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Abstract

Adipose tissue macrophages (ATM) are implicated in adipose tissue inflammation and

obesity-related insulin resistance. Maternal low protein models result in fetal program-

ming of obesity. The study aims to answer whether maternal undernutrition by protein

restriction affects the ATM M1 or M2 phenotype under postnatal high fat diet in F1 off-

spring. Using a rat model of prenatal low protein (LP, 8% protein) diet followed by a post-

natal high fat energy diet (HE, 45% fat) or low fat normal energy diet (NE, 10% fat) for 12

weeks, we investigated the effects of these diets on adiposity, programming of the off-

spring ATM phenotype, and the associated inflammatory response in adipose tissue. Fat

mass in newborn and 12-week old LP fed offspring was lower than that of normal protein

(20%; NP) fed offspring; however, the adipose tissue growth rate was higher compared to

the NP fed offspring. While LP did not affect the number of CD68+ or CD206+ cells in adi-

pose tissue of NE offspring, it attenuated the number of these cells in offspring fed HE. In

offspring fed HE, LP offspring had a lower percentage of CD11c+CD206+ ATMs, whose

abundancy was correlated with the size of the adipocytes. Noteworthy, similar to HE treat-

ment, LP increased gene expression of IL-6 within ATMs. Two-way ANOVA showed an

interaction of prenatal LP and postnatal HE on IL-6 and IL-1β transcription. Overall, both

LP and HE diets impact ATM phenotype by affecting the ratio of CD11c+CD206+ ATMs

and the expression of IL-6.
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Introduction

Epidemiologic studies have shown that low birth weight (LBW) is associated with increased

incidence of obesity, coronary heart disease, type 2 diabetes and metabolic syndrome [1–5]. A

well-established cause of LBW is maternal under nutrition–induced intrauterine growth

restriction (IUGR) [6, 7]. As proposed in the thrifty phenotype hypothesis [8], maternal

under-nutrition slows fetal growth. This enhances the fetus’ ability to survive by reserving

nutrients for developing critical organs, such as brain, kidney and heart, at the expense of adi-

pose, muscular and skeletal tissue development. However, when these offspring are exposed to

over-nutrition, the greater ability to efficiently store nutrients results in obesity in later life [9–

11]. In agreement with this hypothesis, IUGR results in subsequent postnatal catch-up growth

and development of obesity [12, 13]. Maternal low protein models of fetal programming have

been widely used to investigate the mechanisms linking maternal nutrition with F1 obesity

[14–16]. A common trait in the F1 offspring is an age-related loss of glucose tolerance and

development of insulin resistance [17–20]. In order to understand the underlying mechanisms

for the glucose intolerance associated with IUGR, studies have focused on the alterations in

insulin secretion and action that occur during catch-up growth [21].

The obesity epidemic has resulted in an explosion of obesity-related health problems,

including insulin resistance and type II diabetes. The chronic low-grade inflammation that

occurs within the adipose tissue of obese subjects contributes to pathogenesis of insulin resis-

tance [22]. Macrophages are the major adipose tissue-resident immune cell types involved in

the development of chronic inflammation [22–24]. The adipose tissue of obese mice has a 2- to

5-fold increase in macrophage infiltration, along with higher systemic levels of macrophage-

secreted inflammatory cytokines [22].

Macrophages show heterogeneity in their function depending on the resident microenvi-

ronment. Classically activated or M1 macrophages (CD11c+) produce pro-inflammatory

cytokines (e.g. TNF-α, IL-1β and IL-6) and are the predominant type of adipose tissue mac-

rophages (ATMs) in dietary-induced obese (DIO) humans and animals [25, 26]. M1 macro-

phages are sub-divided into M1a and M1b types based on the absence or presence of CD206,

respectively [27]. Alternatively activated or M2 macrophages (CD11c-CD206+) secret anti-

inflammatory cytokines (e.g. IL-4, IL-10 and IL-1 receptor antagonist) and are a dominant

population of ATM in lean mice [26, 28, 29]. In contrast to the progress in defining the role

of ATM in the pathogenesis of obesity-related insulin resistance, little is known of how

maternal undernutrition influences ATM phenotypes of offspring consuming normal or

high energy diets.

Using a rat model of a prenatal low protein (LP, 8% protein) diet followed by a normal or a

postnatal high fat energy diet (HE, 45% fat) for 12 weeks, effects of these diets on programming

of the offspring ATM phenotype were investigated in the current study. We found that mater-

nal LP did not affect the number of CD68+ or CD206+ cells in adipose tissue of NE offspring,

but increased the gene expression of IL-6 and IL-1β. However, maternal LP diet interact with

postnatal HE diet interacts on the catch up growth and the enlargement of the offspring adipo-

cyte, which further correlates with the ATM phenotype.

Materials and methods

Study design

Two month old obese-prone Sprague-Dawley male and female rats were purchased from

Charles River (Wilmington, MA) and maintained on a chow diet for 2 weeks prior to the start

of experiment diets. Twelve female Sprague Dawley rats were placed on either the control
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(NP, 20% protein, n = 12 litters) or low-protein (LP, 8% protein, n = 12 litters) diet 2 days after

conception and remained on this diet throughout gestation and lactation. The females were

mated for 2 days. Pregnancy was confirmed when plugs were found. Pregnant females were

then placed in a single cage and weighed weekly for 3 week gestational period. At birth, litter

size and birth weight were recorded and offspring (F1) were randomly culled to 8 pups (4

male, 4 female). We used 4 male pups from each dam for further experiments. At weaning,

one-half of the male offspring born to dams fed LP were placed on a diet containing an energy

density of 3.84 kcal/g (10% fat energy, 70% carbohydrate energy, and 20% protein energy;

hence referred to as the NE—normal energy diet), the other half were given a diet containing

4.73 kcal/g (45% fat energy, 20% carbohydrate energy, and 20% protein energy; hence referred

to as the HE—high energy diet) (Table 1). Because rats fed HE ate less, these diets had higher

concentrations of vitamins, minerals, and protein such that these nutrients in the HE diet were

equivalent to the NE diet on a per kcal basis (Table 2). Offspring were divided into four groups:

NP+NE, LP+NE, NP+HE, and LP+HE. Offspring were maintained on these diets for 12

weeks. The food efficiency was determined by dividing body weight gain of each experimental

mice by the total energy intake.

All animals were caged in a controlled environment with a 12-hour light, 12-hour dark

cycle and received pathogen-free water. At the end of 12-week postnatal diets, rats were

injected with xylazine (Rompon, Moboay Inc., Shawnee, KS) and ketamine (Ketaset, Aveco

Inc., Fort Dodge, IA) and sacrificed by exsanguinations according to the USDA ARS animal

care and use committee guidelines.

The animal use and care protocol was approved by USDA Agricultural Research Service

Animal Care and Use Committee (Permit Number: Claycombe-Prog04). Rats were injected

with xylazine (Rompon, Moboay) and ketamine (Ketaset, Aveco) and killed by exsanguina-

tion, and all efforts were made to minimize suffering.

Table 1. Prenatal low and normal protein diet composition.

Normal Protein (NP) Low Protein (LP)

Ingredient g kcal g kcal

Casein 200 800 80 320

L-cysteine 3 12 3 12

Corn Starch 310 1240 390.82 1563.3

Maltodextrin 35 140 35 140

Sucrose 297.5 1190 337.91 1351.6

Cellulose 50 50

Soybean oil 25 225 25 225

Lard 20 180 20 180

CaCO3 12.5 7.27

CaHPO4 4

Mineral mix 35 35

Vitamin mix 10 40 10 40

Choline bitartrate 2 2

Total 1000 3827 1000 3827

wt% kcal% wt% kcal%

Protein 20.3 21.22 8.3 8.66

Carbohydrate 67.24 67.26 79.36 79.83

Fat 4.5 10.58 4.5 10.57

doi:10.1371/journal.pone.0169581.t001
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Antibodies

Mouse anti-rat CD11b/c PerCP-eFluor1 710 (Cat#46–0110) and its isotype control (Cat#46–

4724) for flow cytometry were purchased from eBioscience (San Diego, CA). Anti-Mouse Ig

APC (Cat# 550826) for flow cytometry was purchased from BD bioscience (San Jose, CA) and

Donkey Anti-Rabbit IgG PE (Cat#12-4739-81) was from eBioscience (San Diego, CA). Anti-

rat CD68 FITC (Cat#SM1550F) for flow cytometry was from Acris-antibodies (San Diego,

CA). Rabbit anti-rat CD206 (Mannose Receptor antibody) (Cat#ab64693), mouse anti-rat

CD11c (Cat#ab11029) and mouse anti-rat CD68 (Cat#ab53444) for immunohistochemical

staining were from Abcam (Cambridge, MA).

EchoMRI measurements of body composition

Whole body composition (fat mass, lean mass, and total body water) was determined biweekly

without any sedation using nuclear magnetic resonance technology with EchoMRI700™ instru-

ment (Echo Medical Systems, Houston, TX) during the 12 week postnatal diet period.

Stromal Vascular Cell (SVC) isolation and FACS analysis

Epididymal fat pads were weighed, rinsed 3 times in phosphate-buffered saline (PBS), and the

SVCs were isolated as described previously [30]. SVCs were immunostained with primary

antibodies for 30 min at 4˚C followed by incubation with fluorescent-bounded secondary anti-

body for another 30 min at 4˚C in dark. SVCs were analyzed using an Accuri C6 flow cytome-

ter (BD Accuri Cytometers, Ann Arbor, MI), and data were analyzed with FlowJo 7.6 software

(Treestar Inc., Ashland, OR).

Table 2. Postnatal normal and high fat diet composition.

Normal Protein (NP) Low Protein (LP)

Ingredient g kcal g kcal

Casein 200 800 80 320

L-cysteine 3 12 3 12

Corn Starch 315 1260

Maltodextrin 35 140 125 500

Sucrose 350 1400 215 860

Cellulose 50 50

Soybean oil 25 225 25 225

Lard 20 180 20 180

CaCO3 12.5 12.5

Mineral mix 35 35

Vitamin mix 10 40 10 40

Choline bitartrate 2 2

Total 1057.5 4057 857.5 4057

3.84 kcal/g 4.73 kcal/g

wt% kcal% wt% kcal%

Protein 19.20 20.01 23.67 20.01

Carbohydrate 66.19 69.12 43.13 33.62

Fat 4.26 9.98 23.91 45.48

doi:10.1371/journal.pone.0169581.t002
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Adipose tissue analysis

Experimental offspring mice were euthanized by CO2 inhalation. Visceral white adipose tis-

sue was immediately collected and fixed in 10% formalin/PBS. The tissue was embedded in

paraffin blocks after processing and was cut into 5-μm-thick slices using a TC-2 tissue sec-

tioner (Sorvall Instruments). Tissue slices were mounted onto positive pre-charged glass

slides to ensure optimal adhesion. CD68 (Acris-antibodies, San Diego, CA), CD206

(Abcam, Cambridge, MA) and CD11c (Abcam, Cambridge, MA) were immunostained

using a VECTASTAIN Elite Avidin/Biotin-Complex (ABC) kit for mouse IgG or a VEC-

TASTAIN Elite ABC kit for rabbit IgG (Vector Laboratory). Staining of the tissue was

visualized under an Olympus BH-2 microscope and pictures were taken using a Leica

M165FC camera and Leica Application Suit V3 was used for picture processing. The num-

ber of positive cells per 1000 adipocytes in each staining section was blindly counted. The

average of the five counts was used for data analysis. Adipocyte diameter was measured

using Image J software. Two hundred cells were randomly counted in each sample. The adi-

pocytes of five animals from each group were counted. An average diameter was recorded

for each animal.

Isolation of CD68+ macrophages from SVCs

SVCs were treated with 1% Tween-20 PBS for 30 minutes at room temperature. Then SVCs

were incubated with anti-rat CD68 FITC (Acris-antibodies, San Diego, CA) for 30 minutes at

4˚C in dark and washed with Magnetic Cell Separation (MACS) buffer (Miltenyi Biotec Inc.,

Auburn, CA). SVCs were then incubated with anti-FITC MicroBeads (Miltenyi Biotec Inc.,

Auburn, CA) for 15 minutes at 4˚C in dark and washed twice with MACS buffer. The pellets

were re-suspended in 500 μl MACS buffer and flow through MS columns (Miltenyi Biotec

Inc., Auburn, CA) according to the manufacturer’s manual. The FITC MicroBeads bound

CD68+ cells were collected for RNA extraction.

Real-time PCR

Total RNA of CD68+ cells from SVCs was extracted using Invitrogen Trizol reagent. cDNA

was synthesized using Qiagen RT2 First Strand Kit (Qiagen, Valencia, CA). Primers were

designed as listed in Table 3. Real time PCR was performed using an ABI Prism 7500 PCR sys-

tem (Applied Biosystems, Foster City, CA). The ΔCT values were used for statistical analysis

for real time-PCR experiments. The standard deviation of the fold change in gene expression

for real time-PCR data was derived by the delta method [31].

Statistical analysis

The normality of data was ensured using Shapiro-Wilk test. Differences between the groups

were analyzed using Fishers’ Least Significant Difference (LSD) test such that the multiple

Table 3. Primers used for RT-PCR experiment.

Gene forward primer reverse primer

IL-6 5’-ggtttgccgagtagacctca-3’ 5’-gtggctaaggaccaagacca-3’

IL-1β 5’- aaagaaggtgcttgggtcct-3’ 5’- caggaaggcagtgtcactca-3’

MCP-1 5’- ccgactcattgggatcatct-3’ 5’- tagcatccacgtgctgtctc-3’

Arg1 5’- gacatccacaaaggccagat-3’ 5’- tatcggagcgcctttctcta-3’

IL-10 5’-tgggaagtgggtgcagttat-3’ 5’- gctcagcactgctatgttgc-3’

doi:10.1371/journal.pone.0169581.t003
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comparisons between groups were taken into account. Fisher’s LSD test was performed by

first carrying out one-way analysis of variance (ANOVA) for all four treatment groups and

then conducting two-group pairwise t-tests only for outcomes showing statistical signifi-

cance in the ANOVA tests. Because two factors, maternal (LP vs NP) and postnatal (HE vs

NE), were involved in the experimental design, two-way ANOVA was used to assess the

main effects and the interaction between the two factors. The correlation between the ratio

of M1b cells to M1 cells and the sizes of adipose cells were analyzed using ordinary least

squares regression analysis. The M1b ratio data were logarithm transformed prior to analysis

because Breusch-Pagan test found that the original ratios did not fit a linear model. All analy-

ses were carried out using SAS1 JMP software and R statistical programming language. The

significance level of statistical test was defined as P<0.05. Data in graphs are presented as

mean ± SEM and sample size n. Bars bearing different letters indicated significant difference

between the bars (P<0.05).

Results

Prenatal LP offspring had lower adipose tissue mass and higher adipose

tissue growth rate compared to NP offspring

LP offspring had lower body and adipose tissue weights at weaning compared to the NP off-

spring (Fig 1A and 1D). While these prenatal LP-induced differences remained significant at

postnatal week 12, offspring fed the postnatal HE diets had greater body weights and body fat

mass than the NE rats, regardless of prenatal diet (Fig 1B and 1E). However, when calculated

as fold change, LP (vs. NP) increased body weight gain independent of postnatal diets, while

HE diets only increased body weight gain in LP offspring, but not in NP offspring (Fig 1C).

The prenatal LP and postnatal HE synergistically increased the weight gain and fat gain of off-

spring, with LP+HE rats having the largest catch-up weight gain and fat gain compared to NP

+HE rats (Fig 1C and 1F).

Offspring fed postnatal HE had larger visceral adipocytes compared to offspring fed NE.

However, the prenatal LP diet diminished this effect of HE because LP+HE rats had smaller

adipocytes compared to NP+HE rats (Fig 1G and 1H). Since feed efficiency (body weight gain/

energy intake) is an important contributing factor in adipose tissue weight gain, we therefore

calculated the feed efficiency of the offspring. The results showed that feed efficiency were sig-

nificantly increased in LP offspring, but not in the HE offspring, although feed efficiency in

NP+HE offspring was slightly higher than NE+NP offspring. Clearly, this result does not

explain the adipose tissue weight gain (Fig 1I).

Prenatal LP prevented CD68+ and CD206+ cell infiltration in visceral

adipose tissue of DIO rats

We have summarized the macrophage markers used in our study for M1, M2 and subtypes of

M1 macrophages in Table 4. The number of CD68+ cells in each group was normalized to the

number of CD68+ macrophages in the NP+NE group. More ATM were observed in HE off-

spring compared to NE offspring regardless of prenatal diet (HE vs. NE on NP diet: 2.44±0.05

vs. 1.00±0.11, P<0.01; HE vs. NE on LP diet: 0.89±0.27 vs. 1.53±0.03, P<0.05). The prenatal

LP diet decreased the number of CD68+ ATM only in offspring fed HE diets (Fig 2A–2I) (LP

vs. NP on HE diet: 2.44±0.05 vs. 1.53±0.03, P<0.01).

CD11c+ cells (Fig 3A–3H) and CD68+ cells (Fig 2A–2H) were highly recruited to the crown

like structure (CLS), but much more scattered in non-CLS regions of rats from HE groups.

Interestingly, CD68+ or CD11c+ cells aggregate more around adipocytes in LP+NE rats than

Maternal low protein diet and adipose macrophages
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in NP+NE rats. CD11c+ cells were much more frequent in NP+HE rats compared to NP+NE

rats (HE vs. NE on NP diet: 1.30±0.02 vs. 1.00±0.03, P<0.01). However, the difference in

CD11c+ cell populations between LP+HE and LP+NE rats was not significant (Fig 3R). Over-

all, LP did not change the number of CD11c+ cells in adipose tissue. There were 21.3% more

Fig 1. Prenatal LP offspring had reduced adipose tissue mass but significantly increased adipose tissue gain. A and B). Body weight of the

experimental rats was measured at week 0 (weaning weight) and week 12. Data are presented as mean ± SEM, n = 9–12. C). Body weight change was

calculated by dividing the body weight (g) and then subtracted one at week 12 by the weaning body weight (g). Data are presented as mean ± SEM,

n = 9–12. D-E) Body fat mass was measure by EchoMRI at week 0 (weaning weight) and week 12. Data are presented as mean ± SEM, n = 9–12. F)

Body fat change was calculated by dividing the fat weight (g) at week 12 by the weaning fat weight (g). Data are presented as mean ± SEM, n = 9–12.

Bars bearing different letters significantly differ at P<0.05. G and H) Visceral fat tissue was collected for tissue slide sectioning and H&E staining. Eight

hundred adipocytes from each rat sectioning were randomly picked up and the size was measured by ImageJ. Five rats were counted in each group.

Size of the adipocytes was normalized to that of the NP+NE rats. Data are presented as mean ± SEM, n = 5. Bars bearing different letters significantly

differ at P<0.05. I). The feed efficiency was calculated by “body weight gain/energy intake x100”. Data are presented as mean ± SEM, n = 5. Bars

bearing different letters significantly differ at P<0.05.

doi:10.1371/journal.pone.0169581.g001
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CD206+ cells in NP offspring with HE diets compared to those with NE diets (Fig 3S) (HE vs.

NE on NP diet: 1.21±0.12 vs. 1.00±0.03, P<0.05). Whereas HE increased CD206+ cells in NP

offspring, LP decreased CD206+ population in rats fed the HE diet, but not in rats fed the NE

diet (Fig 3S) (LP vs. NP on HE diet: 1.21±0.12 vs. 1.03±0.04, P<0.05).

HE diet increased the percentage of M1b ATM, while LP inhibited ATM

phenotype switch to M1b in rats fed with HE diets

The percentage of CD11c+ cells among CD11b/c+ population was not changed by either HE or

LP diets (Fig 4A). There was no change in percentage of CD11c-CD206+ among the CD11b/c+

Table 4. Identification markers used in our study to classify macrophage phenotypes.

Classification Surface marker

M1 CD11b/c+CD11c+ M1a CD11b/c+CD11c+ CD206-

M1b CD11b/c+CD11c+ CD206+

M2 CD11b/c+ CD11c-CD206+

doi:10.1371/journal.pone.0169581.t004

Fig 2. Prenatal LP prevented CD68+ ATM infiltration triggered by HE diets. A-I) ATMs were stained with anti-CD68

antibody. The number of ATMs was counted per 1,000 adipocytes area. Three randomly selected areas were counted for

each rat. Average number of the ATMs was used for further statistical analysis. Number of CD68 positive cells in each

group is normalized to the number of CD68+ macrophages in NP+NE group. Data are presented as mean ± SEM,

n = 6–9.”#” P<0.05 compared to NE; “*” P<0.05 compared to NP. E, F, G, and H are enlargements of the framed fields of

A, B, C, and D, respectively. Magnificence of A-D: 200X; E-H 400X.

doi:10.1371/journal.pone.0169581.g002
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population due to LP or HE diets (Fig 4B). The M1/M2 ratio also was not changed among all

four groups (Fig 4C). However, the percentage of CD11c+CD206+ in total CD11c+ (M1b/M1)

was enhanced by HE in NP fed rats (Fig 4D) (HE vs NE on NP diet: 51.1%±0.9% vs. 28.8%

±1.7%, P<0.05). However, a prenatal LP diet blocked the increase in M1b induced by HE diets

Fig 3. HE diets enhanced number of CD11c+ or CD206+ cells in visceral adipose tissue, while LP

inhibited the increase of CD11c+ or CD206+ cells due to HE diets. A-H and R). Visceral adipose tissue

was stained with anti-CD11c. Number of CD11c+ cells was counted per 1,000 adipocytes area. Three

randomly selected areas were counted for each rat. Number of CD11c positive cells in each group is

normalized to the number of CD11c+ macrophages in NP+NE group. Average number of the CD11c+ was

used for further statistical analysis. Data are presented as mean ± SEM, n = 5.”#” P<0.05 compared to NE; “*”

P<0.05 compared to NP. E, F, G, and H are enlargements of the framed fields of A, B, C, and D, respectively.

I-P and S). Visceral adipose tissue was stained with anti-CD206. Number of CD206+ cells was counted per

1,000 adipocytes area. Three randomly selected areas were counted for each rat. Number of CD206 positive

cells in each group is normalized to the number of CD206+ macrophages in NP+NE group. Average number

of the CD206+ was used for further statistical analysis. Data are presented as mean ± SEM, n = 9–12. M, N,

O, and P are enlargements of the framed fields of I, J, K, and L, respectively. Magnificence of A-D and I-L:

200X; E-H and M-P 400X.

doi:10.1371/journal.pone.0169581.g003

Maternal low protein diet and adipose macrophages
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(Fig 4D, HE+NP vs. HE+LP) (LP vs NP on HE diet: 25.4%±0.7% vs. 51.1%±0.9%, P<0.01).

The percentage of M1b in M1 population was associated with the size of adipocytes (Fig 4E)

(R2 = 0.47232, P = 0.0094).

Prenatal LP and postnatal HE interacted on altering IL-6 and IL-1β
transcription in ATMs

There were no changes in the expression of M2 macrophage marker genes IL-10 and Arg-1 or

in gene expression of MCP-1 in any group, (Fig 5A–5C). Expression of IL-6 was increased in

NP+HE rats compared to NP+NE rats (Fig 5D) (HE vs. NE on NP diet: 10.0±3.8 vs. 1.0±0.04,

P<0.05). IL-6 expression was higher in LP compared to NP offspring (Fig 5D) (LP vs. NP on

NE diet: 16.8±7.2 vs. 1.0±0.04, P<0.05). Surprisingly, LP combined with HE did not enhance

IL-6 expression in a synergic manner. Instead, LP partially prevented the increase in IL-6

Fig 4. LP and HE impacts on ATMs plasticity. Isolated adipose tissue SVCs were stained with anti-CD11b/

c PerCP-eFluor® 710, anti-CD11c PE, anti-CD206 FITC for flow cytometry analysis. The M1% (A) and the

M2% (B) were measured within the CD11b/c+, marker for monocytes/macrophages population. Data are

presented as mean ± SEM, n = 9–12. Bars bearing different letters significantly differ at P<0.05.

doi:10.1371/journal.pone.0169581.g004
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expression in HE rats, although IL-6 expression still remained higher in LP+HE rats than NP

+NE rats (Fig 5D) (LP vs. NP on HE diet: 16.8±7.2 vs. 7.1±2.4, P<0.05). We did not observe

any transcriptional difference of IL-1β among all four groups (Fig 5E). However, two-way

ANOVA analysis indicated that prenatal LP is a contributing factor that significantly altered

the expression of IL-1β and IL-6 (Table 5). In addition, the interaction evaluation by two-way

ANOVA demonstrated antagonistic effect of LP and HE in regulating transcription of both IL-
6 and IL-1β (Table 5).

Haematoxylin Eosin (H&E) staining of visceral adipose tissue showed that CLS was more

frequent in HE rats compared to NE rats (HE vs NE on NP diet, 15±2 vs. 3±1, P<0.05). While

LP did not change CLS in NE rats, it decreased the number of CLS in HE rats (Fig 5F–5J).

There was an interaction of LP and HE in the formation of CLS (Table 5, P < .0001).

Discussion

Adipose tissue inflammation, contributed by macrophage infiltration into the adipose tissue, is

an important step in the pathogenesis of obesity-related complications. These ATM are pheno-

typically heterogeneous and present different plasticity in lean versus obese subjects [26].

ATM characteristics have been well described in high-fat diet-induced obesity or genetic-

Fig 5. LP increased IL-6 and IL-1β expression in isolated ATMs. A-E) Expression of Arg-1, IL-10, MCP-1, IL-6 and IL-1β
were detected by real-time PCR analysis. Data are presented as mean ± SEM, n = 3. Bars bearing different letters

significantly differ at P<0.05. F and G) H&E staining on visceral adipose tissue. The number of CLS was counted per 1,000

adipocytes area. Five randomly selected areas were counted for each rat. Average number of the CLS was used for further

statistical analysis. Data are presented as mean ± SEM, n = 9–12. Bars bearing different letters significantly differ at P<0.05.

Magnificence of panel G is 400X.

doi:10.1371/journal.pone.0169581.g005
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related obesity [22, 26, 32, 33]. Previous study has reported that a low protein diet during preg-

nancy affects lymphocyte and complementary systems [34, 35]. However, there is limited

information whether prenatal programming, affected by maternal protein restriction, changes

ATM heterogeneity. It is also unknown whether maternal low protein diet and postnatal high

fat diet interact to influence ATM phenotype. We reported that LP had no effect on the num-

ber of CD68+ and CD206+ in adipose tissue of NE rats, but reduced the increase of these cell

numbers in offspring fed HE diet. The increase of adipose tissue CD206+CD11c+ ATMs in

offspring fed HE diet was reversed by consuming a LP diet. Similar to HE treatment, LP

increased IL-6 expression in ATMs of offspring rats fed NE diets. However, this effect was

diminished when offspring was fed on HE diet, which suggested an interaction between prena-

tal LP and postnatal HE diets on IL-6 and IL-1β transcription.

Compared to a severe 4% protein [36], maternal 8% protein undernutrition diet as used in

our current study do not cause significant decrease in key fetal growth factor hormone concen-

tration alterations [36]. In addition, as shown in other studies, rat offspring exposed to 8% pre-

natal modest protein restricted diet do not have abnormal kidney functions or blood pressure

while a more severe 5% prenatal protein restriction caused offspring kidney dysfunction and

hypertension [37–41]. Therefore it is plausible 5% prenatal protein diet restriction would sig-

nificantly increase the numbers of CD68+ or CD206+ cells compared to NP group adipose

tissue. However, since the severe protein restriction leads to multi-organ dysfunction, the

changes in plasticity of macrophages, if observed, will be more due to a compensatory or sec-

ondary effect rather than directly driven by maternal protein restriction. Thus, we choose to

use a moderate protein restriction to study how prenatal and postnatal diets influence the

ATM phenotype.

According to the “phenotypic switch” model of ATM, obesity leads to an accumulation of

macrophages in the adipose tissue with M1-dominant phenotype, while ATM in non-obese

subjects possess the M2-dominant phenotype. This is caused by direct activation of newly

attracted macrophages/monocytes, rather than a phenotypic switch among resident macro-

phages [27, 42]. In our study, infiltration of ATM was not affected by the LP diet as evidenced

by the lack of difference in the number of CD68+ cells in adipose tissue. However, upon post-

natal HE treatment, there were less M1b subtype ATMs (CD11c+CD206+) in F1 offspring

Table 5. P value of Two-way ANOVA for LP and HE on ATM phenotypea.

HE (P value) LP (P value) LP × HE (P value)

IL-6 0.0003** < .0001** < .0001**

IL-1β 0.0048** 0.0016** 0.0043**

Ccl2 0.3276 0.0825 0.1816

IL-10 0.4826 0.7238 0.9701

Arg-1 0.4897 0.2649 0.3888

Number of CD68+ < .0001** 0.4229 0.104

Number of CD11c+ 0.0008** 0.4644 0.0852

Number of CD206+ 0.0364* 0.0904 0.5771

Number of CLS < .0001** 0.688 < .0001**

Note:
a The significant impacts of the two factors: postnatal HE diet and the maternal LP diet, and the interactions between these two factors on ATM phenotype

and cytokine gene expression were analyzed by Two-way ANOVA.

** P<0.01,

* P<0.05

doi:10.1371/journal.pone.0169581.t005
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from the dam of maternal LP comparing to those from the maternal NP diet. Therefore,

maternal LP diet interacts with postnatal HE diet to impact on the existing ATM phenotype,

although prenatal LP diet may not influence the migration ability of adipose tissue monocyte/

macrophages in F1 offspring of rats.

The increased expression of IL-6 in ATM of LP offspring suggested that prenatal LP was

capable of inducing macrophage inflammation. Consistently, two-way ANOVA also indicated

increased expression of IL-1β by maternal LP diet. Interestingly, this effect was diminished

under the condition of postnatal HE, which is consistent with previous report that the expres-

sion profile of genes associated with inflammation was reduced in the visceral adipose tissue of

offspring rats from a dam with maternal protein restriction [43]. These data suggested a poten-

tially antagonistic effect of maternal protein restriction and postnatal high energy on IL-6 and

IL-1β expression.

However, these interesting observations seemed to suggest that the prenatal LP diet is dif-

ferentially affecting ATM phenotype with or without postnatal diet. To be noted, our data

demonstrated a smaller adipocyte size in LP offspring and a positive correlation between adi-

pocyte size and M1b/M1 ratio. A relationship between adipose tissue macrophage accumula-

tion and adipocyte size has been demonstrated in many adipose tissue depots [44]. When fat

cells reach a critical size, signals are generated to promote the release of pro-inflammatory

cytokines and free fatty acids (FFA) resulting in recruitment of macrophages and a switch in

macrophage phenotype [32, 44] Therefore, an increase in adipocyte size might be a necessary

condition for adipocytes to synthesize and release proteins that regulate ATM heterogeneity.

In our study, prenatal LP significantly reduced the wean body weight and wean fat however

leads to catchup growth of the body weight and body fat mass, implying a size catchup of the

LP adipocytes with persistent postnatal HE diet.

The feed efficiency (body weight gain/ energy intake) is an important contributing factor in

adipose tissue weight gain. Thus, we compared feed efficiency across all 4 experimental groups.

Our calculation showed (data not shown) that food efficiency do not explain additional

increase in adipose tissue increase in LPHF (and LPNF to a lesser extent) group suggesting

possible epigenetic maternal influence in adipose tissue growth.

We therefore describe our model as follows (Fig 6). In juvenile LP+HE fed rats, despite fast

growth of adipose tissue, there is a relatively lower grade of chronic inflammation in this adi-

pose tissue than the juvenile NP+ HE offspring. This is correlated with the smaller adipocyte

size, lower numbers of CLS in adipose tissue, and M1b subtype ATMs that are the major M1

subset contributing to the secretion of pro-inflammatory cytokines and insulin resistance [32].

Because prenatal LP leads to catchup growth of the body weight and adiposity[45], which

might be associated with increased Igf2 expression in LP offspring [46], it can be reasonably

predicted that persistent HE diets from the juvenile stage to adult stage in LP offspring will

eventually exceed the maximum capacity of adipose tissue to adapt to excess energy and lead

to severe insulin resistance. The increased expression of IL-6 in ATMs caused by LP diets will

exacerbate insulin resistance in adult rats fed HE diets. This model is in consistent with previ-

ously reported studies that alterations in insulin resistance in response to LP prenatal and HE

postnatal diets before and after 5 months of age [46, 47]. Extended treatment of postnatal HE

diets on the same model of prenatal protein restriction in future studies will help to support

the validity of this model.

In conclusion, we provide evidence that prenatal protein restriction preprogram the ATMs

by increasing expression of the pro-inflammatory genes IL-6 and IL-1β in ATMs. The prenatal

protein restriction plays a synergic role with the postnatal high energy diet on the catch up

growth and the enlargement of the adipocyte, which further correlates with the ATM plasticity

and adipose tissue inflammation.
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