑆

𝑅,𝐹
(

̃

𝑌)+𝑆

𝑅,𝐹
(𝑌)

. (54)

𝐹 is solved from the equation

∫ [𝑑𝑌̃]
𝛿

𝛿𝐹 (𝑥)
𝑒
−𝑆

𝑅,𝐹
(

̃

𝑌)+𝑆

𝑅,𝐹
(𝑌)

= ∫ [𝑑𝑌̃] 𝑒
−𝑆

𝑅,𝐹
(

̃

𝑌)+𝑆

𝑅,𝐹
(𝑌)

[−

𝛿𝑆
𝑅,𝐹

(𝑌̃)

𝛿𝐹 (𝑥)
+

𝛿𝑆
𝑅,𝐹

(𝑌)

𝛿𝐹 (𝑥)
] = 0

(55)

or equivalently,

∫ [𝑑𝑌̃] 𝑒
−𝑆

𝑅,𝐹
(

̃

𝑌)

𝛿𝑆
𝑅,𝐹

(𝑌̃)

𝛿𝐹 (𝑥)
=

𝛿𝑆
𝑅,𝐹

(𝑌)

𝛿𝐹 (𝑥)
= −

𝛿𝑊 (𝑅, 𝐹)

𝛿𝐹 (𝑥)
. (56)

In some sense, 𝐹(𝑥) is the field generated by 𝑌. Take a
derivative of (54) with respect to 𝑌; using (55), we get

𝛿Γ (𝑌)

𝛿𝑌
=

𝛿𝑆
𝑅,𝐹

(𝑌)

𝛿𝑌
, (57)

where 𝐹 is solved from (55). The variation on the right-hand
side of (57) only acts on 𝑌 with 𝐹 being fixed.

Recall that the 𝑅 dependence of 𝑆
𝑅,𝐹

(𝑌) only comes from
𝑅𝐹

−

and 𝑅
2

𝐹
−−

, so if the solution of (56) is (𝐹
0

, 𝐹
−

, 𝐹
−−

), with
𝑅 replaced by𝛼𝑅, the solutionwill become (𝐹

0

, 𝐹
−

/𝛼, 𝐹
−−

/𝛼
2

).
𝑆
𝑅,𝐹

(𝑌), 𝑊(𝑅, 𝐹), and Γ(𝑌) remain invariant. Γ(𝑌) is 𝑅-
independent. In supermembrane picture, suppose there are
two supermembrane theories with the light-conemomentum
𝑃
+ and 𝑃

󸀠+, and consider the fields generated by the same
configuration 𝑌(𝑥

+

, 𝜎
1

, 𝜎
2

). Let 𝑥󸀠− → 𝑃
󸀠+

𝑥
󸀠−

/𝑃
+, 𝑃󸀠+ →

𝑃
+, in this frame, the generated fields are the same, changing

back, we get the relation 𝐹
0

= 𝐹
0

, 𝐹
−

/𝑃
+

= 𝐹
󸀠

−

/𝑃
󸀠+, 𝐹

−−

/𝑃
+2

=

𝐹
󸀠

−−

/𝑃
󸀠+2. When plugged into 𝑆

𝑀

𝑃

+
,𝐹

(𝑌), the 𝑅 dependence is
canceled, so the obtained Γ(𝑌) is the same.

With these properties collected, we may consider the
possible interpretation of Γ(𝑌) and𝑊(𝑅, 𝐹). If𝑊(𝑅, 𝐹) is the
effective action of supergravity, since 𝑆

𝑅,𝐹

(𝑌) is the matrix
theory action on background 𝐹, Γ(𝑌)will be the action of the
source-gravity coupled system and is on shell with respect to
supergravity and thus could be taken as the effective action
of the configuration 𝑌. 𝛿Γ(𝑌)/𝛿𝑌 = 𝛿𝑆

𝑅,𝐹

(𝑌)/𝛿𝑌 = 0 is
the quantum corrected equation of motion, which differs
from the classical equation of motion 𝛿𝑆

0

(𝑌)/𝛿𝑌 = 0 in
that the background fields in former are generated by the
configuration 𝑌 itself, while the background fields in latter
are given. For time-independent 𝑌, the stationary point of
the effective action gives the vacuum configuration. In this
case, 𝛿Γ(𝑌)/𝛿𝑌 = 𝛿𝑆

𝑅,𝐹

(𝑌)/𝛿𝑌 = 0 is equivalent to the
requirement that the branes should not exert force to each
other, which is the no force condition for BPS configurations
[26]. All of the above statements are based on the assumption
that 𝑊(𝑅, 𝐹) is the effective action of supergravity, which,
however, is unproved.

Let us continue to explore the properties of Γ(𝑌) and
𝑊(𝑅, 𝐹). For simplicity, let 𝑅 = 1, or, in other words, let the
𝑥
− indexed fields absorb 𝑅. In a weakly curved background,

𝑆
𝐹

(𝑌) = 𝑆
0

(𝑌) + ∫ 𝑑
10

𝑥𝐹(𝑥)𝑉
𝐹(𝑌)

(𝑥), Γ(𝑌) = 𝑆
0

(𝑌) + Γ̃(V
𝐹

),
where

Γ̃ (V
𝐹

) = ∫𝑑
10

𝑥𝐹 (𝑥) V
𝐹

(𝑥) + 𝑊(𝐹 + 𝐹) (58)

is the Legendre transformation of𝑊(𝐹):

−
𝛿𝑊 (𝐹)

𝛿𝐹 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ̃
𝐹

= V
𝐹

= 𝑉
𝐹(𝑌)

(𝑥) ,

𝛿Γ̃ (V
𝐹

)

𝛿V
𝐹

(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨V
𝐹

= 𝐹 (𝑥) .

(59)
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Let

Λ
𝐹

(𝑥
1

, . . . , 𝑥
𝑛

) =
𝛿
𝑛

Γ̃ (V
𝐹

)

𝛿V
𝐹

(𝑥
1

) ⋅ ⋅ ⋅ 𝛿V
𝐹

(𝑥
𝑛

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨V
𝐹
=0

, (60)

then

Γ (𝑌) = 𝑆
0

(𝑌) + ∑

𝑛

1

𝑛!

× ∫𝑑
10

𝑥
1

⋅ ⋅ ⋅ ∫ 𝑑
10

𝑥
𝑛

Λ
𝐹

(𝑥
1

, . . . , 𝑥
𝑛

)

× V
𝐹

(𝑥
1

) ⋅ ⋅ ⋅ V
𝐹

(𝑥
𝑛

)

= 𝑆
0

(𝑌) + ∑

𝑛

1

𝑛!

× ∫𝑑
10

𝑥
1

⋅ ⋅ ⋅ ∫ 𝑑
10

𝑥
𝑛

Λ
𝐹

(𝑥
1

, . . . , 𝑥
𝑛

)

× 𝑉
𝐹(𝑌)

(𝑥
1

) ⋅ ⋅ ⋅ 𝑉
𝐹(𝑌)

(𝑥
𝑛

).

(61)

For the given V
𝐹

(𝑥),

𝐹 (𝑥) = ∑

𝑛

1

(𝑛 − 1)!

× ∫𝑑
10

𝑥
1

⋅ ⋅ ⋅ ∫ 𝑑
10

𝑥
𝑛−1

Λ
𝐹

(𝑥, 𝑥
1

, . . . , 𝑥
𝑛−1

)

× V
𝐹

(𝑥
1

) ⋅ ⋅ ⋅ V
𝐹

(𝑥
𝑛−1

) .

(62)

Equation (52) gives the current density V
𝐹

(𝑥) generated by the
field 𝐹(𝑥); (62) gives the field 𝐹(𝑥) generated by the current
density V

𝐹

(𝑥). If Λ
𝐹

is the connected Green’s function of
supergravity,𝐹(𝑥)will be the vacuumexpectation value of the
supergravity field 𝐹 in presence of the source V

𝐹

. In classical
level, 𝐹(𝑥) could be calculated by 𝛿𝑆

𝑔

/𝛿𝐹(𝑥) = −V
𝐹

(𝑥) with
𝑆
𝑔

the classical action of supergravity:

Γ
𝑐

𝐹

(𝑥 − 𝑧) = −
𝛿V

𝐹

(𝑥)

𝛿𝐹 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ̃
𝐹=0

,

Λ
𝐹

(𝑧 − 𝑦) =
𝛿
2

Γ̃ (V
𝐹

)

𝛿V
𝐹

(𝑧) 𝛿V
𝐹

(𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨V
𝐹
=0

=
𝛿𝐹 (𝑧)

𝛿V
𝐹

(𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨V
𝐹
=0

,

(63)

so

−∫𝑑
10

𝑧Γ
𝑐

𝐹

(𝑥 − 𝑧) Λ
𝐹

(𝑧 − 𝑦) = 𝛿
10

(𝑥 − 𝑦) . (64)

−Λ
𝐹

(𝑥
1

− 𝑥
2

) is the inverse of Γ𝑐
𝐹

(𝑥
1

− 𝑥
2

). Subsequently,

Λ
𝐹

(𝑥
1

, 𝑥
2

, 𝑥
3

) = ∫𝑑
10

𝑦
1

∫𝑑
10

𝑦
2

× ∫𝑑
10

𝑦
3

Λ
𝐹

(𝑦
1

− 𝑥
1

) Λ
𝐹

(𝑦
2

− 𝑥
2

)

× Λ
𝐹

(𝑦
3

− 𝑥
3

) Γ
𝑐

𝐹

(𝑦
1

, 𝑦
2

, 𝑦
3

) ,

Γ
𝑐

𝐹

(𝑥
1

, 𝑥
2

, 𝑥
3

) = −∫𝑑
10

𝑦
1

∫𝑑
10

𝑦
2

× ∫𝑑
10

𝑦
3

Γ
𝑐

𝐹

(𝑦
1

− 𝑥
1

) Γ
𝑐

𝐹

(𝑦
2

− 𝑥
2

)

× Γ
𝑐

𝐹

(𝑦
3

− 𝑥
3

) Λ
𝐹

(𝑦
1

, 𝑦
2

, 𝑦
3

) .

Λ
𝐹

(𝑥
1

, 𝑥
2

, 𝑥
3

, 𝑥
4

) = ∫𝑑
10

𝑦
1

∫𝑑
10

𝑦
2

∫𝑑
10

𝑦
3

× ∫𝑑
10

𝑦
4

Λ
𝐹

(𝑦
1

− 𝑥
1

) Λ
𝐹

(𝑦
2

− 𝑥
2

)

× Λ
𝐹

(𝑦
3

− 𝑥
3

) Λ
𝐹

(𝑦
4

− 𝑥
4

)

× [Γ
𝑐

𝐹

(𝑦
1

, 𝑦
2

, 𝑦
3

, 𝑦
4

)

+ ∫𝑑
10

𝑧
1

× ∫𝑑
10

𝑧
2

Λ
𝐹

(𝑧
1

− 𝑧
2

)

× (Γ
𝑐

𝐹

(𝑧
1

, 𝑦
1

, 𝑦
4

)

× Γ
𝑐

𝐹

(𝑧
2

, 𝑦
2

, 𝑦
3

)

+ Γ
𝑐

𝐹

(𝑧
1

, 𝑦
2

, 𝑦
4

)

× Γ
𝑐

𝐹

(𝑧
2

, 𝑦
1

, 𝑦
3

)

+ Γ
𝑐

𝐹

(𝑧
1

, 𝑦
3

, 𝑦
4

)

× Γ
𝑐

𝐹

(𝑧
2

, 𝑦
1

, 𝑦
2

)) ] ,

Γ
𝑐

𝐹

(𝑥
1

, 𝑥
2

, 𝑥
3

, 𝑥
4

) = ∫𝑑
10

𝑦
1

∫𝑑
10

𝑦
2

∫𝑑
10

𝑦
3

× ∫𝑑
10

𝑦
4

Γ
𝑐

𝐹

(𝑦
1

− 𝑥
1

) Γ
𝑐

𝐹

(𝑦
2

− 𝑥
2

)

× Γ
𝑐

𝐹

(𝑦
3

− 𝑥
3

) Γ
𝑐

𝐹

(𝑦
4

− 𝑥
4

)

× [Λ
𝐹

(𝑦
1

, 𝑦
2

, 𝑦
3

, 𝑦
4

)

+ ∫𝑑
10

𝑧
1

× ∫𝑑
10

𝑧
2

Γ
𝑐

𝐹

(𝑧
1

− 𝑧
2

)

× (Λ
𝐹

(𝑧
1

, 𝑦
1

, 𝑦
4

)

× Λ
𝐹

(𝑧
2

, 𝑦
2

, 𝑦
3

)

+ Λ
𝐹

(𝑧
1

, 𝑦
2

, 𝑦
4

)

× Λ
𝐹

(𝑧
2

, 𝑦
1

, 𝑦
3

)

+ Λ
𝐹

(𝑧
1

, 𝑦
3

, 𝑦
4

)

× Λ
𝐹

(𝑧
2

, 𝑦
1

, 𝑦
2

)) ] .

(65)
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The relation betweenΛ
𝐹

and Γ
𝑐

𝐹

shows thatΛ
𝐹

and Γ
𝑐

𝐹

are the
connected Green’s function and the vertex function of a par-
ticular quantumfield theory.Λ

𝐹

(𝑧−𝑦) = (𝛿𝐹(𝑧)/𝛿V
𝐹

(𝑦))|V
𝐹
=0

gives the change of the supergravity field with respect to the
current density, so it is natural to take it as the propagator of
the supergraviton. We will see some evidence for it.

In (54), let 𝑌̃ = 𝑌 + 𝜂,

𝑒
Γ(𝑌)

= ∫ [𝑑𝜂] 𝑒
−𝑆

𝐹
(𝑌+𝜂)+𝑆

𝐹
(𝑌)

.

−𝑆
𝐹

(𝑌 + 𝜂) + 𝑆
𝐹

(𝑌) = −∫𝑑𝜏
𝛿𝑆

𝐹

(𝑌)

𝛿𝑌 (𝜏)
𝜂 (𝜏)

−
1

2
∫𝑑𝜏 𝑑𝜏

󸀠

𝛿
2

𝑆
𝐹

(𝑌)

𝛿𝑌 (𝜏) 𝛿𝑌 (𝜏󸀠)

× 𝜂 (𝜏) 𝜂 (𝜏
󸀠

) + ⋅ ⋅ ⋅

= −𝑆
(1)

𝐹

(𝑌, 𝜂) − 𝑆
(2)

𝐹

(𝑌, 𝜂) + ⋅ ⋅ ⋅ .

(66)

𝑆
𝐹

could be written as (We only write 𝜕
2

𝜏

, but one should be
aware that the fermionic kinetic term 𝜕

𝜏

also exists.)

𝑆
𝐹

(𝑌) = ∫𝑑𝜏 [
1

2
𝑌𝜕

2

𝜏

𝑌 + 𝑉
0

(𝑌) + 𝑉 (𝐹, 𝑌)]

= 𝑆
0

(𝑌) + ∫𝑑𝜏𝑉 (𝐹, 𝑌)

(67)

with 𝑉(𝐹, 𝑌) taking the form as that in (27). For the given 𝑌,
solve 𝐹

0

from 𝛿𝑆
𝐹

0

(𝑌)/𝛿𝑌 = 0, and expand 𝑆
(𝑛)

𝐹

(𝑌, 𝜂) around
𝐹
0

. 𝐹 = 𝐹
0

+ 𝑓. Consider

𝑆
(1)

𝐹

(𝑌, 𝜂) =
𝛿𝑆

(1)

𝐹

(𝑌, 𝜂)

𝛿𝐹

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐹
0

𝑓 + ⋅ ⋅ ⋅

𝑆
(2)

𝐹

(𝑌, 𝜂) = 𝑆
(2)

𝐹

0

(𝑌, 𝜂) +
𝛿𝑆

(2)

𝐹

(𝑌, 𝜂)

𝛿𝐹

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐹
0

𝑓 + ⋅ ⋅ ⋅ .

(68)

𝑓 = 𝑓(𝑌) is solved as the functional of 𝑌. Let Γ(𝑌) = Γ
1

(𝑌) +

Γ
2

(𝑌) + ⋅ ⋅ ⋅ since

−𝑆
𝐹

(𝑌 + 𝜂) + 𝑆
𝐹

(𝑌) = −𝑆
(2)

𝐹

0

(𝑌, 𝜂) + ⋅ ⋅ ⋅ ,

Γ
1

(𝑌) = ln {∫ [𝑑𝜂] 𝑒
−𝑆

(2)

𝐹0
(𝑌,𝜂)

} = ln (det𝐴
𝐹

0

)
1/2

(69)

with

𝐴
𝐹

0

(𝜏, 𝜏
󸀠

) = [𝜕
2

𝜏

+
𝜕
2

𝑉
0

(𝑌)

𝜕𝑌2
+

𝜕
2

𝑉 (𝐹
0

, 𝑌)

𝜕𝑌2
] 𝛿 (𝜏 − 𝜏

󸀠

) .

(70)

In particular, when 𝛿𝑆
0

(𝑌)/𝛿𝑌 = 0, 𝐹
0

= 0, 𝐴
𝐹

0

reduces to

𝐴(𝜏, 𝜏
󸀠

) = [𝜕
2

𝜏

+
𝜕
2

𝑉
0

(𝑌)

𝜕𝑌2
] 𝛿 (𝜏 − 𝜏

󸀠

) . (71)

The corresponding Γ
1

(𝑌) is the same as the one-loop con-
tribution Γ

1

eff(𝑌) of the standard effective action Γeff(𝑌) in
background gauge:

𝑒
Γeff(𝑌) = ∫ [𝑑𝜂] 𝑒

−𝑆

0
(𝑌+𝜂)+∫ 𝑑𝜏Tr[𝐽(𝜏)𝜂(𝜏)]

, (72)

subject to the condition

∫ [𝑑𝜂]
𝛿

𝛿𝐽 (𝜏)
𝑒
−𝑆

0
(𝑌+𝜂)+∫ 𝑑𝜏Tr[𝐽(𝜏)𝜂(𝜏)]

= 0. (73)

Γ
1

(𝑌) = Γ
1

eff(𝑌) has been calculated for the arbitrary 𝑌

satisfying 𝛿𝑆
0

(𝑌)/𝛿𝑌 = 0 [3, 25]:

Γ
1

(𝑌) =
1

2
∫𝑑

10

𝑥
1

× ∫𝑑
10

𝑥
2

𝐺
0

Fc (𝑥1, 𝑥2) 𝑉𝐹(𝑌) (𝑥1) 𝑉𝐹(𝑌) (𝑥2) ,

(74)

with 𝐺
0

Fc being the free supergraviton propagator. Compared
with (61), Λ

𝐹,1

(𝑥
1

, 𝑥
2

) = 𝐺
0

Fc(𝑥1, 𝑥2). If the result can be
extended to the 𝑛-point Green’s functions and to the full-loop
calculation, there will be

Λ
𝐹

(𝑥
1

, . . . , 𝑥
𝑛

) = 𝐺Fc (𝑥1, . . . , 𝑥𝑛) , (75)

where 𝐺Fc is the connected full Green’s function of super-
gravity. Γ

𝑐

𝐹

(𝑥
1

, . . . , 𝑥
𝑛

) and 𝑊(𝐹) will then become the 𝑛-
point vertex function and the effective action of supergravity,
respectively.

In quantum field theory, unlike the 𝑆-matrix, the effective
action is not the observable and thus is not uniquely defined.
Different gauges and the parameterization give the different
effective actions. Γ(𝑌) and Γeff(𝑌) differ from a parameter-
ization transformation. Γ(𝑌) ̸= Γeff(𝑌). However, to compare
the Matrix theory with supergravity, we do need a privileged
effective action. On supergravity side, in light-cone gauge, the
expected effective action is

Γ
𝑔

[𝑌 (𝜏)] = ∑

𝑛

1

𝑛!
∫ 𝑑

10

𝑥
1

⋅ ⋅ ⋅ ∫ 𝑑
10

𝑥
𝑛

𝐺Fc (𝑥1, . . . , 𝑥𝑛)

× 𝑉
𝐹(𝑌)

(𝑥
1

) ⋅ ⋅ ⋅ 𝑉
𝐹(𝑌)

(𝑥
𝑛

) .

(76)

The effective action defined in (61) is also the Taylor series
of 𝑉

𝐹(𝑌)

and thus could be compared with (76) directly. The
standard effective action Γeff(𝑌) is expanded as the Taylor
series of𝑌. A careful reorganization is needed to get𝑉

𝐹(𝑌)

, but
it is unclear whether it is always possible to do so. Moreover,
under a Legendre transformation, (76) becomes

Γ
𝑔

[𝑌 (𝜏)] = 𝑆eff (𝐹)

+ ∫𝑑
10

𝑥𝐹 (𝑥)𝑉
𝐹(𝑌)

(𝑥) ∼ 𝑆eff (𝐹) + 𝑆
𝐹

[𝑌 (𝜏)]

(77)

with

−
𝛿𝑆eff(𝐹)

𝛿𝐹(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐹

= 𝑉
𝐹(𝑌)

(𝑥) =
𝛿𝑆

𝐹

(𝑌)

𝛿𝐹(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐹

. (78)
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𝑆eff(𝐹) is the effective action of supergravity. Equation (77) is
almost the same as (53).The only problem is whether𝑊(𝐹) =

𝑆eff(𝐹) or not.

2.4. Free Energy of String and the Effective Action of the
Background Fields. In string theory, there is a similar story.
In [17, 18], it was shown that the effective action of the
supergravity could be taken as the renormalized free energy
of the strings on background 𝐹:

𝑆eff [𝐹 (𝐹)] =

∞

∑

𝑚=0

𝑒
𝜙(2−2𝑚)

∫
𝑀

2−2𝑚

[𝑑𝑋] 𝑒
−𝑆

𝐹 = 𝑊
𝑠

(𝐹) , (79)

where 𝐹 satisfies the free field equation.
Equation (79) looks consistent with our philosophy: the

free energy of the strings/membranes on a given background
gives the effective action of the background fields. However,
there is a difference:𝐹 is the renormalized field other than the
bare field. In fact, in (79), a particularWeyl gauge𝑔

𝑎𝑏

= 𝑒
2𝜎

𝑔
𝑎𝑏

is always imposed, and so, 𝑊
𝑠

(𝐹, 𝜎) also has the dependence
on 𝜎:

𝛿𝑊
𝑠

(𝐹, 𝜎)

𝛿𝜎
= −

𝛿𝑊
𝑠

(𝐹, 𝜎)

𝛿𝐹
𝛽 (𝐹) . (80)

When 𝛽(𝐹) = 0, 𝑊
𝑠

(𝐹, 𝜎) = 𝑊
𝑠

(𝐹), although 𝛽(𝐹) = 0 is not
the necessary condition.

Suppose 𝑆eff(𝐹) is the effective action of the stringmodes:

𝑆eff (𝐹) = −
1

2
∫𝑑

𝐷

𝑥𝐹Δ𝐹 + 𝑆int (𝐹) . (81)

Consider𝐹
0

withΔ𝐹
0

= 0. Since𝛽(𝐹
0

) ̸= 0,𝐹will evolve along
the RG flow; that is, 𝑊

𝑠

(𝐹
0

, 𝜎) = 𝑊
𝑠

[𝐹(𝜎
󸀠

), 𝜎
󸀠

]. A special
property of 𝐹

0

is that it will finally reach an IR fixed point 𝐹,
𝑊
𝑠

(𝐹
0

, 𝜎) = 𝑊
𝑠

(𝐹,∞). In fact, since𝐹
0

satisfies the first-order
𝛽 equation, the RG flow may bring it to an IR fixed point.
Since 𝛽(𝐹) = 0, 𝑊

𝑠

(𝐹,∞) = 𝑊
𝑠

(𝐹, 𝜎) = 𝑊
𝑠

(𝐹) = 𝑊
𝑠

(𝐹
0

, 𝜎) =

𝑊
𝑠

(𝐹
0

).
𝐹 is calculated from 𝐹

0

via

𝐹 = 𝐹
0

+ Δ
−1

𝛿𝑆int (𝐹)

𝛿𝐹

= 𝐹
0

(𝑥) + ∫𝑑
𝐷

𝑦𝐷 (𝑥 − 𝑦, 𝐹)

𝛿𝑆int (𝐹)

𝛿𝐹 (𝑦)

.

(82)

𝛿𝑆eff(𝐹)/𝛿𝐹(𝑥)|
𝐹=

̃

𝐹

= 0. Since 𝛿𝑆eff(𝐹)/𝛿𝐹
𝑖

= 𝜅
𝑖𝑗

𝛽(𝐹
𝑗

),
𝛽(𝐹) = 0 is equivalent to 𝛿𝑆eff(𝐹)/𝛿𝐹(𝑥)|

𝐹=

̃

𝐹

= 0 [18]. In
[18], it was shown that 𝑊

𝑠

(𝐹
0

, 𝜎) = 𝑆eff(𝐹), which means
𝑊
𝑠

(𝐹, 𝜎) = 𝑊
𝑠

(𝐹) = 𝑆eff(𝐹). There is a one-to-one corre-
spondence between the solution space of 𝛿𝑆eff(𝐹)/𝛿𝐹(𝑥) =

0 and the solution space of Δ𝐹 = 0. So, for all 𝐹 with
𝛿𝑆eff(𝐹)/𝛿𝐹(𝑥) = 0 = 𝛽(𝐹), 𝑊

𝑠

(𝐹, 𝜎) = 𝑆eff(𝐹). In 𝜎-model
approach, only for such 𝐹, the conformal factor decouples;
thus, the calculated string free energy is physical. In this
subspace, 𝑊

𝑠

(𝐹) = 𝑆eff(𝐹).

𝑊
𝑠

(𝐹, 𝜎) with 𝛽(𝐹) ̸= 0 usually depends on 𝜎. However,
the 𝜎-dependence drops out for 𝐹

0

. In fact,

𝑊
𝑠

(𝐹
0

, 𝜎) = 𝑊
𝑠

(𝐹
0

) = 𝑆eff (𝐹)

= 𝑆eff [𝐹0 + Δ
−1

𝛿𝑆int (𝐹0)

𝛿𝐹
0

+ ⋅ ⋅ ⋅ ]

(83)

is the 𝑆-matrix functional [27]. For the on-shell 𝑝
1

, . . . , 𝑝
𝑛

,

𝑊
𝑠

(𝐹
0

, 𝜎) = ∑

𝑛

1

𝑛!
∫ 𝑑

9

𝑝
1

⋅ ⋅ ⋅ ∫ 𝑑
9

𝑝
𝑛

𝑆
𝑐

𝐹

(𝑝
1

, . . . , 𝑝
𝑛

)

× 𝐹
0

(𝑝
1

) ⋅ ⋅ ⋅ 𝐹
0

(𝑝
𝑛

) ,

𝐹
0

(𝑥) = ∫𝑑
9

𝑝𝐹
0

(𝑝) ,

𝑆
𝑐

𝐹

(𝑝
1

, . . . , 𝑝
𝑛

)

=
1

𝑁
0

∞

∑

𝑚=0

𝑒
𝜙(2−2𝑚)

× ∫
𝑀

2−2𝑚

[𝑑𝑋] 𝑒
−𝑆

0𝑉
𝐹

(𝑝
1

) ⋅ ⋅ ⋅ 𝑉
𝐹

(𝑝
𝑛

)

(84)

is the connected scattering amplitude. It is only in Polyakov
approach canwe construct the 𝑆-matrix functional in thisway
since it intrinsically involves some kind of renormalization,
which is equivalent to the subtraction of the massless pole
exchange contribution [18, 27].

To conclude, for 𝐹 satisfying 𝛿𝑆eff(𝐹)/𝛿𝐹(𝑥) = 0,
𝑊
𝑠

(𝐹, 𝜎) = 𝑊
𝑠

(𝐹) = 𝑆eff(𝐹). However, the off-shell extension
of the effective action and the free energy are both ambiguous
in Sigma-model approach.

Another support for the identification of the string theory
free energy on a particular background and the effective
action of the background fields comes from AdS/CFT. SYM

4

is a nonperturbative description of the type IIB string theory
on AdS

5

× 𝑆
5. It is expected that the Hilbert spaces of

both sides are isomorphic to each other. Similar with the
Chern-Simons/topological string correspondence, 𝑍SYM

4

=

𝑒
𝑊

𝑠 , where 𝑊
𝑠

is the free energy of the string theory on
AdS

5

× 𝑆
5. The question is what will be the string dual of

SYM
4

if the background metric of SYM
4

is 𝜂
𝜇] + 𝛿𝑔

𝜇](𝑥)

other than 𝜂
𝜇] for very small 𝛿𝑔

𝜇](𝑥). A natural expectation
is that such SYM

4

is dual to the type IIB string theory
on AdS

5

× 𝑆
5 with a little modification of the background

metric 𝛿𝐺
𝜇](𝑥, 𝜎) that is entirely determined by 𝛿𝑔

𝜇](𝑥).
Correspondingly, 𝑍SYM

4

[𝛿𝑔
𝜇](𝑥)] = 𝑒

𝑊

𝑠
[𝛿𝐺

𝜇](𝑥,𝜎)], where
𝑊
𝑠

[𝛿𝐺
𝜇](𝑥, 𝜎)] is the free energy of the string theory on

AdS
5

×𝑆
5 with the background perturbation 𝛿𝐺

𝜇](𝑥, 𝜎) being
turned on. Note that, for the stringy explanation of the
SYM

4

partition function to be possible, the type IIB dual
must have the definite background since the string partition
function is always defined on a given background. Also,
for the state correspondence to be valid, the dual type IIB
string theory should have the definite background; otherwise,
it is impossible to determine the string spectrum. Now,
return to the original topic. Gauge theory calculation gives
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𝑍SYM
4

[𝛿𝑔
𝜇](𝑥)] = 𝑒

𝑆eff[𝛿𝐺𝜇](𝑥,𝜎)], where 𝑆eff[𝛿𝐺𝜇](𝑥, 𝜎)] is the
supergravity effective action for the modified background
fields, so 𝑆eff[𝛿𝐺𝜇](𝑥, 𝜎)] = 𝑊

𝑠

[𝛿𝐺
𝜇](𝑥, 𝜎)] if 𝑍SYM

4

= 𝑒
𝑊

𝑠

holds.
There is a naive way to interpret 𝑊

𝑠

(𝐹) = 𝑆eff(𝐹).
Suppose the classical supergravity action is 𝑆

𝑐

(𝐹), from the
field theory’s point of view:

𝑒
𝑆eff(𝐹) = ∫

1PI
[𝑑𝐹] 𝑒

−𝑆

𝑐
(𝐹+

̃

𝐹)

, (85)

where 𝐹 is the fluctuation on 𝐹 or, in other words, super-
gravitons living on background 𝐹. The effective action is the
sum of the connected 1PI vacuum-vacuum diagrams of the
supergravitons on background 𝐹. The elementary propagator
and the vertices can be read from 𝑆

𝑐

(𝐹 + 𝐹). Now, consider
the string theory on background 𝐹, we may have

𝑒
𝑆eff(𝐹) = 𝑍

𝑠

(𝐹) = 𝑒
𝑊

𝑠
(𝐹)

, (86)

where 𝑊
𝑠

(𝐹) is the sum of the irreducible vacuum-vacuum
string diagrams on background 𝐹. Note that, in string
diagram, there is nither a concept of 1PI nor 1PR. Also, there
is no classical action like 𝑆

𝑐

(𝐹 + 𝐹) to determine the basic
constitution of the diagram. The integration simply covers
all possible string configurations. Equation (86) can be taken
as the stringy refined version of (85). In (86), we secretly
assumed that the unphysical worldsheet conformal factor is
decoupled. In Polyakov approach, this is possible only when
𝐹 is the solution of 𝛿𝑆eff(𝐹)/𝛿𝐹 = 0. The cancelation of the
Weyl anomaly gives the e.o.m for the effective action of the
supergravity, including the 𝛼

󸀠 corrections, so 𝑆eff(𝐹) should
be the effective action with the 𝛼

󸀠 corrections taken into
account.

A natural𝑀-theory extension is

𝑒
𝑆eff(𝐹) = 𝑍

𝑀

(𝐹) = ∫ [𝑑𝑌] 𝑒
−𝑆

𝑀

𝐹
(𝑌)

, (87)

where 𝑆
𝑀

𝐹

(𝑌) is the supermembrane action on 11𝑑 super-
gravity background 𝐹. The membrane is already the second
quantized object, so the left-hand side of (87) is 𝑒

𝑆eff(𝐹)

other than 𝑆eff(𝐹). For the generic 11𝑑 background 𝐹, 𝑆𝑀
𝐹

(𝑌)

should be covariantm, and, so, the worldvolume metric must
be introduced and integrated, making the supermembrane
theory nonrenormalizable. For 𝐹 which is translation invari-
ant along 𝑥

−, the light-cone gauge can be imposed. The
configurations are then truncated to those with the light-cone
momentum𝑝

+.The integration out of such configurations on
background 𝐹 gives the effective action of 𝐹 with the radius
of 𝑥− ∼ 1/𝑝

+.

3. Matrix Theory on a Particular Vacuum

If𝑊(𝑅, 𝐹) in (42) is the effective action of the 11𝑑 supergrav-
ity field 𝐹(𝑥) that is translation invariant along 𝑥

−, for the
on-shell 𝐹(𝑥), there will be 𝛿𝑊(𝑅, 𝐹)/𝛿𝐹(𝑥) = −V

𝐹

(𝑥) = 0.
However, for 𝐹 = 𝐹, which is obviously on shell, the current
densities V

𝑔

++

, V
𝑔

−−

, and V
𝑔

+−

are nonvanishing. (Note that the

vertex operators for 𝑔
++

and 𝑔
+−

are quite like the vertex
operators for tachyon and dilaton in bosonic string theory,
in which, there is also a tadpole in flat spacetime [28].)

𝑊(𝑅, 𝐹)

= −∫𝑑
10

𝑥 [V
𝑔

++

𝑔
++

(𝑥) + V
𝑔

−−

𝑔
−−

(𝑥) + V
𝑔

+−

𝑔
+−

(𝑥)]

+
1

2
∫𝑑

10

𝑥
1

× ∫𝑑
10

𝑥
2

Γ
𝑐

𝑅,𝑔

++
,𝑔

−−

(𝑥
1

, 𝑥
2

) 𝑔
++

(𝑥
1

) 𝑔
−−

(𝑥
2

)

+
1

2
∫𝑑

10

𝑥
1

× ∫𝑑
10

𝑥
2

Γ
𝑐

𝑅,𝑔

+−
,𝑔

+−

(𝑥
1

, 𝑥
2

) 𝑔
+−

(𝑥
1

) 𝑔
+−

(𝑥
2

) + ⋅ ⋅ ⋅ .

(88)

With 𝛼, 𝛽 = +, −, one may try to solve 𝑔
𝛼𝛽

(𝑥) from
𝛿𝑊(𝑅, 𝐹)/𝛿𝑔

𝛼𝛽

(𝑥) = 0, and then take this value other than
𝑔
+−

(𝑥) = −1, 𝑔
−−

(𝑥) = 𝑔
++

(𝑥) = 0 as the background
to do the expansion. V

𝑔

𝛼𝛽

are constants, so the generated
𝑔
𝛼𝛽

(𝑥) are also constants (although the constant 𝑔
𝛼𝛽

(𝑥)

does not really solve the equation) and do not represent
the substantial change of the background. We will simply
neglect these tadpoles. V

𝑔

++

should be distinguished from
𝛿𝑆

𝑅,𝐹

(𝑌)/𝛿𝑔
++

(𝑥)|
𝑌=0

= (𝑁/𝑅)𝛿
10

(𝑥), which is the light-
cone momentum density of a supergraviton localized at
(𝜏, 0, . . . , 0) and, of course, will produce the nontrivial𝑔

−−

(𝑥).
In (54), 𝐹 = 𝐹(𝑅, 𝑌) is the functional of 𝑌 solved through

(55). For the arbitrary 𝐹, we may define

𝑒
Ω(𝑅,𝑌,𝐹)

= ∫ [𝑑𝑌̃] 𝑒
−𝑆

𝑅,𝐹
(

̃

𝑌)+𝑆

𝑅,𝐹
(𝑌)

= ∫ [𝑑𝜂] 𝑒
−𝑆

𝑅,𝐹
(𝑌+𝜂)+𝑆

𝑅,𝐹
(𝑌)

= ∫ [𝑑𝜂] 𝑒
−𝑆

𝑅,𝐹
(𝑌;𝜂)

.

(89)

Ω(𝑅, 𝑌, 𝐹) = 𝑊(𝑅, 𝐹) + 𝑆
𝑅,𝐹

(𝑌) is the action of the source-
gravity coupled system and is not necessarily on shell with
respect to gravity. If 𝑆

𝑅,𝐹

(𝜂) gives the Matrix theory descrip-
tion of 𝑀 theory on background 𝐹, 𝑆

𝑅,𝐹

(𝑌; 𝜂) will describe
𝑀 theory on background 𝐹, in presence of the brane 𝑌. If 𝑌
satisfies the equations of motion, that is, 𝛿𝑆

𝑅,𝐹

(𝑌)/𝛿𝑌 = 0,

𝑆
𝑅,𝐹

(𝑌; 𝜂) = ∫𝑑𝜏
𝛿𝑆

𝑅,𝐹

(𝑌)

𝛿𝑌 (𝜏)
𝜂 (𝜏)

+
1

2
∫𝑑𝜏 𝑑𝜏

󸀠

𝛿
2

𝑆
𝑅,𝐹

(𝑌)

𝛿𝑌 (𝜏) 𝛿𝑌 (𝜏󸀠)
𝜂 (𝜏) 𝜂 (𝜏

󸀠

) + ⋅ ⋅ ⋅

=
1

2
∫𝑑𝜏 𝑑𝜏

󸀠

𝛿
2

𝑆
𝑅,𝐹

(𝑌)

𝛿𝑌 (𝜏) 𝛿𝑌 (𝜏󸀠)
𝜂 (𝜏) 𝜂 (𝜏

󸀠

) + ⋅ ⋅ ⋅

(90)

𝑆
𝑅,𝐹

(𝑌; 𝜂) starts from the quadratic term. For 𝐹 satisfying
𝛿Ω(𝑅, 𝑌, 𝐹)/𝛿𝐹(𝑥) = 0, 𝑆

𝑅,𝐹

(𝑌; 𝜂) then gives a description of
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𝑀 theory on a background 𝐹 generated by the brane 𝑌. In
this case, Ω[𝑅, 𝑌, 𝐹(𝑌)] = Γ(𝑌):

0 = ∫ [𝑑𝜂] 𝑒
−𝑆

𝑅,𝐹
(𝑌;𝜂)

𝛿𝑆
𝑅,𝐹

(𝑌; 𝜂)

𝛿𝐹 (𝑥)
= ⟨

𝛿𝑆
𝑅,𝐹

(𝑌; 𝜂)

𝛿𝐹 (𝑥)
⟩ . (91)

The expectation values of all current densities vanish. There
is no tadpole.

The 𝑈(∞) symmetry of Matrix theory is destroyed by 𝑌.
In particular, if

𝑌 = diag[

[

𝑀
1

, . . . ,𝑀
1

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

1

, . . . ,𝑀
𝑚

, . . . ,𝑀
𝑚

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

𝑚

]

]

, (92)

the preserved gauge symmetry is 𝑈(𝑁
1

) × ⋅ ⋅ ⋅ × 𝑈(𝑁
𝑚

).
Nevertheless, the original𝑈(∞) symmetry still has its mani-
festation. For all 𝑢 ∈ 𝑈(∞),

𝜂 󳨀→ 𝑢𝜂𝑢
+

+ (𝑢𝑌𝑢
+

− 𝑌) , 𝜂 󳨀→ 𝜂 + 𝑖 [𝛼, 𝜂] + 𝑖 [𝛼, 𝑌] ,

(93)

so for 𝑢 ∉ 𝑈(𝑁
1

) × ⋅ ⋅ ⋅ × 𝑈(𝑁
𝑚

), 𝜂 transforms like a gauge
field.

3.1. Applied to PWMM. In the following, we will focus on a
special example: the plane wave matrix model [2]. PWMM
is a Matrix theory description of 𝑀-theory on 11𝑑 pp-wave
background:

𝑑𝑠
2

= −2𝑑𝑥
+

𝑑𝑥
−

+

9

∑

𝑖=1

𝑑𝑥
𝑖

𝑑𝑥
𝑖

− [

3

∑

𝑎=1

𝜇
2

9
(𝑥

𝑎

)
2

+

9

∑

𝑎

󸀠
=4

𝜇
2

36
(𝑥

𝑎

󸀠

)

2

]𝑑𝑥
+

𝑑𝑥
+

𝐹
123+

= 𝜇.

(94)

The background preserves 32 supersymmetries, while the
rest 11𝑑 supergravity solutions with 32 supersymmetries are
flat spacetime, AdS

4

× 𝑆
7, and AdS

7

× 𝑆
4 [29]. In pp-wave,

the dynamics of the 𝑀-theory sector with the light-cone
momentum 𝑝

+

= 𝑁/𝑅 is described by the 𝑈(𝑁) matrix
model:

𝑆
PW
𝑅

= 𝑅∫𝑑𝑥
+

× Tr { 1

4𝑅2
(𝐷

+

𝑋
𝑖

)
2

−
𝑖

𝑅
𝜃𝐷

+

𝜃 +
1

2
[𝑋

𝑖

, 𝑋
𝑗

]
2

+ 2𝜃𝛾
𝑖

[𝑋
𝑖

, 𝜃]

− (
𝜇

6𝑅
)

2

(𝑋
𝑎

)
2

− (
𝜇

12𝑅
)

2

(𝑋
𝑎

󸀠

)

2

−
𝜇

6𝑅
𝑖𝜖
𝑎𝑏𝑐

𝑋
𝑎

𝑋
𝑏

𝑋
𝑐

−
𝜇

8𝑅
𝜃𝛾
123

𝜃} ,

(95)

𝑁 → ∞, 𝑅 → ∞. PWMM also preserves 32 supersymme-
tries and has the same symmetry group as that of the pp-wave
background.

The classical supersymmetric solutions of the action are
[2]

[𝑋
𝑖

, 𝑋
𝑗

] = 𝑖
𝜇

3𝑅
𝜖
𝑖𝑗𝑘

𝑋
𝑘

, 𝑖, 𝑗, 𝑘 = 1, 2, 3,

𝑋
𝑖

= 0, 𝑖 = 4, . . . , 9,

̇̂
𝑋

𝑖

= 0, 𝑖 = 1, . . . , 9.

(96)

{𝑋
1

, 𝑋
2

, 𝑋
3

} form the 𝑁 dimensional representation of
𝑆𝑈(2). Suppose (3𝑅/𝜇)𝑋

𝑖

= 𝐿
𝑖, 𝑖 = 1, 2, 3, 𝐿

𝑖 can be
decomposed as

𝐿
𝑖

= diag[
[

[

𝐿
𝑖

𝑗

1

⋅ ⋅ ⋅ 𝐿
𝑖

𝑗

1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

1

𝐿
𝑖

𝑗

2

⋅ ⋅ ⋅ 𝐿
𝑖

𝑗

2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

2

⋅ ⋅ ⋅ 𝐿
𝑖

𝑗

𝑡

⋅ ⋅ ⋅ 𝐿
𝑖

𝑗

𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

𝑡

]
]

]

, (97)

where 𝐿
𝑖

𝑗

𝑠

(𝑠 = 1, . . . , 𝑡) stands for the spin 𝑗
𝑠

irreducible
representation of 𝑆𝑈(2):

(2𝑗
1

+ 1)𝑁
1

+ (2𝑗
2

+ 1)𝑁
2

+ ⋅ ⋅ ⋅ + (2𝑗
𝑡

+ 1)𝑁
𝑡

= 𝑁. (98)

The solution can be taken as a set of 𝑁
𝑠

coincident fuzzy
spheres with the radius (𝜇/3𝑅)√𝑗

𝑠

(𝑗
𝑠

+ 1) [2]. The 𝑈(𝑁)

gauge symmetry is broken into𝑈(𝑁
1

) ×𝑈(𝑁
2

) × ⋅ ⋅ ⋅ ×𝑈(𝑁
𝑡

).
All fuzzy spheres are concentric. When 𝑗

𝑠

→ ∞, the
fuzzy spheres become a set of membrane spheres given by
∑
3

𝑖=1

(𝑥
𝑖

𝑠

)
2

= 𝑟
2

𝑠

with 𝑟
𝑠

∝ (2𝑗
𝑠

+ 1)𝜇/6𝑅. Each spherical
membrane has 𝑝

−

= 0, 𝑝+ = (2𝑗 + 1)/𝑅, so they are also
called the giant gravitons.

The solution can also be interpreted as the spherical 𝑀5

branes with a dual assignment of the light-cone momentum
[30]. Any partition of 𝑁 may be represented by a Young
diagram whose column lengths are the elements in the parti-
tion. In the 𝑀2 interpretation, such a diagram corresponds
to a state with one membrane for each column with the
number of boxes in the column being the number of units
of momentum. In the dual 𝑀5 interpretation, it is the rows
of the Young diagram that correspond to the individual
𝑀5, with the row lengths giving the number of units of
momentum carried by each𝑀5. In both cases, the total light-
cone momentum is always 𝑁/𝑅. If 𝑁

𝑠

are finite, they are
fuzzy 𝑀5 branes. When 𝑁

𝑠

→ ∞, the fuzzy 𝑀5 become
the spherical 𝑀5 wrapping 𝑆

5 given by ∑
9

𝑖=4

(𝑥
𝑖

𝑟

)
2

= 𝑟
2

𝑟

. In
patricular, the trivial vacuum 𝑋

𝑖

= 0 represents a single 𝑀5

brane.
All of the supersymmetric solutions preserve 16 non-

linearly realized supersymmetries. They are the 1/2 BPS
states on pp-wave background. Although the background
and the Lagrangian are both maximally supersymmetric,
there is no state in matrix model preserving all of the 32

supersymmetries. The reason is that all states have the same
nonzero light-cone momentum 𝑁/𝑅, which itself would
destroy the linearly realized supersymmetries.The situation is
different in SYM

4

in which, we do have a vacuum preserving
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32 supersymmetries, representing the ground state of the
string theory on AdS

5

× 𝑆
5. (Brane like) 1/2 BPS states are

giant gravitons on AdS
5

× 𝑆
5 [31–33].

Similar to the PWMM, “tiny graviton matrix model”
(TGMT) is proposed as the nonperturbative description of
the type IIB string theory on pp-wave background [34–
36]. TGMT can also be taken as the DLCQ of the type
IIB string theory on AdS

5

× 𝑆
5, capturing the physics seen

from the infinite momentum frame (IMF) since, in IMF,
AdS

5

×𝑆
5 is viewed as the pp-wave [34–36]. Although TGMT

preserves 32 supersymmetries, the vacuum configurations,
carrying the definite light-cone momentum, are all 1/2 BPS,
matching exactly with the 1/2 BPS states on type IIB pp-
wave background, which are giant gravitons (spherical 𝐷3

branes) and type IIB strings. Lifted to 11𝑑, the light-cone
dimension is replaced by 𝑇

2, while the TGMT, which is a
discrete regularization of the 𝐷3 branes in type IIB picture,
becomes the regularization of the 𝑀5 branes [35]. Note
that the 4-form field in type IIB pp-wave, when lifted to
11𝑑, becomes the 6-form field coupling electrically with the
𝑀5 branes, so it is natural to construct the matrix model
via the discrete regularization of 𝑀5 branes other than the
usual 𝑀2 branes. On type IIB pp-wave, 𝐷3 branes are 𝑀5

braneswrapping𝑇2, while the type IIB strings aremembranes
wrapping one of 𝑆1. In contrast to the PWMM, in TGMT, the
trivial vacuum 𝑋 = 0 represents type IIB string (with 𝑀2

origin), while the nontrivial vacuum represents 𝐷3 branes
(with𝑀5 origin), which is probably because the PWMMand
the TGMT are constructed from 𝑀2 and 𝑀5, respectively.
Recall that, in PWMM, the fuzzy configuration may have the
𝑀2 and𝑀5dual interpretations [30], it is interesting to figure
out whether a similar 𝐹1-𝐷3 dual interpretation also exists
for configurations in TGMT.

With 𝑌̂ denoting the supersymmetric vacuum in (96),𝑀
theory on pp-wave background in presence of the brane 𝑌̂ is
described by the Matrix model with the action

𝑆
PW
𝑅

(𝑌̂; 𝜂) = 𝑆
PW
𝑅

(𝑌̂ + 𝜂) − 𝑆
PW
𝑅

(𝑌̂) . (99)

Since (𝛿𝑆PW
𝑅

(𝑌)/𝛿𝑌)|
𝑌=

̂

𝑌

= 0, 𝑆PW
𝑅

(𝑌̂; 𝜂) starts from the quad-
ratic term.

For simplicity, in the following, we will assume 𝑅 is ab-
sorbed into the fields. If the backreaction of the brane 𝑌̂

on pp-wave background is turned on, the field 𝐹(𝑌̂) will be
generated:

𝑒
Γ

PW
(

̂

𝑌)

= ∫ [𝑑𝜂] 𝑒
−𝑆

PW
𝐹(𝑌̂)

(𝜂)+𝑆

PW
𝐹(𝑌̂)

(

̂

𝑌)

= 𝑒
𝑊

PW
[𝐹(

̂

𝑌)]+𝑆

PW
𝐹(𝑌̂)

(

̂

𝑌)

,

(100)

where

𝛿𝑆
PW
𝐹

(𝑌̂)

𝛿𝐹(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐹=𝐹(̂𝑌)

= −
𝑊

PW
(𝐹)

𝛿𝐹(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐹=𝐹(̂𝑌)

. (101)

pp-wave with 𝑌̂ added respects the 𝑆𝑈(2 | 4) symmetry, so
the generated 𝐹(𝑌̂) as well as the corresponding 𝑆

PW
𝐹(

̂

𝑌)

(𝜂) will
have the same symmetry.

With the fields 𝐹(𝑌̂) given, in principle, one can write
down 𝑆

PW
𝐹(

̂

𝑌)

(𝜂) explicitly. The classical supersymmetric solu-
tions of 𝑆

PW
𝐹(

̂

𝑌)

(𝜂) are still (96). To see this, note that the
spherical giant gravitons are 1/2 BPS states on pp-wave, so
they should not exert force to each other [26], or, in other
words, giant gravitons are still stable even if the backreaction
of the other giant gravitons on pp-wave is turned on. Indeed,
in [37], the giant graviton on the backreacted geometry is
analyzed. The stable configuration is still the same as that
in the pp-wave case. In [38], the quantum effective action of
PWMM around 𝑌̂ was calculated at the one-loop level. 𝑌̂ is
also the stationary point of the effective action. We may have
𝛿Γ

PW
(𝑌)/𝛿𝑌|

𝑌=

̂

𝑌

= 𝛿𝑆
PW
𝐹(

̂

𝑌)

(𝑌)/𝛿𝑌|
𝑌=

̂

𝑌

= 0. With the pp-wave
background replaced by the backreacted geometry, 𝑆PW

𝑅

(𝑌̂; 𝜂)

is modified to

𝑆
PW
𝐹(̂𝑌)

(𝑌̂; 𝜂) = 𝑆
PW
𝐹(̂𝑌)

(𝑌̂ + 𝜂) − 𝑆
PW
𝐹(̂𝑌)

(𝑌̂) . (102)

𝑆
PW
𝐹(

̂

𝑌)

(𝑌̂; 𝜂) still starts from the quadratic term since
𝛿𝑆

PW
𝐹(

̂

𝑌)

(𝑌)/𝛿𝑌|
𝑌=

̂

𝑌

= 0.
Notice that, although any configuration 𝑌̂

󸀠 in (96) may
be the classical vacuum of 𝑆PW

𝐹(

̂

𝑌)

(𝜂), 𝑌̂ is special because the
vacuum expectation values of current densities vanish only
for 𝑆PW

𝐹(

̂

𝑌)

(𝑌̂; 𝜂) but not for the generic 𝑆
PW
𝐹(

̂

𝑌)

(𝑌̂
󸀠

; 𝜂).
The 11𝑑 geometry produced by 1/2 BPS states of PWMM

was constructed in [19, 39]. The geometry has a bubble
structure containing noncontractible 7 cycles and 4 cycles
supporting 𝐹

4

and 𝐹
7

fluxes.The geometry is smooth without
singularity and, then, sourceless.This is an explicit realization
of the geometric transition [40]. The backreaction makes the
the worldvolume of the 𝑀 branes shrink and the transverse
sphere blowup.As a result, althoughwe start from the source-
gravity coupled action, the obtained supergravity solution is
smooth and satisfies the sourceless equations too. The brane
action as well as the current density is zero on the generated
supergravity background.

Return to (100),

𝑆
PW
𝐹(̂𝑌)

(𝑌̂) = 0,
𝛿𝑆

PW
𝐹

(𝑌̂)

𝛿𝐹(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐹=𝐹(̂𝑌)

= 0,

Γ
PW

(𝑌̂) = 𝑊
PW

[𝐹 (𝑌̂)] ,
𝛿𝑊

PW
(𝐹)

𝛿𝐹(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐹=𝐹(̂𝑌)

= 0.

𝑒
𝑊

PW
[𝐹(

̂

𝑌)]

= ∫ [𝑑𝜂] 𝑒
−𝑆

PW
𝐹(𝑌̂)

(

̂

𝑌;𝜂)

.

(103)

𝑌̂ is the momentum eigenstate in 𝑥
− direction, so the

generated 11𝑑 background𝐹(𝑌̂) is translation invariant along
𝑥
−. In large 𝑟 limit, the local structure of the giant gravitons is

not important while the asymptotic geometry is just the pp-
wave with the perturbation roughly given by [39]

𝑑𝑠
2

11

= 2𝑑𝑥
+

𝑑𝑥
−

+ 𝑔
−−

𝑑𝑥
−

𝑑𝑥
−

+ 𝑑𝑥
𝑖

𝑑𝑥
𝑖

𝑔
−−

=
𝑄

𝑟7
,

(104)
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which is the field produced by the supergraviton which is
static in 9𝑑 space, carrying the definite light-conemomentum
[41]. 𝑄 = 30𝜋

3

𝑁/𝑅
2. (It is not 𝑄 = 30𝜋

3

𝑙
9

𝑝

𝑁/𝑅
2 because 𝑙

𝑝

is
absorbed into 𝑅 and 𝑟.) With the coordinate transformation
𝑥 → 𝑔

−1/3

𝑠

𝑥, 𝑥− → 𝑔
2/3

𝑠

𝑥
−, (104) becomes

𝑑𝑠
2

11

= 2𝑔
1/3

𝑠

𝑑𝑥
+

𝑑𝑥
−

+
𝑔
4/3

𝑠

𝑄

𝑟7
𝑑𝑥

−

𝑑𝑥
−

+ 𝑔
−2/3

𝑠

𝑑𝑥
𝑖

𝑑𝑥
𝑖

,

(105)

while the radius of 𝑥− is now 𝑔
−2/3

𝑠

𝑅.
Under the 𝑥

− reduction, in string frame,

𝑑𝑠
2

= 𝑒
−2𝜙/3

𝐺
𝑚𝑛

𝑑𝑥
𝑚

𝑑𝑥
𝑛

+ 𝑒
4𝜙/3

(𝑑𝑥
−

+ 𝐴
𝑚

𝑑𝑥
𝑚

)
2

.

𝑔
𝑚𝑛

= 𝑒
−2𝜙/3

𝐺
𝑚𝑛

+ 𝑒
4𝜙/3

𝐴
𝑚

𝐴
𝑛

, 𝑔
−−

= 𝑒
4𝜙/3

,

𝑔
𝑚−

= 𝑒
4𝜙/3

𝐴
𝑚

.

(106)

In particular, for (105),

𝑑𝑠
2

10

= −
𝑟
7/2

𝑄1/2

𝑑𝑥
+

𝑑𝑥
+

+
𝑄
1/2

𝑟7/2
𝑑𝑥

𝐼

𝑑𝑥
𝐼

,

𝑒
𝜙

= 𝑔
𝑠

(
𝑄

𝑟7
)

3/4

, 𝐴
+

=
𝑟
7

𝑔
𝑠

𝑄

(107)

is the near-horizon geometry of the𝐷0 branes [41].
The type IIA solution coming from the 𝑥

− reduction of
the 11𝑑 field𝐹(𝑌̂)was constructed in [19, 37].When 𝑟 → ∞,
the perturbation, which is the reduction of (104) along 𝑥

−, is
the near-horizon geometry of 𝑁 coincident 𝐷0-branes. The
appearance of the near-horizon geometry is because of the
null reduction. The reduction of (104) along 𝑥

+

− 𝑥
− gives

the 𝐷0 brane solution [41]. Different from AdS/CFT, here,
no near-horizon limit is taken, and the brane solution itself
becomes the near-horizon geometry when reduced along 𝑥

−.

3.2. The Gauge Theory Dual from the Matrix Model. Accord-
ing to the previous proposal, the Matrix theory description
of the 𝑀 theory on background (104) in presence of the
supergravitonwith𝑝

+

= 𝑁/𝑅 is 𝑆
𝑅,𝐹

(𝑌; 𝜂), where𝐹 is the field
in (104), 𝑌 = 0 (if 𝐹 is the field in (105), 𝑆

𝑅,𝐹

→ (1/𝑔
𝑠

) 𝑆
𝑅,𝐹

.)
Cosider

𝑆
𝑅,𝐹

(0; 𝜂) = 𝑆
𝑅

(𝜂) + ∫𝑑𝑥
+ Tr (𝑔

−−

𝑇
−−

) (𝜂) . (108)

𝑆
𝑅

is the BFSS action in (17). On the other hand, according
to AdS/CFT, the gauge theory description of the type IIA
string theory on background (104) is SYM

1

with the action
𝑆
𝑅=1

(𝜂). Since (104) becomes (107) under the 𝑥
− reduction, it

is desirable to find a limit to make (108) reduce to 𝑆
𝑅=1

(𝜂).

Consider the coordinate transformation 𝑥
𝐼

→ 𝑥
𝐼

/𝑅,
𝑥
−

→ 𝑅𝑥
−, under which

𝐹 (𝑥) = (𝑔
+−

, 𝑔
𝐼𝐽

, 𝐶
𝐼+−

, 𝐶
𝐼𝐽𝐾

, 𝜓
𝐼

, 𝑔
++

,

𝑔
𝐼+

, 𝑔
−−

, 𝑔
𝐼−

, 𝐶
𝐼𝐽+

, 𝐶
𝐼𝐽−

, 𝜓
+

, 𝜓
−

)

󳨀→ 𝐹
∗

(𝑅, 𝑥) = 𝑅
𝑞

𝐹(
𝑥

𝑅
)

= (𝑅𝑔
+−

,
𝑔
𝐼𝐽

𝑅2
, 𝐶

𝐼+−

,
𝐶
𝐼𝐽𝐾

𝑅3
,
𝜓
𝐼

𝑅
, 𝑔
++

,

𝑔
𝐼+

𝑅
, 𝑅

2

𝑔
−−

, 𝑔
𝐼−

,
𝐶
𝐼𝐽+

𝑅2
,
𝐶
𝐼𝐽−

𝑅
, 𝜓

+

, 𝑅𝜓
−

) .

(109)

Correspondingly, in Matrix theory action 𝑆
𝑅,𝐹

, with a field
redefinition 𝑋

𝐼

→ 𝑋
𝐼

/𝑅 and also a 𝑥
−

→ 𝑅𝑥
− rescaling

to make the radius of 𝑥
− become 1, the background fields

appearing in action are just 𝐹
∗

(𝑅,𝑋). 𝑆
𝑅,𝐹

→ 𝑆
1,𝐹

∗
(𝑅)

. With a
further rescaling 𝜃 → 𝜃/𝑅

3/2, 𝑆
𝑅,𝐹

→ 𝑆
1,𝐹

∗
(𝑅)

/𝑅
3. In 𝑆

1,𝐹

∗
(𝑅)

,
it is

𝐹
∗

(𝑅,𝑋) = 𝑅
𝑝

𝐹(
𝑋

𝑅
)

= (𝑔
+−

, 𝑔
𝐼𝐽

, 𝐶
𝐼+−

, 𝐶
𝐼𝐽𝐾

, 𝜓
𝐼

, 𝑅
2

𝑔
++

, 𝑅𝑔
𝐼+

,

𝑔
−−

𝑅2
,
𝑔
𝐼−

𝑅
, 𝑅𝐶

𝐼𝐽+

,
𝐶
𝐼𝐽−

𝑅
, 𝑅𝜓

+

,
𝜓
−

𝑅
)

(110)

that will appear.
Return to (108). For any𝑅, 𝑆

𝑅,𝐹

is equivalent to 𝑆
1,𝐹

∗
(𝑅)

/𝑅
3,

in which 𝑔
∗

−−

(𝑅, 𝑥) = 𝑔
−−

(𝑟/𝑅)/𝑅
2

∼ 𝑅
3

/𝑟
7. In 𝑅 → 0 limit,

𝑔
∗

−−

(𝑅, 𝑥) → 0,

lim
𝑅→0

𝑆
𝑅,𝐹

⇐⇒ lim
𝑅→0

1

𝑅3
𝑆
𝑅=1

= lim
𝑅→0

1

𝑅3
∫𝑑𝑥

+ Tr(1

2
𝐷
+

𝑋
𝐼

𝐷
+

𝑋
𝐼

+
1

4
[𝑋

𝐼

, 𝑋
𝐽

]
2

−𝑖𝜃𝐷
+

𝜃 + 𝜃𝛾
𝐼

[𝑋
𝐼

, 𝜃] ) .

(111)

SYM
1

arrives. Note that, for finite 𝑥, lim
𝑅→0

𝑥/𝑅 = ∞, so by
taking the 𝑅 → 0 limit, the background field that matters
lives at the 𝑟 → ∞ region, far away from the source.

For PWMM, 𝑅2𝑔
++

(𝑥/𝑅) = 𝑔
++

(𝑥), and 𝑅𝐶
𝐼𝐽+

(𝑥/𝑅) =

𝐶
𝐼𝐽+

(𝑥), all fields are marginal, so, for the arbitrary 𝑅 [5],

𝑆
PW
𝑅

⇐⇒
1

𝑅3
𝑆
PW
𝑅=1

=
1

𝑅3
∫𝑑𝑥

+

× Tr {1

4
(𝐷

+

𝑋
𝑖

)
2

− 𝑖𝜃𝐷
+

𝜃
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+
1

2
[𝑋

𝑖

, 𝑋
𝑗

]
2

+ 2𝜃𝛾
𝑖

[𝑋
𝑖

, 𝜃]

− (
𝜇

6
)

2

(𝑋
𝑎

)
2

− (
𝜇

12
)

2

(𝑋
𝑎

󸀠

)

2

−
𝜇

6
𝑖𝜖
𝑎𝑏𝑐

𝑋
𝑎

𝑋
𝑏

𝑋
𝑐

−
𝜇

8
𝜃𝛾
123

𝜃} .

(112)

Now consider the background 𝐹(𝑌̂) coming from the
backreaction of the giant graviton 𝑌̂ on pp-wave. Suppose 𝑌̂

is a vacuum in (96) with

2𝑗
𝑠

+ 1 = 𝑛 + 𝛼
𝑠

, (113)

𝑛 󳨀→ ∞, 𝛼
𝑠

finite. (114)

The radii of the spherical membranes are 𝑟
𝑠

∼ (𝑛 + 𝛼
𝑠

)/𝑅,
𝑠 = 1, . . . , 𝑡. 𝐹(𝑌̂) reduced along 𝑥

− gives the smooth
type IIA solution that is constructed in [19]. The generic
solution of type IIA supergravity with 𝑆𝑈(2 | 4) symmetry
is characterized by a function 𝑉(𝜌, 𝜂) and is given as [19]

𝑑𝑠
2

10

= (
𝑉̈ − 2𝑉̇

−𝑉󸀠󸀠

)

1/2

× {−4
𝑉̈

𝑉̈ − 2𝑉̇
𝑑𝑥

+

𝑑𝑥
+

+
−2𝑉

󸀠󸀠

𝑉̇
(𝑑𝜌

2

+ 𝑑𝜂
2

) + 4𝑑Ω
2

5

+ 2
𝑉
󸀠󸀠

𝑉̇

Δ
𝑑Ω

2

2

} ,

𝑒
4𝜙

=

4(𝑉̈ − 2𝑉̇)
3

−𝑉󸀠󸀠𝑉̇2Δ2
,

𝐶
1

= −
2𝑉̇

󸀠

𝑉̇

𝑉̈ − 2𝑉̇
𝑑𝑥

+

,

𝐹
4

= 𝑑𝐶
3

, 𝐶
3

= −4
𝑉̇
2

𝑉
󸀠󸀠

Δ
𝑑𝑥

+

∧ 𝑑
2

Ω,

𝐻
3

= 𝑑𝐵
2

, 𝐵
2

= (
𝑉̇𝑉̇

󸀠

Δ
+ 𝜂)𝑑

2

Ω,

Δ = (𝑉̈ − 2𝑉̇)𝑉
󸀠󸀠

− (𝑉̇
󸀠

)
2

,

(115)

where the dot and the prime represent the derivatives with
respect to log 𝜌 and 𝜂, respectively. 𝑉 can be taken as
an electrostatic potential for an axially symmetric system
with conducting disks and a background potential. 𝜌 is the
distance from the center axis, and 𝜂 is the coordinate in the
direction along the center axis. 𝑉(𝜌, 𝜂) = 𝑉

𝑏

(𝜌, 𝜂) + V
𝜂

(𝜌, 𝜂),
where 𝑉

𝑏

is the background potential and V
𝜂

is determined
by a configuration of conducting disks. Each 𝑆𝑈(2 | 4)

symmetric theory is specified by 𝑉
𝑏

; each vacuum of the
theory is specified by a configuration of conducting disks.

From (115), one can also get the uplifted 11𝑑 solution. For
example,

𝑑𝑠
2

11

=

2
2/3

(𝑉̈ − 2𝑉̇)

(−𝑉󸀠󸀠𝑉̇2Δ2)
1/3

𝑑𝑥
−

𝑑𝑥
−

−
2
5/3

𝑉̇
󸀠

𝑉̇

(−𝑉󸀠󸀠𝑉̇2Δ2)
1/3

𝑑𝑥
+

𝑑𝑥
−

+

2
5/3

𝑉̇
1/3

[(𝑉̇
󸀠

)
2

− 𝑉̈𝑉
󸀠󸀠

]

(−𝑉󸀠󸀠Δ2)
1/3

𝑑𝑥
+

𝑑𝑥
+

+

2
2/3

(𝑉̇Δ)
1/3

(−𝑉󸀠󸀠)
1/3

{
−𝑉

󸀠󸀠

𝑉̇
(𝑑𝜌

2

+ 𝑑𝜂
2

)

+2𝑑Ω
2

5

+
𝑉
󸀠󸀠

𝑉̇

Δ
𝑑Ω

2

2

} .

(116)

For PWMM,

𝑉
PW
𝑏

(𝜌, 𝜂) = 𝜌
2

𝜂 −
2

3
𝜂
3

. (117)

Only the region 𝜂 ≥ 0 is meaningful. There is an infinitely
large conducting disk sitting at 𝜂 = 0. Vacuum (97)
corresponds to 𝑡 disks located at 𝜂

1

= (𝜋/2𝑅)(2𝑗
1

+ 1), 𝜂
2

=

(𝜋/2𝑅)(2𝑗
2

+1), . . . , 𝜂
𝑡

= (𝜋/2𝑅)(2𝑗
𝑡

+1).The electric charges
on these disks are equal to (𝜋

2

/8)𝑁
1

, (𝜋
2

/8)𝑁
2

, . . . , (𝜋
2

/8)𝑁
𝑡

,
respectively. 𝜂

𝑠

is the radius of the spherical membranes. The
correspondence between the spacetime coordinates and the
PWMM fields is (𝑋

1

, 𝑋
2

, 𝑋
3

) ↔ (𝜂,Ω
2

), (𝑋4

, . . . , 𝑋
9

) ↔

(𝜌,Ω
5

), 𝑥+ ↔ 𝑥
+.

With the given disk configuration, the corresponding
potential is

𝑉 (𝜌, 𝜂) = 𝜌
2

𝜂 −
2

3
𝜂
3

+ V
𝜂

(𝜌, 𝜂) , (118)

which, when plugged into (115) and (116), gives the 10𝑑

solution 𝐹
10

(𝑥) as well as the 11𝑑 solution 𝐹(𝑥). 𝑥 stands
for the 9 space coordinates since the solution is translation
invariant along 𝑥

+ and 𝑥
−.

Under the coordinate transformation 𝑥 → 𝑥/𝑅, 𝑥− →

𝑅𝑥
−, the disks are now located at 𝜂

𝑠

= (𝜋/2)(2𝑗
𝑠

+ 1), while
the fields will transform as 𝐹(𝑥) → 𝐹

∗

(𝑅, 𝑥) = 𝑅
𝑞

𝐹(𝑥/𝑅),
𝐹
10

(𝑥) → 𝐹
∗10

(𝑅, 𝑥). As a result, 𝑆
𝑅,𝐹

→ 𝑆
1,𝐹

∗
(𝑅)

. 𝐹
∗10

(𝑅, 𝑥)

and 𝐹
∗

(𝑅, 𝑥) can be obtained by plugging

𝑉(
𝜌

𝑅
,
𝜂

𝑅
) =

1

𝑅3
(𝜌

2

𝜂 −
2

3
𝜂
3

) + V
𝜂/𝑅

(
𝜌

𝑅
,
𝜂

𝑅
) (119)

into (115) and (116). Except for 𝑆
1,𝐹

∗
(𝑅)

, we also have 𝑆
𝑅,𝐹

∼

𝑆
1,𝐹

∗
(𝑅)

/𝑅
3 with 𝐹

∗

(𝑅, 𝑥) = 𝑅
𝑝

𝐹(𝑥/𝑅) given by (110). Plug

𝑅
3

𝑉(
𝜌

𝑅
,
𝜂

𝑅
) = 𝜌

2

𝜂 −
2

3
𝜂
3

+ 𝑅
3

V
𝜂/𝑅

(
𝜌

𝑅
,
𝜂

𝑅
) (120)

into (115) and (116); one can get 𝐹
∗

10

(𝑅, 𝑥) and the corre-
sponding 𝐹

∗

(𝑅, 𝑥). In particular, for PWMM, 𝑉 = 𝑉
PW
𝑏

,
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𝑅
3

𝑉(𝜌/𝑅, 𝜂/𝑅) = 𝑉(𝜌, 𝜂), so 𝐹
∗

(𝑅, 𝑥) = 𝐹(𝑥) as we have
seen before. Both 𝑉(𝜌/𝑅, 𝜂/𝑅) and 𝑅

3

𝑉(𝜌/𝑅, 𝜂/𝑅) satisfy
cylindrically symmetric Laplace equation, so 𝐹

∗

(𝑅, 𝑥), and
𝐹
∗

(𝑅, 𝑥) are also the type IIA supergravity solutions. In fact,
𝐹(𝑥), 𝐹

∗

(𝑅, 𝑥) and 𝐹
∗

(𝑅, 𝑥) are related to each other by the
coordinate transformation. 𝑆

𝑅,𝐹

⇔ 𝑆
1,𝐹

∗
(𝑅)

⇔ 𝑆
1,𝐹

∗
(𝑅)

/𝑅
3.

The limit of interest is 𝑛 → ∞, 𝑅 → ∞, 𝑅3/𝑛 = 𝛼
2 and

𝜇 fixed. In this limit, the concentric spherical membranes all
have the infinite radii with the difference (𝛼

𝑖

−𝛼
𝑗

)/𝑅 → 0. For
the finite 𝜌, 𝜂, 𝜌/𝑅 → 0, 𝜂/𝑅 → 0, we need to consider the
behavior of V

𝜂

(𝜌, 𝜂) around 0. Since 𝜂
𝑠

/𝑅 → ∞, near 0, V
𝜂/𝑅

can be approximated as the potential generated by dipoles
located at ±𝜂

𝑠

/𝑅:

𝑅
3

V
𝜂/𝑅

(
𝜌

𝑅
,
𝜂

𝑅
) ∼

𝑡

∑

𝑠=1

𝑁
𝑠

𝑅
3

{

{

{

[(
𝜂
𝑠

− 𝜂

𝑅
)

2

+ (
𝜌

𝑅
)

2

]

−1/2

− [(
𝜂
𝑠

+ 𝜂

𝑅
)

2

+ (
𝜌

𝑅
)

2

]

−1/2

}

}

}

∼

𝑡

∑

𝑠=1

2𝑅
4

𝑁
𝑠

𝜂

𝜂
2

𝑠

󳨀→ 0.

(121)

lim𝑅
3

𝑉(𝜌/𝑅, 𝜂/𝑅) = 𝜌
2

𝜂 − (2/3)𝜂
3. Indeed, with

𝑅
3

𝑉(𝜌/𝑅, 𝜂/𝑅) plugged into (116), 𝑛 → ∞, 𝑅 → ∞,
𝑅
3

/𝑛 being fixed, the 11𝑑 solution finally approaches the
pp-wave. As a result, lim 𝑆

𝑅,𝐹

⇔ lim 𝑆
PW
𝑅=1

/𝑅
3. Even if the

background field is 𝐹(𝑌̂), in the limit taken, we still get
PWMM.

On the other hand, plug 𝑅
3

𝑉(𝜌/𝑅, 𝜂/𝑅) into the reduced
10𝑑 solution (115); 𝑉̈ − 2𝑉̇ = 𝑅

3

(V̈
𝜂/𝑅

− 2V̇
𝜂/𝑅

); the V
𝜂/𝑅

part
now matters. Let 𝑤(𝜌

2

, 𝜂) = 𝑅
3V
𝜂/𝑅

(𝜌/𝑅, 𝜂/𝑅):

𝑑𝑠
2

10

= 4
{

{

{

−(

𝜕
2

𝜌

2𝑤

𝜂
)

−1/2

𝑑𝑥
+

𝑑𝑥
+

+(

𝜕
2

𝜌

2𝑤

𝜂
)

1/2

[𝑑𝜌
2

+ 𝜌
2

𝑑Ω
2

5

+ 𝑑𝜂
2

+ 𝜂
2

𝑑Ω
2

2

]
}

}

}

,

𝑒
4𝜙

= (

𝜕
2

𝜌

2𝑤

𝜂
)

3

,

𝐶
1

= −2(

𝜕
2

𝜌

2𝑤

𝜂
)

−1

𝑑𝑥
+

,

𝐹
4

= 𝑑𝐶
3

, 𝐶
3

= −16𝜂
3

𝑑𝑥
+

∧ 𝑑
2

Ω,

𝐻
3

= 𝑑𝐵
2

, 𝐵
2

= (4𝜂
2

𝜕
2

𝜌

2𝑤 − 𝜕
𝜌

2𝑤 + 𝜂𝜕
𝜌

2𝜕
𝜂

𝑤)𝑑
2

Ω.

(122)

The 10𝑑 solution has the dependence on the disk configura-
tion. Equation (122) is lim𝐹

∗

10

(𝑅, 𝑥). With 𝑒
𝜙

→ 𝑅
3

𝑒
𝜙, 𝐶

1

→

𝐶
1

/𝑅
3, 𝐶

3

→ 𝐶
3

/𝑅
3, we will get lim 𝐹

∗10

(𝑅, 𝑥). By taking
the 𝑅 → ∞ limit, the relevant region is 𝜌 → 0, 𝜂 → 0,
which is again far from the source. The 11𝑑 field approaches
the pp-wave, but the reduced 10𝑑 field still depends on the
disk configuration. Similarly, for (104), suppose 𝑄 = 𝑁𝑘

7;
then, when 𝑘 → 0, the 11𝑑 background is fat, while the
associated 10𝑑 background (107) is still the near-horizon
geometry but becomes singular now. Nevertheless, let 𝑢 =

𝑟/𝑘, 𝑟 → 0, 𝑢 fixed; (107) can be written as

𝑑𝑠
2

10

= 𝑘
2

(−
𝑢
7/2

𝑁1/2

𝑑𝑢
+

𝑑𝑢
+

+
𝑁
1/2

𝑢7/2
𝑑𝑢

𝐼

𝑑𝑢
𝐼

) ,

𝑒
4𝜙/3

=
𝑁

𝑢7
, 𝐴

+

=
𝑢
7

𝑁
.

(123)

This is similar to the limit taken in AdS/CFT [7].
Now, consider the exact form of 𝑆

1,𝐹

∗
(𝑅)

. For the generic
11𝑑 background 𝐹(𝑥), the bosonic part of 𝑆

1,𝐹

∗
(𝑅)

is

𝑆
𝑏

1,𝐹

∗
(𝑅)

= ∫𝑑𝑥
+

× Tr(𝑔
∗+−

{
𝐷
+

𝑋
𝐼

𝐷
+

𝑋
𝐽

2𝑔2
∗+−

𝑔
∗𝐼𝐽

+
𝐷
+

𝑋
𝐼

𝑔
∗+−

(𝑐
𝐽

∗

+
𝑔
𝐽

∗+

𝑔
∗+−

)𝑔
∗𝐼𝐽

+
1

4
[𝑋

𝐼

, 𝑋
𝐽

] [𝑋
𝐾

, 𝑋
𝐿

] 𝑔
∗𝐼𝐾

𝑔
∗𝐽𝐿

+
𝑔
∗++

2𝑔2
∗+−

+
𝑐
∗+

𝑔
∗+−

}) + 𝑆
𝑔

∗𝐼−

+ 𝑆
𝑔

∗−−

.

(124)

The relation between 𝐹
∗

(𝑅, 𝑥) and the 𝑥
− reduced 10𝑑

background 𝐹
∗10

(𝑅, 𝑥) is

𝑔
∗𝑚𝑛

= 𝑒
−2𝜙

∗
/3

𝐺
∗𝑚𝑛

+ 𝑒
4𝜙

∗
/3

𝐴
∗𝑚

𝐴
∗𝑛

,

𝑔
∗−−

= 𝑒
4𝜙

∗
/3

, 𝑔
∗𝑚−

= 𝑒
4𝜙

∗
/3

𝐴
∗𝑚

.

(125)

In the limit with 𝑛 → ∞, 𝑅 → ∞, 𝑅3/𝑛 fixed, if 𝑔∗
−−

→ 0,
𝑔
∗

𝐼−

= 0, the rest 𝐹∗
10

(𝑅, 𝑥) is finite, there will be

𝑅
3

𝑆
𝑔

𝐼−

= 0, 𝑅
3

𝑆
𝑔

−−

󳨀→ 0,

𝐺
∗++

󳨀→ −𝑒
2𝜙

∗𝐴
∗+

𝐴
∗+

, 𝐺
∗𝐼𝐽

= 𝑒
2𝜙

∗
/3

𝑔
∗𝐼𝐽

,

√−𝐺
∗++

󳨀→ 𝑒
𝜙

∗𝐴
∗+

.

(126)
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With these relations,

lim 𝑆
𝑏

1,𝐹

∗
(𝑅)

= lim {
1

𝑒𝜙∗
∫𝑑𝑥

+ Tr√−𝐺
∗++

× (−
1

2
𝐺
∗𝐼𝐽

𝐺
++

∗

𝐷
+

𝑋
𝐼

𝐷
+

𝑋
𝐽

− 𝐺
∗𝐼𝐽

𝐺
++

∗

𝐷
+

𝑋
𝐼

𝑔
𝐽

∗+

+ (−𝐺
++

∗

)
1/2

𝐺
∗𝐼𝐽

𝐶
𝐽

∗𝐾𝐿

× 𝐷
+

𝑋
𝐼

[𝑋
𝐾

, 𝑋
𝐿

]

+
1

4
𝐺
∗𝐼𝐽

𝐺
∗𝐾𝐿

[𝑋
𝐼

, 𝑋
𝐾

] [𝑋
𝐽

, 𝑋
𝐿

]

−
1

2
𝑒
2𝜙

∗
/3

𝐺
++

∗

𝑔
∗++

+ (−𝐺
++

∗

)
1/2

𝐶
∗+𝐽𝐾

[𝑋
𝐽

, 𝑋
𝐾

] )}

= lim 𝑆
𝑏

1,𝐹

∗10
(𝑅)

.

(127)

For 𝑔
∗++

= 𝜇
++

𝑋
𝐼

𝑋
𝐽

𝑔
∗𝐼𝐽

, 𝑔𝐽
∗+

= ]
+

𝑋
𝐽,

𝑒
2𝜙

∗
/3

𝐺
++

∗

𝑔
∗++

= 𝜇
++

𝐺
++

∗

𝐺
∗𝐼𝐽

𝑋
𝐼

𝑋
𝐽

,

𝐺
∗𝐼𝐽

𝐺
++

∗

𝐷
+

𝑋
𝐼

𝑔
𝐽

∗+

= ]
+

𝐺
∗𝐼𝐽

𝐺
++

∗

𝐷
+

𝑋
𝐼

𝑋
𝐽

.

(128)

So, in the limit taken, 𝑆𝑏
1,𝐹

∗
(𝑅)

could be identifiedwith 𝑆
𝑏

1,𝐹

∗10
(𝑅)

,
the action of SYM

1

on the 10𝑑 background 𝐹
∗10

(𝑅, 𝑥). The
discussion can also be extended to the full 𝑆

1,𝐹

∗
(𝑅)

with the
fermionic part included.

Specified to the background generated by 𝑌̂ on pp-wave,
(126) is satisfied for the solution in (122), so lim 𝑆

1,𝐹

∗
(𝑅)

=

lim 𝑆
PW
𝑅=1

/𝑅
3

= lim 𝑆
1,𝐹

∗10
(𝑅)

. Indeed, one can verify the
validity of (127) by directly plugging (122) in it. In the limit
taken, PWMM can be taken as the SYM

1

living on 10𝑑

background (122). Equation (104) also satisfies the above
criteria. Actually,

∫𝑑𝑥
+ Tr(1

2
𝐷
+

𝑋
𝐼

𝐷
+

𝑋
𝐼

+
1

4
[𝑋

𝐼

, 𝑋
𝐽

]
2

− 𝑖𝜃𝐷
+

𝜃 + 𝜃𝛾
𝐼

[𝑋
𝐼

, 𝜃] )

= ∫𝑑𝑥
+

× Tr{
√−𝐺

++

𝑒𝜙
(−

1

2
𝐺
𝐼𝐽

𝐺
++

𝐷
+

𝑋
𝐼

𝐷
+

𝑋
𝐽

+
1

4
𝐺
𝐼𝐽

𝐺
𝐾𝐿

[𝑋
𝐼

, 𝑋
𝐾

] [𝑋
𝐽

, 𝑋
𝐿

]

− 𝑖𝑒
𝜙

(−𝐺
++

)
1/2

𝜃𝐷
+

𝜃

+ 𝑒
𝜙

𝐺
1/2

𝐼𝐼

𝜃𝛾
𝐼

[𝑋
𝐼

, 𝜃] )} ,

(129)

where 𝜙, 𝐺
++

, and so forth are the near-horizon geometry of
the𝐷0 branes in (107) with 𝑔

𝑠

= 1.
In the limit with 𝑛 → ∞,𝑅 → ∞,𝑅3/𝑛 = 𝛼

2 fixed, (122)
gives the solution in the region of finite 𝜌 and 𝜂. To study the
region near the spherical membrane shells with 𝜌, 𝜂−𝑛 finite,
a change of variables 𝜂 → 𝜂 + 𝑛 can be made. As is shown in
[42], in this limit,

1

𝑅3
𝑉

PW
𝑏

=
1

𝑅3
[𝜌

2

(𝜂 + 𝑛) −
2

3
(𝜂 + 𝑛)

3

] 󳨀→
𝑛

𝑅3
(𝜌

2

− 2𝜂
2

)

=
1

𝛼2
𝑉

SYM
𝑅×𝑆
2

𝑏

,

(130)

where 𝑉
SYM
𝑅×𝑆
2

𝑏

is the background potential for SYM
𝑅×𝑆

2 .
Alternatively, we may directly plug

𝑉(
𝜌

𝑅
,
𝜂 + 𝑛

𝑅
)

=
1

𝑅3
[𝜌

2

(𝜂 + 𝑛) −
2

3
(𝜂 + 𝑛)

3

] + V
𝜂/𝑅

(
𝜌

𝑅
,
𝜂 + 𝑛

𝑅
)

(131)

into (116) and (115), taking the limit at the end. Let
V
𝜂/𝑅

(𝜌/𝑅, (𝜂 + 𝑛)/𝑅) = 𝑢(𝜌
2

, 𝜂); the 11𝑑 background 𝐹
∗

(𝑅, 𝑥)

is

𝑑𝑠
2

11

= (
2

𝛼2𝑛2𝜕
2

𝜌

2
𝑢
)

2/3

× [

𝛼
4

𝑛𝜕
2

𝜌

2𝑢

4
𝑑𝑥

−

𝑑𝑥
−

− 2𝛼
2

𝑛 (1 + 𝜕
𝜌

2𝜕
𝜂

𝑢) 𝑑𝑥
+

𝑑𝑥
−

+ 𝑛
2

(4𝑑𝑥
+

𝑑𝑥
+

− 𝑑Ω
2

2

)

−4 (𝑑𝜂
2

+ 𝑑𝜌
2

+ 𝜌
2

𝑑Ω
2

5

) ] ,

(132)

which has the topology of 𝑅 × 𝑅
7

× 𝑆
2

× 𝑅. The 10𝑑

background 𝐹
∗10

(𝑅, 𝑥) is

𝑑𝑠
2

10

= (

𝜕
2

𝜌

2𝑢

𝑛
)

−1/2

(−4𝑑𝑥
+

𝑑𝑥
+

+ 𝑑Ω
2

2

)

+ 4(

𝜕
2

𝜌

2𝑢

𝑛
)

1/2

(𝑑𝜂
2

+ 𝑑𝜌
2

+ 𝜌
2

𝑑Ω
2

5

) ,

𝑒
𝜙

=
𝛼
2

2
(

𝜕
2

𝜌

2𝑢

𝑛
)

1/4

,
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𝐶
1

= −

2 (1 + 𝜕
𝜌

2𝜕
𝜂

𝑢)

𝛼2𝜕
2

𝜌

2
𝑢

𝑑𝑥
+

,

𝐹
4

= 𝑑𝐶
3

, 𝐶
3

= −
4𝑛

𝛼2𝜕
2

𝜌

2
𝑢
𝑑𝑥

+

∧ 𝑑
2

Ω,

𝐻
3

= 𝑑𝐵
2

, 𝐵
2

= (−

1 + 𝜕
𝜌

2𝜕
𝜂

𝑢

4𝜕
2

𝜌

2
𝑢

+ 𝜂)𝑑
2

Ω.

(133)

𝑑𝑥
+

𝑑𝑥
+, and 𝑑Ω

2

2

now have the same prefactor. Equations
(122) and (133) can be taken as the background for 1𝑑 and
3𝑑 gauge theories, respectively.

On gauge theory side, to study the fluctuation around the
spherical membranes, we should expand 𝑆

PW
𝑅=1

/𝑅
3 around 𝑌̂.

In [20], it was shown that in the limit of 𝑛 → ∞, 𝑅3/𝑛
fixed, (i) PWMM around a certain vacuum is equivalent to
SYM

𝑅×𝑆

2 around each vacuum and (ii) SYM
𝑅×𝑆

2 around a
certain vacuum with a periodicity imposed is equivalent to
SYM

𝑅×𝑆

3
/𝑍

𝑘

around each vacuum. In particular, SYM
𝑅×𝑆

3 can
be realized as the PWMM around a certain vacuum with a
periodicity condition imposed.

Concretely, (𝑛/𝑅3) 𝑆
PW
𝑅=1

(𝑌̂; 𝜂) = (𝑛/𝑅
3

)𝑆
PW
𝑅=1

(𝑌̂ + 𝜂) =

𝑆
𝑅×𝑆

2

(𝑦 + 𝑦), where 𝑆
𝑅×𝑆

2

is the action of the 𝑈(𝑁) SYM
𝑅×𝑆

2

with𝑁 = 𝑁
1

+ ⋅ ⋅ ⋅ + 𝑁
𝑡

:

𝑆
𝑅×𝑆

2

=
1

𝑔
2

𝑅×𝑆

2

∫𝑑𝑥
+

𝑑Ω
2

𝜇2

× Tr {−1

4
𝐹
𝑎𝑏

𝐹
𝑎𝑏

−
1

2
𝐷
𝑎

Φ𝐷
𝑎

Φ

−
𝜇
2

2
Φ
2

+ 𝜇𝐹
12

Φ −
1

2
𝐷
𝑎

𝑋
𝑚

𝐷
𝑎

𝑋
𝑚

−
𝜇
2

8
𝑋
2

𝑚

+
1

4
[𝑋

𝑚

, 𝑋
𝑛

]
2

+
1

2
[Φ,𝑋

𝑚

]
2

−
𝑖

2
𝜆Γ

𝑎

𝐷
𝑎

𝜆 +
𝑖𝜇

8
𝜆Γ

123

𝜆

−
1

2
𝜆Γ

3

[Φ, 𝜆] −
1

2
𝜆Γ

𝑚

[𝑋
𝑚

, 𝜆]} ,

(134)

1/𝜇 is the radius of 𝑆
2 which is parameterized by (𝜃, 𝜙).

𝑔
2

𝑅×𝑆

2 = 𝑅
3

/𝜇
3

𝑛. 𝑦 represents the vacuum:

Φ̂ =
𝜇

2
diag [

[

𝛼
1

, . . . , 𝛼
1

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

1

, 𝛼
2

, . . . , 𝛼
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

2

, . . . , 𝛼
𝑡

, . . . , 𝛼
𝑡

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

𝑡

]

]

,

𝐴
1

= 0,

𝐴
2

=

{{{

{{{

{

tan 𝜃

2
Φ̂ in region I

−cot 𝜃
2

Φ̂ in region II.

(135)

Region I and II correspond to 0 ≤ 𝜃 < (𝜋/2) + 𝜀 and
(𝜋/2) − 𝜀 < 𝜃 ≤ 𝜋, respectively. 𝛼

𝑠

is identified with
the 𝛼

𝑠

in (113). The 𝑈(𝑁) gauge group is spontaneously
broken to 𝑈(𝑁

1

) × 𝑈(𝑁
2

) × ⋅ ⋅ ⋅ × 𝑈(𝑁
𝑡

). Equation (135)
corresponds to 𝑡 disks located at 𝜂

1

= (𝜋/2)𝛼
1

, 𝜂
2

=

(𝜋/2)𝛼
2

, . . . , 𝜂
𝑡

= (𝜋/2)𝛼
𝑡

with the electric charges on each
equal to (𝜋

2

/8)𝑁
1

, (𝜋
2

/8)𝑁
2

, . . . , (𝜋
2

/8)𝑁
𝑡

.The previous 𝜂
𝑠

=

(𝜋/2)(𝑛 + 𝛼
𝑠

) in PWMM now becomes 𝜂
𝑠

= (𝜋/2)𝛼
𝑠

due to
the 𝜂 → 𝜂 + 𝑛 redefinition.

The correspondence between the spacetime coordinates
and the SYM

𝑅×𝑆

2 fields is Φ ↔ 𝜂, (𝑋4

, . . . , 𝑋
9

) ↔ (𝜌,Ω
5

),
(𝑥
+

, Ω
2

) ↔ (𝑥
+

, Ω
2

). Equation (134) is the SYM
𝑅×𝑆

2 on flat
background. Plug (133) into (134), similar to (127), for bosonic
part, we have

𝑆
𝑅×𝑆

2

𝑏

= 𝜇
3

∫𝑑𝑥
+

𝑑Ω
2

𝜇2

× Tr{
√−𝐺

𝑒𝜙

× (−
1

4
𝐺
𝑎𝑐

𝐺
𝑏𝑑

𝐹
𝑎𝑏

𝐹
𝑐𝑑

−
1

2
𝐺
𝑎𝑏

𝐺
𝜂𝜂

𝐷
𝑎

Φ𝐷
𝑏

Φ −
𝜇
2

2
𝐺
Ω

2𝐺
𝜂𝜂

Φ
2

+ 𝜇(−𝐺)
−1/2

𝐺
1/2

𝜂𝜂

𝐹
12

Φ

−
1

2
𝐺
𝑎𝑏

𝐺
𝑚𝑛

𝐷
𝑎

𝑋
𝑚

𝐷
𝑏

𝑋
𝑛

−
𝜇
2

8
𝐺
Ω

2𝐺
𝑚𝑛

𝑋
𝑚

𝑋
𝑛

+
1

4
𝐺
𝑚𝑝

𝐺
𝑛𝑞

[𝑋
𝑚

, 𝑋
𝑛

] [𝑋
𝑝

, 𝑋
𝑞

]

+
1

2
𝐺
𝜂𝜂

𝐺
𝑚𝑛

[Φ,𝑋
𝑚

] [Φ,𝑋
𝑛

] )} ,

(136)

where 𝐺
𝑎𝑏

∼ 𝐺
𝑚𝑛

∼ 𝐺
𝜂𝜂

∼ 𝐺
Ω

2 ∼ (𝜕
2

𝜌

2𝑢/𝑛)
1/2, 𝐺 = det𝐺

𝑎𝑏

∼

−(𝜕
2

𝜌

2𝑢/𝑛)
−3/2, 𝑒𝜙 ∼ 𝛼

2

(𝜕
2

𝜌

2𝑢/𝑛)
1/4. The action remains the

same, so (134) is also the action of SYM
𝑅×𝑆

2 on background
(133). The conclusion holds for fermionic part except for a
rescaling of 𝜆.

Indeed, as we will show in Appendix A, such phe-
nomenon is very common. Generically, the action of SYM

𝑝+1

on flat background is equal to the action of the SYM
𝑝+1

on
the near-horizon geometry of the 𝐷𝑝 branes. (For 𝑝 ≥ 6, the
worldvolume theories of𝐷𝑝 branes do not decouple from the
bulk, as is discussed in [7].) For SCFT

3

and SCFT
6

on 𝑀2

and 𝑀5, such requirement can even offer some clues for the
structure of the field theory.
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𝑢 = 𝑢(𝜌
2

, 𝜂) is the function of the radial directions. For
the given field configuration [Φ,𝑋

4

, . . . , 𝑋
9

], let

[Φ̂, 𝑋
4

, . . . , 𝑋
9

]

= [

[

(

𝜕
2

𝜌

2𝑢

𝑛
)

1/4

Φ,(

𝜕
2

𝜌

2𝑢

𝑛
)

1/4

𝑋
4

, . . . , (

𝜕
2

𝜌

2𝑢

𝑛
)

1/4

𝑋
9]

]

;

(137)

then

𝑆
𝑅×𝑆

2

𝑏

= 𝜇
3

∫𝑑𝑥
+

𝑑Ω
2

𝜇2

× Tr{
√−𝐺

𝑒𝜙

× (−
1

4
𝐺
𝑎𝑐

𝐺
𝑏𝑑

𝐹
𝑎𝑏

𝐹
𝑐𝑑

−
1

2
𝐺
𝑎𝑏

𝐷
𝑎

Φ̂𝐷
𝑏

Φ̂ −
𝜇
2

2
𝐺
Ω

2Φ̂
2

+ 𝜇(−𝐺)
−1/2

𝐹
12

Φ̂ −
1

2
𝐺
𝑎𝑏

𝐷
𝑎

𝑋
𝑚

𝐷
𝑏

𝑋
𝑛

−
𝜇
2

8
𝐺
Ω

2𝑋
𝑚

𝑋
𝑛

+
1

4
[𝑋

𝑚

, 𝑋
𝑛

] [𝑋
𝑝

, 𝑋
𝑞

]

+
1

2
[Φ̂, 𝑋

𝑚

] [Φ̂, 𝑋
𝑛

])} .

(138)

Compared with (134), with 𝑋
𝑚

→ 𝑋
𝑚, Φ → Φ̂, the 3𝑑

background fields on 𝑅 × 𝑆
2 will get the radial dependence:

𝑒
𝜙

= 1 󳨀→ 𝑒
𝜙

=
𝛼
2

2
(

𝜕
2

𝜌

2𝑢

𝑛
)

1/4

(𝜌
2

, 𝜂) ,

𝑑𝑠
2

3

= −4𝑑𝑥
+

𝑑𝑥
+

+ 𝑑Ω
2

2

󳨀→ 𝑑𝑠
2

3

= (

𝜕
2

𝜌

2𝑢

𝑛
)

−1/2

(𝜌
2

, 𝜂) (−4𝑑𝑥
+

𝑑𝑥
+

+ 𝑑Ω
2

2

) .

(139)

This is some kind of realization of the holography, on which,
we will discuss more in the next section. One special feature
here is that the background fields depend on two radial
directions 𝜌 and 𝜂. Let 𝑟 = (𝜌

2

+ 𝜂
2

)
1/2; 𝑑𝑠2

10

in (133) can be
written as

𝑑𝑠
2

10

= (

𝜕
2

𝜌

2𝑢

𝑛
)

−1/2

(−4𝑑𝑥
+

𝑑𝑥
+

+ 𝑑Ω
2

2

)

+ 4(

𝜕
2

𝜌

2𝑢

𝑛
)

1/2

𝑑𝑟
2

+ 4𝑟
2

(

𝜕
2

𝜌

2𝑢

𝑛
)

1/2

𝑑Ω
2

6

,

(140)

with SYM
𝑅×𝑆

2 living at 𝑟 = ∞. However, with the energy 𝐸

indentified with 𝑟, the RG flow cannot give 𝑢(𝜌
2

, 𝜂), which is
not just the function of 𝑟. Instead, we will make the 𝑋

𝑚

→

𝑋
𝑚,Φ → Φ̂ transformation to recover 𝜌𝜂 dependence of the

3𝑑 background fields in 𝑆𝑌𝑀
𝑅×𝑆

2 .
For PWMM, we have

𝑒
𝑊

PW
(𝐹)

= ∫ [𝑑𝜂] 𝑒
−𝑆

PW
(

̂

𝑌;𝜂)

. (141)

𝑊
PW

(𝐹) is the 𝑥
− reduction of the 11𝑑 supergravity effective

action of the field generated by the brane 𝑌̂ on pp-wave. In
the limit with 𝑛 → ∞, 𝑅 → ∞, 𝑅3/𝑛 = 𝛼

2 fixed, under the
change of variables 𝜂 → 𝜂 + 𝑛,

𝑆
PW

(𝑌̂; 𝜂) 󳨀→ 𝑆
𝑅×𝑆

2

(𝑦; 𝑦)

𝑊
PW

(𝐹) 󳨀→ 𝑊
𝑅×𝑆

2

(𝐹) ,

(142)

where 𝑊
𝑅×𝑆

2

(𝐹) is the type IIA action for the above-
mentioned supergravity solution dual to a vacuum of
SYM

𝑅×𝑆

2 . Then,

𝑒
𝑊

𝑅×𝑆
2

(𝐹)

= ∫ [𝑑𝑦] 𝑒
−𝑆

𝑅×𝑆
2

(𝑦; 𝑦)

. (143)

As is demonstrated in [19, 20], from SYM
𝑅×𝑆

2 and the
corresponding type IIA solution, it is also possible to get
the SYM

𝑅×𝑆

3 and the associated type IIB solution. In (135),
suppose

Φ̂ =
𝜇

2

× diag[. . . , 𝑠 − 1, . . . , 𝑠 − 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑀

, 𝑠, . . . , 𝑠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑀

, 𝑠 + 1, . . . , 𝑠 + 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑀

, . . .],

(144)
where 𝑠 runs from −∞ to ∞. Expanding the action (134)
around this vacuum and imposing the condition 𝑦

(𝑠+1,𝑡+1)

=

𝑦
(𝑠,𝑡) on all of the field fluctuations, one will get [20]

𝑆
𝑅×𝑆

2

(𝑦 + 𝑦)
󵄨󵄨󵄨󵄨󵄨󵄨[𝑦(𝑠+1,𝑡+1)=𝑦(𝑠,𝑡)]

= 𝑆
𝑅×𝑆

3

(𝑧)

=
1

𝑔
2

𝑅×𝑆

3

∫𝑑𝑡
𝑑Ω

3

(𝜇/2)
3

× Tr {−1

4
𝐹
𝑎𝑏

𝐹
𝑎𝑏

−
1

2
𝐷
𝑎

𝑋
𝑚

𝐷
𝑎

𝑋
𝑚

−
1

12
𝑅̂𝑋

2

𝑚

−
𝑖

2
𝜆Γ

𝑎

𝐷
𝑎

𝜆 −
1

2
𝜆Γ

𝑚

[𝑋
𝑚

, 𝜆]

+
1

4
[𝑋

𝑚

, 𝑋
𝑛

]
2

} ,

(145)
where

𝑔
2

𝑅×𝑆

3 =
4𝜋

𝜇
𝑔
2

𝑅×𝑆

2 . (146)

𝑆
𝑅×𝑆

3

is the action of the 𝑈(𝑀) SYM on 𝑅 × 𝑆
3.
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This is a special example of Taylor’s prescription for the
compactification (the 𝑇-duality) in matrix models [43]. The
new ingredient is the nontrivial gauge field, which makes a
nontrivial fibration of 𝑆1 over 𝑆2 rather than a direct product;
as a result, it is 𝑆3 other than 𝑆

2

× 𝑆
1 that is obtained [20].

On gravity side, start from the trivial vacuumof SYM
𝑅×𝑆

2 ,
for which there is only a single disk with the electric charge
(𝜋
2

/8)𝑀; compactify the 𝜂 direction; the disk configuration
in covering space will contain the infinite copies of disks with
the period 𝜋/2, corresponding to the vacuum (144). The type
IIA geometry generated by (144), after a 𝑇-duality transfor-
mation, becomes the type IIB geometry AdS

5

× 𝑆
5 [19]. On

field theory side, since 𝜂 is compactified, the field fluctuations
should respect the periodicity condition 𝑦

(𝑠+1,𝑡+1)

= 𝑦
(𝑠,𝑡).

Taylor’s prescription for the compactification also involves
the 𝑇-duality transformation, making SYM

𝑅×𝑆

2 in type IIA
become 𝑆

𝑅×𝑆

3

in type IIB. Equation (143) turns into

𝑒
𝑊

𝑅×𝑆
3

(𝐹)

= ∫ [𝑑𝑧] 𝑒
−𝑆

𝑅×𝑆
2

(𝑧)

. (147)

For the trivial vacuum of 𝑆
𝑅×𝑆

3

, 𝐹 represents AdS
5

× 𝑆
5

background.
Finally, the geometry arising from the backreaction of the

𝐷3 giant gravitons with the definite light-cone momentum
on type IIB pp-wave background was also constructed in
[39]. It is tempting to find the corresponding gauge theory
dual. one attempt is to expand the TGMT [34–36] around
the corresponding 1/2 BPS configuration, and then take the
certain limit. TGMT is the discrete regularization of the 𝐷3

branes, so the resulted gauge theory should be a 4𝑑 gauge
theory as is required since the geometry is generated by
spherical𝐷3 branes on pp-wave.

4. Holography in AdS/CFT

SYM
4

is the gauge dual of the string theory on AdS
5

× 𝑆
5. A

natural question is what will be the gauge dual of the string
theory if the field perturbation is added toAdS

5

×𝑆
5. For BFSS

matrix model, we have matrices 𝑋𝑖, 𝑖 = 1, . . . , 9 representing
nine transverse coordinates, so for a scalar field

𝜙 (𝑡, 𝑥
1

, . . . , 𝑥
9

) =

∞

∑

𝑛

1
=0

⋅ ⋅ ⋅

∞

∑

𝑛

9
=0

1

𝑛
1

! ⋅ ⋅ ⋅ 𝑛
9

!

× (𝜕
𝑛

1

1

⋅ ⋅ ⋅ 𝜕
𝑛

9

9

𝜙) (𝑡, 0, . . . , 0)

× (𝑥
1

)
𝑛

1

⋅ ⋅ ⋅ (𝑥
9

)
𝑛

9

,

(148)

we may get the operator realization

Φ (𝑡) =

∞

∑

𝑛

1
=0

⋅ ⋅ ⋅

∞

∑

𝑛

9
=0

1

𝑛
1

! ⋅ ⋅ ⋅ 𝑛
9

!

× (𝜕
𝑛

1

1

⋅ ⋅ ⋅ 𝜕
𝑛

9

9

𝜙) (𝑡, 0, . . . , 0)

× STr [(𝑋1

)
𝑛

1

⋅ ⋅ ⋅ (𝑋
9

)
𝑛

9

] ,

(149)

with 𝑥
𝑖 replaced bymatrix𝑋

𝑖. AddingΦ(𝑡) to the Lagrangian
gives a matrix model on a background with the scalar field
𝜙(𝑡, 𝑥

1

, . . . , 𝑥
9

) turned on. The situation for SYM
4

is a little
different. In BFSSmodel, the original background is flat; all of
the fields could be expanded as the Taylor series in Cartesian
coordinates. For SYM

4

, the original background is AdS
5

×𝑆
5;

fields are expanded in terms of the spherical harmonics on 𝑆
5.

For scalar ℎ,

ℎ (𝑥, 𝑦) =

∞

∑

𝑛=2

ℎ
𝑛

(𝑥,
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨) 𝑌
𝑛

(
𝑦

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

) ,

𝑌
𝑛

(
𝑦

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

) =

𝐶
𝑎

1
⋅⋅⋅𝑎

𝑛

(𝑦
𝑎

1 ⋅ ⋅ ⋅ 𝑦
𝑎

𝑛)

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

𝑛

,

(150)

where 𝑌
𝑛

(𝑦/|𝑦|) is a spherical harmonic of rank 𝑛. ℎ
𝑛

(𝑥, |𝑦|)

is a scalar field on AdS
5

transforming in the (0, 𝑛, 0) irrep
of 𝑆𝑂(6). It is necessary to find the operator correspondence
of 𝑌𝑛(𝑦/|𝑦|). In SYM

4

, we have 𝐶
𝑎

1
⋅⋅⋅𝑎

𝑛

Tr(𝑋𝑎

1 ⋅ ⋅ ⋅ 𝑋
𝑎

𝑛), which,
however, is the operator realization of 𝐶

𝑎

1
⋅⋅⋅𝑎

𝑛

(𝑦
𝑎

1 ⋅ ⋅ ⋅ 𝑦
𝑎

𝑛).
Naively, let 𝑅2 = 𝑒

2Σ

= 𝑋
𝑚

𝑋
𝑚, Σ = (1/2) ln (𝑋

𝑚

𝑋
𝑚

); 𝑅
and Σ may be the operators corresponding to 𝑟 = |𝑦| = 𝑒

𝜎

and 𝜎, respectively. For the 5𝑑 field 𝐹(𝑥, 𝑟), for all 𝜎
0

= ln 𝑟
0

,
formally,

𝐹 (𝑥, 𝑅) = 𝑓 (𝑥, Σ)

= 𝑓
(0)

(𝑥, 𝜎
0

) + 𝑓
(1)

(𝑥, 𝜎
0

) (Σ − 𝜎
0

𝐼)

+
1

2
𝑓
(2)

(𝑥, 𝜎
0

) (Σ − 𝜎
0

𝐼)
2

+ ⋅ ⋅ ⋅

= 𝑓
(0)

(𝑥, 𝜎
0

) + 𝑓
(1)

(𝑥, 𝜎
0

) [
1

2
ln(

𝑋
𝑚

𝑋
𝑚

𝑟
2

0

)]

+
1

2
𝑓
(2)

(𝑥, 𝜎
0

) [
1

2
ln(

𝑋
𝑚

𝑋
𝑚

𝑟
2

0

)]

2

+ ⋅ ⋅ ⋅ .

(151)

Functions 𝑓(𝑛)(𝑥, 𝜎
0

) are coupling constants of the 4𝑑 gauge
theory living in (𝑥, 𝜎

0

). Similar to (28), when the gauge theory
moves along 𝜎, Σ → Σ− 𝑎𝐼, 𝑓(𝑛)(𝑥, 𝜎

0

) → 𝑓
(𝑛)

(𝑥, 𝜎
0

+ 𝑎), Σ
could be decomposed into the 𝑈(1) part 𝜎 and the traceless
part Σ

𝑠

= Σ − 𝜎𝐼:

𝜎 =
1

𝑁
TrΣ =

1

2𝑁
Tr ln (𝑋

𝑚

𝑋
𝑚

)

=
1

2𝑁
ln det (𝑋𝑚

𝑋
𝑚

) ,

Σ
𝑠

=
1

2
ln (𝑋

𝑚

𝑠

𝑋
𝑚

𝑠

) , det (𝑋𝑚

𝑠

𝑋
𝑚

𝑠

) = 1,

(152)

𝑋
𝑚

= 𝑒
𝜎

𝑋
𝑚

𝑠

. The configuration (𝑋
5

, . . . , 𝑋
10

) is equivalent to
(𝑋

5

𝑠

, . . . , 𝑋
10

𝑠

, 𝜎). 𝜎 → 𝜎 + 𝑎,𝑋𝑚

→ 𝑒
𝑎

𝑋
𝑚.
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One may take 𝐶
𝑎

1
⋅⋅⋅𝑎

𝑛

Tr(𝑋𝑎

1

𝑠

⋅ ⋅ ⋅ 𝑋
𝑎

𝑛

𝑠

) as the operator
corresponding to 𝑌

𝑛

(𝑦/|𝑦|) and consider the gauge theory
with the vertex operator perturbation realized as (in fact,
we will choose 𝑋 instead of 𝑋

𝑠

with det(𝑋𝑚

𝑋
𝑚

) = ∞.
𝐶
𝑎

1
⋅⋅⋅𝑎

𝑛

Tr(𝑋𝑎

1 ⋅ ⋅ ⋅ 𝑋
𝑎

𝑛) ∼ 𝑌
𝑛

(𝑦), where |𝑦| = ∞)

𝐻
𝑛

(𝑥, 𝜎) = ℎ
𝑛

(𝑥, 𝜎) 𝐶
𝑎

1
⋅⋅⋅𝑎

𝑛

Tr (𝑋𝑎

1

𝑠

⋅ ⋅ ⋅ 𝑋
𝑎

𝑛

𝑠

) ; (153)

ℎ
𝑛

(𝑥, 𝜎) can be the arbitrary 5𝑑 function. Gauge theory like
this is difficult to approach directly. We still prefer SYM

4

with ℎ
𝑛

(𝑥)𝐶
𝑎

1
⋅⋅⋅𝑎

𝑛

Tr(𝑋𝑎

1 ⋅ ⋅ ⋅ 𝑋
𝑎

𝑛) added, which, after a suitable
transition, will become a gauge theory with the operator
ℎ
𝑛

(𝑥, 𝜎)𝐶
𝑎

1
⋅⋅⋅𝑎

𝑛

Tr(𝑋𝑎

1 ⋅ ⋅ ⋅ 𝑋
𝑎

𝑛). The 5𝑑 field ℎ
𝑛

(𝑥, 𝜎) is not
arbitrary anymore but is determined by ℎ

𝑛

(𝑥).
This is quite similar to the noncritical string couplingwith

2𝑑 gravity. For critical string with 26 coordinates, any 26𝑑

background fields can be represented by the vertex operator
perturbations on the stringworldsheet action. For noncritical
string with, for example, 25 coordinates, only the vertex
operator perturbations corresponding to 25𝑑 fields can be
constructed. However, if the noncritical string is coupled to
the conformalmode of the 2𝑑 gravity so that the total number
of degrees of freedom is 26, after a property transformation
with the partition function kept invariant, the theory will
become the critical string coupling with the 26𝑑 background
fields. The 26𝑑 fields are induced from the 25𝑑 fields with the
conformalmode acting as the 26th dimension. For SYM

4

, the
role of the conformal mode is played by 𝜎.

4.1. Noncritical String Coupling with 2𝑑 Gravity. Let us have
a simple review of the noncritical string [44–49]. Consider
the bosonic string living in 𝑑 dimensional spacetime. The
corresponding nonlinear sigma model action is

𝑆 (𝑔,𝑋) =
1

4𝜋𝛼󸀠
∫𝑑

2

𝜉√𝑔 [𝑔
𝑎𝑏

𝜕
𝑎

𝑋
𝜇

𝜕
𝑏

𝑋
]
𝐺
𝜇] (𝑋)

+ 𝜖
𝑎𝑏

𝜕
𝑎

𝑋
𝜇

𝜕
𝑏

𝑋
]
𝐵
𝜇] (𝑋)

+𝛼
󸀠

𝑅Φ (𝑋) + 𝑇 (𝑋) + ⋅ ⋅ ⋅ ] ,

(154)

𝜇, ] = 1, . . . , 𝑑. The partition function is defined as

𝑍 = ∫

𝐷
𝑔

𝑔𝐷
𝑔

𝑋

vol (diff
2

)
𝑒
−𝑆(𝑔,𝑋)

.

∫

𝐷
𝑔

𝑔𝐷
𝑔

𝑋

vol (diff
2

)
𝑒
−𝑆(𝑔,𝑋)

= ∫

𝐷
𝑒

𝜔
𝑔

(𝑒
𝜔

𝑔)𝐷
𝑒

𝜔
𝑔

𝑋

vol (diff
2

)
𝑒
−𝑆(𝑒

𝜔
𝑔,𝑋)

.

(155)

The theory is conformal invariant since all 𝑔 are integrated.
The integration over the small 𝑔 gives the divergence, to
cure which a cutoff should be introduced, destroying the
conformal invariance. Under the conformal gauge fixing 𝑔 =

𝑒
𝜑

𝑔,𝜑 ≥ 0, 𝑔 is a small metric giving the cut-off scale

𝐷
𝑔

𝑔

vol (diff
2

)
=

𝐷
𝑔

𝜑

vol (conf
2

)
𝑒
−𝑆

𝐿
(𝜑;𝑔)

, (156)

where 𝑆
𝐿

(𝜑; 𝑔) is the Liouville action. With 𝐷
𝑔

𝑋 → 𝐷
𝑔

𝑋,
𝐷
𝑔

𝜑 → 𝐷
𝑔

𝜑, the partition function becomes

𝑍 (𝑔, 0) = ∫

∞

𝜑=0

𝐷
𝑔

𝜑𝐷
𝑔

𝑋

vol (conf
2

)
𝑒
−𝑆(𝑔,𝑋)−𝑆

𝐿
(𝜑;𝑔)

= ∫

∞

𝜑=0

𝐷
𝑔

𝜑𝐷
𝑔

𝑋

vol (conf
2

)
𝑒
−

̂

𝑆(𝜑,𝑋;𝑔)

,

(157)

where

𝑆 (𝜑,𝑋; 𝑔)

=
1

4𝜋𝛼󸀠
∫𝑑

2

𝜉√𝑔 [𝑔
𝑎𝑏

𝜕
𝑎

𝜑𝜕
𝑏

𝜑

+ 𝑔
𝑎𝑏

𝜕
𝑎

𝑋
𝜇

𝜕
𝑏

𝑋
]
𝐺
𝜇] (𝑋, 𝜑)

+ 𝜖
𝑎𝑏

𝜕
𝑎

𝑋
𝜇

𝜕
𝑏

𝑋
]
𝐵
𝜇] (𝑋, 𝜑)

+𝛼
󸀠

𝑅̂Φ̂ (𝑋, 𝜑) + 𝑇̂ (𝑋, 𝜑) + ⋅ ⋅ ⋅ ] .

(158)

The original 𝑑 dimensional background field 𝐹(𝑋), after the
gravitational dressing, becomes the 𝑑 + 1 dimensional field
𝐹(𝑋, 𝜎). 𝐹(𝑋, 0) = 𝐹(𝑋). One can also make a change of the
variables to move the boundary from 𝜑 = 0 to 𝜑 = −∞:

𝑍 (𝑔, 0) = ∫

∞

𝜑=0

𝐷
𝑔

𝜑𝐷
𝑔

𝑋

vol (conf
2

)
𝑒
−

̂

𝑆(𝜑,𝑋;𝑔)

= ∫

∞

𝜑=0

𝐷
𝑔

(𝜑 − ∞)𝐷
𝑔

𝑋

vol (conf
2

)
𝑒
−

̂

𝑆(𝜑−∞+∞,𝑋;𝑔)

= ∫

∞

𝜑=−∞

𝐷
𝑔

𝜑𝐷
𝑔

𝑋

vol (conf
2

)
𝑒
−

̂

𝑆(𝜑+∞,𝑋;𝑔)

= ∫

∞

𝜑=−∞

𝐷
𝑔

𝜑𝐷
𝑔

𝑋

vol (conf
2

)
𝑒
−

̂

𝑆

󸀠
(𝜑,𝑋;𝑔)

.

(159)

In 𝑆
󸀠, 𝐹󸀠(𝜑) = 𝐹(𝜑 + ∞).
Since 𝑔 = 𝑒

𝜑+𝜔

𝑒
−𝜔

𝑔, for 𝜔 ≥ 0,

𝑍 (𝑔, 0) = ∫

∞

𝜑=0

𝐷
𝑒

−𝜔
𝑔

(𝜑 + 𝜔)𝐷
𝑒

−𝜔
𝑔

𝑋

vol (conf
2

)
𝑒
−

̂

𝑆(𝜑+𝜔,𝑋;𝑒

−𝜔
𝑔)

= ∫

∞

𝜑=𝜔

𝐷
𝑒

−𝜔
𝑔

𝜑𝐷
𝑒

−𝜔
𝑔

𝑋

vol (conf
2

)
𝑒
−

̂

𝑆(𝜑,𝑋;𝑒

−𝜔
𝑔)

= 𝑍 (𝑒
−𝜔

𝑔, 𝜔) .

(160)

With the cutoff being introduced, the conformal transforma-
tion should be accompanied by a change of the boundary:

𝑍 (𝑒
−𝜔

𝑔, 0) − 𝑍 (𝑔, 0) = ∫

𝜔

𝜑=0

𝐷
𝑒

−𝜔
𝑔

𝜑𝐷
𝑒

−𝜔
𝑔

𝑋

vol (conf
2

)
𝑒
−

̂

𝑆(𝜑,𝑋;𝑒

−𝜔
𝑔)

= 𝑍 (𝑒
−𝜔

𝑔, 0) − 𝑍 (𝑒
−𝜔

𝑔, 𝜔) .

(161)

With the cutoff being removed, 𝑍(𝑔) = 𝑍(𝑒
−𝜔

𝑔).
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𝑆(𝜑,𝑋; 𝑔) is the action of the bosonic string coupling
with the background fields𝐹(𝑋, 𝜎).The conformal invariance
indicates that 𝐹(𝑋, 𝜎) should be the on-shell solution of
gravity. To arrive at this result, it is important that, in (157),
the change of the 2𝑑 metric is always compensated by the
adjustment of the background fields, keeping the form of the
sigma model invariant.

4.2. Inducing the Radial Dependent Fields. Now, consider
SYM

4

with the action

𝐼 [𝑔
𝜇], 𝑋, 𝐴, 𝜆] = −

1

𝑔
2

𝑌𝑀

∫𝑑
4

𝑥√−𝑔

× Tr(1

2
𝑔
𝜇]
𝑔
𝜆𝜎

𝐹
𝜇𝜆

𝐹]𝜎

+ 𝑔
𝜇]
𝐷
𝜇

𝑋
𝑚

𝐷]𝑋
𝑚

+
1

6
𝑅̂𝑋

2

𝑚

− 𝑖𝜆Γ
𝜇

𝐷
𝜇

𝜆

− 𝜆Γ
𝑚

[𝑋
𝑚

, 𝜆]

−
1

2
[𝑋

𝑚

, 𝑋
𝑛

]
2

) .

(162)

Select 𝑋 so that 𝑋 can be expressed as 𝑋 = 𝑒
𝜎

𝑋 with 𝜎 ∈

(−∞, 0]. 𝑋 is the infinite matrix representing the maximum
𝑋. The partition function is

𝑍(𝑔
𝜇], 𝑋) = ∫

̂

𝑋

𝐷
𝑔

𝑋𝐷
𝑔

𝐴𝐷
𝑔

𝜆 exp {−𝐼 [𝑔
𝜇], 𝑋, 𝐴, 𝜆]}

= 𝑒
𝑊(𝑔

𝜇],
̂

𝑋)

.

(163)

Due to the Weyl invariance,

𝐼 [𝑔
𝜇], 𝑋, 𝐴, 𝜆] = 𝐼 [𝑒

2𝜔

𝑔
𝜇], 𝑒

−𝜔

𝑋,𝐴, 𝑒
−(3/2)𝜔

𝜆] . (164)

Suppose

𝐷
𝑔

𝑋𝐷
𝑔

𝐴𝐷
𝑔

𝜆 = 𝐷
𝑒

2𝜔
𝑔

(𝑒
−𝜔

𝑋)𝐷
𝑒

2𝜔
𝑔

× 𝐴𝐷
𝑒

2𝜔
𝑔

(𝑒
−(3/2)𝜔

𝜆) 𝑒
𝑆

𝑐
[𝜔;𝑔]

,

(165)

with no counterterm added, SYM
4

is conformal invariant,
so at least for finite 𝜔 and 𝑔

𝜇], 𝑆
𝑐

[𝜔; 𝑔] = 0. 𝑍(𝑔
𝜇]; 𝑋) =

𝑍(𝑒
−2𝜔

𝑔
𝜇]; 𝑒

𝜔

𝑋). However, this may not be the case when
𝜔 = ∞ or when 𝑔

𝜇] → 0. 𝑆𝑐[𝜔; 𝑔] will still be kept for the
infinite conformal transformation.

Nevertheless, with 𝑔
𝜇] = 𝜂

𝜇], we always have 𝑆
𝑐

[𝜎; 𝑔] = 0.
With𝑋 parameterized as𝑋 = 𝑒

𝜎

𝑋,

𝑍(𝑔
𝜇]; 𝑋) = ∫

0

𝜎=−∞

𝐷
𝑔

(𝑒
𝜎

𝑋)𝐷
𝑔

𝐴𝐷
𝑔

𝜆

× exp {−𝐼 [𝑔
𝜇], 𝑒

𝜎

𝑋,𝐴, 𝜆]}

(166)

= ∫

0

𝜎=−∞

𝐷
𝑒

2𝜎
𝑔

𝑋𝐷
𝑒

2𝜎
𝑔

𝐴𝐷
𝑒

2𝜎
𝑔

𝜆

× exp {−𝐼 [𝑒
2𝜎

𝑔
𝜇], 𝑋, 𝐴, 𝜆]} .

(167)

From (166) to (167), the integration over𝜎 in𝑋 is converted to
the integration over𝜎 in𝑔.The partition function of SYM

4

on
flat background is equal to the partition function of a gauge
theory on a curved background. From (167), one may read
the background metric:

𝑑𝑠
2

= 𝑒
2𝜎

𝑑𝑥
2

4

+ 𝑟
2

3

(𝑑𝜎
2

+ 𝑑Ω
2

5

)

= (
𝑟

𝑟
3

)

2

𝑑𝑥
2

4

+ (
𝑟
3

𝑟
)

2

(𝑑𝑟
2

+ 𝑟
2

𝑑Ω
2

5

) .

(168)

𝑟 = 𝑒
𝜎

𝑟
3

. 𝑟 ∈ [0, +∞), 𝑟
3

= +∞, and 𝜎 ∈ (−∞, 0]. 𝑟
3

=

+∞ because we take 𝑋 as the standard matrix. For finite 𝑟
3

,
𝜎 ∈ (−∞, +∞]. With 𝑟

3

being the radius of AdS
5

× 𝑆
5, (167)

could be taken as the partition function of a gauge theory on
AdS

5

× 𝑆
5.

Equations (166) and (167) have the direct extension to
SCFT

3

and SCFT
6

for 𝑀2 and 𝑀5. For SCFT
3

, 𝑋 has the
weight 1/2, and the Weyl transformation is (𝑒

𝜎

𝑋, 𝑔
𝜇]) →

(𝑋, 𝑒
4𝜎

𝑔
𝜇]). The induced metric is

𝑑𝑠
2

= 𝑒
4𝜎

𝑑𝑥
2

3

+ 𝑟
2

2

(𝑑𝜎
2

+ 𝑑Ω
2

7

)

= (
𝑟

𝑟
2

)

4

𝑑𝑥
2

3

+ (
𝑟
2

𝑟
)

2

(𝑑𝑟
2

+ 𝑟
2

𝑑Ω
2

7

)

(169)

with 𝑟 = 𝑒
𝜎

𝑟
2

. For SCFT
6

, 𝑋 has the weight 2, and the Weyl
transformation is (𝑒

𝜎

𝑋, 𝑔
𝜇]) → (𝑋, 𝑒

𝜎

𝑔
𝜇]). The induced

metric is

𝑑𝑠
2

= 𝑒
𝜎

𝑑𝑥
2

6

+ 𝑟
2

5

(𝑑𝜎
2

+ 𝑑Ω
2

4

)

= (
𝑟

𝑟
5

)𝑑𝑥
2

6

+ (
𝑟
5

𝑟
)

2

(𝑑𝑟
2

+ 𝑟
2

𝑑Ω
2

4

) ,

(170)

with 𝑟 = 𝑒
𝜎

𝑟
5

. Equations (169) and (170) are the near-horizon
geometries of𝑀2 and𝑀5, respectively.

More generically, as we will show in Appendix A, for
SYM

𝑝+1

, SCFT
3

, and SCFT
6

on 𝐷𝑝, 𝑀2, and 𝑀5, the action
on flat background and the action on the near-horizon
geometry of 𝐷𝑝, 𝑀2, and 𝑀5 are the same. As a result, for
𝑀2 and 𝑀5 with the near-horizon geometry given by (169)
and (170), 𝑋 → (𝑟

2

/𝑟)𝑋 and 𝑋 → (𝑟
5

/𝑟)𝑋 are always
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accompanied by 𝑑𝑥
2

3

→ (𝑟/𝑟
2

)
4

𝑑𝑥
2

3

and 𝑑𝑥
2

6

→ (𝑟/𝑟
5

)𝑑𝑥
2

6

.
For𝐷𝑝 with the near-horizon geometry

𝑑𝑠
2

= (
𝑟

𝑟
𝑝

)

(7−𝑝)/2

𝑑𝑥
2

𝑝+1

+ (
𝑟

𝑟
𝑝

)

−(7−𝑝)/2

(𝑑𝑟
2

+ 𝑟
2

𝑑Ω
2

8−𝑝

) ,

𝑒
Φ

= 𝑔
𝑠

(
𝑟

𝑟
𝑝

)

(7−𝑝)(𝑝−3)/4

,

(171)

the 𝑋 → (𝑟
𝑝

/𝑟)
(7−𝑝)/4

𝑋 transformation will then make
𝑑𝑥

2

𝑝+1

→ (𝑟/𝑟
𝑝

)
(7−𝑝)/2

𝑑𝑥
2

𝑝+1

, 𝑒
Φ

= 𝑔
𝑠

→ 𝑒
Φ

=

𝑔
𝑠

(𝑟/𝑟
𝑝

)
(7−𝑝)(𝑝−3)/4. The coupling constant as well as the

metric now gets the radial dependence. ((7 − 𝑝)/2)/((7 −

𝑝)/2) = 1, and the weight of𝑋 is 1.
In the above situations, the transformations are all made

for 𝑋. This is not always the case. Consider the 2𝑑𝑁 = (4, 4)

SCFT and the 𝐴𝑑𝑆
3

× 𝑆
3

× 𝑇
4 geometry [50, 51]. The scalars

𝑋
𝑖, 𝑖 = 1, 2, 3, 4 are related to the transverse 𝑇4, for which the

metric is 𝑑𝑥2
4

. There is no radial dependent prefactor for𝑋 to
absorb, so 𝑋 has the weight 0. In fact, the chiral primaries
are constructed from the fermions Ψ that have the weight
1/2 and are representations of the 𝑅-symmetry group 𝑆𝑂(4)

associated with 𝑆
3.

Return to SYM
4

, with the operator perturbation added:

𝐼 [𝑔
𝜇]0, 𝜙0, 𝑋, 𝐴, 𝜆]

= 𝐼 [𝑔
𝜇]0, 𝑋, 𝐴, 𝜆] + ∫𝑑

4

𝑥√−𝑔
𝜇]0 𝜙

0

(𝑥)𝑂 (𝑥) ,

(172)

where 𝑂 = 𝐶
𝑎

1
⋅⋅⋅𝑎

𝑛

Tr(𝑋𝑎

1 ⋅ ⋅ ⋅ 𝑋
𝑎

𝑛). 𝑔
𝜇]0 is the arbitrary 4𝑑

metric. The partition function is (here, the path integral
measure depends on both 𝑔

𝜇]0 and 𝜙
0

. However, except for
𝑔
𝜇]0, no other field will enter into the path integral measure

directly. Even though, the transformation of the path integral
measure still has the dependence on other external fields.
An explicit example is the chiral anomaly in gauge theory.
We will discuss the path integral measure in more detail in
Appendix B)

𝑍(𝑔
𝜇]0, 𝜙0; 𝑋) = ∫

̂

𝑋

𝐷
(𝑔

0
,𝜙

0
)

𝑋𝐷
(𝑔

0
,𝜙

0
)

𝐴𝐷
(𝑔

0
,𝜙

0
)

𝜆

× exp {−𝐼 [𝑔
𝜇]0, 𝜙0, 𝑋, 𝐴, 𝜆]} .

𝐼 [𝑔
𝜇]0, 𝜙0, 𝑋, 𝐴, 𝜆]

= 𝐼 [𝑒
2𝜔

𝑔
𝜇]0, 𝑒

(𝑛−4)𝜔

𝜙
0

, 𝑒
−𝜔

𝑋,𝐴, 𝑒
−(3/2)𝜔

𝜆] .

(173)

For finite 𝜔, 𝑔
𝜇]0, 𝜙0,

𝑍(𝑔
𝜇]0, 𝜙0; 𝑋) = 𝑍 (𝑒

2𝜔

𝑔
𝜇]0, 𝑒

(𝑛−4)𝜔

𝜙
0

; 𝑒
−𝜔

𝑋) . (174)

We still want to do a𝑋 → 𝑋 transformation:

𝐷
(𝑔

0
,𝜙

0
)

(𝑒
𝜎

𝑋)𝐷
(𝑔

0
,𝜙

0
)

𝐴𝐷
(𝑔

0
,𝜙

0
)

𝜆

× exp {−𝐼 [𝑔
𝜇]0, 𝜙0, 𝑒

𝜎

𝑋,𝐴, 𝜆]}

= 𝐷
(𝑒

2𝜎
𝑔

0
,𝑒

(𝑛−4)𝜎
𝜙

0
)

𝑋𝐷
(𝑒

2𝜎
𝑔

0
,𝑒

(𝑛−4)𝜎
𝜙

0
)

× 𝐴𝐷
(𝑒

2𝜎
𝑔

0
,𝑒

(𝑛−4)𝜎
𝜙

0
)

(𝑒
−(3/2)𝜎

𝜆)

× exp {−𝐼 [𝑒
2𝜎

𝑔
𝜇]0, 𝑒

(𝑛−4)𝜎

𝜙
0

, 𝑋, 𝐴, 𝑒
−(3/2)𝜎

𝜆]

+ 𝑆
𝑐

(𝜎; 𝑔
𝜇]0, 𝜙0)} .

(175)

When 𝜎 = −∞, 𝑆𝑐(𝜎; 𝑔
𝜇]0, 𝜙0) may not be zero. Instead of

𝑒
2𝜎

𝑔
𝜇]0 and 𝑒

(𝑛−4)𝜎

𝜙
0

, we can find the suitably adjusted 𝑔
𝜇](𝜎)

and 𝜙(𝜎) so that

𝐷
(𝑔

0
,𝜙

0
)

(𝑒
𝜎

𝑋)𝐷
(𝑔

0
,𝜙

0
)

𝐴𝐷
(𝑔

0
,𝜙

0
)

𝜆

× exp {−𝐼 [𝑔
𝜇]0, 𝜙0, 𝑒

𝜎

𝑋,𝐴, 𝜆]}

= 𝐷
[𝑔(𝜎),𝜙(𝜎)]

𝑋𝐷
[𝑔(𝜎),𝜙(𝜎)]

𝐴𝐷
[𝑔(𝜎),𝜙(𝜎)]

𝜆

× exp {−𝐼 [𝑔
𝜇] (𝜎) , 𝜙 (𝜎) , 𝑋, 𝐴, 𝜆]} .

(176)

In (176), the integration over 𝑋, 𝐴, and 𝜆 has already been
carried out; both sides only depend on the 4𝑑 function 𝜎(𝑥).
Obviously, 𝑔

𝜇]0 = 𝑔
𝜇](0), 𝜙0 = 𝜙(0). We also require

𝐷
[𝑔(𝜎

1
),𝜙(𝜎

1
)]

(𝑒
𝜎

2𝑋)𝐷
[𝑔(𝜎

1
),𝜙(𝜎

1
)]

𝐴𝐷
[𝑔(𝜎

1
),𝜙(𝜎

1
)]

𝜆

× exp {−𝐼 [𝑔
𝜇] (𝜎1) , 𝜙 (𝜎

1

) , 𝑒
𝜎

2𝑋,𝐴, 𝜆]}

= 𝐷
[𝑔(𝜎

1
+𝜎

2
),𝜙(𝜎

1
+𝜎

2
)]

𝑋𝐷
[𝑔(𝜎

1
+𝜎

2
),𝜙(𝜎

1
+𝜎

2
)]

× 𝐴𝐷
[𝑔(𝜎

1
+𝜎

2
),𝜙(𝜎

1
+𝜎

2
)]

𝜆

× exp {−𝐼 [𝑔
𝜇] (𝜎1 + 𝜎

2

) , 𝜙 (𝜎
1

+ 𝜎
2

) , 𝑋, 𝐴, 𝜆]} .

(177)

The 5𝑑 functions 𝑔
𝜇](𝑥, 𝜎) and 𝜙(𝑥, 𝜎) are induced from the

4𝑑 fields 𝑔
𝜇]0(𝑥) and 𝜙(𝑥). For finite 𝜎, 𝑔

𝜇](𝜎) = 𝑒
2𝜎

𝑔
𝜇]0,

𝜙(𝜎) = 𝑒
(𝑛−4)𝜎

𝜙
0

.
More generically, with the 4𝑑 background field 𝐹

0

turned
on, for the given 4𝑑 function 𝜎(𝑥), since 𝜎 ≤ 0, 𝑒𝜎𝑋 → 𝑋 is a
UV to IR transformation, the effect of which can be cancelled
by the adjustment of the coupling constants, keeping the
partition function invariant. 𝑒𝜎𝑋 → 𝑋, 𝐹

0

→ 𝐹(𝜎). With
all possible operators included, the change of the scale can
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always be compensated by the change of the background
fields, leaving the form of the Lagrangian invariant:

𝑍(𝑔
𝜇]0, 𝐹0; 𝑋)

= ∫

0

𝜎=−∞

𝐷
[𝑔(𝜎),𝐹(𝜎)]

𝑋𝐷
[𝑔(𝜎),𝐹(𝜎)]

𝐴𝐷
[𝑔(𝜎),𝐹(𝜎)]

𝜆

× exp {−𝐼 [𝑔
𝜇] (𝜎) , 𝐹 (𝜎) , 𝑋, 𝐴, 𝜆]}

= 𝑍 (𝑔
𝜇] (𝜎) , 𝐹 (𝜎) ; 𝑋; 0) .

(178)

In (178), with 𝐹 specified to 𝜙, the induced action
𝐼[𝑔

𝜇](𝜎), 𝐹(𝜎), 𝑋, 𝐴, 𝜆] contains the term ∫𝑑
4

𝑥√−𝑔(𝜎)𝜙

(𝑥, 𝜎)𝑂(𝑥) with 𝑂(𝑥) given by 𝑂 = 𝐶
𝑎

1
⋅⋅⋅𝑎

𝑛

Tr(𝑋𝑎

1 ⋅ ⋅ ⋅ 𝑋
𝑎

𝑛).
𝑂(𝑥) ∼ 𝐶

𝑎

1
⋅⋅⋅𝑎

𝑛

(𝑦
𝑎

1 ⋅ ⋅ ⋅ 𝑦
𝑎

𝑛). |𝑦| = ∞ since 𝑋 is the
infinite matrix. The corresponding 10𝑑 field is Φ(𝑥, 𝜎, Ω) =

|𝑦|
𝑛−4

𝜙(𝑥, 𝜎)𝑌
𝑛

(Ω) and g
𝜇](𝑥, 𝜎) = |𝑦|

4

𝑔
𝜇](𝑥, 𝜎), where

𝑌
𝑛

(Ω) is the spherical harmonic on 𝑆
5. Equation (178) is the

partition function of the gauge theory on AdS
5

× 𝑆
5 with the

background fields Φ(𝑥, 𝜎, Ω) and g
𝜇](𝑥, 𝜎) turned on.

On gravity side, the asymptotic expansion of the gravity
solution g(𝜎) is [52]

g (𝜎) = 𝑒
2𝜎

[𝑔
0

+ 𝑒
−2𝜎

𝑔
2

+ 𝑒
−4𝜎

𝑔
4

− 2𝜎𝑒
−4𝜎

ℎ
4

] + 𝑂 (𝑒
−3𝜎

) ,

(179)

where 𝜎 ∈ (−∞, +∞). Let 𝜎 → 𝜎 + 𝜎
∞

, with 𝜎 ∈ (−∞, 0],
𝜎
∞

= +∞, and 𝑔(𝜎) = 𝑒
−2𝜎

∞g(𝜎).

𝑔 (𝜎) = 𝑒
2𝜎

[𝑔
0

+ 𝑒
−2(𝜎+𝜎

∞
)

𝑔
2

+ 𝑒
−4(𝜎+𝜎

∞
)

𝑔
4

−2 (𝜎 + 𝜎
∞

) 𝑒
−4(𝜎+𝜎

∞
)

ℎ
4

] + 𝑂 (𝑒
−5𝜎

∞𝑒
−3𝜎

) .

(180)

For finite 𝜎, 𝑔(𝜎) = 𝑒
2𝜎

𝑔
0

. Similarly, for the solution of the
scalar field Φ(𝜎) [53],

Φ (𝜎) = 𝑒
(𝑛−4)𝜎

[𝜙
0

+ 𝑒
−2𝜎

𝜙
2

+ ⋅ ⋅ ⋅ + 𝑒
(4−2𝑛)𝜎

𝜙
2𝑛−4

−2𝜎𝑒
(4−2𝑛)𝜎

𝜑
2𝑛−4

] + 𝑂 [𝑒
−(𝑛+1)𝜎

]

(181)

with 𝜎 ∈ (−∞, +∞). 𝜙(𝜎) = 𝑒
(4−𝑛)𝜎

∞Φ(𝜎 + 𝜎
∞

).

𝜙 (𝜎) = 𝑒
(𝑛−4)𝜎

[𝜙
0

+ 𝑒
−2(𝜎+𝜎

∞
)

𝜙
2

+ ⋅ ⋅ ⋅

+ 𝑒
(4−2𝑛)(𝜎+𝜎

∞
)

𝜙
2𝑛−4

−2 (𝜎 + 𝜎
∞

) 𝑒
(4−2𝑛)(𝜎+𝜎

∞
)

𝜑
2𝑛−4

]

+ 𝑂 [𝑒
(3−2𝑛)𝜎

∞𝑒
−(𝑛+1)𝜎

] ,

(182)

with 𝜎 ∈ (−∞, 0]. When 𝑛 > 2, 𝜙(𝜎) = 𝑒
(𝑛−4)𝜎

𝜙
0

for finite 𝜎.
For g-Φ coupled system, the subleading terms are determined
by both 𝑔

0

and 𝜙
0

. Φ(𝑥, 𝜎) and g
𝜇](𝑥, 𝜎) are fields on AdS

5

with 𝑟
3

finite. It is expected that the 𝑋 → 𝑋 transformation
will give 𝑔

𝜇](𝑥, 𝜎) and 𝜙(𝑥, 𝜎) in (180) and (182).

From (177),

𝐷
[𝑔(𝜎),𝜙(𝜎)]

𝑋𝐷
[𝑔(𝜎),𝜙(𝜎)]

𝐴𝐷
[𝑔(𝜎),𝜙(𝜎)]

𝜆

× exp {−𝐼 [𝑔
𝜇] (𝜎) , 𝜙 (𝜎) , 𝑋, 𝐴, 𝜆]}

= 𝐷
[𝑔(𝜎+𝜔),𝜙(𝜎+𝜔)]

(𝑒
−𝜔

𝑋)𝐷
[𝑔(𝜎+𝜔),𝜙(𝜎+𝜔)]

× 𝐴𝐷
[𝑔(𝜎+𝜔),𝜙(𝜎+𝜔)]

𝜆

× exp {−𝐼 [𝑔
𝜇] (𝜎 + 𝜔) , 𝜙 (𝜎 + 𝜔) , 𝑒

−𝜔

𝑋,𝐴, 𝜆]} .

(183)

As a result,

𝑍(𝑔
𝜇]0, 𝜙0; 𝑋)

= 𝑍 (𝑔
𝜇] (𝜎) , 𝜙 (𝜎) ; 𝑋; 0)

= ∫

0

𝜎=−∞

𝐷
[𝑔(𝜎+𝜔),𝜙(𝜎+𝜔)]

(𝑒
−𝜔

𝑋)𝐷
[𝑔(𝜎+𝜔),𝜙(𝜎+𝜔)]

× 𝐴𝐷
[𝑔(𝜎+𝜔),𝜙(𝜎+𝜔)]

𝜆

× exp {−𝐼 [𝑔
𝜇] (𝜎 + 𝜔) , 𝜙 (𝜎 + 𝜔) , 𝑒

−𝜔

𝑋,𝐴, 𝜆]}

= 𝑍 (𝑔
𝜇] (𝜎 + 𝜔) , 𝜙 (𝜎 + 𝜔) ; 𝑒

−𝜔

𝑋; 0)

= ∫

𝜔

𝜎=−∞

𝐷
[𝑔(𝜎),𝜙(𝜎)]

(𝑒
−𝜔

𝑋)𝐷
[𝑔(𝜎),𝜙(𝜎)]

𝐴𝐷
[𝑔(𝜎),𝜙(𝜎)]

𝜆

× exp {−𝐼 [𝑔
𝜇] (𝜎) , 𝜙 (𝜎) , 𝑒

−𝜔

𝑋,𝐴, 𝜆]}

= 𝑍 (𝑔
𝜇] (𝜎) , 𝜙 (𝜎) ; 𝑒

−𝜔

𝑋;𝜔) .

(184)

With 𝑋 → 𝑒
−𝜔

𝑋, the induced fields become 𝑔
𝜇](𝜎 + 𝜔) and

𝜙(𝜎 + 𝜔). Also, since

𝑍(𝑔
𝜇]0, 𝜙0; 𝑋) = 𝑍 (𝑒

2𝜔

𝑔
𝜇]0, 𝑒

(𝑛−4)𝜔

𝜙
0

; 𝑒
−𝜔

𝑋) , (185)

we have

𝑍(𝑔
𝜇] (𝜎) , 𝜙 (𝜎) ; 𝑋; 0) = 𝑍 (𝑔

𝜔

𝜇] (𝜎) , 𝜙
𝜔

(𝜎) ; 𝑒
−𝜔

𝑋; 0) ,

(186)

where 𝑔
𝜔

𝜇](𝜎) and 𝜙
𝜔

(𝜎) are fields induced from 𝑒
2𝜔

𝑔
𝜇]0 and

𝑒
(𝑛−4)𝜔

𝜙
0

, respectively. There will be 𝑔
𝜔

𝜇](𝜎) = 𝑔
𝜇](𝜎 + 𝜔),

𝜙
𝜔

(𝜎) = 𝜙(𝜎 + 𝜔). Indeed, in (182) and (180), with 𝜙
0

and
𝑔
0

replaced by 𝑒
(𝑛−4)𝜔

𝜙
0

and 𝑒
2𝜔

𝑔
0

, one may get 𝜙(𝜎 + 𝜔) and
𝑔(𝜎 + 𝜔). 𝑔

0

→ 𝑒
2𝜔

𝑔
0

, 𝜙
0

→ 𝑒
(𝑛−4)𝜔

𝜙
0

, 𝜎 → 𝜎 + 𝜔 is a
diffeomorphism transformation of the gravity solution g

𝜇](𝜎)

and Φ(𝜎) [54].
Equation (184) is valid for [𝑔

𝜇](𝑥, 𝜎), 𝜙(𝑥, 𝜎)] induced
from [𝑔

𝜇]0(𝑥), 𝜙0(𝑥)]. For the generic 5𝑑 functions
[𝑔
𝜇](𝑥, 𝜎), 𝜙(𝑥, 𝜎)], we only have

𝑍(𝑔
𝜇] (𝑥, 𝜎) , 𝜙 (𝑥, 𝜎) ; 𝑋; 0)

= 𝑍 (𝑔
𝜔

𝜇] (𝑥, 𝜎) , 𝜙
𝜔

(𝑥, 𝜎) ; 𝑒
−𝜔

𝑋; 0)

(187)
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for some 5𝑑 functions [𝑔
𝜔

𝜇](𝑥, 𝜎), 𝜙
𝜔

(𝑥, 𝜎)]. For constant 𝜔,
under the scale transformation 𝑥 → 𝑒

𝜔

𝑥,

𝑍(𝑔
𝜇] (𝑥, 𝜎) , 𝜙 (𝑥, 𝜎) ; 𝑋; 0)

= 𝑍 (𝑒
−2𝜔

𝑔
𝜔

𝜇] (𝑒
𝜔

𝑥, 𝜎) , 𝜙
𝜔

(𝑒
𝜔

𝑥, 𝜎) ; 𝑒
−𝜔

𝑋; 0) .

(188)

In special cases, if 𝑒
−2𝜔

𝑔
𝜔

𝜇](𝜎) = 𝑔
𝜇](𝜎), 𝜙

𝜔

(𝜎) = 𝜙(𝜎),
the background is “conformal”. For [𝑔

𝜇](𝑥, 𝜎), 𝜙(𝑥, 𝜎)], this
requires 𝑔

𝜇](𝜎 + 𝜔) = 𝑒
2𝜔

𝑔
𝜇](𝜎), 𝜙(𝜎 + 𝜔) = 𝜙(𝜎) and thus

𝑔
𝜇](𝜎) = 𝑒

2𝜎

𝑔
𝜇]0, 𝜙(𝜎) = 𝜙

0

. 𝜙 is the marginal field.
For fields which are “conformal”,

𝑍(𝑔
𝜇] (𝑥, 𝜎) , 𝜙 (𝑥, 𝜎) ; 𝑋; 0)

= 𝑍 (𝑔
𝜇] (𝑒

𝜔

𝑥, 𝜎) , 𝜙 (𝑒
𝜔

𝑥, 𝜎) ; 𝑒
−𝜔

𝑋; 0) ,

(189)

and so

𝛿𝑍 (𝑔
𝜇] (𝑥, 𝜎) , 𝜙 (𝑥, 𝜎) ; 𝑋; 0)

𝛿𝜙 (𝑥
0

, 𝜎
0

)

=

𝛿𝑍 (𝑔
𝜇] (𝑒

𝜔

𝑥, 𝜎) , 𝜙 (𝑒
𝜔

𝑥, 𝜎) ; 𝑒
−𝜔

𝑋; 0)

𝛿𝜙 (𝑒𝜔𝑥
0

, 𝜎
0

)

.

(190)

As a result,

⟨√−𝑔 (𝑥
0

, 𝜎
0

)𝑂 (𝑥
0

) 𝛿 (𝜎 − 𝜎
0

)⟩

= ∫

0

𝜎=−∞

𝐷
[𝑔(𝜎),

̃

𝜙(𝜎)]

𝑋𝐷
[𝑔(𝜎),

̃

𝜙(𝜎)]

𝐴𝐷
[𝑔(𝜎),

̃

𝜙(𝜎)]

𝜆

× exp {−𝐼 [𝑔
𝜇] (𝑥, 𝜎) , 𝜙 (𝑥, 𝜎) , 𝑋, 𝐴, 𝜆]}

× √−𝑔 (𝑥
0

, 𝜎
0

)𝑂 (𝑥
0

) 𝛿 (𝜎 − 𝜎
0

)

= ⟨𝑒
4𝜔

√−𝑔(𝑒𝜔𝑥
0

, 𝜎
0

)𝑂
𝜔

(𝑒
𝜔

𝑥
0

)𝛿(𝜎 − 𝜎
0

)⟩
𝜔

= ∫

0

𝜎=−∞

𝐷
[𝑔(𝜎),

̃

𝜙(𝜎)]

(𝑒
−𝜔

𝑋)𝐷
[𝑔(𝜎),

̃

𝜙(𝜎)]

𝐴𝐷
[𝑔(𝜎),

̃

𝜙(𝜎)]

𝜆

× exp {−𝐼 [𝑔
𝜇] (𝑒

𝜔

𝑥, 𝜎) , 𝜙 (𝑒
𝜔

𝑥, 𝜎) , 𝑒
−𝜔

𝑋,𝐴, 𝜆]}

× 𝑒
(4−𝑛)𝜔

√−𝑔 (𝑒𝜔𝑥
0

, 𝜎
0

)𝑂 (𝑒
𝜔

𝑥
0

) 𝛿 (𝜎 − 𝜎
0

)

= ∫

0

𝜎=−∞

𝐷
[𝑔(𝜎),

̃

𝜙(𝜎)]

𝑋𝐷
[𝑔(𝜎),

̃

𝜙(𝜎)]

𝐴𝐷
[𝑔(𝜎),

̃

𝜙(𝜎)]

𝜆

× exp {−𝐼 [𝑔
𝜇] (𝑥, 𝜎) , 𝜙 (𝑥, 𝜎) , 𝑋, 𝐴, 𝜆]}

× 𝑒
(4−𝑛)𝜔

√−𝑔 (𝑒𝜔𝑥
0

, 𝜎
0

)𝑂 (𝑒
𝜔

𝑥
0

) 𝛿 (𝜎 − 𝜎
0

)

= 𝑒
(4−𝑛)𝜔

⟨√−𝑔 (𝑒𝜔𝑥
0

, 𝜎
0

)𝑂 (𝑒
𝜔

𝑥
0

) 𝛿 (𝜎 − 𝜎
0

)⟩ ,

(191)

and then

0 = ⟨√−𝑔 (𝑥
0

, 𝜎
0

)𝑂 (𝑥
0

) 𝛿 (𝜎 − 𝜎
0

)⟩

=

𝛿𝑍 (𝑔
𝜇] (𝑥, 𝜎) , 𝜙 (𝑥, 𝜎) ; 𝑋; 0)

𝛿𝜙 (𝑥
0

, 𝜎
0

)

.

(192)

𝜙(𝑥, 𝜎) is on shell.
Restricted to [𝑔

𝜇](𝑥, 𝜎), 𝜙(𝑥, 𝜎)], usually, [𝑒
−2𝜔

𝑔
𝜇](𝜎 +

𝜔), 𝜙(𝜎 + 𝜔)] ̸= [𝑔
𝜇](𝜎), 𝜙(𝜎)], [𝑔𝜇](𝜎), 𝜙(𝜎)] is not “confor-

mal”. Instead of (191), if we require

⟨√−𝑔 (𝑥
0

, 𝜎
0

)𝑂 (𝑥
0

) 𝛿 (𝜎 − 𝜎
0

)⟩

= ∫

0

𝜎=−∞

𝐷
[𝑔(𝜎),𝜙(𝜎)]

𝑋𝐷
[𝑔(𝜎),𝜙(𝜎)]

𝐴𝐷
[𝑔(𝜎),𝜙(𝜎)]

𝜆

× exp {−𝐼 [𝑔
𝜇] (𝑥, 𝜎) , 𝜙 (𝑥, 𝜎) , 𝑋, 𝐴, 𝜆]}

× √−𝑔 (𝑥
0

, 𝜎
0

)𝑂 (𝑥
0

) 𝛿 (𝜎 − 𝜎
0

)

= ⟨𝑒
(4−𝑛)𝜔

√−𝑔(𝑥
0

, 𝜎
0

)𝑂(𝑥
0

)𝑒
𝑖𝑝(𝜎+𝜔)

⟩
𝜔

= ∫

0

𝜎=−∞

𝐷
[𝑔(𝜎+𝜔),𝜙(𝜎+𝜔)]

(𝑒
−𝜔

𝑋)𝐷
[𝑔(𝜎+𝜔),𝜙(𝜎+𝜔)]

× 𝐴𝐷
[𝑔(𝜎+𝜔),𝜙(𝜎+𝜔)]

𝜆

× exp {−𝐼 [𝑔
𝜇] (𝜎 + 𝜔) , 𝜙 (𝜎 + 𝜔) , 𝑒

−𝜔

𝑋,𝐴, 𝜆]}

× 𝑒
(4−𝑛)𝜔

√−𝑔 (𝑥
0

, 𝜎
0

)𝑂 (𝑥
0

) 𝑒
𝑖𝑝(𝜎+𝜔)

= ∫

0

𝜎=−∞

𝐷
[𝑔(𝜎),𝜙(𝜎)]

𝑋𝐷
[𝑔(𝜎),𝜙(𝜎)]

𝐴𝐷
[𝑔(𝜎),𝜙(𝜎)]

𝜆

× exp {−𝐼 [𝑔
𝜇] (𝜎) , 𝜙 (𝜎) , 𝑋, 𝐴, 𝜆]}

× 𝑒
(4−𝑛)𝜔

√−𝑔 (𝑥
0

, 𝜎
0

)𝑂 (𝑥
0

) 𝑒
𝑖𝑝(𝜎+𝜔)

= 𝑒
(𝑖𝑝−𝑛+4)𝜔

⟨√−𝑔 (𝑥
0

, 𝜎
0

)𝑂 (𝑥
0

) 𝑒
𝑖𝑝𝜎

⟩ ;

(193)

still,

0 = ⟨√−𝑔 (𝑥
0

, 𝜎
0

)𝑂 (𝑥
0

) 𝑒
𝑖𝑝𝜎

⟩

= ⟨√−𝑔 (𝑥
0

, 𝜎
0

)𝑂 (𝑥
0

) 𝛿 (𝜎 − 𝜎
0

)⟩

=

𝛿𝑍 (𝑔
𝜇] (𝑥, 𝜎) , 𝜙 (𝑥, 𝜎) ; 𝑋; 0)

𝛿𝜙 (𝑥
0

, 𝜎
0

)
.

(194)

𝜙(𝑥, 𝜎) is also on shell.
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𝜙(𝑥, 𝜎) is the functional of 𝜙
0

(𝑥). In general,

𝛿𝑍 (𝑔
𝜇] (𝑥, 𝜎) , 𝜙 (𝑥, 𝜎) ; 𝑋; 0)

𝛿𝜙
0

(𝑥
0

)

=

𝛿𝑍 (𝑔
𝜇]0 (𝑥) , 𝜙0 (𝑥) ; 𝑋)

𝛿𝜙
0

(𝑥
0

)
̸= 0

(195)

since nothing could guarantee that the one-point function of
the SYM

4

would vanish in presence of the arbitrary source
𝜙
0

(𝑥). The physical field is Φ = 𝑒
(𝑛−4)𝜎

∞𝜙, so there is also

𝛿𝑍 (𝑔
𝜇] (𝑥, 𝜎) , 𝜙 (𝑥, 𝜎) ; 𝑋; 0)

𝛿Φ (𝑥
0

, 𝜎
0

)
= 0. (196)

The difference between 𝐼[𝑔
𝜇]0(𝑥), 𝜙0(𝑥), 𝑋, 𝐴, 𝜆] and

𝐼[𝑔
𝜇](𝑥, 𝜎), 𝜙(𝑥, 𝜎), 𝑋, 𝐴, 𝜆] is that 𝑋 is replaced by 𝑋, while

the field 𝐹
0

(𝑥) becomes 𝐹(𝑥, 𝜎). 𝐼[𝑔
𝜇](𝑥, 𝜎), 𝜙(𝑥, 𝜎), 𝑋, 𝐴, 𝜆]

has the natural interpretation as a gauge theory on AdS
5

× 𝑆
5

with the external field

√−𝑔 (𝑥, 𝜎)𝐹 (𝑥, 𝜎, Ω) = √−𝑔 (𝑥, 𝜎)𝐹 (𝑥, 𝜎) 𝑌̂
𝑛

= 𝑒
𝑛𝜎

∞√−𝑔 (𝑥, 𝜎)𝐹 (𝑥, 𝜎) 𝑌
𝑛

= √−g (𝑥, 𝜎)F (𝑥, 𝜎) 𝑌
𝑛

(197)

turned on, where 𝐹(𝑥, 𝜎) and 𝑔
𝜇](𝑥, 𝜎) can be the arbitrary

5𝑑 functions. g
𝜇] = 𝑒

4𝜎

∞𝑔
𝜇] and F = 𝑒

(𝑛−4)𝜎

∞𝐹 are physical
fields on AdS

5

. According to the previous philosophy,

𝑍(𝑔
𝜇] (𝑥, 𝜎) , 𝜙 (𝑥, 𝜎) ; 𝑋; 0)

= exp {𝑆
𝑔

[𝑔
𝜇] (𝑥, 𝜎) , 𝜙 (𝑥, 𝜎) ; 𝑋; 0]} ,

(198)

𝑆
𝑔

[𝑔
𝜇](𝑥, 𝜎), 𝜙(𝑥, 𝜎); 𝑋; 0] is the effective action of the type

IIB supergravity on AdS
5

× 𝑆
5.

For a special subset of fields {𝜙(𝑥, 𝜎)} that can be derived
from the 4𝑑 fields 𝜙

0

(𝑥),

𝛿𝑍 (𝑔
𝜇] (𝑥, 𝜎) , 𝜙 (𝑥, 𝜎) ; 𝑋; 0)

𝛿𝜙 (𝑥
0

, 𝜎
0

)
= 0, (199)

and then

𝛿𝑆
𝑔

[𝑔
𝜇] (𝑥, 𝜎) , 𝜙 (𝑥, 𝜎) ; 𝑋; 0]

𝛿Φ (𝑥
0

, 𝜎
0

)
= 0; (200)

that is,Φ(𝑥, 𝜎) is the on-shell solution of the supergravity. For
the given 𝜙

0

(𝑥), there are two ways to get the induced 𝜙(𝑥, 𝜎):
one is through (176) and the other is to find the solution
of 𝛿𝑆

𝑔

/𝛿Φ(𝑥
0

, 𝜎
0

) = 0, imposing lim
𝜎→0

𝑒
(4−𝑛)𝜎

∞Φ(𝑥, 𝜎) =

𝜙
0

(𝑥) as the boundary condition.
Finally, we arrive at

𝑊(𝑔
𝜇]0, 𝜙0; 𝑋) = ln𝑍(𝑔

𝜇]0, 𝜙0; 𝑋)

= 𝑆
𝑔

[𝑔
𝜇] (𝑥, 𝜎) , 𝜙 (𝑥, 𝜎) ; 𝑋; 0] .

(201)

Starting from 𝐼[𝑔
𝜇]0(𝑥), 𝜙0(𝑥), 𝑋, 𝐴, 𝜆], SYM

4

with the source
term added, after a 𝑋 → 𝑋 transformation, we get
𝐼[𝑔

𝜇](𝑥, 𝜎), 𝜙(𝑥, 𝜎), 𝑋, 𝐴, 𝜆], the action of the gauge the-
ory on AdS

5

× 𝑆
5, whose free energy may be equal to

𝑆
𝑔

[𝑔
𝜇](𝑥, 𝜎), 𝜙(𝑥, 𝜎); 𝑋; 0]. During the transition, 𝐹(𝑥, 𝜎)

are carefully adjusted to make the partition function
of 𝐼[𝑔

𝜇]0(𝑥), 𝜙0(𝑥), 𝑋, 𝐴, 𝜆] and 𝐼[𝑔
𝜇](𝑥, 𝜎), 𝜙(𝑥, 𝜎), 𝑋, 𝐴, 𝜆]

remain the same, then we arrive at (201), where 𝐹(𝑥, 𝜎) is
induced from 𝐹

0

(𝑥) and is on shell with respect to 𝑆
𝑔

.

4.3. Imposing the Cutoff

𝑆
𝑔

[𝑔
𝜇] (𝑥, 𝜎) , 𝜙 (𝑥, 𝜎) ; 𝑋; 0]

= ∫

0

−∞

𝑑𝜎∫𝑑
4

𝑥𝐿 [𝑔
𝜇] (𝑥, 𝜎) , 𝜙 (𝑥, 𝜎)] ,

(202)

where 𝐿 is the Lagrangian of the supergravity. 𝑆
𝑔

is divergent.
One may impose a cutoff 𝜎, 𝜎 = −∞,

𝑆
𝑔

[𝑔
𝜇] (𝑥, 𝜎) , 𝜙 (𝑥, 𝜎) ; 𝑋; 𝜎]

= ∫

𝜎

−∞

𝑑𝜎∫𝑑
4

𝑥𝐿 [𝑔
𝜇] (𝑥, 𝜎) , 𝜙 (𝑥, 𝜎)] .

(203)

Ongauge theory side, the one-loop effective action𝑊(𝑔
𝜇]0) =

− ln det(𝐷)/2 is also divergent. With a cutoff 𝜖being intro-
duced [55],

𝑊(𝑔
𝜇]0; 𝜖) =

1

2
∫

∞

𝜖

𝑑𝜌

𝜌
Tr (𝑒−𝜌𝐷)

= ∫

𝜎

−∞

𝑑𝜎Tr (exp {−𝑒
−2(𝜎+𝜎

∞
)

𝐷})

= ∫

𝜎

−∞

𝑑𝜎Tr (exp {−𝑒
−2𝜎D})

= 𝑊(g
𝜇] (0) ; 𝜎) ,

(204)

where 𝑒−2(𝜎+𝜎∞) = 𝜌, g
𝜇](0) = 𝑒

2𝜎

∞𝑔
𝜇]0,D is the Laplace oper-

ator with the metric g
𝜇](0). Obviously, 𝑊(𝑒

2𝜔

𝑔
𝜇]0, 𝑒

2𝜔

𝜖) =

𝑊(𝑔
𝜇]0, 𝜖) = 𝑊(𝑒

2𝜔g
𝜇](0); 𝜎 − 𝜔) = 𝑊(g

𝜇](0); 𝜎). For small
but finite 𝜌 [56],

Tr (𝑒−𝜌𝐷) =

∞

∑

𝑛=0

𝐴
2𝑛

𝜌
𝑛−2

,

𝐴
2𝑛

= ∫𝑑
4

𝑥√−𝑔 𝑎
2𝑛

(𝑔) ,

(205)

so

𝑊(𝑔
𝜇]0) = lim

𝜖→0

𝑊(𝑔
𝜇]0, 𝜖)

= lim
𝜖→0

[
𝐴
0

4𝜖2
+

𝐴
2

2𝜖
−

𝐴
4

ln 𝜖

2
] + 𝑊ren (𝑔

𝜇]0) .

(206)
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The renormalized 𝑊ren(𝑔𝜇]0) is finite. This is the realization
of the holographic renormalization [52] on gauge theory side.
With 𝑔

𝜇]0 → 𝑒
2𝜔

𝑔
𝜇]0, 𝜖 → 𝑒

2𝜔

𝜖, [52]

𝑊ren (𝑒
2𝜔

𝑔
𝜇]0) − 𝑊ren (𝑔

𝜇]0) = 𝜔𝐴
4

. (207)

𝐴
4

is the conformal anomaly [57]. On the other hand,

𝑊(g
𝜇] (0) ; 𝜎)

=
A
0

4𝑒−4𝜎
+

A
2

2𝑒−2𝜎
+ A

4

𝜎 + 𝑊nonloc (g𝜇] (0)) ,
(208)

so

𝑊(g
𝜇] (0) ; 0) =

A
0

4
+
A
2

2
+ 𝑊nonloc (g𝜇] (0))

= 𝑊loc (g𝜇] (0)) + 𝑊nonloc (g𝜇] (0)) ,

𝑊nonloc (g𝜇] (0)) − 𝑊ren (𝑔
𝜇]0) = 𝜎

∞

𝐴
4

.

(209)

𝑊loc(g𝜇](0)) = A
0

/4 + A
2

/2 and 𝑊nonloc(g𝜇](0)) could
be compared with the local part and the nonlocal part of
the gravity action in [58]. The nonlocal part contains the
logarithmical divergence [59], which is just 𝜎

∞

𝐴
4

.
On gravity side, the corresponding gravity solution has

the near boundary expansion

𝐺 (𝑔
0

, 𝜌) =
𝑔
0

𝜌
+ 𝑔

2

+ 𝜌 (𝑔
4

+ ln 𝜌ℎ
4

) + 𝑂 (𝜌
2

) . (210)

At 𝜌 = 𝜖, the metric is 𝐺(𝑔
0

, 𝜖). The on-shell gravity action
with the cutoff 𝜌 = 𝜖 is

𝑆 (𝑔
𝜇]0, 𝜖) = 𝑆 [𝐺 (𝑔

0

, 𝜖)] = ∫

∞

𝜖

𝑑𝜌

2𝜌
𝐿 (𝜌) , (211)

which is entirely determined by the boundary value 𝐺(𝑔
0

, 𝜖).

𝑆 (𝑔
𝜇]0) = lim

𝜖→0

𝑆 (𝑔
𝜇]0, 𝜖)

= lim
𝜖→0

{
𝑙

16𝜋𝐺
𝑁

∫𝑑
4

𝑥√−𝑔

× [
𝑎
0

(𝑔)

𝜖2
+

𝑎
2

(𝑔)

𝜖

− 𝑎
4

(𝑔) ln 𝜖]}

+ 𝑆ren (𝑔
𝜇]0) .

(212)

The renormalized 𝑆ren(𝑔𝜇]0) is finite [52]. Since
𝐺(𝑒

2𝜔

𝑔
0

, 𝑒
2𝜔

𝜌) = 𝐺(𝑔
0

, 𝜌), 𝐺(𝑒
2𝜔

𝑔
0

, 𝑒
2𝜔

𝜖) = 𝐺(𝑔
0

, 𝜖),
𝑆(𝑒

2𝜔

𝑔
𝜇]0, 𝑒

2𝜔

𝜖) = 𝑆(𝑔
𝜇]0, 𝜖) [52]

𝑆ren (𝑒
2𝜔

𝑔
𝜇]0) − 𝑆ren (𝑔

𝜇]0)

=
𝑙

8𝜋𝐺
𝑁

∫𝑑
4

𝑥√−𝑔𝜔𝑎
4

(𝑔) = 𝜔𝐴
4

.

(213)

In both gauge theory and gravity, subtracting of the infinity
introduces the conformal anomaly.

In (204), 𝜖 is the UV cutoff in gauge theory. It is desirable
to find a direct and exact way to impose it. In the following,
we will consider a cutoff imposed on 𝑋, which, although has
some relevance with 𝜖, is still not it.

Take𝑋 = 𝑒
𝜎

𝑋 other than𝑋 as the upper bound of𝑋; the
partition function is

𝑍(𝑔
𝜇]0; 𝑋) = ∫

𝑋

𝐷
𝑔

0

𝑋𝐷
𝑔

0

𝐴𝐷
𝑔

0

𝜆 exp {−𝐼 [𝑔
𝜇]0, 𝑋, 𝐴, 𝜆]}

= 𝑍 (𝑔
𝜇] (𝜎) ; 𝑋; 𝜎) .

(214)

For finite 𝑔
𝜇]0 and 𝜔, 𝑍(𝑔

𝜇]0; 𝑒
𝜔

𝑋) = 𝑍(𝑒
2𝜔

𝑔
𝜇]0; 𝑋). There is

also
𝑍(𝑔

𝜇]0; 𝑒
𝜔

𝑋) = 𝑍 (𝑔
𝜇] (𝜎) ; 𝑋; 𝜎 + 𝜔)

= 𝑍 (𝑔
𝜇] (𝜎 + 𝜔) ; 𝑋; 𝜎) = 𝑍 (𝑒

2𝜔

𝑔
𝜇]0; 𝑋) ,

(215)

since the field induced from 𝑒
2𝜔

𝑔
𝜇]0 is 𝑔

𝜇](𝜎 + 𝜔). From
𝑍(𝑒

2𝜔

𝑔
𝜇]0; 𝑋) and 𝑍(𝑔

𝜇]0; 𝑒
𝜔

𝑋), the induced fields have the
same boundary value 𝑔

𝜇](𝜎 + 𝜔).
For the infinitesimal 4𝑑 function 𝛿𝜎(𝑥),

𝑍(𝑔
𝜇]0; 𝑒

𝛿𝜎

𝑋)

= ∫

𝑒

𝛿𝜎
𝑋

𝐷
𝑔

0

𝑋𝐷
𝑔

0

𝐴𝐷
𝑔

0

𝜆 exp {−𝐼 [𝑔
𝜇]0, 𝑋, 𝐴, 𝜆]}

= exp {∫𝑑
4

𝑥𝐿
𝑎

(𝑔0 ;𝑋)
(𝑥) 𝛿𝜎 (𝑥)}𝑍 (𝑔

𝜇]0; 𝑋) ,

(216)

where

𝐿
𝑎

(𝑔0;𝑋)
(𝑥) = lim

𝛿𝜎→0

[
1

𝛿𝜎 (𝑥)

× (∫

𝑒

𝛿𝜎(𝑥)
𝑋

𝐷
𝑔

0

𝑋𝐷
𝑔

0

𝐴𝐷
𝑔

0

𝜆

× exp {−𝐼 [𝑔
𝜇]0, 𝑋, 𝐴, 𝜆]}

−𝑍 (𝑔
𝜇]0; 𝑋))]

× 𝑍
−1

(𝑔
𝜇]0; 𝑋) .

(217)

With 𝑆
𝑎

(𝑔
0

; 𝑋) = ∫ 𝑑
4

𝑥𝐿
𝑎

(𝑔

0
;𝑋)

(𝑥), we may have

𝑊(𝑔
𝜇]0)

= ∫

∞

0

𝑑𝜎𝑆
𝑎

(𝑔
0

; 𝑒
𝜎

𝑋) + 𝑊(𝑔
𝜇]0; 𝑋)

= ∫

∞

−∞

𝑑𝜎𝑆
𝑎

(𝑔
0

; 𝑒
𝜎

𝑋) = ∫

∞

0

𝑑𝜌

𝜌
𝑆
𝑎

(𝑔
0

;
𝑋

𝜌
) ,

(218)
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where 𝜌 = 𝑒
−𝜎

𝑊(𝑔
𝜇]0; 𝑋) = ∫

0

−∞

𝑑𝜎𝑆
𝑎

(𝑔
0

; 𝑒
𝜎

𝑋) = ∫

∞

1

𝑑𝜌

𝜌
𝑆
𝑎

(𝑔
0

;
𝑋

𝜌
)

(219)

𝑊(𝑔
𝜇]0; 𝑒

𝛿𝜎

𝑋) − 𝑊(𝑔
𝜇]0; 𝑋) = ∫𝑑

4

𝑥𝐿
𝑎

(𝑔0 ;𝑋)
(𝑥) 𝛿𝜎 (𝑥) .

(220)

Also, we may define 𝐿
𝑏

(𝑔

0
;𝑋)

, with

𝑊(𝑒
2𝛿𝜎

𝑔
𝜇]0; 𝑋) − 𝑊(𝑔

𝜇]0; 𝑋) = ∫𝑑
4

𝑥𝐿
𝑏

(𝑔0;𝑋)
(𝑥) 𝛿𝜎 (𝑥)

(221)

if

𝑊(𝑒
2𝛿𝜎

𝑔
𝜇]0; 𝑋) − 𝑊(𝑔

𝜇]0; 𝑒
𝛿𝜎

𝑋)

= ∫𝑑
4

𝑥𝐿
𝑐

(𝑔0;𝑋)
(𝑥) 𝛿𝜎 (𝑥) ,

𝐿
𝑐

(𝑔

0
;𝑋)

(𝑥) = 𝐿
𝑏

(𝑔

0
;𝑋)

(𝑥) − 𝐿
𝑎

(𝑔

0
;𝑋)

(𝑥) .

(222)

For finite 𝛿𝜎 and 𝑔
𝜇]0, 𝐿

𝑐

(𝑔

0
;𝑋)

(𝑥) = 0. For infinite 𝛿𝜎, for
example, 𝑊(𝑔

𝜇]0; 𝑒
𝜔

𝑋) and𝑊(𝑒
2𝜔

𝑔
𝜇]0; 𝑋) with 𝜔 = −∞,

𝑊(𝑔
𝜇]0; 𝑒

𝜔

𝑋) = ln𝑍(𝑔
𝜇] (𝜎 + 𝜔) ; 𝑋; 0) ,

𝑊 (𝑒
2𝜔

𝑔
𝜇]0; 𝑋) = ln𝑍(𝑔

𝜔

𝜇] (𝜎) ; 𝑋; 0) .

(223)

𝑔
𝜇](𝜔) ̸= 𝑒

2𝜔

𝑔
𝜇]0, so 𝑔

𝜔

𝜇](𝜎) ̸= 𝑔
𝜇](𝜎 + 𝜔).

Although (219) and (204) look similar, the two kinds of
cutoffs are different. In particular,

ln𝑍(𝑔
𝜇]0; 𝑋) = ln𝑍(𝑔

𝜇] (𝜎) ; 𝑋; 𝜎) ̸= 𝑆
𝑔

[𝑔
𝜇] (𝑥, 𝜎) ; 𝑋; 𝜎]

= ∫

𝜎

−∞

𝑑𝜎∫𝑑
4

𝑥𝐿 [𝑔
𝜇] (𝑥, 𝜎)]

(224)

because the 𝑍(𝑔
𝜇]0; 𝑋) − 𝑍(𝑔

𝜇]0; 𝑋) part also has the contri-
bution to 𝑆

𝑔

[𝑔
𝜇](𝑥, 𝜎); 𝑋; 𝜎].

Let

𝑆
𝑏

(𝑔
0

; 𝑋) = ∫𝑑
4

𝑥𝐿
𝑏

(𝑔0;𝑋)
(𝑥) ,

𝑆
𝑐

(𝑔
0

; 𝑋) = ∫𝑑
4

𝑥𝐿
𝑐

(𝑔0;𝑋)
(𝑥) ;

(225)

then, 𝑆𝑐(𝑔
0

; 𝑋) = 𝑆
𝑏

(𝑔
0

; 𝑋) − 𝑆
𝑎

(𝑔
0

; 𝑋). From (206) or (212),
one can see

𝜖
𝜕

𝜕𝜖
𝑊(𝑔

𝜇]0, 𝜖) = −
𝐴
0

2𝜖2
−

𝐴
2

2𝜖
−

𝐴
4

2
+ 𝑂 (𝜖)

= −𝑔
𝜇]0

𝜕

𝜕𝑔
𝜇]0

𝑊(𝑔
𝜇]0, 𝜖) .

(226)

For finite𝑋 and 𝜖, (226) cannot be directly identified with 𝑆
𝑎

and 𝑆
𝑏. However, when𝑋 → 𝑋, 𝜖 → 0,

𝑆
𝑏

(𝑔
0

; 𝑋) = lim
𝜖→0

[
𝐴
0

𝜖2
+

𝐴
2

𝜖
+ 𝐴

4

] = 𝑆
𝑎

(𝑔
0

; 𝑋) . (227)

𝐴
0

/𝜖
2

+𝐴
2

/𝜖+𝐴
4

is the conformal anomaly, which, with the
infinite part subtracted, becomes 𝐴

4

.
In the previous subsection, the radial dependent function

𝐹(𝜎) is induced via (176). Nevertheless, it can also be induced
from 𝑊(𝑔

𝜇]0; 𝑋), with 𝑋 being the upper bound of the
integration. Take a particular finite matrix𝑋

∗ as the standard
so that the arbitrary configuration of𝑋 can be represented by
𝑋 = 𝑒

𝜎

𝑋
∗ with 𝜎 ∈ (−∞, +∞):

𝑊(𝑔
𝜇]0; 𝑋) = 𝑊(𝑔

𝜇]0; 𝑒
𝜎

𝑋
∗

) = ln𝑍(𝑔
𝜇]0; 𝑒

𝜎

𝑋
∗

) . (228)

Starting from 𝜎 = 0, with 𝜎 increasing, 𝑊(𝑔
𝜇]0; 𝑒

𝜎

𝑋
∗

) will
also increase, so 𝑔

𝜇]0 should change accordingly to make the
partition function invariant. Namely, we have

𝑊(𝑔
𝜇]0; 𝑋

∗

) = 𝑊(𝑔
𝜇] (𝜎) ; 𝑒

𝜎

𝑋
∗

) (229)

with 𝑔
𝜇](0) = 𝑔

𝜇]0

𝛿𝑊

𝛿𝑔
𝜇] (𝜎)

𝛿𝑔
𝜇] (𝜎)

𝛿𝜎
+

𝛿𝑊

𝛿𝜎
= 0. (230)

For finite 𝜎, 𝑔
𝜇](𝜎) = 𝑒

−2𝜎

𝑔
𝜇]0. When 𝜎 → ∞, 𝑔

𝜇](𝜎) → 0,
the simple scaling relation may not be valid. For finite 𝑔

𝜇]0

and 𝜔,𝑊(𝑔
𝜇]0; 𝑒

−𝜔

𝑋
∗

) = 𝑊(𝑒
−2𝜔

𝑔
𝜇]0; 𝑋

∗

). If

𝑊(𝑒
−2𝜔

𝑔
𝜇]0; 𝑋

∗

) = 𝑊[𝑔
𝜇] (𝜔 + 𝜎) ; 𝑒

𝜎

𝑋
∗

]

= 𝑊(𝑔
𝜇] (𝜔) ; 𝑋

∗

) ,

(231)

there will be

𝑊(𝑔
𝜇]0; 𝑒

−𝜔

𝑋
∗

) = 𝑊[𝑔
𝜇] (𝜎) ; 𝑒

𝜎

(𝑒
−𝜔

𝑋
∗

)] . (232)

So, in (229), with 𝑔
𝜇](0) = 𝑔

𝜇]0 fixed and 𝑋
∗ replaced by

𝑒
−𝜔

𝑋
∗, the induced 𝑔

𝜇](𝜎) remains the same. Also, with 𝑋
∗

fixed and 𝑔
𝜇](0) replaced by 𝑔

𝜇](𝜔), the induced field will be
𝑔
𝜇](𝜔 + 𝜎). 𝑔

𝜇](𝜎) is the unique function trajectory that does
not depend on the𝑋

∗ chosen.
We can compare it with the previously mentioned non-

critical string coupling with 2𝑑 gravity:

𝑍 (𝐹; 𝑔) = ∫

∞

𝜑=0

𝐷
(𝑒

𝜑
𝑔)

𝜑𝐷
(𝑒

𝜑
𝑔)

𝑋

vol (conf
2

)
𝑒
−𝑆(𝐹,𝑒

𝜑
𝑔,𝑋)−𝑆

𝐿
(𝜑,𝑔)

, (233)

where 𝐹(𝑋) is the 𝑑 dimensional background field. 𝑔 is the
cutoff metric. With 𝑔 replaced by 𝑔

𝜔

= 𝑒
𝜔

𝑔,

𝑍 (𝐹; 𝑒
𝜔

𝑔) = ∫

∞

𝜑=0

𝐷
(𝑒

𝜑
𝑔

𝜔
)

𝜑𝐷
(𝑒

𝜑
𝑔

𝜔
)

𝑋

vol (conf
2

)
𝑒
−𝑆(𝐹,𝑒

𝜑
𝑔

𝜔
,𝑋)−𝑆

𝐿
(𝜑,𝑔

𝜔
)

= ∫

∞

𝜑=𝜔

𝐷
(𝑒

𝜑
𝑔)

𝜑𝐷
(𝑒

𝜑
𝑔)

𝑋

vol (conf
2

)
𝑒
−𝑆(𝐹,𝑒

𝜑
𝑔,𝑋)−𝑆

𝐿
(𝜑,𝑔)

.

(234)



30 Advances in High Energy Physics

𝑍(𝐹; 𝑒
𝜔

𝑔) ̸= 𝑍(𝐹; 𝑔). 𝑔 → 𝑒
𝜔

𝑔 is a conformal transforma-
tion, which should be accompanied by 𝐹 → 𝐹(𝜔) to make
the partition function invariant. 𝑍(𝐹; 𝑔) = 𝑍(𝐹(𝜔); 𝑒

𝜔

𝑔).
𝐹(𝜔) is a function trajectory that does not depend on the 𝑔

chosen. A further 𝑒𝜑𝑔𝜔 → 𝑔
𝜔 transformation gives

𝑍 (𝐹 (𝜔) ; 𝑒
𝜔

𝑔) = ∫

∞

𝜑=0

𝐷
𝑔

𝜔𝜑𝐷
𝑔

𝜔𝑋

vol (conf
2

)
𝑒
−

̂

𝑆(𝜑,𝑋,𝐹

𝜔
(𝜑),𝑔

𝜔
)

, (235)

in which 𝐹
𝜔

(𝜑) = 𝐹(𝜑 + 𝜔) is induced.
Just as (224), ln 𝑍(𝐹(𝜔); 𝑒

𝜔

𝑔) cannot be identified with
the 𝑑 + 1 dimensional gravity actionwith a cutoff.The gravity
action interpretation is possible onlywhen𝑔 → 0; that is, the
cutoff is removed.

Here, 𝜑 is directly related to the worldsheet metric, 𝑔 =

𝑒
𝜑

𝑔. 𝐹(𝜑) gives the RG flow of the 𝑑 dimensional fields. In
gauge theory case, 𝜎 represents the radial direction, along
which all fields, including the metric 𝑔

𝜇], will evolve. 𝐹(𝜎)
gives the radial evolution of the fields, which cannot be
directly identified with the RG flow. To discuss the RG flow,
we should consider the renormalized 𝑊ren = 𝑆ren, for which
(see, e.g., [60])

∫𝑑
4

𝑥√𝑔
0

𝜔 (𝑥) [−2𝑔
𝜇]

0

𝛿

𝛿𝑔
𝜇]

0

+ (Δ
𝑖

− 4 + 𝛽
𝑖

) 𝐹
𝑖

0

𝛿

𝛿𝐹
𝑖

0

]𝑊ren

= ∫𝑑
4

𝑥 [𝜔 (𝑥)𝐴 + 𝜕
𝜇

𝜔 (𝑥)𝑍
𝜇

] ,

(236)

where𝐴 represents the local anomalies. For the renormaliza-
tion scale 𝜇,

𝜇
𝜕𝑊ren
𝜕𝜇

+ ∫𝑑
4

𝑥√𝑔
0

× [2𝑔
𝜇]

0

𝛿

𝛿𝑔
𝜇]

0

− (Δ
𝑖

− 4) 𝐹
𝑖

0

𝛿

𝛿𝐹
𝑖

0

]𝑊ren = 0,

𝜇
𝜕𝑊ren
𝜕𝜇

+ ∫𝑑
4

𝑥√𝑔
0

[𝛽
𝑖

𝛿𝑊ren
𝛿𝐹

𝑖

0

] = ∫𝑑
4

𝑥𝐴.

(237)

𝛽
𝑖 is the anomalous dimension. 𝛽𝑖 = 𝛽

𝑖

𝐹
𝑖

0

is the 𝛽 function.

5. Conclusion

With 𝑁 → ∞being fixed and 𝑅 varying, the free energy
of the Matrix theory on a 𝑥

−-translation invariant 11𝑑

supergravity background 𝐹 is the functional of 𝑅 and 𝐹; that
is,𝑊 = 𝑊(𝑅, 𝐹). Under the coordinate transformation

𝑥
−

= 𝛼𝑥
󸀠−

, 𝑥
+

= 𝑓 (𝑥
󸀠+

) , 𝑥 = 𝑔 (𝑥
󸀠

) , (238)

with 𝑥 = (𝑥
1

, . . . , 𝑥
9

), if 𝑅 → 𝑅
󸀠, 𝐹 → 𝐹

󸀠, 𝑊(𝑅, 𝐹) =

𝑊(𝑅
󸀠

, 𝐹
󸀠

).𝑊(𝑅, 𝐹) preserves part of the 11𝑑 diffeomorphism
invariance. 𝑊(𝑅, 𝐹) can be compared with 𝑆eff(𝑅, 𝐹), the
effective action of the supergravity for the same field 𝐹. On
field theory side, naively, 𝑆eff(𝐹) is calculated from

𝑒
𝑆eff(𝐹) = ∫

1PI
[𝑑𝐹] 𝑒

−𝑆cla(𝐹+̃𝐹) (239)

with 𝑆cla being the classical action of the 11𝑑 supergrav-
ity. 𝑒

𝑆eff(𝐹) can be taken as the sum of the 1PI graphs of
the vacuum-vacuum amplitude for supergravitons living
on background 𝐹.(Of course, (239) is not well-defined.)
In 𝑀 theory, the basic objects are membranes other than
particles. 𝑒𝑊(𝐹) is the sum of the membrane configurations
on background 𝐹. In some sense, 𝑊(𝐹) gives an 𝑀 theory
refined version of the 𝑆eff(𝐹) in (239).

In Matrix theory, the problem is that we only consider
the 𝑀 theory sector with the definite light-cone momentum
𝑝
+ and the background 𝐹 that is translation invariant along

𝑥
−. For the same 𝐹 but different 𝑝

+, 𝑊(𝑅, 𝐹) also has the
𝑅 or, equivalently, 𝑝+ dependence. Nevertheless, 𝑊(𝑅, 𝐹) =

𝑊(𝐹
0

, 𝑅𝐹
−

, 𝑅𝐹
−−

), with 𝑅 being the radius of the 𝑥
−. In fact,

for 𝑆eff on the same 11𝑑 background, there is also 𝑆eff(𝑅, 𝐹) =

𝑆eff(𝐹0, 𝑅𝐹
−

, 𝑅𝐹
−−

). In 𝑊(𝑝
+

, 𝐹), 𝑝
+ is only a parameter

encoding the scale of 𝑥−, so it is enough to consider the sector
with the definite 𝑝

+. 𝑁 → ∞ in Matrix theory is kept fixed
in order to maintain the consistency with membrane theory,
which is only characterized by one parameter 𝑝+.

On field theory side, to describe the supergravity interac-
tions among𝑀 theory objects with no light-conemomentum
exchange, one may consider Γ

𝑔

(𝑌) given by

𝑒
Γ

𝑔
(𝑌)

= ∫ [𝑑𝐹] 𝑒
𝑆

𝑅,𝐹
(𝑌)−𝑆cla(𝑅,𝐹), (240)

where 𝐹 is the zero mode of the 11𝑑 supergravity along
𝑥
−. The integration out of 𝐹 gives the effective action for

the 𝑀 theory object 𝑌 with the supergravity interactions
(without transferring the light-cone momentum) all taken
into account. Under the Legendre transformation, we may
get Γ

𝑔

(𝑌) = 𝑆eff(𝑅, 𝐹) + 𝑆
𝑅,𝐹

(𝑌), where 𝑆eff is given by
(239). 𝛿[𝑆eff(𝑅, 𝐹) + 𝑆

𝑅,𝐹

(𝑌)]/𝛿𝐹 = 0. With 𝑆eff(𝑅, 𝐹) being
replaced by 𝑊(𝑅, 𝐹), one can define another effective action
Γ(𝑌) = 𝑊(𝑅, 𝐹) + 𝑆

𝑅,𝐹

(𝑌), which is totally constructed from
the Matrix theory with no input like 𝑆cla(𝑅, 𝐹) added. Γ(𝑌)

is 𝑝
+ independent, which is expected, since the scattering

amplitudes with the zero light-cone momentum transfer
should not depend on 𝑝

+ due to the Lorentz invariance [61].
When 𝛿𝑆

0

(𝑌)/𝛿𝑌 = 0, at the one-loop order, Γ(𝑌) and the
standard Matrix theory effective action Γeff(𝑌) are the same.

A special property of Matrix theory is that various brane
configurations have the natural matrix realization, so it is
possible to construct some AdS/CFT type gauge/gravity
correspondences from it. In [20], SYM

𝑅×𝑆

2 , SYM
𝑅×𝑆

3
/𝑍

𝑘

, and
SYM

𝑅×𝑆

3 are all obtained by expanding the PWMM around
the particular 1/2 BPS states, while the backreaction of the
1/2 BPS states on pp-wave after the 𝑥

− reduction produces
the dual 10𝑑 geometry [19]. A special type IIA limit is taken
in both gauge theory and gravity side. In this limit, the
backreacted 11𝑑 geometry approaches the pp-wave, so the
Matrix theory dual is still PWMM. On the other hand, the 𝑥−
reduced 10𝑑 geometry (122) is a𝐷0-type solution.The action
of the PWMM equals the action of the SYM

𝑅

on background
(122). To study the fluctuations around the 1/2 BPS states, the
𝜂 → 𝜂 + 𝑛 and the 𝑌 → 𝑌 + 𝑌̂ redefinition should be made
on gravity and the Matrix theory side. The 10𝑑 geometry
then becomes (133), a 𝐷2-type solution. Correspondingly,
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𝑆
PW

(𝑌 + 𝑌̂) becomes the action of SYM
𝑅×𝑆

2 , which, with
the background (133) plugged in, remains invariant. With the
SYM

𝑅×𝑆

2 and the gravity dual at hand, a further𝑇-duality-like
transformation gives SYM

𝑅×𝑆

3 and AdS
5

× 𝑆
5 [19, 21].

SYM
4

is the nonpertubative definition of the type IIB
string theory on AdS

5

× 𝑆
5. It is unlikely such gauge/string

correspondence will suddenly vanish just because the metric
in SYM

4

deviates 𝜂
𝜇] a little. If the correspondence still exists,

the gravity dual will be the type IIB string theory on AdS
5

×

𝑆
5 with a little background perturbation turned on. Then
a one-to-one correspondence should exist between the 4𝑑

field 𝐹
0

(𝑥) in SYM
4

and the 5𝑑 field F(𝑥, 𝜎) on AdS
5

. The
natural candidate of F(𝑥, 𝜎) is the gravity solution on AdS

5

with 𝐹
0

(𝑥) the boundary condition. For the correspondence
to be valid, it is necessary to deriveF(𝑥, 𝜎)merely fromSYM

4

.
In the simplest situation, when the background metric in
gauge theory is the standard 𝜂

𝜇], the near-horizon geometry
of 𝐷3, 𝑀2, and 𝑀5 could be induced from SYM

4

, SCFT
3

,
and SCFT

6

by a 𝑋 → 𝑋 transformation. It is expected that
the same method, when applied to SYM

4

with the arbitrary
𝐹
0

(𝑥) turned on, will give the corresponding F(𝑥, 𝜎). With
𝑋 → 𝑋, 𝐹

0

(𝑥) → 𝐹(𝑥, 𝜎), SYM
4

becomes a gauge theory
living in 5𝑑 background F(𝑥, 𝜎) times the transverse 𝑆

5. The
free energy can be expressed as the functional of F(𝑥, 𝜎); that
is,𝑊

0

(𝐹
0

) = 𝑊(F). 𝛿𝑊(F)/𝛿F(𝑥, 𝜎) = 0, so if𝑊(F) is the 10𝑑
gravity action as is in Matrix theory case, F(𝑥, 𝜎) will be the
on-shell solution.

Appendices

A. The Action on the Flat Background
and the Near-Horizon Geometry

The action of the (𝑝 + 1)-dimensional SYM theory on 𝑅
9,1

background could be written as

𝐼
0

= −
1

𝑔2
𝑝

∫𝑑
𝑝+1

𝑥√−𝑔

× Tr(1

2
𝑔
𝜇𝜆

𝑔
]𝜎
𝐹
𝜇]𝐹𝜆𝜎 + 𝑔

𝜇]
𝑔
𝑚𝑛

𝐷
𝜇

𝑋
𝑚

𝐷]𝑋
𝑛

− 𝑖𝜆Γ
𝜇

𝐷
𝜇

𝜆 − 𝜆Γ
𝑚

[𝑋
𝑚

, 𝜆]

−
1

2
𝑔
𝑚𝑝

𝑔
𝑛𝑞

[𝑋
𝑚

, 𝑋
𝑛

] [𝑋
𝑝

, 𝑋
𝑞

]) ,

(A.1)

where 𝑔
𝜇] = 𝜂

𝜇], 𝑔𝑚𝑛 = 𝛿
𝑚𝑛

, 𝑔 = det𝑔
𝜇]. The near-horizon

geometry of the𝐷𝑝 branes is

𝑔
𝜇] = (

𝑟

𝑟
𝑝

)

(7−𝑝)/2

𝜂
𝜇], 𝑔

𝑚𝑛

= (
𝑟

𝑟
𝑝

)

−(7−𝑝)/2

𝛿
𝑚𝑛

,

𝑒
Φ

= 𝑔
𝑠

(
𝑟

𝑟
𝑝

)

(7−𝑝)(𝑝−3)/4

, 𝐴
01⋅⋅⋅𝑝

= (
𝑟

𝑟
𝑝

)

7−𝑝

𝜀
01⋅⋅⋅𝑝

.

(A.2)

With 𝑟 replaced by the matrix 𝑅 = (𝑋
𝑚

𝑋
𝑚

)
1/2, the gauge

theory on the near-horizon geometry background has the
action

𝐼
𝐹

= −
1

4𝜋
∫𝑑

𝑝+1

𝑥 Tr {√−𝑔𝑒
−Φ

× (
1

2
𝑔
𝜇𝜆

𝑔
]𝜎
𝐹
𝜇]𝐹𝜆𝜎

+ 𝑔
𝜇]
𝑔
𝑚𝑛

𝐷
𝜇

𝑋
𝑚

𝐷]𝑋
𝑛

− 𝑖𝜆Γ
𝜇

𝐷
𝜇

𝜆 − 𝜆Γ
𝑚

[𝑋
𝑚

, 𝜆]

−
1

2
𝑔
𝑚𝑝

𝑔
𝑛𝑞

× [𝑋
𝑚

, 𝑋
𝑛

] [𝑋
𝑝

, 𝑋
𝑞

] )} ,

(A.3)

where 𝑔 = det𝑔
𝜇]. With 4𝜋𝑔

𝑠

= 1, except for a rescaling of
𝜆, 𝐼

0

= 𝐼
𝐹

. The SYM action in 𝑅
9,1 and the SYM action in

the near-horizon geometry are the same. Before and after the
backreaction, the action remains invariant.

Similarly, the near-horizon geometries of 𝑀2 and 𝑀5

branes are

𝑔
𝜇] = (

𝑟

𝑟
2

)

4

𝜂
𝜇], 𝑔

𝑚𝑛

= (
𝑟

𝑟
2

)

−2

𝛿
𝑚𝑛

,

𝐴
012

= (
𝑟

𝑟
2

)

6

𝜀
012

,

𝑔
𝜇] = (

𝑟

𝑟
5

) 𝜂
𝜇], 𝑔

𝑚𝑛

= (
𝑟

𝑟
5

)

−2

𝛿
𝑚𝑛

,

𝐴
012

= (
𝑟

𝑟
5

)

3

𝜀
012

,

(A.4)

respectively. For both𝑀2 and𝑀5,

√−𝑔𝑔
𝜇]
𝑔
𝑚𝑛

𝐷
𝜇

𝑋
𝑚

𝐷]𝑋
𝑛

= √−𝑔𝑔
𝜇]
𝑔
𝑚𝑛

𝐷
𝜇

𝑋
𝑚

𝐷]𝑋
𝑛

. (A.5)

But

√−𝑔𝑔
𝑚𝑝

𝑔
𝑛𝑞

[𝑋
𝑚

, 𝑋
𝑛

] [𝑋
𝑝

, 𝑋
𝑞

]

̸=√−𝑔𝑔
𝑚𝑝

𝑔
𝑛𝑞

[𝑋
𝑚

, 𝑋
𝑛

] [𝑋
𝑝

, 𝑋
𝑞

] .

(A.6)

Instead, for 𝑀2, (the 3-algebra was proposed in [62–64] to
construct the model for two coincident𝑀2 branes)

√−𝑔𝑔
𝑙𝑝

𝑔
𝑚𝑞

𝑔
𝑛𝑟

[𝑋
𝑙

, 𝑋
𝑚

, 𝑋
𝑛

] [𝑋
𝑝

, 𝑋
𝑞

, 𝑋
𝑟

]

= √−𝑔𝑔
𝑙𝑝

𝑔
𝑚𝑞

𝑔
𝑛𝑟

[𝑋
𝑙

, 𝑋
𝑚

, 𝑋
𝑛

] [𝑋
𝑝

, 𝑋
𝑞

, 𝑋
𝑟

] .

(A.7)

We see another necessity of the sextic potential. For 3𝑑 SCFT,
the dimension of the scalar field is 1/2, so the potential
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term should contain six scalars. For 𝑀5, (3-algebra like this
appeared in [65])

√−𝑔𝑔
𝜇]𝑔𝑚𝑞𝑔𝑛𝑟 [𝐶

𝜇

, 𝑋
𝑚

, 𝑋
𝑛

] [𝐶
]
, 𝑋

𝑞

, 𝑋
𝑟

]

= √−𝑔𝑔
𝜇]𝑔𝑚𝑞𝑔𝑛𝑟 [𝐶

𝜇

, 𝑋
𝑚

, 𝑋
𝑛

] [𝐶
]
, 𝑋

𝑞

, 𝑋
𝑟

] .

(A.8)

The scalar dimension is 2, so, effectively, the potential
should contain two-dimension 2 scalars and two-dimension
1 scalars.

B. Path Integral Measure
and the External Fields

For simplicity, consider the scalar field with the action

𝐼 [𝑔
𝜇]0, 𝜙0, 𝑋]

= ∫𝑑
4

𝑥√−𝑔
0

Tr(𝑔𝜇]
0

𝜕
𝜇

𝑋
𝑚

𝜕]𝑋
𝑚

+
1

6
𝑅
0

𝑋
2

𝑚

+ 𝜙
0

𝑂) ,

(B.1)

where 𝑂 = 𝐶
𝑎

1
⋅⋅⋅𝑎

𝑛

(𝑋
𝑎

1 ⋅ ⋅ ⋅ 𝑋
𝑎

𝑛). 𝐼[𝑒2𝜔𝑔
𝜇]0, 𝑒

(𝑛−4)𝜔

𝜙
0

, 𝑒
−𝜔

𝑋] =

𝐼[𝑔
𝜇]0, 𝜙0, 𝑋]. Following [66], wewill define the scalar density

field 𝑋 to eliminate the dependence of the path integral
measure on 𝑔

𝜇]0:

𝑋
𝑚

= (−𝑔
0

)
1/4

𝑋
𝑚

. (B.2)

In terms of𝑋,

𝐼 [𝑔
𝜇]0, 𝜙0, 𝑋] = 𝐼 [𝑔

𝜇]0, 𝜙0, 𝑋]

= ∫𝑑
4

𝑥Tr [𝑔𝜇]
0

𝜕
𝜇

𝑋
𝑚

𝜕]𝑋
𝑚

+
1

6
𝑅
0

𝑋
2

𝑚

+ (−𝑔
0

)
(2−𝑛)/4

𝜙
0

𝑂]

𝐼 [𝑒
2𝜔

𝑔
𝜇]0, 𝑒

(𝑛−4)𝜔

𝜙
0

, 𝑒
𝜔

𝑋] = 𝐼 [𝑔
𝜇]0, 𝜙0, 𝑋] .

(B.3)

The partition function is then

𝑍(𝑔
𝜇]0, 𝜙0) = ∫𝐷𝑋 exp {−𝐼 [𝑔

𝜇]0, 𝜙0, 𝑋]} , (B.4)

with no 𝑔
𝜇]0 entering into the path integral measure.

𝑍(𝑒
2𝜔

𝑔
𝜇]0, 𝑒

(𝑛−4)𝜔

𝜙
0

)

= ∫𝐷𝑋 exp {−𝐼 [𝑒
2𝜔

𝑔
𝜇]0, 𝑒

(𝑛−4)𝜔

𝜙
0

, 𝑋]}

= ∫𝐷𝑋 exp {−𝐼 [𝑔
𝜇]0, 𝜙0, 𝑒

−𝜔

𝑋]}

= ∫𝐷(𝑒
𝜔

𝑋
󸀠

) exp {−𝐼 [𝑔
𝜇]0, 𝜙0, 𝑋

󸀠

]} ,

(B.5)

where𝑋
󸀠

= 𝑒
−𝜔

𝑋. If𝐷(𝑒
𝜔

𝑋
󸀠

) = 𝑒
𝐴

𝜔𝐷𝑋
󸀠; then,

ln𝑍(𝑒
2𝜔

𝑔
𝜇]0, 𝑒

(𝑛−4)𝜔

𝜙
0

) = 𝐴
𝜔

+ ln 𝑍(𝑔
𝜇]0, 𝜙0) (B.6)

with 𝐴
𝜔

being the conformal anomaly. Note that to arrive at
(B.6), we potentially assumed

∫𝐷𝑋 exp {−𝐼 [𝑔
𝜇]0, 𝜙0, 𝑋]}

= ∫𝐷(𝑒
−𝜔

𝑋) exp {−𝐼 [𝑔
𝜇]0, 𝜙0, 𝑒

−𝜔

𝑋]} .

(B.7)

On gravity side, this is equivalent to assume that
lim

𝜖→0

𝑆(𝑔
𝜇]0, 𝜙0, 𝜖) = lim

𝜖→0

𝑆(𝑔
𝜇]0, 𝜙0, 𝑒

2𝜔

𝜖), so

𝐴
𝜔

= lim
𝜖→0

𝑆 (𝑒
2𝜔

𝑔
𝜇]0, 𝑒

(𝑛−4)𝜔

𝜙
0

, 𝜖) − lim
𝜖→0

𝑆 (𝑔
𝜇]0, 𝜙0, 𝜖) .

(B.8)

𝐴
𝜔

in (B.8) could be compared with (227). From (B.5),

𝛿𝐴
𝜔

𝛿𝜔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔=0

=
1

𝑍
∫𝐷𝑋 exp {−𝐼 [𝑔

𝜇]0, 𝜙0, 𝑋]}
𝛿𝐼

𝛿𝑋

𝑋

= ⟨
𝛿𝐼

𝛿𝑋

𝑋⟩ ,

(B.9)

indicating that 𝐴
𝜔

will depend on both 𝑔
𝜇]0 and 𝜙

0

. Indeed,
the direct calculation of the conformal anomaly gives 𝐴

𝜔

=

𝐴
𝜔

(𝑔
𝜇]0, 𝜙0) composed by the gravity part (𝑔

𝜇]0) and the
matter part (𝜙

0

). Correspondingly, the transformation of
the path integral measure will also depend on 𝑔

𝜇]0 and 𝜙
0

,
although neither of them enters into𝐷𝑋 explicitly.

Similarly, when the theory is coupled to the external
𝑆𝑈(4)

𝑅

gauge field 𝐴
𝑎

𝜇

, although 𝐴
𝑎

𝜇

does not enter into
the path integral measure, the Jacobian of the path integral
measure under the 𝑅-symmetry transformation gives the 𝑅-
symmetry anomaly which is the function of 𝐴𝑎

𝜇

.
Finally, on gravity side, one can read the 𝑅-symmetry

anomaly from the type IIB supergravity action directly but
should make the regularization of the action first to get
the conformal anomaly. Correspondingly, on gauge theory
side, the 𝑅-symmetry anomaly exists originally, while the
conformal anomaly is introduced by regularization.
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