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LOWER BOUNDS FOR POLYNOMIALS WITH SIMPLEX NEWTON
POLYTOPES BASED ON GEOMETRIC PROGRAMMING

SADIK ILIMAN AND TIMO DE WOLFF

Abstract. In this article, we propose a geometric programming method in order to
compute lower bounds for real polynomials. We provide new sufficient conditions for
polynomials to be nonnegative as well as to have a sum of binomial squares representation.
These criteria rely on the coefficients and the support of a polynomial and generalize all
previous ones by Lasserre, Ghasemi, Marshall, Fidalgo and Kovacec to polynomials with
arbitrary simplex Newton polytopes.

This generalization yields a geometric programming approach for computing lower
bounds for polynomials that significantly extends the geometric programming method
proposed by Ghasemi and Marshall. Furthermore, it shows that geometric programming
is strongly related to nonnegativity certificates based on sums of nonnegative circuit
polynomials, which were recently introduced by the authors.

1. Introduction

Finding lower bounds for real polynomials is a central problem in polynomial opti-
mization. For polynomials with few variables or low degree, and for polynomials with
additional structural properties there exist several well working approaches to this prob-
lem. The best known lower bounds are provided by Lasserre relaxations using semidefinite
programming. Although the optimal value of a semidefinite program can be computed
in polynomial time (up to an additive error), the size of such programs grows rapidly
with the number of variables or degree of the polynomials. Hence, there is much recent
interest in finding lower bounds for polynomials using alternative approaches such as geo-
metric programming (see (4.1) for a formal definition). Geometric programs can be solved
in polynomial time using interior point methods [NN94]; see also [BKVH07, Page 118].
In this article, we provide new lower bounds for polynomials using geometric programs.
These bounds extend results in [GM12] by Ghasemi and Marshall.

Let Rrxs “ Rrx1, . . . , xns and let Rrxsd “ Rrx1, . . . , xnsd be the space of polynomials of
degree d P N. A global polynomial optimization problem for some f P Rrxs2d is given by

f˚ “ inftfpxq : x P R
nu “ suptλ P R : f ´ λ ě 0u.

It is well-known that in general computing f˚ is NP-hard [DG14]. By relaxing the
nonnegativity condition to a sum of squares condition, a lower bound for f˚ based on
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semidefinite programming is given by

fsos “ sup

#

λ P R : f ´ λ “
k

ÿ

i“1

q2i for some qi P Rrxs

+

and hence fsos ď f˚ [Las10]. A central open problem in polynomial optimization is to
analyze the gap f˚ ´ fsos. Very little is known about this gap beyond the cases where
it always vanishes. This happens exactly for pn, 2dq P tp1, 2dq, pn, 2q, p2, 4qu by Hilbert’s
Theorem [Hil88]. For an overview about the topic see [BPT13, Las10, Lau09].
Let e1, . . . , en denote the standard basis of Rn. In [FK11], Fidalgo and Kovacec consider

the class of polynomials, whose Newton polytope is a scaling of the standard simplex
convt0, 2d e1, . . . , 2d enu. For these polynomials they provide certificates, i.e., sufficient
conditions, both for nonnegativity and for being a sum of squares. In [GM12] Ghasemi
and Marshall show that these certificates can be translated into checking feasibility of a
geometric program. Moreover, in their recent works [GM12, GM13] Ghasemi and Marshall
show several important further facts for polynomial optimization via geometric program-
ming. Two key observations are the following ones:

(1) For general polynomials lower bounds based on geometric programming are seem-
ingly not as good as bounds obtained by semidefinite programming.

(2) Even higher dimensional examples can often be solved quite fast via geometric
programming. In contrast, semidefinite programs often do not provide an output
for problems involving polynomials with many variables or of high degree (at least
with the current SDP solvers).

The extension of Ghasemi and Marshall’s results, which we provide in this article, relies
on the following key observation. In addition to the sum of squares approach, one can use
nonnegative circuit polynomials to certify nonnegativity. Nonnegative circuit polynomials
were recently introduced by the authors in [IdW14]. Particularly, the authors results in
[IdW14] imply as a special case the sufficient condition for nonnegativity by Fidalgo and
Kovacec [FK11], which was used by Ghasemi and Marshall. Therefore, it is self-evident to
ask whether the translation into geometric programs can also be generalized. The purpose
of this article is to show that this is indeed the case.
Let f P Rrxs be a real polynomial with simplex Newton polytope such that all its

vertices are in p2Nqn and the coefficients of the terms corresponding to the vertices are
nonnegative. The main theoretical results we contribute in Section 3 are some easily
checkable criteria on the coefficients of such a polynomial f , which imply that f is non-
negative. More precisely, these criteria imply that f is a sum of nonnegative circuit
polynomials (sonc), and, as a consequence of results by the authors in [IdW14], every
sonc is nonnegative. See Theorems 3.1 and 3.4, and see Section 2 for a formal definition
of a sonc. Moreover, we provide a second criterion on the support of a sonc polynomial,
which implies that the sonc additionally is a sum of binomial squares.
The key observation is that, as in [GM12], these criteria can be translated into a geomet-

ric optimization problem (Corollary 4.2) in order to find a lower bound for a polynomial.
As a surprising fact we show in Corollary 3.6 that for very rich classes of polynomials
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with simplex Newton polytope, the optimal value fgp of the corresponding geometric pro-
gram is at least as good as the bound fsos. In fact fgp is f˚ in these cases. This is in
sharp contrast to the general observation by Ghasemi and Marshall [GM12, GM13], which
we outlined above in (1). Additionally, based on similar examples, we can see that the
computation of fgp is much faster than in the corresponding semidefinite optimization
problem, as it was already shown numerically in [GM12].
Using the geometric programming software package gpposy for Matlab, we demon-

strate the capabilities of our results on the basis of different examples. A major observation
is that the bounds fgp and fsos are not comparable in general, since the convex cones of
sonc’s and sums of squares do not contain each other, see [IdW14]. This observation,
again, is in sharp contrast to the one in [GM12] where the bound fsos and the bound given
by Ghasemi and Marshall’s geometric program are comparable.
Furthermore, we show in Section 5 that our methods are not only applicable to global

polynomial optimization problems, but also to constrained ones using similar methods
as Ghasemi and Marshall in [GM13]. A further discussion of the constrained case and
generalizations of the results in Section 5 and in [GM13] is content of the follow-up article
[DIdW16].

2. Preliminaries

We consider a polynomial f P Rrxs2d of the form f “
ř

αPNn fαx
α with fα P R, xα “

xα1

1 ¨ ¨ ¨xαn
n , and Newton polytope Newpfq “ convtα P N

n : fα ‰ 0u. We call a lattice
point even if it is in p2Nqn. A binomial is an expression of the form rxα`sxβ with r, s P R;
if at least one of r, s is 0, it is (also) a monomial. If a polynomial is a sum of squares of
binomials, then it is customary to abbreviate this by saying it is a sobs, meaning it is a
“sum of binomial squares”. We denote by convpSq the convex hull of a subset S of Rn.

Our interest lies foremost in ST-polynomials which we define as follows.

Definition 2.1. An ST-polynomial written in standard form is a polynomial of the form

f “ fαp0q `
n

ÿ

j“1

fαpjqx
αpjq `

ÿ

αP∆

fαx
α,

with exponents αpjq and α, coefficients fαpjq, fα, and a set ∆ for which the following hold:

(ST1): The points αp0q “ 0 and αp1q, αp2q, . . . , αpnq define a set V of affinely in-
dependent, even points in p2Nqn.

(ST2): ∆ is the set of exponents α in f not defining monomial squares; i.e. α P ∆
iff fα ă 0 or α R p2Nqn and fα ą 0.

(ST3): There holds the inclusion ∆ Ď convpV q; or, equivalently, every α P ∆ can
be written uniquely as

α “
n

ÿ

j“0

λ
pαq
j αpjq with λ

pαq
j ě 0 and

n
ÿ

j“0

λ
pαq
j “ 1.

(ST4): f0 “ fαp0q, fαp1q, ¨ ¨ ¨ , fαpnq are nonnegative and if fαpjq “ 0, then for all α P ∆

there holds λ
pαq
j “ 0.
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The “ST” in “ST-polynomial” is short for “simplex tail”. The tail part is given by the
sum

ř

αP∆ fαx
α, while the other terms define the simplex part.

Note that hypothesis (ST1) implies that V “ tαp0q, . . . , αpnqu is the vertex set of a full
dimensional simplex. It consists of even lattice points and has one vertex at the origin.
Hypothesis (ST3) implies that the Newton polytope of f is a face of this simplex, possibly
the simplex itself. We will have Newpfq “ convpV q if and only if all fαpjq are positive.
Otherwise, if fαpjq “ 0 for some j, then Newpfq is a proper face of convpV q. Hypotheses
(ST2), (ST3) and (ST4) together imply that ∆ Ď NewpfqzV. So, ∆ is uniquely defined
by f and may be referred to by ∆pfq.

The λ
pαq
j denote the barycentric coordinates of α relative to the vertices αpjq, j “

0, . . . , n. An ST-polynomial is homogeneous only if f0 “ 0 and for all α, αpiq, αpjq oc-
curring in f (associated to nonzero coefficients) we have |αpiq| “ |αpjq| “ |α|, where

|α| “
řn

i“1 αi. In this case λ
pαq
0 “ 0 holds for all α P ∆; the converse needs not to be true.

Given a polynomial f, well established algorithms from convex geometry allow to deter-
mine if f is ST and if so to rewrite it in this form.

Definition 2.2. An ST-polynomial is a circuit polynomial if ∆pfq is empty or a singleton.
We fix the standard notation for a circuit polynomial f and define the associated circuit
number Θf , which was first defined by the authors in [IdW14], as follows:

f “ f0 `
n

ÿ

j“1

fαpjqx
αpjq ` cxα, and Θf “

ź

jPnzpαq

˜

fαpjq

λ
pαq
j

¸λ
pαq
j

(2.1)

with nzpαq “ tj P t0, . . . , nu : λ
pαq
j ‰ 0u. In the uninteresting case c “ 0, i.e. ∆pfq “ H,

define Θf “ 1.

Much of our work will be centered around writing an ST-polynomial as a sum of non-
negative circuit polynomials (sonc).
Let ei “ pδi1, . . . , δinq be the i-th standard vector. The class of ST-polynomials cov-

ers in essence the class of polynomials of degree 2d considered by Ghasemi and Mar-
shall, see, e.g., [GM12, Theorem 2.3 and Corollary 2.5]. This can be seen by putting
αpjq “ 2dej for j “ 1, . . . , n and noting that an α with |α| ď 2d lies in the convex hull
of αp0q “ 0, 2de1, . . . , 2den. Note that Ghasemi and Marshall admit in the definition of
their polynomials f larger sets Ω of exponents than ∆. However, the difference Ωz∆ is
associated to terms fαx

α that are monomial squares. All their criteria for the sum of
squares property and algorithms for lower bounds of polynomials use virtually without
exception only the information on the coefficients fαpjq and fα with α P ∆. The same
will hold in this paper. Everything we could say on basis of the present investigation for
more general classes of polynomials would be a trivial consequence of what we find here
for ST-polynomials. This is the reason why we concentrate on the class of polynomials
defined above.
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A fundamental fact is that nonnegativity of a circuit polynomial f can be completely
decided by comparing its tail coefficient with its circuit number Θf .

Theorem 2.3 ([IdW14], Theorem 3.8). Let f be a circuit polynomial in standard form
and Θf its circuit number, as defined in (2.1). Then the following are equivalent:

(1) f is nonnegative.
(2) |c| ď Θf and α R p2Nqn or c ě ´Θf and α P p2Nqn or ∆pfq “ H.

Note that (2) can be equivalently stated as: |c| ď Θf or c “ 0 or f is a sum of monomial
squares. At this point we remark that the definition of the circuit number Θf slightly
differs from the one used in [IdW14]. The reason is that α P ∆pfq is not necessarily
assumed to be an interior point as it is in [IdW14]. The difference between the two
definitions is explained by [IdW14, Lemma 3.7].
Writing a polynomial as a sum of nonnegative circuit polynomials is a certificate of non-

negativity. Let us denote by sonc the class of polynomials that are sums of nonnegative
circuit polynomials or the property of a polynomial to be in this class. We show that this
class brings new insights to polynomial optimization and hence deserves a place among
the well established classes sos (sums of squares) and sobs (sums of binomial squares).
For further details about sonc’s see [dW15, IdW14]

Example 2.4. Investigate the family mcpx, yq “ 1 ` x2y4 ` x4y2 ` cx2y2. There needs
to exist a smallest negative c P Ră0 such that mcpx, yq is nonnegative. For negative c the
corresponding polynomial m will be a circuit polynomial since fp0,0q “ fp2,4q “ fp4,2q “ 1
and p2, 2q “ 1

3
p0, 0q ` 1

3
p2, 4q ` 1

3
p4, 2q. We obtain the circuit number

Θmc
“

ˆ

1

1{3

˙1{3

¨

ˆ

1

1{3

˙1{3

¨

ˆ

1

1{3

˙1{3

“ 3.

Thus, mc is nonnegative for c ě ´3 but no smaller real number. The polynomial obtained
for c “ ´3 is the well-known Motzkin polynomial which is known not to be a sum of
squares.

Example 2.5. In [FK11, Theorem 2.3] forms (homogeneous polynomials) denoted by
Epxq “ b1x

2d
1 `¨ ¨ ¨`bnx

2d
n ´µxa1

1 ¨ ¨ ¨xan
n with bi ě 0 are analyzed concerning nonnegativity.

Epxq is an instance of a circuit polynomial (in [FK11] called elementary diagonal minus
tail form) with c “ ´µ in the sense of Theorem 2.3. Since α “ pa1, . . . , anq “

řn

i“1
ai
2d
2dei,

we obtain

ΘE “
ź

iPnzpαq

ˆ

bi

pai{2dq

˙ai{2d

“ 2d
n

ź

i“1
ai‰0

ˆ

bi

ai

˙ai{2d

,

as the threshold value for nonnegativity.

In the earlier paper [IdW14], a criterion for a polynomial with simplex Newton polytope
to be a sonc was established.

Theorem 2.6. [IdW14, Corollary 7.4] Let f be a nonnegative ST-polynomial in standard
notation and ∆pfq Ď intpNewpfq X N

nq. If there exists a point v P pR˚qn such that
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fαv
α ă 0 for all α P ∆pfq, then f is a sonc and the circuit polynomials entering in this

sonc decomposition will all have the same Newton polytope as f .

The relation between sonc’s and sobs is clarified by using definitions and results from
Reznick [Rez89]. Note that we find it convenient to remain near to Reznick’s own notation
in this discussion till the end of the proof of Proposition 2.7. He defines, given a set L Ď Z

n,

the sets of averages

ApLq “

"

1

2
ps ` tq : s, t P L X p2Zqn

*

and ĀpLq “

"

1

2
ps ` tq : s, t P L X p2Zqn, s ‰ t

*

.

Given a set P Ď p2Zqn, L is P -mediated if P Ď L Ď ĀpLq Y P ; see [Rez89, p. 433,438].
He then shows that there exists, given P, a maximal P -mediated set P ˚ that contains
every P -mediated set. Reznick explains things in the context of “frameworks”, that are
sets of even lattice points that all have the same 1-norm. But his algorithmic construc-
tion of P ˚ works literally for any finite set of even lattice points. To find P ˚ one begins
with P 0 “ CpP q “ convpP q X Z

n and constructs via P k`1 “ ĀpP kq Y P inductively a
contracting sequence of sets P 0 Ě P 1 Ě P 2 Ě . . . . As P 0 is finite, this sequence becomes
stationary at a set which is shown to be the required P ˚. If the convex hull of P is a
simplex and P ˚ “ CpP q, then Reznick calls P an H-trellis [Rez89, p436c1]. The “H”
is borrowed from the fact that the Hurwitz form has the standard simplex as its New-
ton polytope. The standard simplex has the property that its corresponding P ˚ satisfies
P ˚ “ CpP q “ convpP q X Z

n. We shall speak of an H-simplex.

We will apply Reznick’s construction to the vertex set V “ V pfq of the Newton polytope
of an ST-polynomial f and write, with slight abuse of notation, Newpfq˚ for V ˚. As
mentioned, the papers [FK11, GM12] deal exclusively with polynomials f in which V pfq
consists of the scaled standard vectors and, possibly, 0 “ αp0q. To put the results of those
papers into perspective, we show that the inhomogeneous simplices generated by the origin
and the standard vectors, just as their homogeneous counterparts are also H-simplices.

Proposition 2.7. H “ t0, 2d e1, . . . , 2d enu is a nonhomogeneousH-simplex; that is, H˚ “
CpHq. Every subset of H again defines an H-simplex.

Proof. We adapt Reznick’s proof who shows an analogous fact for the case t2de1, . . . , 2denu.
It is clear that H is a nonhomogeneous trellis in the sense that the vertices define a simplex
which in our case is full dimensional. By Reznick’s criterion [Rez89, p438c-6] and notation
Ep.q “ Cp.q X p2Zqn, we have to show that ĀpEpHqq “ CpHqzH. (The reader should note
that Reznick’s criterion is actually false in the context said there - frameworks - but it is
true for trellises, in particular H.) The points in H have at most one nonzero entry. If this
happens for a point u in ĀpEpHqq, then the two distinct points in EpHq with average u

must also have at most one nonzero entry at the same position as u. But then distinctness
implies |u| ă 2d and so u R H. So ĀpEpHqq Ď CpHqzH. Now consider a point c P CpHqzH.
Case 1: c has only one nonzero coordinate. Then c “ c ¨ ei for some integer c with

0 ă c ă 2d. Points in EpHq whose average might yield c are necessarily points of the form
0ei, 2ei, 4ei, . . . , 2dei. If c is odd then c ´ 1 and c ` 1 are even integers in t0, . . . , 2du and
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Figure 1. TheH-simplex convtp0, 0q, p6, 0q, p0, 6qu Ă R
2. All lattice points

are contained in the corresponding maximal mediated set.

c “ 1
2
ppc´1qei `pc`1qeiq is the desired representation. If c is even, then we may conclude

analogously using c ´ 2, c ` 2 instead.
Case 2: c “ pc1, . . . , cnq has two or more nonzero coordinates. Then we may assume by

symmetry and for ease of future notation, that 1 ď c1 ď cn. Since c P CpHqzH Ď Z
n
ě0, we

have c “ |c| P t1, . . . , 2du and 1 ď c1 ď c{2. We define br “
řr

i“1 ci and find the unique
k P t1, . . . , n ´ 1u such that bk ď c{2 ď bk`1. Define 9c “ c ` 1 if c is odd and 9c “ c if c is
even.
Now we let s “ p2c1, . . . , 2ck, 9c´2bk, 0, . . . , 0q and t “ p0, . . . , 0, 2bk`1´ 9c, 2ck`2, . . . , 2cnq.

Assume 2bk`1´c “ 0. Then 9c “ c and hence also k`1 ă n, since otherwise 2bn´c “ c “ 0.
Thus, s, t ‰ 0. If c is odd, then 2bk`1 ą c ą 2bk.
Therefore, in all cases s, t ą 0, and s ` t “ 2c. So, s, t are even lattice points whose

average is c. Finally note that we have s “
řk

i“1
2ci
2d
2dei`

9c´2bk
2d

p2dek`1q` 2d´ 9c
2d

0 as a convex
combination of points in H yielding s. Thus, showing s P EpHq. Similarly, one shows that
t P EpHq. Thus ĀpEpHqq Ě CpHqzH and we have proven the first part.
It is clear by deleting zeros in the coordinates which are not equal to i1, . . . , ik that

subsets of the form t0, ei1 , . . . , eiku, k ď n will again define H-simplices. From this and
Reznick’s own result the claim concerning subsets follows. �

Example 2.8. Figure 1 shows a scaled standard simplex for the case d “ 3, n “ 2.

Using [Rez89, Corollary 4.9], which gives a necessary and sufficient criterion when
“simplicial agiforms” are sobs, we developed in [IdW14] the following theorem.

Theorem 2.9 ([IdW14], Theorem 5.2). Let f be a nonnegative circuit polynomial in
standard notation, as defined in (2.1). Then the following statements are equivalent:

(1) f is a sum of squares,
(2) f is a sum of binomial squares,
(3) α P Newpfq˚.

From the Theorems 2.6 and 2.9 we obtain the following corollary.
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Corollary 2.10 ([IdW14], Corollary 7.4). Let f be an ST-polynomial in standard form
such that ∆pfq Ď intpNewpfq X N

nq. If there exists v P pR˚qn with fαv
α ă 0 for all

α P ∆pfq and ∆pfq Ď Newpfq˚, then f is nonnegative if and only if f is a sum of
binomial squares.

Thus, by Theorem 2.9, a circuit polynomial withH-simplex Newton polytope is nonneg-
ative if and only if it is a sum of squares. For the very special case of the scaled standard
simplex and expressed in the homogeneous case this is the main result of [FK11].
In [IdW14, Theorem 5.9], sufficient conditions based on 2-normality of polytopes and

toric geometry are given for a simplex to be an H-simplex. In particular, every sufficiently
large simplex with even vertices is anH-simplex in R

n; see [IdW14, Section 5.1] for details.

Example 2.11. Let f “ 7
12

` x6
1 ` x4

2 ` cx1x2 with c P R
˚. Note that the interior

lattice point p1, 1qT has the barycentric coordinates pλ0, λ1, λ2q “ p 7
12
, 1
6
, 1
4
q in terms of

the vertices of Newpfq. By Theorem 2.3 f is nonnegative if and only if |c| ď 6
1

64
1

4 .

Once it is determined that f is nonnegative, the question whether or not f is a sum of
squares depends solely on the lattice point configuration of Newpfq. It is easy to check that
Newpfq˚ “ Newpfq X N

2. Hence, in particular the “inner” term c ¨ x1x2 has an exponent
p1, 1qT P Newpfq˚. Therefore, by Theorem 2.9, f is a sum of binomial squares if f is
nonnegative.

As mentioned before, the results of the preliminaries are, up to slight variations, taken
from the article [IdW14]. For further background on the results used here the interested
reader should particularly focus on Section 3 for nonnegativity of circuit polynomials,
Section 5 for the relation to sos, and on Section 7 for the structure of the sonc cone in
[IdW14]. Moreover, a short overview about these results can be found in the Oberwolfach
report [dW15].

3. Main Results

In this section, we provide sufficient criteria on the coefficients of a polynomial f which
imply that f is a sum of nonnegative circuit polynomials or a sum of (binomial) squares
and therefore that f is nonnegative. We introduce a new lower bound for nonnegativity,
which we will later relate to geometric programs.

Theorem 3.1. Let f be an ST-polynomial in standard form. Assume that for every pair
pα, jq P ∆pfq ˆ t0, 1, . . . , nu there exists an aα,j ě 0 such that the following holds:

(1) |fα| ď
ś

jPnzpαq

ˆ

aα,j

λ
pαq
j

˙λ
pαq
j

,

(2) fαpjq ě
ř

αP∆pfq

aα,j , for all j “ 0, . . . , n.

Then f is a sum of |∆pfq| nonnegative circuit polynomials (sonc), which all have faces of
Newpfq as Newton polytopes. If in addition ∆pfq Ď Newpfq˚, then f is a sum of binomial
squares.



LOWER BOUNDS FOR POLYNOMIALS BASED ON GEOMETRIC PROGRAMMING 9

Proof. Fix an α P ∆pfq. Then |fα| ą 0 and the condition (1) guarantees that if λ
pαq
j ą 0,

then aα,j ą 0. Together with the nonnegativity of the aα,j this guarantees that gα “
aα,0 `

řn

j“1 aα,jx
αpjq ` fαx

α is a circuit polynomial; see condition (4) of the definition of

an ST-polynomial. The circuit number of the polynomial gα is
ś

jPnzpαqpaα,j{λ
pαq
j qλ

pαq
j . As

by hypothesis (ST2) fα ă 0 or α R p2Nqn, condition (1) implies by Theorem 2.3 that gα
is nonnegative and by summing over all α P ∆pfq we obtain the sonc

ÿ

αP∆pfq

gα “
n

ÿ

j“0

¨

˝

ÿ

αP∆pfq

aα,j

˛

‚xαpjq `
ÿ

αP∆pfq

fαx
α.

For each j “ 0, . . . , n, the expression pfαpjq ´
ř

αP∆pfq aα,jq ¨ xαpjq is a monomial square

and hence nonnegative by condition (2). Adding these expressions to one of the circuit
polynomials, call it gα̃, we get a new circuit polynomial g̃α̃ ě gα̃. Then g̃α̃`

ř

αP∆pfqztα̃u gα “
f. Evidently, the Newton polytopes of the circuit polynomials in this sum are all faces of
the polytope Newpfq and we are done with the first part.
Finally, if the α P ∆pfq are in Newpfq˚, then by Theorem 2.9 the polynomials gα are

sums of binomial squares. Thus, by construction g̃α̃ is also a sum of binomial squares.
Therefore, f is a sum of binomial squares. �

From this theorem we can deduce the following sufficient condition for the existence of
a sonc-decomposition of an ST-polynomial. This condition depends on the coefficients
of the polynomial alone.

Corollary 3.2. Let f be an ST-polynomial in standard notation. Assume that fαpjq ě
ř

αP∆pfq |fα|λ
pαq
j for each pα, jq P ∆pfq ˆ t0, . . . , nu. Then f is a sonc. If in addition

∆pfq Ď Newpfq˚, then f is sobs.

Proof. Choose in Theorem 3.1 aα,j “ |fα|λ
pαq
j . Then the product in condition (1) of The-

orem 3.1 is |fα| and hence, that condition is satisfied. The corollary follows. �

This corollary yields a result in [GM12] as a consequence.

Corollary 3.3 ([GM12], Corollary 2.5). Let f P Rrxs be a polynomial of degree 2d. If

(1) f0 ě
ř

αP∆

|fα|2d´|α|
2d

and

(2) f2dei ě
ř

αP∆

|fα|αi

2d
, for all i “ 1, . . . , n,

then f is a sum of squares.

Since the proof of the corollary illustrates some points of the paper [GM12], we give it
here for the convenience of the reader.

Proof. Write the polynomial in the form considered in [GM12] as f̃ “ f0`
řn

i“1 f2deix
2dei `

ř

αPΩpfq fαx
α. Of course, this polynomial is a sum of squares if the truncated polynomial

f obtained by deleting the monomial square terms is a sum of squares. The truncated
polynomial f is ST. Then f has a face of the simplex convpV q, V “ t0, 2de1, . . . , 2denu
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as its Newton polytope. Since α “
řn

i“1
αi

2d
p2deiq, we find λ

pαq
0 “ p2d ´ |α|q{2d, and

λ
pαq
i “ αi{2d, for i “ 1, . . . , n. Hence, the hypothesis of the present corollary translates

into fαpjq ě
ř

αP∆ |fα|λ
pαq
j , j “ 0, 1, . . . , n. By Proposition 2.7 convpV q is an H-simplex.

So ∆pfq Ď Newpfq˚. The corollary follows from the previous one. �

Theorem 3.1 yields new sufficient criteria for a polynomial to be a sonc as well as to
be a sum of (binomial) squares. These criteria depend on the coefficients and the support
of the polynomial alone. They significantly extend previous sum of squares criteria given
in [FK11, GM12, Las07] since we do not require the assumption that Newpfq is a scaled
standard simplex anymore. All the polynomials treated in the cited literature are covered
by the above theorems.

An important step to connect Theorem 3.1 to geometric programming is given in the
following theorem.

Theorem 3.4. Assume again that f is an ST-polynomial in standard form and let r P R.

Suppose that for every pα, jq P ∆pfq ˆ t1, . . . , nu there exists an aα,j ě 0, such that:

(0) If λ
pαq
j ą 0, then aα,j ą 0,

(1) |fα| ď
ś

jPnzpαq
jě1

ˆ

aα,j

λ
pαq
j

˙λ
pαq
j

, for every α P ∆pfq with λ
pαq
0 “ 0,

(2) fαpjq ě
ř

αP∆pfq

aα,j for all j “ 1, . . . , n

(3) f0 ´ r ě
ř

αP∆pfq
0Pnzpαq

λ
pαq
0 |fα|1{λ

pαq
0

ś

jPnzpαq
jě1

ˆ

λ
pαq
j

aα,j

˙λ
pαq
j {λ

pαq
0

.

Then f ´ r is a sum of |∆pfq| nonnegative circuit polynomials (sonc) whose Newton
polytopes are faces of convpt0u Y V pfqq.

Proof. First, note that the condition (0) is dispensable, provided that we assume the aα,j
to be chosen such that the other conditions are well-defined. In fact, by supposing this,
condition (0) can be deduced from conditions (1) and (3). Note that f ´ r is an ST-
polynomial again, since the right hand side of condition (3) is nonnegative. It is sufficient
to show that the conditions given in the present theorem, which only considers aα,j with
j ě 1, imply the existence of aα,j as in Theorem 3.1 (which also includes an aα,0), when
the latter is formulated for f ´ r in place of f. As f and f ´ r differ in their constant term
alone we observe that convpt0u Y V pfqq “ convpt0u Y V pf ´ rqq and ∆pfq “ ∆pf ´ rq.
We fix an α P ∆pf ´ rq and investigate two cases:

Case λ
pαq
0 “ 0: Then 0 R nzpαq. Hence, we have to consider condition (1) of Theorem

3.4. Since 0 R nzpαq the additional assumption j ě 1 under the product in condition (1)
is obsolete. This means that the α under consideration satisfies condition (1) of Theorem
3.1 independent of the choice of aα,0.
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Case λ
pαq
0 ą 0: Then note that criterion (1) of Theorem 3.1 is via solving for aα,0

equivalent to the inequality

aα,0 ě λ
pαq
0 |fα|1{λ

pαq
0

ź

jPnzpαq
jě1

˜

λ
pαq
j

aα,j

¸λ
pαq
j

{λ
pαq
0

.(3.1)

Once we have found aα,1, . . . , aα,n ě 0 satisfying the conditions (2), (3) of the present
theorem, there exists evidently the additional aα,0 ą 0 to satisfy this inequality and hence
(1) of Theorem 3.1 for this α. The present conditions (2) coincide for all cases except
j “ 0 with the conditions (2) in Theorem 3.1. Condition (2) of Theorem 3.1 for the
current polynomial and j “ 0 requires us to find aα,0 such that f0 ´ r ě

ř

αP∆pfq aα,0.

Now, as the aα,0 have to satisfy the inequality (3.1) but are subject to no other conditions,
we see that condition (3) guarantees what is required. �

Finally, we prove the following theorem, which connects the conditions in the previous
theorems to the convex cone of sonc’s.

Theorem 3.5. Let f P Rrxs be an ST-polynomial in standard notation. We define:

‚ fgp1 as the supremum of all r P R such that for every α P ∆pfq there exist non-
negative reals aα,1, . . . , aα,n such that the conditions (0) to (3) of Theorem 3.4 are
satisfied; and

‚ fgp2 as the supremum of all r P R such that there exist nonnegative circuit poly-
nomials g1, g2, . . . , gs whose Newton polytopes are faces of convpt0u Y V pfqq such
that f ´ r “

řs

k“1 gk.

Then these quantities are equal, i.e., fgp1 “ fgp2.

Proof. Consider a real r satisfying the conditions defining fgp1. Then we know by Theorem
3.4 that there exist s “ |∆pfq| nonnegative circuit polynomials whose Newton polytopes
are faces of convpt0u YV pfqq such that f ´ r “

řs

i“1 gi. It follows that fgp2 ě r and hence
fgp2 ě fgp1.

Now consider a real r satisfying the conditions defining fgp2. Let g1, . . . , gs be circuit
polynomials as occurring in the equation. With αpgkq denoting the tail monomial of gk,
and obvious definitions of gk,j, the equation reads in more detail

f0 ´ r `
n

ÿ

j“1

fαpjqx
αpjq `

ÿ

αP∆pfq

fαx
α “

s
ÿ

k“1

pgk,0 `
n

ÿ

j“1

gk,jx
αpjq ` ckx

αpgkqq

loooooooooooooooooomoooooooooooooooooon

“:gk

.

As ∆pfq and V “ t0, αp1q, . . . , αpnqu are disjoint and also tαpg1q, . . . , αpgsqu and V are
disjoint, a comparison of coefficients of both sides of the equation implies that

tαpgiq : 1 ď i ď su “ ∆pfq.

We can assume that s is minimal. Namely, if in this representation there would exist
l ‰ l1 such that αpglq “ αpgl1q, then g1 “ gl ` gl1 is a new nonnegative circuit polynomial
with its Newton polytope being a face of convpt0u Y V pfqq. We can use g1 to replace the
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subsum gl ` gl1 above and obtain a representation with less than s summands. This is a
contradiction.
So, we henceforth assume that s “ |∆pfq| and that the circuit polynomials are indexed

by α P ∆pfq. If we set gl “ gα, then we have also cα “ fα and we get

f0 ´ r `
n

ÿ

j“1

fαpjqx
αpjq `

ÿ

αP∆pfq

fαx
α “

ÿ

αP∆pfq

pgα,0 `
n

ÿ

j“1

gα,jx
αpjq ` fαx

αq

loooooooooooooooomoooooooooooooooon

“:gα

.

From this equality, the nonnegativity of circuit polynomials gα, and Theorem 2.3 we get

fαpjq “
ÿ

αP∆pfq

gα,j, f0 ´ r “
ÿ

αP∆pfq

gα,0, and |fα| ď
ź

jPnzpαq

˜

gα,j

λ
pαq
j

¸λ
pαq
j

.(3.2)

From these equations and inequality, we arrange for each α P ∆pfq reals aα,j, with
j “ 1, . . . , n, satisfying the conditions of Theorem 3.4: we define for the cases j “ 1, . . . , n,

aα,j “ gα,j . If λ
pαq
j ą 0, then j P nzpαq. Since α P ∆pfq we have |fα| ą 0. Thus, by the

inequality in (3.2), also gα,j ą 0. This shows that condition (0) is satisfied. In the case

λ
pαq
0 “ 0, we have 0 R nzpαq. In this case again the inequality guarantees (1). We see that

the condition (2) in Theorem 3.4 is satisfied with equality.
Finally, we investigate condition (3) of Theorem 3.4. For the case 0 P nzpαq we can

solve the inequality for gα,0, obtaining that

gα,0 ě λ
pαq
0 |fα|1{λ

pαq
0

ź

jPnzpαq
jě1

˜

λ
pαq
j

aα,j

¸λ
pαq
j {λ

pαq
0

.

So, the equation for f0 ´ r above implies condition (3) of Theorem 3.4.
Hence, a real r satisfying the conditions defining fgp2 is also an r such that there

exist aα,1, . . . , aα,n ě 0 satisfying the conditions of Theorem 3.4. Thus, r ď fgp1, and
consequently fgp2 ď fgp1. This proves the theorem. �

In the following we make use of the unified notation fgp corresponding to the equality
fgp1 “ fgp2. Ghasemi and Marshall observed a trade off between fast solvability of the
corresponding geometric programs in comparison to semidefinite programs and the fact
that bounds obtained by geometric programs are worse than fsos for general polynomials
f ; [GM12]. Here, we conclude that this trade off does not occur for polynomials with
simplex Newton polytope satisfying the conditions of Theorem 2.6. Surprisingly, in this
case the bound fgp will be at least as good as the bound fsos. Note that the special
instance #∆pfq “ 1 and Newpfq being the standard simplex with edge length 2d was
already observed by Ghasemi and Marshall; see [GM12, Corollary 3.4].

Corollary 3.6. Let f be an ST-polynomial in standard form and ∆pfq Ď intpNewpfq X
N

nq. Suppose there exists v P pR˚qn such that fαv
α ă 0 for all α P ∆pfq.

(1) Then fgp “ f˚.
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(2) If additionally ∆pfq Ď Newpfq˚, then fsos “ f˚.

Proof. The polynomial f̃ “ f ´ f˚ is an ST-polynomial again which is nonnegative and
has infimum f̃˚ “ 0. Clearly, ∆pfq “ ∆pf̃q. Thus, f̃αv

α “ fαv
α ă 0 for α P ∆pf̃q. Hence,

f̃ satisfies the hypotheses of Theorem 2.6. Theorem 2.6 guarantees a sonc-decomposition
for f̃ . Since f ´ r is a polynomial that attains negative values for r ą f˚ the polynomial
f ´ r cannot have a representation as a sonc. In other words, from the definitions of fgp
and f˚ we get

fgp “ suptr : f ´ r is a sonc u “ f˚.

This shows the first statement.
For the second statement the proof is quite similar. Under the given additional hypoth-

esis, we have ∆pf ´ f˚q Ď Newpf ´ f˚q˚. Therefore, f ´ f˚ is a sum of binomial squares
by Theorem 2.10. If r ą f˚, then f ´ r assumes negative values and thus cannot be sum
of squares. Hence, from the definitions of fsos and f˚ we get

fsos “ suptr : f ´ r is a sos u “ f˚.

�

4. Geometric Programming

In this section, we prove that the number fgp can indeed be obtained by a geometric
program, which we introduce first.

Definition 4.1. A function p : Rn
ą0 Ñ R of the form ppzq “ ppz1, . . . , znq “ czα1

1 ¨ ¨ ¨ zαn
n

with c ą 0 and αi P R is called a monomial (function). A sum
řk

i“0 ciz
α1piq
1 ¨ ¨ ¨ z

αnpiq
n of

monomials with ci ą 0 is called a posynomial (function).

A geometric program has the following form.
$

’

&

’

%

minimize p0pzq,

subject to:
p1q pipzq ď 1 for all 1 ď i ď m,

p2q qjpzq “ 1 for all 1 ď j ď r,

(4.1)

where p0, . . . , pm are posynomials and q1, . . . , qr are monomial functions.
Geometric programs can be solved with interior point methods. In [NN94], the authors

prove worst-case polynomial time complexity of this method. For an introduction and
practical abilities of geometric programs see [BKVH07, BV04]. Based on our main results,
Theorems 3.1 and 3.4, we can conclude the following corollary.

Corollary 4.2. Let f P Rrxs be an ST-polynomial of degree 2d in standard form. Let R
be the subset of an n|∆pfq|-dimensional real space given by

R “ tpaα,iq : aα,i P Rą0 for every pα, iq P ∆pfq ˆ t1, . . . , nuu.
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Then fgp “ f0 ´ m˚, where m˚ is given as the output of the following geometric program:
$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

minimize
ř

αP∆pfq

λ
pαq
0

‰0

λ
pαq
0 |fα|1{λ

pαq
0

ś

jPnzpαq
jě1

ˆ

λ
pαq
j

aα,j

˙λ
pαq
j {λ

pαq
0

over the subset R1 of R

defined by

p1q
ř

αP∆pfq

paα,j{fαpjqq ď 1 for every 1 ď j ď n.

p2q |fα|
ś

jPnzpαq
jě1

ˆ

λ
pαq
j

aα,j

˙λ
pαq
j

ď 1 for every α P ∆pfq with λ
pαq
0 “ 0.

Proof. Let Mppaαqq denote the function to minimize. From the definitions it follows that
the above qualifies as a geometric program, since Mppaαqq is a posynomial in the variables
aα,j for pα, jq P ∆pfq ˆ t1, . . . , nu. Moreover, the functions entering in the constraint in-
equalities are posynomials in the same variables; in fact the functions in constraint (1) are
even linear. By Theorem 3.5, fgp “ suptr : f0´r satisfies the conditions of Theorem 3.4u.
We see that

fgp “ suptr : f0 ´ r “ Mppaαqq, and the paαq satisfy the inequalities defining R1u

“ suptf0 ´ Mppaαqq : the paαq satisfy the inequalities defining R1u

“ f0 ´ inftMppaαqq : the paαq satisfy the inequalities defining R1u,

which completes the proof. �

4.1. Examples. We demonstrate our method and reflect our results by five examples.
All following geometric programs are solved via the Matlab solver gpposy1.

(1) First, consider the polynomial f “ 1
4

` x8
1 ` x2

1x
6
2 ` 4x3

1x
3
2. The geometric program

proposed in [GM12] is infeasible, since the pure power x8
2 is missing in the polyno-

mial to make the Newton polytope a standard simplex of edge length 8. However,
Newpfq is an H-simplex and we can use our results to compute fgp. Here, we have
∆ “ tαu “ tp3, 3qu. So, we introduce the variables aα,j for j P t1, 2u. Therefore,
by Corollary 4.2, we have to solve the following geometric program:

inf

#

1

4
¨ 44 ¨

ˆ

1

4

˙ 4

4

¨

ˆ

1

2

˙ 4

2

¨ a´1
α,1a

´2
α,2 : aα,1 ď 1, aα,2 ď 1

+

.

The optimal solution is given by aα,1 “ aα,2 “ 1 yielding m˚ “ 4 and hence
fgp “ 1

4
´ 4 “ ´3.75 “ fsos “ f˚ by Corollary 3.6.

(2) Let f “ 187
208

` x80
1 ` x78

2 ´ 8x5
1x

3
2. Again, the geometric program proposed in

[GM12] is infeasible. However, Newpfq is an H-simplex and with λ
p5,3q
1 “ 1{16

1The Matlab version used was R2011a, running on a desktop computer with Intel(R) Core(TM)2 @
2.33 GHz and 2 GB of RAM.
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and λ
p5,3q
2 “ 1{26 for the convex combination of the interior exponent. Thus, our

corresponding geometric program is given by

inf

#

187

208
¨ 8

208

187 ¨

ˆ

1

16

˙ 13

187

¨

ˆ

1

26

˙ 8

187

¨ a
´ 13

187

α,1 ¨ a
´ 8

187

α,2 : aα,1 ď 1, aα,2 ď 1

+

.

Using the software Gloptipoly, see [HLL09], f˚ « ´5.6179 was computed
in 4327.2 seconds, i.e., approximately 1.2 hours. In contrast, using the geo-
metric program of Corollary 4.2, we get a global minimizer aα,1 “ aα,2 “ 1

and the optimal solution m˚ “ 187
208

¨
´

8208

1613¨268

¯ 1

187

and, hence, f˚ “ λ0 ´ m˚ “

187
208

¨

ˆ

1 ´
´

8208

1613¨268

¯ 1

187

˙

« ´5.6179 in 0.5 seconds.

(3) Let now f “ 17
20

` 3x8
1x

4
2 ` 2x6

1x
8
2 ´ 10x3

1x
3
2 ` x5

1x
4
2. Again, the geometric program

in [GM12] cannot be used but the geometric program in Corollary 4.2 with ∆ “
tα, αu “ tp3, 3q, p5, 4qu now reads as follows.

inf

"

9

1250
¨ 2

1

3 ¨ 5
2

3 ¨ a
´ 4

3

α,1 ¨ a´1
α,2 `

11

40
¨ 10

3

11 ¨ 3
9

11 ¨ 20
8

11 paα,1q
´ 3

11 paα,2q
´ 6

11

*

such that
aα,1 ` aα,1

3
ď 1 and

aα,2 ` aα,2

2
ď 1.

Here, the variables aα,j come from α “ p5, 4q and aα,j come from α “ p3, 3q.
Again, we use the Matlab solver gpposy to solve this geometric program with
the following code:

>> A0=[-4/3,-1,0,0;0,0,-3/11,-6/11]

>> A1=[1,0,0,0;0,0,1,0]

>> A2=[0,1,0,0;0,0,0,1]

>> A=[A0;A1;A2]

>> b0=[9/1250*2^(1/3)*5^(2/3);11/40*10^(3/11)*3^(9/11)*20^(8/11)]

>> b1=[1/3;1/3]

>> b2=[1/2;1/2]

>> b=[b0;b1;b2]

>> szs=[size(A0,1);size(A1,1);size(A2,1)]

>> [x,status,lambda,nu]=gpposy(A,b,szs)

The optimal solution is given by

paα,1, aα,2, aα,1, aα,2q “ p0.5910, 0.1685, 2.4090, 1.8315q

yielding m˚ « ´6.644 and hence fgp “ 17
20

´ 6.644 « ´5.794. We also have
fsos “ fgp “ f˚ by Corollary 3.6.

(4) The Motzkin polynomial f “ 1
3

` 1
3
x4
1x

2
2 ` 1

3
x2
1x

4
2 ´x2

1x
2
2 satisfies fgp “ f˚ “ 0 again

by Corollary 3.6. However, fsos “ ´8.
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(5) Let f “ 5
12

` 5
24
x6
1 ` 5

24
x2
1x

4
2 ` 5

24
x2
1x

2
2 ´ 5

8
x1x2. Note that this f is not even ST in

view of the square 5
24
x2
1x

4
2 and p2, 2qT being contained in the interior of its Newton

polytope. However, one can still define a GP in the sense of Corollary 4.2. In this
case one can check that

fgp « ´0.41 ă fsos “ f˚ « 0.196.

5. Applications to Constrained Polynomial Optimization

Based on our previous results we can derive some initial applications for constrained
polynomial optimization. We follow the set-up in [GM13], which we recall here first. Let
g1, . . . , gs P Rrxs “ Rrx1, . . . , xns and consider the semialgebraic set

K “ tx P R
n : gipxq ě 0, 1 ď i ď su.

We consider the constrained polynomial optimization problem

f˚
K “ inf

xPK
fpxq.

For a polynomial f P Rrxs, in order to derive lower bounds for f˚
K , we define a new

function given by

hpµq “ f ´
s

ÿ

j“1

µjgj

for µ “ pµ1, . . . , µsq P r0,8qs. Note that for every fixed µ the function hpµq is a polynomial
in Rrxs. In [GM13] Ghasemi and Marshall use a method first developed in their paper
[GM12] to obtain a lower bound for hpµq via geometric programming for every given µ. We
denote this bound as hpµqGM in order to distinguish it from our bound given by geometric
programming, which we introduced in the previous sections. Let g “ pg1, . . . , gsq. Since
there exists a bound hpµqGM for every choice µ P r0,8qs, we can take the supremum
spf, gqGM and obtain

spf, gqGM “ supthpµqGM : µ P r0,8qsu ď f˚
K .

Ghasemi and Marshall’s approach does not allow in general to compute spf, gqGM via a
geometric program directly, but they give an optimization problem [GM13, program (2)
on page 4], which can be relaxed to a geometric program; see [GM13, Theorem 4.1. and
4.2. (1)]. Here, we show that a similar optimization problem can be formulated in our
setting.

Assume that for a given µ P r0,8qs the Newton polytope Newphpµqq is a simplex with
even vertex set t0, αp1q, . . . , αpnqu Ă p2Nqn. The results in Sections 3 and 4 imply that
hpµqgp is a lower bound for hpµq on R

n, which also implies that it is a lower bound for
f on the semialgebraic set K. Namely, let, again, g “ pg1, . . . , gsq, and let hpµqgp be the
optimal value of the geometric program introduced in Section 4 for the polynomial hpµq.
Then we obtain similarly as in [GM13]

spf, gq “ supthpµqgp : µ P r0,8qsu ď f˚
K .
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Conveniently, write hpµq “ ´
řs

j“0 µjgj for g0 “ ´f and µ0 “ 1 and define ∆phpµqq in

the usual sense as the set of exponents of hpµq not defining a monomial square. Moreover,
we define ∆phq “ ∆pfq Y ∆p´g1q Y ¨ ¨ ¨ Y ∆p´gsq. Note that ∆phpµqq Ď ∆phq for all µ.
We remark that for a given µ the geometric program from Section 4 is feasible only if

hpµq is an ST-polynomial and hence particularly only if Newphpµqq is a simplex. If this
is not the case, then we set hpµqgp “ ´8. Note in this context that the support as well
as the Newton polytope of hpµq can change if certain µj equal 0 or if term cancellation
occurs. Additionally, we can assume that all ´gj do not contain monomial squares; see
[GM13, Section 3, second paragraph]. Analogously as in the previous sections, we denote

by tλ
pα,µq
0 , . . . , λ

pα,µq
n u the barycentric coordinates of the lattice point α P pNewphpµqqXN

nq
with respect to the vertices of the simplex Newphpµqq. For every α P ∆phq we define a set

Rα “ taα : aα “ paα,1, . . . , aα,nq P R
n
ą0u.

Furthermore, we define the nonnegative real set R as

R “ r0,8qs ˆ
ą

αP∆phq

pRα ˆ Rě0q.

Hence, R is the Cartesian product of r0,8qs and |∆phq| many copies R
n
ą0 ˆ Rě0; each

given by one Rα with α P ∆phq and a Rě0. We define the function p from R to Rě0 as

ppµ, tpaα, bαq : α P ∆phquq “

s
ÿ

j“1

µjgjp0q `
ÿ

αP∆phq

λ
pα,µq
0

‰0

λ
pα,µq
0 ¨ b

1

λ
pα,µq
0

α ¨
ź

jPnzpαq
jě1

˜

λ
pα,µq
j

aα,j

¸

λ
pα,µq
j

λ
pα,µq
0

where, analogously as before, hpµqα denotes the coefficient of the term with exponent α

of hpµq.

We consider the following optimization problem:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

minimize ppµ, tpaα, bαq : α P ∆phquq over the subset of R

defined by:

p1q
ř

αP∆phq

aα,j ď hpµqαpjq for all 1 ď j ď n and

p2q
ś

jPnzpαq
jě1

ˆ

aα,j

λ
pα,µq
j

˙λ
pα,µq
j

ě |hpµqα|
for every α P ∆phq

with λ
pα,µq
0 “ 0

p3q |hpµqα| ď bα
for every α P ∆phq

with λ
pα,µq
0 ‰ 0

(5.1)

Note that for a given µ P r0,8qs constraint (3) allows to choose bα “ 0 if α P ∆phqz∆phpµqq.
We remark that constraint (3) is only necessary in order to be able to transform this
program into a geometric program under certain conditions; see Theorem 5.2. Namely,
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without the constraint (3) we would have to replace the term b

1

λ
pα,µq
0

α by |hpµqα|
1

λ
pα,µq
0 in p.

But |hpµqα|
1

λ
pα,µq
0 is not a posynomial in general.

A key observation is that the optimal value of this optimization problem yields a lower
bound for spf, gq. This is an analogue result to [GM13, Theorem 3.1.].

Theorem 5.1. Let γ be optimal value of the above optimization problem. Then f0 ´ γ ď
spf, gq.

Proof. Consider a fixed µ such that the optimization problem (5.1) restricted to this µ

is feasible. Choose bα “ |hpµqα| and apply Corollary 4.2 to the polynomial in x P R
n,

hpµq “ hpµqpxq. Then

ÿ

αP∆phq

λ
pα,µq
0

‰0

λ
pα,µq
0 ¨ b

1

λ
pα,µq
0

α ¨
ź

jPnzpαq
jě1

˜

λ
pα,µq
j

aα,j

¸

λ
pα,µq
j

λ
pα,µq
0

is an upper bound for γphpµqq “ hpµqp0q ´ hpµqgp. Note that |bα| “ 0 for all α P
∆phqz∆phpµqq. Hence, for a fixed µ every feasible point pµ, tpaα, bαq : α P ∆phquq of
(5.1)

f0 ´
s

ÿ

j“1

µjgjp0q ´
ÿ

αP∆phq

λ
pα,µq
0

‰0

λ
pα,µq
0 ¨ b

1

λ
pα,µq
0

α ¨
ź

jPnzpαq
jě1

˜

λ
pα,µq
j

aα,j

¸

λ
pα,µq
j

λ
pα,µq
0

is a lower bound for hpµqgp “ hpµqp0q ´ γphpµqq. It follows that f0 ´ γ is a lower bound
for spf, gq.

�

Although hpµqgp is a geometric program, this is not true in general for the optimization
problem (5.1). Actually, (5.1) is not even a signomial program, i.e., a program defined as
a geometric program except that the nonnegativity condition of the coefficients dropped.
This is due to the absolute sign |hpµqα| in condition (3) depending on the choice of µ.
Only if additional assumptions are satisfied one can guarantee that (5.1) is a signomial or
geometric program, as we show in the following theorem. However, in our follow-up paper
[DIdW16] we examine conditions on how (5.1) can be turned into signomial programs and
subsequently relaxed to geometric programs in order to find lower bounds for f˚

K .

Theorem 5.2. The optimization problem (5.1) restricted to µ P p0,8qs is a signomial
program if for every α it holds that hpµqα has the same sign for every choice of µ. If
additionally for every j “ 1, . . . , n it holds that hpµqαpjq is a monomial, all coefficients
hpµqαpjq corresponding to the vertices tαp1q, . . . , αpnqu of Newphpµqq are strictly positive,
all hpµqα are strictly positive, and all gjp0q for j “ 1, . . . , s are greater or equal than zero,
then (5.1) is a geometric program.
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Proof. If we restrict (5.1) to µ P p0,8qs, then all involved functions are almost signomials
by definition, since all the variables µ1, . . . , µs and aα,1, . . . , aα,n for all α P ∆phq are
real and strictly positive. The only remaining issue is the absolute value of |hpµqα| in the
constraints (2) and (3). Since hpµqα “ µ0pg0qα`µ1pg1qα`¨ ¨ ¨`µspgsqα, the sign of hpµqα in
general depends on µ such that we cannot express the absolute value unless µ is fixed. But
if the sign of hpµqα is constant for every choice of µ, then we can write |hpµqα| as ˘hpµqα,
that is ˘pµ0pg0qα ` µ1pg1qα ` ¨ ¨ ¨ ` µspgsqαq in the constraints (2) and (3). This turns the
constraints (2) and (3) into signomials or even posynomials if additionally all hpµqα have
positive coefficients. Hence, the first part follows with the definition of a signomial and
Definition 4.1. In order to obtain an expression of the form that a posynomial is ď 1 in
constraint (1) the hpµqαpjq needs to be amonomial, which the left hand side can be divided
by. While this is not true in general, this condition is guaranteed by the assumptions of
the theorem. Moreover, the sums hpµqαpjq for j “ 1, . . . , n and

řs

j“1 µjgjp0q may not
involve a negative sign in order to be a posynomial. This also is satisfied by assumption.
All remaining terms were already considered in the first part and hence the second part
follows. �

We close the section with an example showing the capabilities of our program compared
to the corresponding one by Ghasemi and Marshall in [GM13].

Example 5.3. Let mpx, yq “ 1`x4y2 `x2y4 ´ 3x2y2 be the Motzkin polynomial. Assume
that we would like to minimize the Motzkin polynomial on the semi-algebraic set

K “ tpx, yq P R
2 : x ¨ y ě 0u.

In other words, K “ R
2
ě0 Y R

2
ď0. By construction it follows that hpµqpx, yq “ mpx, yq ´

µ ¨ xy. Since mpx, yq has global minimizers p1, 1q and p´1,´1q we have m˚ “ m˚
|K. For

µ “ 0 we have hp0qpx, yq “ mpx, yq and thus hp0qgp “ mgp. By example (4) in Section 4.1
we know mgp “ m˚ “ 0. Moreover, if we restrict the optimization program (5.1) applied
on hpµq to the case µ “ 0, then it coincides with our geometric program from Corollary
4.2 applied on mpx, yq. This implies mgp ď 1 ´ γ where γ denotes the optimal value of
the optimization program (5.1). Hence, we obtain in total

0 ď mgp “ hp0qgp ď 1 ´ γ ď spm, xyq ď m˚
|K “ m˚ “ mgp “ 0.

Thus, we can conclude

1 ´ γ “ spm, xyq “ m˚
|K “ m˚ “ 0.

Now, we try to apply the program proposed by Ghasemi and Marshall [GM13, Program
(2) before Theorem 3.1.] on the same problem. Since the term xy corresponds to an
interior point in the Newton polytope of Newpmq, we have Newphpµqq “ Newpmq for
every choice of µ. But Newpmq is not a scaled standard simplex. Hence, the program by
Ghasemi and Marshall is infeasible for all choices of µ and therefore it is infeasible in
total.
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6. Conclusion and Outlook

We have proposed a new geometric program providing lower bounds for polynomials
that significantly extends the existing one in [GM12]. This extension sheds light to the
crucial structure of the Newton polytope of polynomials. In particular, our results serve
as a next step in optimization of polynomials with simplex Newton polytopes and connect
this problem to

(1) the recently established sonc nonnegativity certificates, and
(2) the construction of simplices with an interesting lattice point structure, namely,

what we have called H-simplices in this article.

In [GM12] Ghasemi and Marshall observed a trade off between bounds based on geometric
programming fgp and bounds based on semidefinite programming fsos. The bound fsos
was better but its computation took far longer. This trade off cannot be observed in
our refinement. While fast solvability of the geometric programs still seems to hold, the
bounds fgp and fsos are not comparable in general. There exist classes for which fgp ď fsos
holds [GM12], but there also exist classes with fgp ě fsos (Corollary 3.6). The latter is
a crucial case due to the fast solvability of geometric programs. It would be interesting
to discover more classes for which the bounds are comparable. Hence, an analysis of the
gap fsos ´ fgp is an important task having major impact on computational complexity of
solving polynomial optimization problems. Equivalently, looking from a convex geometric
viewpoint, it would be interesting to analyze the gap between the cone of sums of squares
and the cone of sums of nonnegative circuit polynomials as well as the gap between the
cone of nonnegative polynomials and the cone of sums of nonnegative circuit polynomials.
Furthermore, we showed that the methods developed in this paper cannot only be

applied to global but also to constrained polynomial optimization problems. In the follow-
up paper [DIdW16] we discuss the constrained case and particularly the optimization
problem (5.1) in more detail, thereby extending results in Section 5 and results in [GM13].
We will also connect these problems again to the geometry of the convex cone of sonc’s.
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