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Abstract

The supralittoral environment, at the transition between sea and land, is characterized by harsh conditions for life.
Nonetheless, evolution of terrestrial isopods (Oniscidea), the only group of Crustacea fully adapted to live on land, appears
to have involved a transitional step within the supralittoral. The two most basal oniscidean lineages (Ligiidae and Tylidae)
have representatives that successfully colonized the supralittoral. One of them is the genus Tylos, which is found exclusively
in supralittoral sandy beaches from tropical and subtropical coasts around the world. Comprehensive phylogenetic
hypotheses for this genus are lacking, which are necessary for understanding the evolution and biogeography of a lineage
that successfully diversified in the harsh sea-land interface. Herein, we studied the phylogenetic relationships among 17 of
the 21 currently recognized species of the genus Tylos, based on sequences from four mitochondrial genes (Cytochrome
Oxidase I, Cytochrome b, 16S rDNA, and 12S rDNA). Maximum Likelihood and Bayesian phylogenetic analyses identified
several lineages with deep divergences and discrete geographic distributions. Phylogenetic and distributional patterns of
Tylos provide important clues on the biogeography and evolution of this group. Large divergences among the most basal
clades are consistent with ancient splits. Due to the biological characteristics of Tylos, which likely prevent dispersal of these
isopods across vast oceanic scales, we argue that tectonic events rather than trans-oceanic dispersal explain the distribution
of Tylos in different continents. Overwater dispersal, however, likely enabled range expansions within some basins, and
explains the colonization of volcanic oceanic islands. Present-day distributions were also likely influenced by sea level and
climate changes. High levels of allopatric cryptic genetic differentiation are observed in different regions of the world,
implying that the dispersal abilities of Tylos isopods are more limited than previously thought. Our results indicate that a
taxonomic revision of this group is necessary.

Citation: Hurtado LA, Lee EJ, Mateos M, Taiti S (2014) Global Diversification at the Harsh Sea-Land Interface: Mitochondrial Phylogeny of the Supralittoral Isopod
Genus Tylos (Tylidae, Oniscidea). PLoS ONE 9(4): e94081. doi:10.1371/journal.pone.0094081

Editor: Richard Cordaux, University of Poitiers, France

Received December 12, 2013; Accepted March 11, 2014; Published April 15, 2014

Copyright: � 2014 Hurtado et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding was provided by NSF grant DEB 0743782 to LAH and MM, and by TAMU-CONACyT grants to LAH. The authors would also like to acknowledge
the Texas A&M Libraries Open Access to Knowledge (OAK) Fund for covering the publication fee of this article. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: lhurtado@tamu.edu

Introduction

The supralittoral, at the transition between sea and land,

comprises a very narrow vertical stretch of the shoreline

characterized by harsh conditions for life, such as regular exposure

to extreme temperatures, wind, wave splash, storm surge, rapid

and extreme changes in salinity (e.g. high salinity due to

evaporation during low tide and low salinity due to fresh water

input from rain), and predation by terrestrial animals and seabirds

[1]. Adaptation to completing the life cycle within this harsh

environment is considered a crucial step in the evolution of

Oniscidea [2], a speciose group of isopods (ca. 3700 species) that

has colonized almost every terrestrial habitat [3], representing the

only group of Crustacea fully adapted to live on land. Isopod

colonization of land from the sea appears to have involved a

transitional step within the supralittoral. The two most basal

oniscidean lineages, Ligiidae and Tylidae [4,5], successfully

colonized the supralittoral. Within Ligiidae, the genus Ligia

Fabricius, 1798 occurs in rocky supralittoral habitats around the

world, with only a few species adapted to live inland. Evolution of

terrestrial oniscideans from ancestral marine isopods is proposed

to have proceeded from a Ligia-like ancestor [2]. Within Tylidae,

the genus Tylos Audouin, 1826 is comprised entirely of

supralittoral species distributed mainly in tropical and subtropical

sandy beaches throughout the world [6,7]. Regional phylogeo-

graphical studies of members of Ligia and Tylos have revealed high

levels of isolation and phylogeographic structure at small

geographic scales, consistent with biological characteristics that

confer limited vagility to these isopods [8–10]. The lack of

comprehensive phylogenetic hypotheses for these two genera,

however, hampers our understanding on the evolution of two

groups that successfully diversified in the vast, yet harsh, sea-land

interface.

Isopods of the genus Tylos occur in the upper intertidal on sand,

mud, in cracks and crevices, and under algal detritus or rocks [6].

Tylos currently contains 21 accepted species, with many more

originally described, but subsequently synonymized [11,12]. Many

specimens from different regions in the world were incorrectly
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assigned to T. latreillii Audouin, 1826, which was originally

described from an unspecified location in Egypt [13], but currently

considered a nomen dubium [14]. This taxonomic confusion has

likely contributed to the misconception that members of Tylos are

highly vagile (e.g. [15]), a notion that is at odds with their

biological characteristics, which suggest very restricted dispersal

potential. As all peracarids, Tylos isopods lack a planktonic larval

stage (i.e., they are direct developers). In addition, adults actively

avoid entering the water, where they are unable to survive

submerged beyond a few hours, and have extremely limited

swimming abilities [6,7]. Juveniles of some species, however, may

be able to surf by rolling themselves into a ball, potentially

facilitating dispersal among nearby beaches [7,15]. Consistent

with their biological characteristics, high levels of population

genetic differentiation have been observed at small geographic

scales in members of Tylos, implying that surrounding unsuitable

habitats constitute effective dispersal barriers and that the potential

for population isolation is high [9]. Furthermore, factors that can

dramatically modify the distribution of coastline habitats, such as

tectonic activity and eustatic sea level fluctuations, as well as

climate change, appear to strongly influence the evolutionary

histories of these isopods [9].

Herein, we inferred a mitochondrial phylogeny of the genus

Tylos, by examination of 17 of the 21 currently recognized species.

The results provide insights into the evolutionary history and

biogeography of a group that successfully diversified within the

harsh sea-land interface. This represents, to our knowledge, the

first study to examine the relationships of a supralittoral endemic

taxon at a global scale.

Methods

2.1 Sampling and Molecular Methods
We obtained tissue samples from 16 of the 21 currently

recognized species of Tylos (Fig. 1) and used published sequences

from one additional valid species from California, T. punctatus

Holmes & Gay, 1909, and its close relatives, with which it forms T.

punctatus sensu lato from California to the western coast of Mexico

[9]. Most of the samples were obtained from the Museo di Storia

Naturale ‘‘La Specola’’, Zoological section, in Florence, Italy

(MZUF); other researchers and museums kindly provided the

remaining samples (Table S1). The sample from Puerto Rico, for

which no specific permissions were required, was collected by

LAH. None of the fieldwork involved endangered or protected

species. Photographs of the ventral plates of the fifth pleonite,

regarded as a species-diagnostic character in Tylos, are shown for

most of the lineages examined in Figure S1 (photographs for

additional lineages of T. punctatus sensu lato can be found in [9]).

We used a sample of Helleria brevicornis Ebner, 1868 as outgroup in

a subset of the phylogenetic analyses. The monotypic Helleria,

endemic to the northern Tyrrhenian area, is the only other genus

of the family Tylidae. Genomic DNA was isolated from 2–4 legs

per specimen with the DNeasy kit (Qiagen, Inc., Valencia, CA).

We PCR-amplified segments of four mitochondrial genes: 16S

rDNA; 12S rDNA; Cytochrome Oxidase Subunit I (COI); and

Cytochrome b (Cytb); primer sequences and amplification

conditions are provided in Table S2. PCR-amplified products

were cleaned with Exonuclease and Shrimp Alkaline Phosphatase,

and subsequently cycle sequenced at the University of Arizona

Genetics Core. We used Sequencher 4.8 (Gene Codes, Ann Arbor,

MI) for sequence editing and primer removal. None of the protein-

coding sequences had premature stop codons or frame shifts,

suggesting that they are not pseudogenes. All sequences were

deposited in GenBank (Accession Numbers KJ468109–

KJ468188).

2.2 Sequence Alignment
Non-protein-coding sequences were aligned with MAFFT v.6.0

[16], as implemented in http://mafft.cbrc.jp/alignment/server/

(Accessed 2014 Feb 4), with the Q-INS-I strategy, which considers

secondary structure of RNA, and with the L-INS-i strategy with

default parameters (e.g. Gap Opening penalty = 1.53). Resulting

alignments were edited manually within MacClade v.4.06 [17].

Regions for which homology could not be confidently established

were identified with GBlocks v.0.91b [18], and excluded from the

phylogenetic analyses. The following GBlocks parameters were

used: ‘‘Allowed Gap Positions’’ = half; ‘‘Minimum Length Of A

Block’’ = 5 or 10; and ‘‘Maximum Number Of Contiguous

Nonconserved Positions’’ = 4 or 8. Alignments showing included

and excluded positions are available in Datasets S1 & S2. Dataset

S1 included Helleria brevicornis as the outgroup. High divergences

between H. brevicornis and Tylos, however, rendered many positions

in the two ribosomal genes unusable (Table 1). To increase the

number of usable positions at the two ribosomal genes and reduce

noise due to substitution saturation, we subsequently generated a

dataset (Dataset S2) in which H. brevicornis was removed, and the

above MAFFT and GBlocks procedures were repeated (see details

about rooting of this dataset in the Results section).

2.3 Phylogenetic Analyses
Phylogenetic analyses were conducted with the sequences of the

four loci concatenated into a single dataset. We used jModeltest

v0.1.1 [19] to determine the most appropriate model of DNA

substitution among 88 candidate models on a fixed BioNJ-JC tree,

under the Akaike Information Criterion (AIC), corrected AIC(c),

and Bayesian Information Criterion (BIC) (Tables 1 & 2). We used

the closest more complex model (based on the BIC) available in

the corresponding Maximum Likelihood (ML) and Bayesian

analyses (see Tables S3 & 3), except that when a proportion of

invariable sites (I) and a Gamma distribution of rates among sites

(G) was selected according to jModeltest, we excluded parameter I

to avoid problems related to dependency between both parameters

(see RaxML manual and [20]). In addition, to assess robustness of

the results to substitution model, we also used the complex model

GTR+G. The following two data partitioning schemes were

implemented: (a) all positions within a single partition; and (b) the

best partitioning scheme according to the BIC implemented in

PartitionFinder v.1.0 [21]. The following parameters were used in

PartitionFinder: branch lengths = linked; models = mrbayes;

model selection = BIC; search = greedy; and a priori

partitioning by a combination of each gene and codon position.

For the ML analyses, three approaches were employed: (a)

RaxML v.8.0.7 (‘‘GTRGAMMA’’ model; standard bootstrap

search) [22]; (b) GARLI v.2.0.1 [23] implemented in the CIPRES

server [24], which uses genetic algorithms for the ML search; and

(c) PhyML v.3.1 (search = SPR & NNI) [25]. Clade support

within ML analyses was examined by: (a) the approximate

Likelihood Ratio (aLRT) test using the Shimodaira-Hasegawa

(SH-like) procedure, as implemented in PhyML; and (b) non-

parametric bootstrap analyses (100–1000 replicates) in all three

ML programs, and summarized with 50% majority rule consensus

trees computed by the SumTrees script (v.3.3.1) implemented in

DendroPy v.3.10.1 [26].

For the Bayesian analyses, two programs were used. The first

one was MrBayes v.3.2.2 [27–29], but such analyses have been

reported to return biased clade posterior probabilities in certain

cases (e.g. the ‘‘star-tree paradox’’; [30–32]). Therefore, we also
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applied two of the proposed strategies to alleviate such biases: the

polytomy prior [33] as implemented in Phycas v.1.2.0 [34]; and a

Gamma prior on the tree length as implemented in MrBayes

v.3.2.2 [35]. The following criteria were used to evaluate

convergence and adequate sampling of the posterior distribution:

(a) Stable posterior probability values; (b) a high correlation

between the split frequencies of independent runs as implemented

in AWTY [36]; (c) small and stable average standard deviation of

the split frequencies of independent runs; (d) Potential Scale

Reduction Factor close to 1; and (e) an Effective Sample Size (ESS)

.200 for the posterior probabilities and parameters, as evaluated

in Tracer v.1.5 [37]. Tree samples prior to reaching a stationary

posterior distribution were discarded (i.e., ‘‘burnin’’), and the

remaining samples were used to generate majority rule consensus

trees with SumTrees (note: the tree summary function of Phycas

was not used, as it returned incorrect clade posterior probabilities).

Pairwise genetic distances with Kimura-2-parameter (K2P) cor-

rection were estimated with PAUPv.4.0b10 [38] for the four

concatenated mitochondrial genes (Dataset S1) and for the COI

gene separately; missing/ambiguous positions were removed for

each pairwise sequence comparison.

Results

The concatenated dataset of four mitochondrial genes (MT)

including H. brevicornis (Dataset S1) retained 1243 characters (570

were parsimony informative), after removal of positions that could

not be confidently aligned (Table 1). In contrast, Dataset S2

(excluding H. brevicornis) retained 1575 characters (801 were

parsimony informative; Table 2). All Bayesian analyses achieved

convergence and an adequate sample of the posterior distribution

on the basis of the criteria outlined in the Methods section. Figure 2

depicts the inferred phylogenetic relationships among the Tylos

species examined (the main lineages in the T. punctatus s. l clade are

shown collapsed, as their relationships are addressed in detail by

Hurtado et al. [9]), with ranges of clade support from the different

methods and substitution models. Hereafter, Bootstrap propor-

tions and aLRT probabilities are referred to as ‘‘BS’’, whereas

Posterior Probabilities are referred to as ‘‘PP’’ (clade support

values for each method and substitution model are provided in

Tables S3 & 3, respectively for Datasets S1 & S2). In general, the

use of different substitution models or priors had little effect on

clade support values, but some discrepancies were observed

between ML and Bayesian analyses (Fig. 2 and Tables S3 and 3).

A most basal split within the genus is observed between a clade

(clade A: 99–100 BS; 100 PP; purple in Figs. 1 & 2) that contains

the two species from Chile (i.e., T. spinulosus Dana, 1853 and T.

chilensis Schultz, 1983), and a clade (B; Fig. 2) comprised of the

remaining species (73–87 BS; 99–100 PP; based on Dataset S1).

Kimura-2-parameter divergences between clade A and clade B

ranged between 21 and 43% for the four genes combined, and

between 20 and 32% for the COI gene alone (Tables S4 & S5,

respectively). Within clade B, a most basal divergence was

observed between T. wegeneri Vandel, 1952 (sample from the

Pacific coast of Costa Rica; yellow), and a clade (C: 92–100 BS

and 100 PP with Dataset S1; 99–100 BS and 100 PP with Dataset

S2) that contained the remaining lineages. Hereafter, unless

otherwise noted, clade support is described only for Dataset S2,

which assumed the monophyly of clade C (i.e., T. chilensis, T.

spinulosus, and T. wegeneri were used as the outgroup). Clade C was

comprised of two main lineages: clade D (blue; 75–89 BS; 97–99

PP) distributed in the West Pacific and Indian Ocean; and clade G

(64–97 BS; 100 PP). Within clade D, a basal polytomy of three

lineages was observed: T. albidus Budde-Lund, 1885 (Indian

Ocean); T. neozelanicus Chilton, 1901 (West Pacific); and clade E

(86–95 BS; 100 PP; West Pacific), which was in turn comprised of

T. granuliferus Budde-Lund, 1885, T. opercularis Budde-Lund, 1885

(clade F; one lineage from Australia and one from Indonesia), and

T. minor Dollfus, 1893.

Clade G was comprised of three main clades (H, I, and N)

joined at a basal polytomy. Clade H (green), which is comprised of

two species from the Arabian Peninsula (T. exiguus Stebbing, 1910

from Socotra Island, Indian Ocean, and T. maindroni Giordani

Soika, 1954 from Kuwait, Persian Gulf), received,50% support

Figure 1. Sampling localities, approximate distribution ranges of clades, and inferred relationships. Major clades and their approximate
distribution ranges are distinguished by different colors (see Results and Fig. 2). Phylogenetic relationships based on Fig. 2. Numbers correspond to
sample IDs shown in Fig. 2 and Table S1.
doi:10.1371/journal.pone.0094081.g001
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with Dataset S1 (not shown), variable support with Dataset S2 (52–

80 BS; 95–100 PP), and higher support (92–97 BS; 100 PP) with a

third dataset, which was identical to Dataset S2 except that the

three most basal species of Tylos (i.e., T. chilensis, T. spinulosus, and

T. wegeneri) were excluded, and rooting was performed at the

branch joining clades D and G. This last dataset did not result in

an increased number of usable positions, but likely reduced noise,

stemming from the high divergence of T. chilensis, T. spinulosus, and

T. wegeneri. Clade I (magenta; 95–99 BS; 100 PP) was comprised of

a highly supported (100 BS and PP) Mediterranean Sea lineage

(clade J; made up of T. ponticus Grebnitzky, 1874 and T. europaeus

Arcangeli, 1938) and of a South African clade (M: 96–100 BS; 100

PP; made up of T. capensis Krauss, 1843 and T. granulatus Krauss,

1843). Clade N (orange; 84–97 BS; 100 PP) was comprised of

lineages from the Caribbean (i.e., T. marcuzzi Giordani Soika,

1954, T. niveus Budde-Lund, 1885, and T. sp. from Yaguanabo,

Cuba), and the southern California/Pacific Mexico region. Within

clade N, T. marcuzzii was sister to the remaining lineages (clade O:

98–100 BS and 100 PP). Within clade O, T. punctatus sensu lato

formed a monophyletic group (clade P: 79–96 BS; 100 PP), whose

Figure 2. RaxML bootstrap majority rule consensus tree of the genus Tylos. Clades with,66% support were collapsed. Based on regular
bootstrap partitioned analysis (based on PartitionFinder BIC) of Dataset S2 (excluding Helleria brevicornis, which was re-drawn manually). Clade colors
correspond to clades in Fig. 1. Numbers by nodes indicate the corresponding range of Bootstrap Support and aLRT probabilities (BS; top) for
Maximum likelihood (RaxML, Garli, and PhyML); and Posterior Probabilities (PP; bottom) for Bayesian inference methods (MrBayes and Phycas),
including all partitioning schemes. * denotes nodes that received 100% support for all methods. 1Clade support values based on Dataset S1 analyses
(see Table S3). 2Clade support values based on analyses of dataset excluding H. brevicornis, T. chilensis, T. spinulosus, and T. wegeneri (see text for
details). All other support values are based on Dataset S2 (see Table 3).
doi:10.1371/journal.pone.0094081.g002
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closest relatives, T. niveus and/or T. sp. (Yaguanabo), are

distributed in the Caribbean.

Discussion

Our results provide insights into the evolutionary history of the

genus Tylos, a lineage that successfully colonized and diversified

within the harsh sea-land interface at a global scale. Although we

acknowledge that phylogenetic inferences based on multiple

unlinked markers are desirable (reviewed in [39]), we were unable

to obtain nuclear gene sequences despite numerous attempts, likely

due to DNA degradation in relatively old samples. Nonetheless,

given that phylogenetic relationships among species of Tylos have

not been studied before, the inferred mitochondrial phylogeny

currently represents the most plausible phylogenetic hypothesis for

this genus. Our results reveal the presence of highly divergent

clades that, in general, group according to geography (Figs. 1 & 2).

Relationships among the major clades and their approximate

distributions based on morphological records are shown depicted

with colors in Fig. 1. Below we discuss phylogenetic and

distributional patterns of Tylos, which provide important clues

on the biogeography and evolution of this group.

The two species from Chile, T. chilensis and T. spinulosus, formed a

well-supported monophyletic group (clade A). Divergence of this

lineage represents the most basal split within Tylos, suggesting a long

history of presence and isolation in the southern East Pacific. The

divergence of the T. wegeneri lineage, which is also found in the East

Pacific region, represents the second most basal split, also implying a

long history of isolation. This species, however, was originally

described from Venezuela [40], and has also been reported in

Tobago and Saint Martin, in the Caribbean, and in the Atlantic

coast of Florida [11]; whereas in the Pacific, it has only been

reported in Costa Rica. Caribbean-Atlantic specimens assigned to

T. wegeneri must be examined to establish whether they are closely

related to our T. wegeneri sample. If so, the Pacific/Caribbean-

Atlantic distribution of this lineage must have been achieved prior to

the closure of the Panama Isthmus. Within the supralittoral isopod

genus Ligia, a genetically distinct and diverse clade (representing

what a appears to be complex of cryptic species currently assigned to

Ligia baudiniana Milne-Edwards, 1840), also occupies both, the

Caribbean/Atlantic and Pacific coasts of this region, but lineages

from the Pacific are highly divergent from those in the Caribbean/

Atlantic [41]. A similar pattern is possible for T. wegeneri.

The remaining species of Tylos examined are grouped within

clade C. Lineages D, H, I and N, which make up clade C, are

highly divergent from each other (15–41% at the four genes

combined; Table S4), and occupy broad and distinct geographic

regions. Clade D, which appears to be the most basal of these

lineages, has a West Pacific/Indian Ocean distribution and high

within-clade divergences (up to 36% at the four genes; Table S4).

In the West Pacific, T. opercularis is reported from the Philippines,

Papua New Guinea, Sulawesi, and the eastern coast of Australia.

Tylos granuliferus is reported in Japan, Korea and Eastern Russia

(Vladivostok and southernmost Kuril Islands), whereas T.

neozelanicus is reported in New Zealand. In the Indian Ocean, T.

minor is reported in east Africa along the coasts of southern

Somalia and Kenya, as well as in the islands of Madagascar,

Seychelles, Aldabra, and Comoro; whereas T. albidus is reported in

islands farther east (i.e., Nicobar, Maldives, and Sri Lanka) [11].

Given the geographic distribution of clade D, it is likely that T.

australis Lewis & Bishop, 1990 (from southeastern Australia), T.

nudulus Budde-Lund, 1906 (from Christmas Island, south of Java),

and T. tantabiddyi Lewis, 1991 (from Western Australia), which

were not included in this study, belong to this clade.

Our analyses failed to resolve the relationships among clades H,

I, and N, resulting in a basal polytomy within clade G. Clade H,

which was supported by a subset of the analyses, contained T.

exiguus and T. maindroni, two species that are highly divergent from

each other (22% at COI; Table S5). Both are distributed in the

Arabian Peninsula, the largest peninsula in the world, but on

opposite sides: T. exiguus is reported in the Red Sea coasts and

Socotra Island (locality 17; Fig. 1); whereas T. maindrioni is reported

in the Persian Gulf, on the eastern side of the peninsula [11]. The

earliest date at which the T. exiguus lineage could have colonized

the Red Sea and Gulf of Aden region is ,25 Ma; when these

basins are hypothesized to have formed [42]. Clade I, the second

lineage within clade G, is distributed in: (a) southern Africa (T.

granulatus is reported from northern Namibia to Cape Town, South

Africa; whereas T. capensis is reported from Cape Town to Port

Elizabeth, South Africa); (b) northwestern Africa as far south as

Dakar, Senegal (T. ponticus) [11], (c) the Atlantic Ocean islands of

Azores (T. europaeus), Madeira (T. ponticus), and the Canary Islands

(T. ponticus); (d) the Atlantic coast of Europe, as far north as

Bretagne, France (T. europaeus); and (e) the Mediterranean and

Black seas (T. europaeus and T. ponticus). Given the above patterns, it

is likely that T. madeirae Arcangeli, 1938 (from Madeira Island;

[11]), not included in our study, belongs to clade I. Clade N, the

third lineage within clade G, is reported from Florida, Bahamas,

and the Caribbean (T. marcuzzii and T. niveus), as well as from

Bermuda (T. niveus), Brazil (T. niveus), and the northeastern Pacific

(T. punctatus s.l.), in the region between southern California and

Central Mexico, including the Gulf of California [9,11].

The phylogeographic patterns of members of Tylos could have

been shaped by several processes: break-up of land masses leading

to vicariance; overwater dispersal (particularly over relatively short

distances, given the biology of this isopod); range expansions and

contractions associated with eustatic sea level and climate changes;

and ecological speciation and/or niche partitioning. Unfortunate-

ly, our interpretation of evolutionary patterns is somewhat

constrained by the lack of reliable molecular clock calibration

points (fossils or vicariant events), or substitution rates that would

enable inference of meaningful estimates of divergence times

among Tylos lineages. Although large divergences among the most

basal clades suggest ancient splits, their timing is uncertain. Several

lines of evidence are consistent with an ancient origin for the genus

Tylos. Tylidae (and Ligiidae) occupy the most basal positions

within Oniscidea [4,5], a suborder whose origin is estimated

around the Paleozoic (,300 Ma) [43]. Although fossils of Tylos

have not been recovered, fossils assigned to Ligia are dated at

,110 Ma, whereas the earliest oniscidean fossils exhibiting

morphological characteristics of extant woodlice (which are more

derived than Tylidae and Ligiidae), are dated at ,30 Ma, in the

late Eocene [43]. In addition, the cosmopolitan distribution of

Tylos has been regarded as an indication of an ancient origin [44].

The biology of Tylos (i.e., lack of a planktonic larval stage,

extremely limited swimming abilities, and inability to survive

under water beyond a few hours) may have prevented dispersal

across vast oceanic scales. Therefore, we consider that tectonic

events such as the breakup of Gondwana, rather than trans-

oceanic dispersal, explain the presence of Tylos on different

continents. Although the sequence and timing of events are

controversial, the breakup of Gondwana is dated at ,160–80 Ma

(million years ago) [45]. These events could have led to the

divergence of clades D (Indian Ocean/West Pacific), I (Eastern

Atlantic: Mediterranean and Africa coasts), and N (Caribbean and

Northeastern Pacific). Accordingly, the split that led to clade A (T.

chilensis + T. spinulosus), as well as the split that led to T. wegeneri,

may predate the breakup of Gondwana.

Mitochondrial Phylogeny the Isopod Genus Tylos

PLOS ONE | www.plosone.org 7 April 2014 | Volume 9 | Issue 4 | e94081



Overwater dispersal, however, likely played a role in the

colonization of certain localities of the West Pacific/Indian Ocean,

facilitated by the geographic proximity among some islands and

between some mainland and island localities. Similarly, overwater

dispersal may have occurred in the eastern Atlantic (see below),

between the Caribbean and the northeastern Pacific, and within

the Caribbean (although proto-Antillean vicariance [46] or a

hypothesized temporary land bridge ,33–35 Ma [47], represent

alternative hypotheses for colonization of Caribbean islands).

Recent overwater dispersal probably explains the presence of T.

niveus in Bermuda, a highly isolated volcanic island north of the

Caribbean, which appears to have been submerged at several

instances during the Pleistocene [48,49]. In addition to Tylos, a

member of Ligia is also reported in Bermuda; both of these

semiterrestrial taxa likely arrived to this island via rafting [50]. The

phylogenetic affinities of Tylos populations found in Bermuda,

however, need to be examined to identify their possible origin.

The timing of the divergence between the southern Africa and

Mediterranean clades is also uncertain (19.7–24.7% divergence at

COI; Table S5). Colonization of the Mediterranean, however,

probably occurred after the Messinian Salinity Crisis (,6–

5.3 Ma), a period during which the Mediterranean basin was

either completely dry or hypersaline [51]; conditions that would

likely have precluded the presence of Tylos. It is unclear whether

the split between T. ponticus and T. europaeus (17–20% at COI;

Table S5) occurred before or after the Messinian Salinity Crisis.

These two species have different ecologies, which may enable their

coexistence in the same regions, but not in the same microhabitat:

T. europaeus occurs in fine grain sandy beaches, whereas T. ponticus

inhabits coarse sand or pebble beaches [44]. It is therefore possible

that their divergence was associated with ecological speciation.

Tylos europaeus appears to be competitively excluded from very

coarse-grained beaches, whereas T. ponticus can tolerate a broader

range of sediment grain sizes [52]. Overwater dispersal likely

explains the distribution of these species in the volcanic islands of

Azores and Madeira, but the phylogenetic affinities of these

populations have not been determined.

Tylos lineages found in the Pacific coast between southern

California and Central Mexico, including the Gulf of California,

have a close relationship with lineages from the Caribbean. The

closest relatives of these northeastern Pacific lineages were T. niveus

and a sample from Yanaguabo, Cuba. The latter could not be

identified to species on the basis of morphology because the

specimen was severely damaged, but given its high divergence

from T. niveus (16% at COI; Table S5), it probably represents an

undescribed species. The ancestor of the southern California-

Pacific Mexico-T. niveus-‘Yaguanabo sample’ clade (clade O) was

likely distributed in the Caribbean, because T. marcuzzii, its sister

lineage, has a Caribbean distribution. Therefore, colonization of

the northeastern Pacific appears to have proceeded from the

Caribbean, which is congruent with paleontological studies of the

Gulf of California reporting that most fauna-rich sediments found

in this region have affinities with Caribbean fauna [53]. Marine

fossils with Caribbean affinities in the Gulf of California date back

to Miocene times [54]. Interestingly, Gulf of California/Caribbean

affinities are also evident in the phylogeographic patterns of

intertidal isopods of the genus Excirolana [55]. As discussed above,

the only other Tylos species reported from the Caribbean, T.

wegeneri, was found to be very divergent from the northeastern

Pacific or other Caribbean lineages (28–36%; Table S4).

Comparatively, the history of Tylos in the northeastern Pacific

region from southern California to central Mexico is much more

recent than in the southern East Pacific. Nonetheless, high levels of

cryptic diversity are observed in this region. Phylogeographic

patterns indicate the presence of highly divergent lineages (up to

20% K2P COI divergences) [9], in a region where only one

currently accepted species (i.e., T. punctatus) is reported. Based on

these patterns, however, Hurtado et al. [9] indicate that T.

punctatus sensu stricto is restricted to the Pacific coast region

between southern California and Central Baja California, and that

the divergent lineages found within the Gulf of California and

south of this basin, in Central Pacific Mexico, appear to

correspond to a complex of cryptic species (T. punctatus s. l.),

which form a monophyletic group with T. punctatus. Phylogeo-

graphic patterns of these lineages are discussed in detail in

Hurtado et al. [9]. The complex geological history of the Gulf of

California, a basin that is suggested to have formed at least

,12Ma [56], likely played a role in the extraordinary diversifi-

cation of the supralittoral Tylos and Ligia within this basin [9,10].

Supralittoral isopods were suggested to be highly dispersive

species [44]. Recent phylogeographic studies, however, challenge

this early proposal for Tylos and Ligia, in which high levels of genetic

differentiation and cryptic diversity are observed at small geograph-

ic scales [8–10,41,57,58]. This is consistent with both, the biological

characteristics that confer these isopods low vagility, and the

fragmented nature of their habitats. High levels of genetic

differentiation and cryptic diversity appear to be common for Tylos

in different regions of the world. High levels of allopatric cryptic

diversity and isolation occurred in the northeastern Pacific [9]. High

genetic divergence is observed between the samples from Puerto

Rico and Yaguanabo, Cuba (14.1 and 16% K2P; respectively at the

four gene and COI datasets; Tables S4 & S5), and further cryptic

diversity may be found at other Caribbean locations. The two

samples of T. opercularis (from Sulawesi and Australia) were highly

divergent (14.4%; Table S4), possibly representing different species.

Large intra-specific genetic divergences were also observed in T.

ponticus from Libya vs. Greece and Portugal (up to 14.8%; Table S4);

whereas divergence between T. europaeus from Libya and Italy was

5% (Table S4). Divergence between the two T. marcuzzii localities

collected within Cuba is 2.5% (Table S4). Low genetic divergence,

however, was observed between T. granuliferus from Japan and

Korea (0.3%; Table S4). Similarly, low genetic divergence (#0.6%

COI) is reported in T. punctatus s. s. (as defined by [9]), probably

reflecting a drastic bottleneck and a recent postglacial expansion in

its current range in the Pacific region between southern California

and central Baja California [9].

Taxonomic confusion has probably contributed to overestima-

tion of the dispersal potential of Tylos. Specimens from many

localities around the world were incorrectly assigned to T. latreillii

Audouin 1826 (e.g. from the Mediterranean, East Africa, Atlantic

coast of Europe, Caribbean, Bermuda, and the Gulf of California

[15,44,59–61]), leading to a misconception of high dispersal

potential [15,44]. Originally described from an unspecified

location in Egypt [13], T. latreillii currently lacks type specimens

and a good description, rendering it a nomen dubium [14]. It

probably corresponds to T. europaeus or T. ponticus from the

Mediterranean Sea [14], or to T. exiguus from the Red Sea [62].

Nonetheless, extensive sampling reveals that none of the above

three species are present in the Gulf of California [9]. Similarly,

these three species are unlikely to inhabit the Caribbean region or

Bermuda, where occurrence reports of specimens with affinity to

‘‘T. latreilli’’ await verification [11]. Another case that may have

contributed to an overestimation of the dispersal potential of Tylos

is that of Tylos insularis Van Name, 1936, from the Galapagos

Islands. Although currently considered a synonymy of T. punctatus

[11], the morphology of the ventral plates of the fifth pleonite of

Galapagos samples [63] is very different to that of T. punctatus s. s.

[60], or any of the cryptic lineages found in the Gulf of California
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and central Pacific Mexico [9]. This, in addition to their

geographic separation, indicates that T. insularis likely represents

a distinct species, as proposed by Van Name [60].

Conclusion

The inferred mitochondrial phylogeny of 17 of the 21 currently

recognized Tylos species sheds light on the phylogenetic relation-

ships within this globally widespread supralittoral-endemic genus.

Our results reveal the presence of highly divergent clades within

Tylos that have relatively discrete, yet broad, distributions. The

most basal divergences involve lineages distributed in the southern

East Pacific, implying a long history of isolation in this region. The

remaining lineages are grouped in a clade, in which the most basal

divergence involves a lineage made up of West Pacific and Indian

Ocean taxa. Sister to this lineage, is a clade that has three deeply

divergent lineages: one with taxa from the Arabian Peninsula; a

second one with the taxa from the Mediterranean Sea and South

Africa; and a third one with taxa from the Caribbean and the

northeastern Pacific. Colonization of the northeastern Pacific

appears to have proceeded from the Caribbean.

Divergences of lineages from different continents (e.g. clades D,

I, and N) were probably shaped by tectonics. Although biological

characteristics of Tylos may have prevented dispersal of this isopod

across vast oceanic scales, overwater dispersal likely enabled range

expansions within some basins, and colonization of volcanic

islands. In addition, present-day distributions were likely influ-

enced by changes in sea level, which can alter habitat availability

and connectivity, as well as changes in climate, which can cause

range contraction and expansion, particularly at the latitudinal

limits of this tropical/subtropical taxon (e.g. in the southern

California-northern Baja California Peninsula region [9]).

Our findings imply that the dispersal abilities of Tylos are more

limited than previously thought. High levels of cryptic genetic

diversity are observed in different regions of the world. Therefore,

a taxonomic revision of this group is necessary. Furthermore, new

collections would enable examination of nuclear markers to

corroborate our findings. Finally, more detailed sampling and

ecological characterization within regions may reveal additional

divergent lineages, and provide better insight into phylogeographic

patterns and the mechanisms of diversification of this widespread

yet poorly studied taxon.
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