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Abstract

An important follow-up step after genetic markers are found to be associated with a disease outcome is a more detailed
analysis investigating how the implicated gene or chromosomal region and an established environment risk factor interact
to influence the disease risk. The standard approach to this study of gene–environment interaction considers one genetic
marker at a time and therefore could misrepresent and underestimate the genetic contribution to the joint effect when one
or more functional loci, some of which might not be genotyped, exist in the region and interact with the environment risk
factor in a complex way. We develop a more global approach based on a Bayesian model that uses a latent genetic profile
variable to capture all of the genetic variation in the entire targeted region and allows the environment effect to vary across
different genetic profile categories. We also propose a resampling-based test derived from the developed Bayesian model
for the detection of gene–environment interaction. Using data collected in the Environment and Genetics in Lung Cancer
Etiology (EAGLE) study, we apply the Bayesian model to evaluate the joint effect of smoking intensity and genetic variants in
the 15q25.1 region, which contains a cluster of nicotinic acetylcholine receptor genes and has been shown to be associated
with both lung cancer and smoking behavior. We find evidence for gene–environment interaction (P-value = 0.016), with the
smoking effect appearing to be stronger in subjects with a genetic profile associated with a higher lung cancer risk; the
conventional test of gene–environment interaction based on the single-marker approach is far from significant.
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Introduction

Genome-wide association studies that focus on detecting the

main effect from individual single nucleotide polymorphisms

(SNPs) have successfully identified more than 4,000 SNPs

associated with different diseases [1]. To achieve a better

understanding of the mechanisms underlying disease development,

it is of great interest to follow up those genetic findings with more

detailed analyses investigating how the gene and environment

interact in their influence on disease risk. One popular approach

aims at detecting SNP-environment interaction between individual

SNPs and established environmental risk factors [2,3,4]. One of

the few successes for this approach is the interaction detected

between cigarette smoking and two genetic variants, a NAT2

tagging SNP and a GSTM1 deletion, in a multi-stage genome-

wide association study (GWAS) of bladder cancer [3].

The standard approach to the study of gene–environment joint

effect inspects one marker at a time, assuming that a single marker

is the functional unit in the gene and environment interplay. This

single-marker approach could misrepresent and underestimate the

genetic contribution to the joint effect when one or more

functional loci, some of which might not be genotyped, exist in

the region, and interact with the environment risk factor in a

complex way. A more global approach that simultaneously

considers all genetic markers might capture more of the genetic

variation within the entire targeted region, and provides a better

opportunity to reveal complicated gene–environment interactions

[5]. The global approach would be more informative if it has the

capability showing how an environmental effect varies according

to a subject’s genetic profile.

We provide a flexible Bayesian modeling framework for the study

of gene–environment joint effects. We consider a case-control study

with genotypes G at a set of SNPs within a given region and a

measurement for the environment exposure E available for each

subject. We seek to identify a latent genetic profile variable L that

classifies the multilocus genotype G into different categories

(clusters) such that subjects with their genotype assigned to the

same genetic profile category share the same disease risk model,

which is a standard logistic regression model with its own intercept

term and slope. The intercept term represents the baseline log odds,

common for subjects sharing the same genetic profile. The slope

represents the effect (i.e., log odds ratio) of the environment risk

factor for subjects with the given genetic profile. The model that we

try to build and make inferences from is essentially the logistic

regression model consisting of L and E as main effects and their

product as an interaction term; the unusual aspect is that the
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definition of the latent genetic profile L is a priori unknown. To

account for the uncertainty in the cluster assignment underlying the

definition of L, we adopt an idea from the hidden Markov model

originally developed for modeling the spatial heterogeneity of the

disease event rate, observed on a predefined set of areas [6]. In this

Bayesian model approach, Green and Richardson tried to allocate

areas into a number of clusters and assumed a common disease rate

for areas assigned to the same cluster. The mechanism for the area

allocation was modeled through the Potts model [7], which favors

probabilistically those allocation patterns where ‘‘neighboring’’

areas are assigned to the same cluster. Note that the spatial

dependence assumption is generally appropriate in situations where

the event rate is expected to take on similar values in neighboring

areas. To draw the connection, we can think of each type of

observed multi-locus genotype G as an ‘‘area’’. We would like to use

the Potts model to guide the cluster assignment through a certain

level of ‘‘spatial’’ dependence, i.e., similar genotypes (nearby areas)

tend to be assigned to the same cluster, as in other applications in

genetics studies, including the study of haplotype association [8,9].

We use the Markov chain Monte Carlo (MCMC) sampling

method (e.g., [10,11]) to fit the proposed model, incorporating

several recent advances in the MCMC methodology. We adopt a

recently developed algorithm [12] to update the regulating

parameter in the Potts model, which has an intractable

normalizing constant, and cannot be handled by the standard

Metropolis Hastings algorithm. This algorithm allows us to

consider the parameter of interest on its original continuous scale

and obviates the need for a finite number of selected grids with

their normalizing constants pre-calculated, a strategy taken by

Green and Richardson [6]. To identify the optimal genetic profile

assignment, we use an ensemble averaging method that aggregates

different cluster assignments generated by the MCMC samplers

into a consensual one. We find that this cluster algorithm works

quite well in simulation studies. A similar idea has been used by

Liang [13] and Molitor et al [14] in different contexts. We also

propose a resampling-based test based on the fitted Bayesian

model that can be used to formally test for the existence of gene–

environment interaction.

We apply the proposed method to study the joint effect of

cigarette smoking intensity and genetic variants in chromosome

region 15q25.1 using data from EAGLE, a population-based case-

control study conducted in Italy [15]. Cigarette smoking is an

established major risk factor for lung cancer. Besides environmen-

tal exposures, recent GWAS identified a few chromosome regions

(e.g., chromosomes 15q25.1, 5p15, and 6p21) harboring genetic

variants underlying a susceptibility for lung cancer [15,16,17].

In particular, the chromosome 15q25.1 region, which includes

the CHRNA5-CHRNA3-CHRNB4 cluster of cholinergic nicotinic

receptor subunit genes, has been shown to be associated with both

lung cancer and smoking behaviors, such as cigarette smoking

intensity [18,19,20,21,22]. Although there is no evidence suggest-

ing the existence of multiple loci in this region independently

contributing to lung cancer susceptibility in populations of

European ancestry [16], it does appear that there are multiple

independent loci within 15q25.1 affecting smoking intensity [19].

The main goal of our analysis is to evaluate whether the effect of

smoking intensity varies with genetic variants in 15q25.1. Our

analysis finds evidence for gene–environment interaction, with the

relative risk for smoking appearing to be stronger in subjects with a

genetic profile associated with a higher lung cancer risk. The

proposed resampling-based test derived from the fitted Bayesian

model also detects significant gene–environment interaction (P-

value = 0.016). On the other hand, the standard single-marker

approach that aims at detecting the interaction between a SNP

and smoking intensity fails to reveal any evidence of interaction,

with the smallest observed nominal P-value being 0.021 among the

32 testing SNPs, and the adjusted P-value based on the permu-

tation test being 0.29.

Materials and Methods

We first introduce the Bayesian model and describe the MCMC

algorithm for fitting this model. Next we provide procedures for

posterior inference using samples generated by the MCMC

sampler, including a method for deciding the number of clusters

and a method for identifying the optimal cluster assignment once

the number of clusters is determined. We validate the proposed

method using simulated data. We then apply the method to study

the gene–environment joint effect using data generated from the

EAGLE lung cancer case-control study.

The Bayesian Model Setup
Assume we have data collected from a case-control study, with

n1 cases, n0 controls. Let n~n0zn1 be the total number of

subjects in the study. For the ith subject, we denote its

observation by Yi,Ei,Xi,Gið Þ, where Yi~1 for a case, 0 for a

control; Ei is the observed exposure for the environment risk

factor of interest; Xi represents measures on a set of covariates;

and Gi represents multilocus genotypes observed on a set of SNPs

in a pre-specified region. In the following discussion, we use the

term genotype to refer to the multilocus genotype observed on all

considered SNPs within the targeted region. We intend to

develop a model for the G-E joint effect that permits G-E

interaction. More specifically, we assume the true underlying risk

model has the following form:

log
p(Yi~1)

1{p(Yi~1)

� �
~

a1zb1Eizt’Xi, if Gi [ cluster 1,

a2zb2Eizt’Xi, if Gi [ cluster 2,

:::

aKzbK Eizt’Xi, if Gi [ cluster K ,

8>>><
>>>:

ð1Þ

where clusters 1 to K represent a partition of the genotype space;

ak is the intercept term representing the common baseline log

Author Summary

Many common diseases result from a complex interplay of
genetic and environmental risk factors. It is important to
study the potential genetic and environmental risk factors
jointly in order to achieve a better understanding of the
mechanisms underlying disease development. The stan-
dard single-marker approach that studies the environmen-
tal risk factor and one genetic marker at a time could
misrepresent the gene–environment interaction, as the
single genetic marker might not be an appropriate
surrogate for the underlying genetic functioning polymor-
phisms. We propose a method to look at gene–environ-
ment interaction at the gene/region level by integrating
information observed on multiple genetic markers within
the selected gene/region with measures of environmental
exposure. Using data collected in the Environment and
Genetics in Lung Cancer Etiology (EAGLE) study, we apply
the proposed model to evaluate the joint effect of
smoking intensity and genetic variants in the 15q25.1
region and find evidence for gene–environment interac-
tion (P-value = 0.016), with the smoking effect varying
according to a subject’s genetic profile.

A Model for Studying Gene–Environment Interaction
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odds for subjects with their genotypes in cluster k; bk is the effect

of E (in term of log odds ratio) in the disease model for cluster k,

k~1,:::,K ; and t is the vector of coefficients for the set of

covariates X and is constant regardless of a subject’s genotype.

Notice that if the partition of the joint genotype space is known a

priori, we can derive the corresponding K-category genetic profile

variable L based on the cluster assignment. The above model (1)

is then essentially the standard logistic regression model consisting

of L and E as main effects and their product as the interaction

term, with adjustment for X, and has the following form:

log
Pr (Yi~1)

1{ Pr (Yi~1)

� �
~a1zt’Xizb1Eiz

XK

k~2

ak{a1ð ÞI(Li~k)z

XK

k~2

bk{b1ð ÞEi|I(Li~k):

Thus it is clear that there is no G-E interaction if b1~b2~ � � �
~bK , and the interaction exists if otherwise.

In real applications, we do not know a priori the partition of the

genotype space. If G consists of just one SNP, the goal can be

achieved easily by using a saturated logistic regression including

both E and G (as a three-level categorical variable) as the main

effects and their product as the interaction term. For situations

where G consists of multiple SNPs (e.g., more than 10), as in the

case of the EAGLE lung cancer study, we propose the following

Bayesian model that simultaneously searches for the optimal

partition of the genotype space and estimates the unknown

parameters in the corresponding risk model (1).

The Bayesian model is built up in a hierarchic framework. We

first describe our model by assuming K, the total number of clusters,

is known. We will describe how to choose K later. Suppose there are

H types of genotype configurations observed in the sample, labeled

as genotype 1, 2, …, H. We define the latent genotype allocation

vector z~(z1,:::,zH ), with zh [ 1,:::,Kf g, being the cluster assign-

ment for genotype h, h~1,:::,H. For subject i, we denote its

genotype id by hi. Given the allocation vector z~(z1,:::,zH ) and the

set of coefficients C~ (ak,bk,t), k~1,:::,Kf g for the disease model

(1), the probability of subject i having the disease outcome is

p(Yi~1jz,C)~
exp (azhi

zbzhi
Eizt’Xi)

1z exp (azhi
zbzhi

Eizt’Xi)
, i~1, :::, n: ð2Þ

In the above model specification, we use the prospective

likelihood function (2) for observed case-control data, which were

collected under a retrospective sampling scheme given the disease

outcome. The use of the prospective likelihood function can be

partially justified by the general results from Staicu [23] and

Seaman and Richardson [24]. They showed the equivalence of

prospective and retrospective analysis in the Bayesian framework

in the sense that both approaches could yield the identical

marginal posterior distribution of the log odds ratio under

analyses with properly specified priors. In model (2), the effect of

E varies with G. Thus we call it the Bayesian risk model allowing

for G-E interaction. As a comparison in the analysis, we also

consider a model assuming a homogeneous effect from E, which

is defined as

p(Yi~1jz,C)~
exp (azhi

zbEizt’Xi)

1z exp (azhi
zbEizt’Xi)

, i~1, :::, n: ð3Þ

We call this model the Bayesian risk model without G-E

interaction. In what follows, we will describe methods for fitting

model (2), the one allowing for G-E interaction. Similar

procedures can be applied to model (3).

To model the distribution of the allocation vector z, we first

choose a similarity metric to define the spatial contiguity between

any two genotypes. Let J denote the total number of considered

SNPs within the region, with the genotype at a given SNP being

coded as 0, 1, or 2 according to the number of copies of the minor

allele. Let genotypes h and h’ have the configurations

gh,1, :::, gh,Jð Þ and gh’,1, :::, gh’,Jð Þ, where gh,j is the genotype at

the jth SNP for the multilocus genotype h. We first define the

distance between them as

dh,h’~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J

XJ

j~1

gh,j{gh’,j
� �2

v2
j

vuut ,

where v2
j ~

Pn
i~1

ghi ,j
{�ggj

� �2

n{1
is the variance for the genotype at SNP

j observed in the sample, with ghi ,j
being the genotype at SNP j for

subject i, and �ggj~
1

n

Xn

i~1

ghi ,j
. Then we define sh,h’~1 if h’ is

among the 4 (distinctive) genotypes closest to genotype h, and h is

among the 4 genotypes closest to genotype h’; sh,h’~0:5 if h’ (or h)

is among the 4 genotypes closest to genotype h (or h’) but this is not

true in both cases; and sh,h’~0 for all other cases.

We model z with the Potts model, which has a regulating

parameter y governing the level of spatial dependency in the

cluster assignment. The Potts model has the following form:

pK (zjy)~ exp yU(z){hK (y)½ �,

where U(z)~
P

h=h0
sh,h0I ½zh~zh0 �, with I ½zh~zh0 � being the

indictor function, i.e., I ½zh~zh0 �~1 if zh~zh0 and 0 otherwise,

and where

hK (y)~ log
X

z[ 1,2,:::,Kf gH
exp yU(z)½ �

0
@

1
A

is the log normalizing constant. Under the Potts model with y~0,

the cluster assignments are allocated independently for different

genotypes. When yw0, the cluster assignments for two neighboring

genotypes h and h’ (i.e., two genotypes with sh,h’w0) are correlated.

The level of correlation (spatial dependence) increases with y. For

example, under the genotype configuration observed in the EAGLE

study and K~2, the average probability that any two neighboring

genotypes are allocated to the same cluster is 0.5 when y~0:0. It

increases to 0.83, and 0.97 for y~0:6 and 1.2, respectively. More

discussions of the Potts model can be found in [6].

We need to specify our prior models for C and y. In this paper,

we consider the normal distribution with a mean of 0 and a variance

of 4 or the uniform distribution on the interval of ({4,4) as the

prior for each parameter in C. We describe the appropriateness of

those priors for the prospective likelihood model in the Discussion

Section. Both priors are very uninformative and generate similar

conclusions on the EAGLE study and simulated datasets. Therefore

we present only results based on the normal prior in the following

discussions. Following Green and Richardson [6], the prior

distribution p(y) for y is set to be a uniform distribution on the

A Model for Studying Gene–Environment Interaction
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interval ½0, ymax�, which covers an appropriate region of y such

that the resulting class of Potts models are flexible enough to capture

a wide range of spatial dependence. We note that ymax cannot be

too large. If y is over a critical point, the corresponding Potts model

would essentially force almost all elements into the same cluster, a

well known phenomenon for the Potts model called phase transition

property [25], and in this situation, the MCMC simulation tends to

get stuck. We did some experiments to explore the setting of ymax

for the Potts model based on the neighborhood configuration

observed in the EAGLE study. We found the value y~1:2 induces

a high level of spatial dependence, with the average probability that

any two neighboring genotypes are allocated to the same cluster

being 0.97 at K~2; and when y~1:5, the average probability goes

to 0.99, which indicates an extremely high level of spatial

dependence for the Potts model. Based on these observations, we

decided to set ymax~1:2 in our EAGLE study application, as well

as in simulation studies that assume the same neighborhood

structure as the EAGLE study. We consider only a uniform prior for

y since in practice we usually do not know which level of spatial

dependence is more likely than the others. But the algorithm

described below can certainly be used with other prior functions if

necessary.

Putting all the foregoing models together, we can express the

joint distribution of all variables as

p(y,C,zjY)!p(y)p(C)p(zjy)p(YjC,z),

where p(YjC,z)~ P
n

i~1
p(YijC,z). The inference (for a fixed total

number of clusters K) on y, C, and z can be based on the following

MCMC algorithm.

The MCMC Algorithm
Updating coefficients C. The full conditional function for

coefficients C~ (ak,bk,t), k~1,:::,Kf g in the risk model can be

written as

p(Cj � � � )!p(C)| P
n

i~1

I(Yi~1) exp (azhi
zbzhi

Eizt’Xi)

1z exp (azhi
zbzhi

Eizt’Xi)
z

2
4

I(Yi~0)

1z exp (azhi
zbzhi

Eizt’Xi)

3
5:

ð4Þ

We can use the standard Metropolis-Hastings (MH) steps to

update C, conditioned on the current values of other parameters.

The detailed algorithm is given in Text S1.

Updating the allocation vector z. Following Green and

Richardson [6], we can update the allocations z using a Gibbs

kernel; that is, for the genotype h, its cluster assignment is updated

by drawing from the following full conditional distribution,

p(zh~kj � � � )! exp ytk
h zð Þ

� �
| P

i:hi~h

I(Yi~1) exp (akzbkEizt’Xi)

1z exp (akzbkEizt’Xi)
z

I(Yi~0)

1z exp (akzbkEizt’Xi)

	 

,

k~1,:::,K , ð5Þ

where tk
h zð Þ~

P
h’:zh’~k,h0=h

sh,h0 is the sum of similarity scores

between the genotype h and other genotypes currently assigned to

cluster k.

Since the sampling space for z is discrete, the standard Gibbs

sampler can be improved by the Metropolized Gibbs sampler [26].

Thus we choose this sampler for updating the allocation vector. A

summary of the algorithm is given in Text S1.

Updating the regulating parameter y. The regulating

parameter y has the following full conditional distribution:

p(yj � � � )!p(y) exp yU(z){hK (y)½ �: ð6Þ

If the standard MH algorithm is used, updating y would involve

the evaluation of the normalizing constant hK (y) for the Potts

model, which is prohibitive when the dimension of z is large.

Green and Richardson [6] chose to restrict y to a pre-specified

finite set of values; they used the thermodynamic integration

approach [27] to estimate hK (y) for a given value of K. Those

estimates were then used in the MCMC sampler. The estimate of

hK (y) at pre-specified grid points might lead to biased Monte

Carlo estimates of y and other parameters.

Here we propose to use the recently developed Monte Carlo

Metropolis-Hastings algorithm (MCMH) [12] to sample y from

p(yj � � � ). This new algorithm replaces the ratio of normalizing

constants at any two values of y by a Monte Carlo estimate,

which is obtained through a set of m auxiliary samples, in the

MCMC iterations, thus allowing us to consider y on its original

continuous scale instead of on a finite number of pre-specified

points. As shown in [12], this algorithm ensures that the Monte

Carlo estimate of the parameter will converge to its posterior

mean. In our numeric experiments, we find it is appropriate to

choose the number of auxiliary samples m to be between 50 and

100. A summary of the algorithm for updating y is given in Text

S1.

Posterior Inference
In our simulation studies and the real data application, we find

the MCMC algorithm generally converges after 100.000

iterations. Below we describe a procedure for determining the

number of clusters, and an ensemble averaging method for the

identification of the cluster assignment based on the MCMC

samples.

Determining the number of clusters. We choose to use the

deviance information criterion (DIC) proposed by Spiegelhalter

et al [28] for determining the number of clusters. For a given

number of clusters K, define the deviance DK (Y,C,z) as

DK (Y,C,z)~{2 ln P
n

i~1
p(YijC,z):

We can calculate the posterior expected deviance E DK (Y,C,z)jY½ �
by averaging the deviance calculated at samples of (C,z) generated

by MCMC output. We calculate the deviance DK (Y,�CC,�zz) at the

posterior mean of the parameters as

DK (Y,�CC,�zz)~{2 ln P
n

i~1

I(Yi~1) exp (�aa(i)z�bb(i)Eiz�tt’Xi)

1z exp (�aa(i)z�bb(i)Eiz�tt’Xi)
z

"

I(Yi~0)

1z exp (�aa(i)z�bb(i)Eiz�tt’Xi)



,

where �aa(i) and �bb(i) are the posterior means of the coefficients

assigned to subject i; �tt is the posterior mean for t. The DICK for

the model with K clusters is then calculated as

A Model for Studying Gene–Environment Interaction
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DICK~2E DK (Y,C,z)jY½ �{DK (Y,�CC,�zz):

To determine the number of clusters, we run the algorithm with

different values of K (e.g., K~1,:::,Kmax, with Kmax~8) and

compute their DIC values. The DIC criterion favors models with

small DIC values. To take the Monte Carlo variation into the

consideration, instead of choosing the K with the smallest DIC, we

adopt the +1 standard error (SE) rule originally proposed for the

tree model selection [29]. To use this rule, we run the MCMC

algorithm 20 times, with different random seeds for each

considered value of K, and then pick the optimal number of

clusters K� as the smallest one such that

ave(DICK )vave(DICK0
)zse(DICK0

), ð7Þ

where ave(DICK ) is the average of the values of DIC measured

at K over 20 runs, K0~ arg min1ƒKƒKmax ave(DICK ), and

se(DICK0
) is the Monte Carlo standard error estimated for

DICK0
based on 20 runs.

Based on our numerical experiments, we found that the Monte

Carlo standard error usually is less than 1 if the MCMC chain

converges. So, if there is only one run for each K, we recommend

picking K� as the smallest one such that

DICKvmin 1ƒKƒKmax DICKz1: ð8Þ

We use this rule, hereafter called the +1 rule, to select the optimal

number of clusters in simulation studies.

Identifying the cluster assignment. After the determi-

nation of the number of clusters K�, it is usually helpful to identify

the consensual cluster assignment rule that assigns each genotype

to one of the K� clusters. We can also use this partition to assign

each subject to one of the clusters based on his or her genotype’s

assignment. Here we adopt the ideas from Liang [13] and Molitor

et al [14] to find such a partition. Based on the samples generated

from MCMC runs under the K�-cluster model, we let ch,h’ be the

proportion of times that the genotypes h and h’ are assigned to the

same cluster. We then use
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ch,h’

p
as the dissimilarity metric

and apply the PAM (partitioning around medoids) method [30] to

partition genotypes into K� clusters. Simulation studies presented

later show this clustering algorithm works quite well in identifying

the appropriate clusters.

A Resampling-Based Test for Gene–Environment
Interaction

It is usually desirable to have a formal statistical test or decision

rule for inference regarding the presence of an interaction. Here

we propose a resampling-based test for this purpose. First we fit

model (2), the Bayesian risk model allowing for G-E interaction,

under various numbers of clusters. Then we use the +1 rule to

identify K�, the optimal number of clusters that is not less than 2,

and the corresponding consensual cluster assignment L. We

require K�§2 for this interaction test because the interaction test

is not defined for K�~1. We use the maximum likelihood estimate

(MLE) to establish the following logistic regression model,

log
Pr (Yi~1)

1{ Pr (Yi~1)

� �
~c1zl’Xizm1Eiz

XK�
k~2

ckI(Li~k)z
XK�
k~2

mkEiI(Li~k),

ð9Þ

where Li is the cluster assignment for subject i, i~1,:::n, given by

the consensual cluster assignment L. This model includes the main

effects of L and E, as well as their interactions. We can conduct a

likelihood ratio test comparing model (9) with the similar model

without the interaction terms and obtain the corresponding ‘‘P-

value’’, denoted by d, based on the Chi-squared distribution with

K�{1 degrees of freedom (df). Clearly, this ‘‘P-value’’ d tends to

overestimate the significance level of the interaction, as the

variable L is data-driven, but a small value for d provides evidence

against the null. We can use d as the test statistic and apply the

following resampling-based procedure to evaluate its significance

level.

1. Apply the MCMC procedure to fit model (3), the Bayesian risk

model without G-E interaction, on the observed data and

identify K�Null§2, the optimal number of clusters, using the

+1 rule, as well as the corresponding consensual cluster

assignment.

2. Use MLE to fit the following logistic regression model based on

the observed data,

log
Pr (Yi~1)

1{ Pr (Yi~1)

� �
~
XK�Null

k~1

~cckI(LNull
i ~k)z~ll’Xiz~mmEi, ð10Þ

where LNull
i is the cluster assignment for subject i, i~1,:::n,

given by the consensual cluster assignment identified in Step 1,

and ~mm, ~cck, k~1,:::,K�Null, and l̂l are the estimated coefficients.

3. Use the model given by (10) to generate B sets of bootstrap null

datasets. Each null dataset is a copy of the observed dataset,

except the outcome for every subject is regenerated according

to the probability model given by (10).

4. For the bth null dataset, b~1,:::,B, obtain the test statistic d(b)

using the same procedure used above for obtaining d.

5. The estimated P-value for d is given by
1

B

XB

b~1

I(d(b)
vd)

In Steps 1 and 2 we establish the Bayesian risk model under the

null hypothesis that there is no G-E interaction and the

corresponding logistic regression model. We use the fitted logistic

regression model (10) to generate multiple null datasets in Step 3

based on the parametric bootstrap procedure [31]. In Step 4, for

the bth generated null dataset, we first apply the MCMC

procedure to establish the Bayesian model given by (2) and next

identify the optimal number of clusters with the +1 rule, as well as

the corresponding consensual cluster assignment. Then we fit the

corresponding logistic regression model with G-E interaction and

obtain the test statistic d(b) from the likelihood ratio test.

Results

The EAGLE Study
We used data generated by the lung cancer GWAS in the

EAGLE study [15] with 1920 lung cancer cases and 1979

population controls as the basis for our simulation studies and real

data applications. We focused on the chromosome region 15q25.1

between 76.5 Mb and 76.72 Mb, with the boundary defined by

loci where the recombination rate is relatively high. This region

covers all replicated loci relating to smoking behavior or lung

cancer risk. We have genotypes on 32 SNPs in the region that have

a minor allele frequency (MAF) larger than 4% (estimated in 1979

EAGLE control samples). We removed 17 redundant SNPs,

leaving a minimal set of 15 SNPs where the pairwise r2 was always

less than 0.8. We used genotypes on these 15 tagging SNPs to
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represent each subject’s genetic variation pattern in the region.

The reason for removing redundant SNPs is to ensure that the

similarity measure between any two types of multilocus genotypes

is not dominated by a set of SNPs in high linkage disequilibrium.

The summary of the 15 chosen tagging SNPs is given in Table 1.

Simulation Studies: Performance of the Bayesian Model
We conducted simulation studies to evaluate the performance of

the proposed method for fitting the Bayesian model allowing for

G-E interaction. In the simulation study we were interested in

studying the interaction between a binary environment risk factor

(E~0 or 1) and genetic variants (G) within a candidate region. We

used genotypes at 15 tagging SNPs (Table 1) in 15q25.1 observed

in the EAGLE study to represent the joint genotype distribution

for the simulated population, which consisted of 766 distinct

multilocus genotypes. We chose the 2nd, 6th, and 10th SNPs listed

in the Table 1 as the functional SNPs, and divided the genotype

space into the following three regions according to the total

number of risk alleles (assuming the minor allele to be the high-risk

allele) among the 3 functional SNPs: region I, consisting of

genotypes with g2zg6zg10ƒ1; regions II, consisting of geno-

types with g2zg6zg10~2; and region III, including genotypes

with g2zg6zg10w2. We conducted a principal component (PC)

analysis on subjects from the EAGLE study with genotypes at the

15 SNPs as their coordinates. Figure 1 shows how genotypes

(subjects) in each of the three regions were distributed in the first 2-

PC space, with regions I, II, and III in green, blue, and red,

respectively.

The disease risk models we considered had the form given by

(1). Their definitions are given in Table 2. Under Model M1 there

was no genetic effect and no interaction between G and E, and

thus there was no risk heterogeneity in the genotype space. Under

M2 and M3, coefficients a and b had the same clustering pattern.

Under models M4, the risk heterogeneity patterns for a and b were

not matched, unlike those under model M2 and M3. In model M4,

the two clusters defined by a were region I, and regions II and III

combined, while the two clusters defined by the effect of b were

regions I and II combined, and region III.

We assumed that the environmental exposure status E (0 or 1)

and G were correlated in the general population. The distribution

of E depended on G in the following way: for a subject with

genotype in region I, the probabilities of being unexposed (E~0)

or exposed (E~1) were 0.7 and 0.3; for a subject with genotype in

one of the other two regions, those probabilities were 0.4 and 0.6

for E~0 and E~1. Thus the distribution of E was quite different

for subjects with different genotypes.

Under each model, we simulated 50 datasets representing a

case-control study with 1500 cases and 1500 controls. We ran the

MCMC algorithm with 2,000,000 iterations with the first

1,000,000 iterations being discarded. We used an algorithm

similar to that described in [32] to simulate the case-control study.

Note that under the case-control sampling scheme, we do not need

to specify a value for a1. Instead, we just need to know the values

of ai{a1, i~2,3, in order to simulate datasets from a case-control

study.

For each simulated dataset, we applied our method with m~50
auxiliary samples, with the number of clusters K ranging from 1 to

8. We used the +1 rule defined by (8) to identify K�, the optimal

number of clusters. Table 3 provides a summary of the number of

clusters identified over 50 simulated datasets under each risk

model. We can see from the table that the +1 rule performs quite

Table 1. Summary of 15 tagging SNPs chosen for the EAGLE
study.

SNP id Position MAFa
Odds
ratiob P-valueb PC1c PC2c

rs1394371 76511524 0.32 1.110685 7.34E-02 0.238102 0.289431

rs12903150 76511700 0.22 0.916667 1.89E-01 20.22088 0.066403

rs12899131 76513940 0.38 0.973222 6.27E-01 20.36255 0.013854

rs2656069 76532762 0.23 0.760253 7.67E-05 0.110054 20.40066

rs13180 76576543 0.39 0.873685 1.75E-02 20.08845 20.374

rs3743079 76578116 0.17 1.075484 3.13E-01 20.2273 20.05414

rs3885951 76612972 0.12 1.279568 2.30E-03 0.158959 0.186958

rs2036534 76614003 0.24 0.698668 1.23E-07 0.120671 20.42301

rs2292117 76621744 0.36 0.908155 8.78E-02 20.39076 0.034655

rs680244 76658343 0.37 0.911216 1.03E-01 20.39566 0.037326

rs578776 76675455 0.29 0.738028 1.45E-06 0.085806 20.39304

rs12914385 76685778 0.41 1.416705 3.68E-10 0.258519 0.31863

rs1948 76704454 0.3 0.878962 3.10E-02 20.36327 0.013799

rs11636753 76716001 0.35 0.89959 6.74E-02 20.35628 0.025404

rs12441998 76716427 0.24 0.725298 2.24E-06 0.096535 20.36738

aThe minor allele frequency was estimated based on the control samples in the
EAGLE study.

bThe per-allele OR and the one degree of freedom Wald test for the association
between lung cancer and the SNP based on the logistic regression model
adjusted for smoking intensity, age, and gender. The SNP genotype was coded
as the copy number of the minor alleles.

cLoadings of individual SNPs on the first and second principal components
based on the principal component analysis conducted on the selected subjects
from the EAGLE study used in the real-data application. The highlighted values
in the PC2 column are the ones that dominate the definition of the 2nd

principal component.
doi:10.1371/journal.pgen.1002482.t001

Figure 1. The partition of the genotype space in the simulation
study. We conducted a principal component analysis on all subjects
from the EAGLE study with genotypes at the 15 chosen tagging SNPs as
coordinates. We plot subjects by their first and second principal
components. Subjects with the same multilocus genotype were
represented by a single point in the plot. The points in green, blue,
and red colors are those subjects (genotypes) belonging to region I
(consisting of genotypes having no more than 1 risk allele among the
three considered functional SNPs), region II (consisting of genotypes
having 2 risk alleles), and region III (consisting of genotypes have more
than 2 risk alleles).
doi:10.1371/journal.pgen.1002482.g001
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well in identifying the right number of clusters, even in situations

where there is no clustering structure (i.e., the true number of

clusters, Ktrue, is 1).

We evaluated the performance of the algorithm for cluster

assignment by comparing the cluster assignment estimated at

K~Ktrue with the true underlying cluster assignment chosen by

the simulation design. For model M4, the clustering patterns for a
and b were not matched. In this case we treated the finer

partitioning (given by Figure 1) that accommodates the clustering

patterns of both a and b as the true one. The accuracy of the

estimated cluster assignment was measured as the proportion of

subjects being assigned to the same cluster by both assignments

(the estimated one and the true one). The accuracy summary over

50 replications under various considered models (except M1, the

model with no clustering structure) is given in Table 4. It indicates

that the cluster assignment algorithm appears to be able to

partition the subjects (and genotypes) into the proper subgroups,

provided that the correct number of clusters can be identified.

We also evaluated the accuracy of the estimated coefficients (a
and b). Based on the true risk model (1), subject i with genotype hi

was assigned to one of the risk models. We considered coefficients

a and b in that risk model to be the true coefficient values for this

subject. Thus, subjects with their genotypes belonging to the same

cluster would share the same true coefficient values. We used b̂b(i),

the posterior median of b assigned to subject i based on MCMC

samples generated under K~K�, as the estimates for the

underlying coefficients. The number of clusters K� was estimated

by the +1 rule, as described previously. Since the odds for the

genetic effect is not identifiable under the case-control design, we

were interested only in the difference in a between two groups. To

present the result for each experiment, we shifted the value of âa(i),

the posterior median of a for subject i, by a constant value, which

was chosen as medianj[Clusterkâa(j), the median of âa among subjects

in true cluster 1. As a result, the median level of the shifted pos-

terior median (we still represent it as âa(i)) among subjects in cluster

1 is 0. In Figure 2, Figure 3, Figure 4, and Figure 5, we present

summaries of âa(i) and b̂b(i) for each of the 50 experiments under

models M2 and M3. Summarized results for model M4 are given

in Figures S1 and S2. Each boxplot is a summary of âa(i) or b̂b(i)

among subjects in a true underlying cluster. From those figures, we

can see that the estimates align with their true values quite well.

Notice that these estimates were obtained under the model with

the number of clusters estimated by the +1 rule.

We inspected the algorithm’s convergence using the Gelman

and Rubin’s diagnostic plot [33], as implemented in the CODA R

package [34]. For each model, we checked the convergence on the

first 5 simulated datasets used in the above simulation studies, with

5 independent runs on each dataset. We found that the proposed

algorithm can converge within 100,000 iterations, with the

estimated shrinkage factor falling below the recommended

threshold of 1.1. We also show in Figures S3 and S4 the posterior

distributions for bk, k~1,2,3, resulting from each of 5 indepen-

dent runs on the first simulated dataset under models M3, and M4.

It is evident from these plots that we can obtain very consistent

posterior distributions for parameters of interest among different

runs on the same data.

Simulation Studies: Performance of the Resampling-
Based Test

We conducted a simulation study to evaluate whether the

proposed resampling-based test can maintain the proper type I

Table 2. List of disease risk models considered in the simulation study for evaluating the Bayesian model.

Model id Coefficientsa Cluster 1b Cluster 2b Cluster 3b

M1 a1~0, b1~ log (2) No restriction NA NA

M2 a1~0, b1~0

a2~ log (2), b2~ log (2)

g2zg6zg10ƒ1 g2zg6zg10§2 NA

M3 a1~0, b1~0 a2~ log (2), b2~ log (2)

a3~ log (4), b3~ log (4)

g2zg6zg10ƒ1 g2zg6zg10~2 g2zg6zg10§3

M4 a1~0, b1~0 a2~ log (4), b2~0

a3~ log (4), b3~ log (4)

g2zg6zg10ƒ1 g2zg6zg10~2 g2zg6zg10§3

aThe coefficients are defined for models with the form given by (1) in the main text.
bThe cluster is defined according to the total number of risk alleles at the three chosen SNPs (the 2nd, 6th, and 10th SNPs listed in Table 1).
doi:10.1371/journal.pgen.1002482.t002

Table 3. Performance of the +1 rule for identifying the
number of clusters in the simulation study.

Total number of clusters identified (K�)

Model id K�~1 K�~2 K�~3 K�~4 K�§5

M1 48 1 1

M2 46 3 1

M3 45 5

M4 42 7 1

There are 50 simulated datasets under each model. The counts are the
frequencies for the number of clusters identified by the +1 rule defined in the
main text. The highlighted counts are the number of times the algorithm
identified the correct number of clusters.
doi:10.1371/journal.pgen.1002482.t003

Table 4. Performance of the algorithm for the cluster
assignment.

Accuracy Summary

Model id Mean
Standard
Deviation

M2 0.95 0.011

M3 0.92 0.019

M4 0.93 0.017

The accuracy summary for the cluster assignment is based on 50 simulated
datasets under each model. The cluster assignment is estimated under the
correct number of clusters.
doi:10.1371/journal.pgen.1002482.t004
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error rate. We considered a disease risk model that had the main

effects from G (with OR = 4 for genotypes falling into regions II

and III vs. those in region I) and E (with a common OR of 4 for

E~1 vs. E~0), with no interaction between G and E. Regions

are defined in Figure 1. We assumed a study sample size of 600

cases and 600 controls, and simulated 1000 datasets under the

considered risk model as did before. For each dataset, we ran the

resampling-based test with 1000 bootstrap steps for the estimation

Figure 2. Boxplots of the posterior medians of the intercept (a) for subjects within each true cluster from each of 50 datasets
simulated under the model M2. (a). Boxplots of posterior medians of a for subjects in cluster 1, with the true value given by the horizontal line in
green; (b). Boxplots of posterior medians of a for subjects in cluster 2, with the true value given by the horizontal line in blue. The posterior median of
a for each subject under a given simulated dataset was shifted by a constant value selected so that the median value of the shifted estimates for
subjects in cluster 1 was zero.
doi:10.1371/journal.pgen.1002482.g002

Figure 3. Boxplots of the posterior medians of the log odds ratio (b) for subjects within each true cluster from each of 50 datasets
simulated under the model M2. (a). Boxplots of posterior medians of b for subjects in cluster 1, with the true value given by the horizontal line in
green; (b). Boxplots of posterior medians of b for subjects in cluster 2, with the true value given by the horizontal line in blue.
doi:10.1371/journal.pgen.1002482.g003
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of the P-value, allowing the number of clusters to vary from 2 to 5.

To reduce the computing time further, we ran the MCMC

algorithm for 300,000 iterations with the burn-in period consisting

of the first 200,000 iterations for each bootstrapped sample (as

200,000 iterations appear to be enough to ensure the convergence

of the MCMC algorithm). We found that the proposed

resampling-based test can maintain the proper type I error in

the considered scenario, with estimated false positive rates of 0.055

and 0.097 under nominal levels of 0.05 and 0.10, respectively.

We compared the power of the proposed resampling-based test

with two other standard interaction tests, the minP-SNP and

minP-PC tests. Both test statistics are based on the minimum P-

value observed on a set of univariate G-E interaction tests, with

their significant levels being evaluated through a resampling-based

procedure. The minP-SNP test is based on the set of single SNP-

environment interaction tests, with each SNP-environment

interaction test statistic being derived from the standard likelihood

ratio test comparing two logistic regression models with and

without the SNP-environment interaction term. The SNP effect is

modeled with a categorical variable with three levels so each SNP-

environment interaction test considered in the minP-SNP test is a

2 df test. The minP-PC is based on a set of tests that evaluate the

interaction between a single principal component (PC) and the

environment variable. PCs are derived from the principal

component analysis of genotypes on all considered SNPs. Similar

to the minP-SNP test, each PC-environment interaction test is

derived from the likelihood ratio test comparing two logistic

regression models with and without the interaction term. The PC

effect is model as a continuous variable. Both minP-SNP and

minP-PC were based on 15 univariate tests in the simulation study

as there were a total of 15 SNPs in the considered chromosome

region.

We evaluated the power under six different disease risk models,

including M2, M3, and M4 defined in Table 2, and the three

additional models MSNP1, MSNP2, and MEAGLE. Model MSNP1

and MSNP2 had just one functional SNP (the 10th SNP in Table 1).

Model MSNP1 had 2 clusters, with coefficients in the formula (1)

being a1~b1~0 for genotypes satisfying the condition g10~0
(cluster 1), and a2~b2~ log (4) for g10~1, or 2 (cluster 2). Model

MSNP2 had 3 clusters, with coefficients a1~b1~0 for g10~0
(cluster 1), a2~b2~ log (2) for g10~1 (cluster 2), and

a3~b3~ log (4) for g10~2 (cluster 3). Model MEAGLE adopted

a 2-cluster pattern observed in the analysis of the EAGLE study

described later, with clusters 1 and 2 consisting of genotypes in red

and blue colors, respectively (Figure 6), and with a1~b1~0 for

cluster 1, and a2~b2~ log (4) for cluster 2. The correlation

between E and G was defined similarly as before. For a subject

with genotype in cluster 1, the probabilities of being unexposed

(E~0) or exposed (E~1) were 0.7 and 0.3; for a subject with

genotype not in cluster 1, those probabilities were 0.4 and 0.6.

Under each disease model, we simulated 500 datasets, with each

consisting of 600 cases and 600 controls. The summary for the

power comparison results is given in Table 5. It can be seen from

the table that the proposed test has a clear advantage over two

other standard interaction tests, especially when the underlying

clustering pattern in the disease risk cannot be properly

approximated by a single SNP or PC (e.g., under the model

MEAGLE). Even under the model MSNP2 where the single SNP-

Figure 4. Boxplots of the posterior medians of the intercept (a) for subjects within each true cluster from each of 50 datasets
simulated under the model M3. (a). Boxplots of posterior medians of a for subjects in cluster 1, with the true value given by the horizontal line in
green; (b). Boxplots of posterior medians of a for subjects in cluster 2, with the true value given by the horizontal line in blue; (c). Boxplots of posterior
medians of a for subjects in cluster 3, with the true value given by the horizontal line in red. The posterior median of a for each subject under a given
simulated dataset was shifted by a constant value selected so that the median value of the shifted estimates for subjects in cluster 1 was zero.
doi:10.1371/journal.pgen.1002482.g004
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environment interaction test based on the 10th SNP is most

optimal, due to the multiple comparison adjustment, the minP-

SNP test is only slightly more powerful than the proposed test.

Under the model MSNP1 where the functional SNP (the 10th SNP)

has a dominant effect in its interaction with E, the minP-SNP test

compares less favorably with the proposed test since each of single

SNP-environment interaction test considered in the minP-SNP

global test spends one more df than necessary (as there are only

two cluster in the model MSNP1). The minP-PC test has the worst

overall performance as it is very sensitive to its underlying

assumption that the genetic effect is linearly correlated with one of

the PC direction.

Application in the EAGLE Study
We applied the proposed method to study the joint effect of

cigarette smoking intensity (number of packs per day) and genetic

variants in chromosome region 15q25.1 on lung cancer risk, using

data generated by the EAGLE study. We focused on former and

current smokers who had been genotyped on the 15 tagging SNPs.

We also removed, as outliers, 8 subjects who had smoked more

than 3 packs of cigarette per day. The final dataset for our analysis

consisted of 1326 controls and 1720 cases. In the analysis we

treated smoking intensity as a continuous variable and adjusted for

the effects of gender and of age at diagnosis (categorized as:

, = 60, 61–70, .70). We used a Bayesian model that allowed for

G-E interaction, unless specified otherwise.

To determine the number of clusters, we ran the MCMC

algorithm 20 times with different random seeds for each K,

K~1,:::,8, in order to estimate the Monte Carlo standard error

for DIC. Figure 7 shows the DIC values for each K over 20

replications. Based on the 1 SE rule given by (7), the optimal

number of clusters was found to be 2, with its averaged DIC value

being 3810.5. The partitioning of subjects into 2 clusters based on

our proposed clustering algorithm is very consistent among 20

Figure 5. Boxplots of the posterior medians of the log odds ratio (b) for subjects within each true cluster from each of 50 datasets
simulated under the model M3. (a). Boxplots of posterior medians of b for subjects in cluster 1, with the true value given by the horizontal line in
green; (b). Boxplots of posterior medians of b for subjects in cluster 2, with the true value given by the horizontal line in blue; (c). Boxplots of posterior
medians of b for subjects in cluster 3, with the true value given by the horizontal line in red.
doi:10.1371/journal.pgen.1002482.g005

Figure 6. Cluster assignment for the EAGLE study. The cluster
assignment estimated under the model with the number of clusters
K = 2. Every subject was represented by his or her first 2 principal
components. Subjects with the same multilocus genotype were
represented by one point in the plot.
doi:10.1371/journal.pgen.1002482.g006
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replications. The discrepancy rate between assignments from any

two runs, defined as the proportion of subjects being assigned to

two different clusters, is less than 1.4% under K~2.

Below we present the posterior summary based on a single run

of our algorithm. To present the summary result, we first

conducted a PC analysis on the case-control samples using

genotypes at the 15 tagging SNPs as coordinates. In Figure 6, we

plotted subjects by their first 2 PCs, with different colors

representing their cluster assignments under K~2. The cluster

assignment was performed with the ensemble averaging method

described above. Since subjects with the same genotype were

represented by one point in the first 2-PC space, we can think of

each point as either a unique genotype or a group of subjects

sharing that genotype. There are 2240 subjects with 410 unique

genotypes grouped into one cluster (shown in red in Figure 6) and

806 subjects with 252 unique genotypes grouped into another

cluster (shown in blue in Figure 6). Notice that the two clusters are

defined in term of estimated risk coefficient values (a and b), but

not in term of genotypes distribution in the PC space. That is why

these two clusters do not appear to be well separated in the PC

space.

To summarize the effect of smoking on a subject with genotype

h, h~1, :::, H, we focused on median exp bzh

� �� �
, the posterior

median of exp bzh

� �
, with bzh

being the coefficient for smoking in

the risk model assigned for a subject with genotype h. We can

interpret median exp bzh

� �� �
as the posterior median of the OR

associated with one more pack of cigarettes per day for a subject

with genotype h. To summarize the genetic effect of genotype h, we

used median exp azh
ð Þ½ �=median exp azh�ð Þ½ �, the ratio of the poste-

rior median of exp azh
ð Þ versus the posterior median of exp azh�ð Þ,

with azh
being the intercept for the risk model assigned for a

subject with genotype h and h� being the chosen reference

genotype. We chose the reference genotype h� as the one having

the lowest posterior median of exp azh
ð Þ, h~1, :::, H. We can

interpret median exp azh
ð Þ½ �=median exp azh�ð Þ½ � as the posterior

median OR between genotype h and the reference genotype h�.
In Figure 8, we show a smoothed surface plot for the smoking

effect measured by median exp bzh

� �� �
, and the genetic effect

measured by median exp azh
ð Þ½ �=median exp azh�ð Þ½ � for each geno-

type in the first 2-PC space, based on models run under K~2.

The smooth surface was estimated by the kriging method with

each genotype’s top 5 PCs (which account for over 85% of the

total variation) as predictors. The plots were generated using the

functions provided in the R package called ‘‘fields’’ [35]. It is

evident from Figure 8 that neither the smoking effect nor the

genetic effect is uniformly distributed over the genotype space.

The smoking effect on a subject depends on his or her genotype. It

is considerably lower on subjects who have their genotypes

projected on the lower part of the PC space than on subjects with

their genotypes projected elsewhere.

Some understanding of the 2nd PC is helpful for interpreting the

patterns observed in Figure 8. From Table 1, we can see that the

2nd PC is driven mainly by the 8 SNPs with absolute loading

values larger than 0.18, with the remaining having loading values

less than 0.07. These 8 SNPs also turn out to be the ones that are

most significantly associated with lung cancer risk (Table 1). We

point out the fact that the loading value for each of the 8 SNPs is

negative if the SNP’s major allele is the high-risk allele, positive if

its minor allele is the high-risk allele. As a result, a genotype’s 2nd

PC coordinate is positively correlated with its total number of risk

alleles among the 8 SNPs (see Figure S5). Genotypes with smaller

2nd PC coordinates tend to have fewer high-risk alleles and are

expected to have smaller ORs than genotypes having larger 2nd

PC coordinates.

As a comparison, we also fit model (3), the Bayesian model

without G-E interaction. The optimal model based on the 1 SE

rule was again achieved at K~2, with its averaged DIC value

being 3817.5 over 20 runs (Figure S6). The DIC is noticeably

higher than that obtained under the Bayesian model allowing for

G-E interaction (DIC = 3810.5). This suggests that the model

allowing for G-E interaction fits the data better than the model

without the G-E interaction.

Finally, to demonstrate the existence of G-E interaction further,

we applied the resampling-based test described in the Methods

section. The observed test statistic was 1:97|10{5. We applied

the resampling-based test by allowing the number of clusters to

vary from 2 to 5. The estimated P-value based on 2000 bootstrap

steps was 0.016, suggesting that there is a significant G-E

interaction. On the other hand, for each of the 32 relatively

common SNPs (MAF.0.04) in this considered 15q25.1 region, we

conducted the standard SNP-smoking interaction test (2 df) based

on the logistic regression model by treating the genotype as a

three-level categorical variable. The smallest nominal P-value we

Table 5. Power comparison under the type I error rate of
0.05.

Power

Risk Model Proposed method minP-SNP minP-PC

M2 0.53 0.38 0.09

M3 0.75 0.73 0.71

M4 0.87 0.72 0.51

MSNP1 0.71 0.60 0.08

MSNP2 0.62 0.65 0.60

MEAGLE 0.94 0.27 0.32

Risk models are defined in the main text. The power is estimated based on 500
simulated datasets, each consisting of 600 cases and 600 controls.
doi:10.1371/journal.pgen.1002482.t005

Figure 7. DIC plots for the Bayesian risk model allowing for
gene–environment interaction. For any given number of clusters,
20 DIC values were obtained by applying the proposed method to the
data from the EAGLE study 20 times with different random seeds.
doi:10.1371/journal.pgen.1002482.g007
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observed was 0.021. The global minP-SNP test had a P-value of

0.29, which was well above the 0.05 level. We also conducted the

PC-smoking interaction test by modeling each PC as a continuous

variable. The smallest nominal P-value was 0.058. The P-value

from the global minP-PC test was 0.62.

Discussion

Our new method can evaluate gene–environment interaction at

the gene/region level by integrating information observed on

multiple SNPs in the considered gene/region with measures of

environmental exposure. This method reduces the impact of loss

of efficiency and bias from the misclassification error inherent in

the single-marker approach that studies the environmental risk

factor and one SNP at a time. The method provides a coherent

inference framework that allows us to evaluate the environmental

effect on different strata defined by the multi-locus genotype. A

heterogeneous environmental effect across different strata would

signal the presence of gene–environment interaction. We also

propose a resampling-based test to formally test for the existence of

gene–environment interaction.

Genetic variations within the 15q25.1 region have been shown

to be associated with both lung cancer risk and smoking behaviors,

such as the smoking intensity. Our analysis based on the EAGLE

case-control study indicates that the smoking effect varies

according to the subject’s genetic makeup in the 15q25.1 region.

The proposed resampling-based test also supports the existence of

gene–environment interaction (P-value = 0.016). On the other

hand, two conventional tests of gene–environment interaction

based on the single-marker and single-PC approaches are far from

significant. This highlights the advantage of our proposed method

over standard approaches.

Accurate assessment of the environment risk exposure in the

evaluation of gene–environment interaction is as important as

identification of functional genetic variants or their proper

surrogates [36]. In the EAGLE population-based case-control

study, the information on smoking collected near the time of

diagnosis is likely to provide a more accurate measure of risk

exposure than information collected in other prospective cohort

studies, such as the Prostate, Lung, Colorectal, and Ovarian

(PLCO) Screening Trial [37], which does not reflect subsequent

changes in smoking behavior like quitting. For example, we

observed a much larger OR for smoking one more pack of

cigarette per day (3.7, z statistic = 15.58) in the EAGLE study than

in a lung cancer case-control study nested within the PLCO cohort

(1.84, z statistic = 8.87), which includes 1390 lung cancer cases and

1924 controls. We also could not find evidence for smoking-

15q25.1 interaction in this PLCO nested case-control study by

using our proposed method. The difference in the smoking OR

estimates and the absence of gene–environment interaction

evidence using our method in the PLCO study may be a

consequence of greater misclassification error in the smoking

information assessment in the cohort study (PLCO) than in the

case-control study (the EAGLE study).

In our method, we adopted the Potts model for the latent

allocation vector for cluster assignment, as did Green and

Richardson [6]. We used the MCMH algorithm [12] for

simulating the regulating parameter of the Potts model. The

MCMH algorithm overcomes the intractable normalizing con-

stant problem that cannot be handled by the standard MH

algorithm, while ensuring the consistency of the Monte Carlo

estimates. Furthermore, this MCMH algorithm can readily be

used for Potts models with certain restrictions on the sampling

space by modifying the MH step to generate allocation vectors

accordingly.

We proposed to use the +1 SE rule (or the +1 rule) based on

DIC to identify the optimal number of clusters. We found through

simulation studies that this approach works quite well. An

alternative approach would be to treat the number of clusters as

a random variable and integrate it into a Bayesian model [6]. A

reversible jump MCMC algorithm [38] could be used to facilitate

the move between sampling spaces with different dimensions. It

would be interesting to compare the performance of these

approaches, especially in term of their abilities to identify the

proper number of clusters.

The proposed procedure relies upon a user-specified similarity

metric to define the neighborhood among different genotypes in

the Potts model. This neighborhood structure is used to induce the

spatial dependency in the cluster assignment. In this paper, for a

given genotype, we chose its 4 nearest genotypes as its neighbors.

We found that the analysis result was not very sensitive to how the

neighborhood is defined as long as the chosen Markov structure

can generate an appropriate spatial dependence. For example, we

reanalyzed the EAGLE study with two other types of Markov

Figure 8. Smoothed surface plots of the posterior medians of the odds ratios for the genetic and smoking effects on the space of
the first two principal components. (a). Posterior median of the OR for the genetic effect under the model with the number of clusters K = 2; (b).
Posterior mean of the OR for the smoking effect under the model with the number of clusters K = 2.
doi:10.1371/journal.pgen.1002482.g008
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structures: one using the 3 nearest genotypes as neighbors, and the

other one using the 5 nearest genotypes as neighbors. We show in

Figure S7 the comparison of the posterior medians of the genetic

effect (a) and the smoking effect (b) estimated for each subject

between each of the new runs and the original runs under K~2. It

is clear that results from these three analyses are quite similar.

We used the prospective likelihood model in the Bayesian

framework for case-control studies, even though the data were

collected retrospectively according to a subject’s disease status.

According to [23,39], given certain priors for parameters in the

retrospective model, we can derive corresponding priors for the

prospective model parameters that yield the same marginal

posterior distributions as their retrospective counterparts. In this

paper we consider both normal and uniform distributions as priors

for the prospective model parameters. Although we cannot derive

explicitly their corresponding priors for the retrospective model,

our simulation studies demonstrated that the proposed prospective

approach indeed had the desired performance when applying to

data generated from case-control studies. The normal prior has

also been used with the prospective likelihood model on case-

control studies in other contexts (e.g., [40,41]).

We have created an R package called BaDGE (Bayesian model

for Detecting Gene Environment interaction) implementing the

proposed Bayesian model and the associated post-processing

procedures. The package is freely available from the website

http://dceg.cancer.gov/bb/tools/badge. Currently, we consider

only binary or continuous environmental exposure variable. It is

straightforward to expand the algorithm to deal with a categorical

(with more than 2 levels) environmental variable. To use the

program, the user needs to specify priors (normal or uniform

distribution) for parameters in the risk model and a prior (a

uniform distribution) for the regulating parameter in the Potts

model. The program will be expanded further to incorporate other

prior functions. The running time for 200,000 iterations using 50

auxiliary samples in the MCMH algorithm on a dataset of 1000

cases and 1000 controls, with approximate 450 unique genotypes,

is about 14 minutes on a Linux machine with the 2.8 GHz AMD

Opteron processor. For a dataset with a large number of genotypes

(e.g., over 1000), we can reduce the computing time by first

dividing the whole genotype space into a few hundreds of

subgroups through the PAM clustering algorithm [30] and then

treating subgroups as genotypes in the proposed MCMC

procedure. For example, the running time on the same testing

example mentioned above decreases to 8 minutes if we regroup

the genotypes into 250 unique subgroups. Another way to reduce

the total number of genotypes is to limit tagging SNPs to those

with a relatively large minor allele frequency. The resampling-

based test could be computationally intensive for a dataset like the

EAGLE study. We are still investigating whether it is possible to

replace the computationally intensive resampling-based procedure

with a one-step multiple comparison adjustment approach, similar

to one used in [42], for the assessment of the statistical significance

level.

Comparing to the standard single-marker or principal compo-

nent based approaches, our proposed method is more computa-

tionally intensive, but it has several important advantages. First, it

offers a more flexible way to model gene–environment interaction,

especially complicated ones that cannot be depicted properly by

the single-marker or PC based approaches, such as in situations

where genetic variants (might or might not be directly genotyped)

in multiple loci within the considered region interplay with the

environment risk factor. Second, it provides an estimate of the

environmental effect on subjects with a given joint genotype

profile. This could be potentially useful to generate new

hypotheses on how the gene and environment risk factor interacts.

Third, as shown in the simulation studies and real application, the

proposed resampling-based test derived from the Bayesian model

has a more robust performance than the standard single-marker,

or PC based testing procedures. For example, in situation where

the single marker test is most appropriate, i.e., there is only one

functional locus in the considered region, the proposed test is only

slightly less powerful than the single-marker test. But it has a

considerable power advantage over the standard tests when the

underlying disease risk pattern cannot be properly approximated

by a single SNP or PC.

Although our method is described in the context of gene–

environment interaction detection, it is in fact quite general. It

provides a general strategy for studying the interaction between an

observed risk factor and a latent categorical variable not directly

observed or clearly defined, but one that can be derived from a set

of observed relevant covariates. For example, our method can be

used with some minor modifications to evaluate the interaction

between smoking behavior (e.g., smoking intensity) and a latent

dietary pattern that can be derived from food frequency

questionnaires. Also, it is possible to extend our method to study

gene-gene interaction by introducing two latent factors to capture

the effect of both genes, as was done in [43].

Supporting Information

Figure S1 Boxplots of the posterior medians of the intercept (a)

for subjects within each true cluster from each of 50 datasets

simulated under the model M4. (a). Boxplots of posterior medians

of a for subjects in cluster 1, with the true value given by the

horizontal line in green; (b). Boxplots of posterior medians of a for

subjects in cluster 2, with the true value given by the horizontal

line in red; (c). Boxplots of posterior medians of a for subjects in

cluster 3, with the true value given by the horizontal line in red.

The posterior median of a for each subject under a given

simulated dataset was shifted by a constant value selected so that

the median value of the shifted estimates for subjects in cluster 1

was zero.

(TIF)

Figure S2 Boxplots of the posterior medians of the log odds ratio

(b) for subjects within each true cluster from each of 50 datasets

simulated under the model M4. (a). Boxplots of posterior medians

of b for subjects in cluster 1, with the true value given by the

horizontal line in green; (b). Boxplots of posterior medians of b for

subjects in cluster 2, with the true value given by the horizontal

line in green; (c). Boxplots of posterior medians of b for subjects in

cluster 3, with the true value given by the horizontal line in red.

(TIF)

Figure S3 Posterior distribution comparison among 5 indepen-

dent runs under the model M3. Plot i2j is the posterior

distribution summary for the coefficient bj , j~1, 2, 3, based on

the ith, i~1, :::, 5, independent run on a dataset simulated under

the model M3.

(TIF)

Figure S4 Posterior distribution comparison among 5 indepen-

dent runs under the model M4. Plot i2j is the posterior

distribution summary for the coefficient bj , j~1, 2, 3, based on

the ith, i~1, :::, 5, independent run on a dataset simulated under

the model M4.

(TIF)

Figure S5 The correlation between the total number of risk

alleles and the 2nd principal components. Each point represents a

unique multilocus genotype with its x-coordinate being the total
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number of risk alleles among those SNPs with high loading values

(highlighted in Table 1 at the PC2 column) on the 2nd principal

components, its y-coordinate being the 2nd principal component.

(TIF)

Figure S6 DIC plots for the Bayesian risk model without gene–

environment interaction. For a given number of clusters, 20 DIC

values were obtained by applying the model to the EAGLE study

20 times with different random seeds.

(TIF)

Figure S7 Pairwise correlations of estimates by the algorithm

with different neighborhood structures. The MCMC procedure

was applied to the EAGLE study using three different Markov

structures, M1: using the 3 nearest genotypes as neighbors; M2:

using the 4 nearest genotypes as neighbors; and M3: using the 5

nearest genotypes as neighbors. (a) Comparison of the estimated

genetic effect (in term of the posterior median of a) on each subject

between the method using M1 and the one using M2; (b)

Comparison of the estimated genetic effect between the method

using M3 and the one using M2; (c) Comparison of estimated

smoking effect (in term of the posterior median of b) on each

subject between the procedure using M2 and the one using M1;

and (d) Comparison of the estimated smoking effect between the

method using M3 and the one using M2.

(TIF)

Text S1 MCMC algorithm details.

(DOC)

Author Contributions

Conceived and designed the experiments: KY FL. Analyzed the data: KY

WW. Contributed reagents/materials/analysis tools: KY ZW WW NC

MTL FL. Wrote the paper: KY SW FL.

References

1. Hindorff LA, Junkins HA, Hall PN, Mehta JP, Manolio TA (2011) A catalog of

published genome-wide association studies. Available at: www.genome.gov/
gwastudies. Accessed August, 2011.

2. Lindstrom S, Schumacher F, Siddiq A, Travis RC, Campa D, et al. (2011)

Characterizing associations and SNP-environment interactions for GWAS-
identified prostate cancer risk markers-Results from BPC3. PLoS ONE 6:

e17142. doi:10.1371/journal.pone.0017142.

3. Rothman N, Garcia-Closas M, Chatterjee N, Malats N, Wu X, et al. (2010) A
multi-stage genome-wide association study of bladder cancer identifies multiple

susceptibility loci. Nat Genet 42: 978–984.

4. Spitz MR, Amos CI, Dong Q, Lin J, Wu X (2008) The CHRNA5-A3 region on
chromosome 15q24–25.1 is a risk factor both for nicotine dependence and for

lung cancer. J Natl Cancer Inst 100: 1552–1556.

5. Moore JH, Asselbergs FW, Williams SM (2010) Bioinformatics challenges for
genome-wide association studies. Bioinformatics 26: 445–455.

6. Green P, Richardson S (2002) Hidden Markov models and disease mapping.

J Am Stat Assoc 97: 1055–1070.

7. Potts RB (1952) Some generalized order-disorder transformations. Cambridge

Philos Soc Math Proc 48: 106–109.

8. Thomas DC, Stram DO, Conti D, Molitor J, Marjoram P (2003) Bayesian
spatial modeling of haplotype associations. Hum Hered 56: 32–40.

9. Moltchanova EV, Pitkaniemi J, Haapala L (2005) Potts model for haplotype

associations. BMC Genet 6 Suppl 1: S64.

10. Liu JS (2002) Monte Carlo Strategies in Scientific Computing. New York:

Springer.

11. Robert CP, Casella G (1999) Monte Carlo Statistical Methods. New York:
Springer.

12. Liang F, Liu C, Carroll RJ (2010) Advanced Markov Chain Monte Carlo

Methods: Learning from Past Samples Wiley.

13. Liang F (2008) Clustering gene expression profiles using mixture model

ensemble averaging approach. JP J Biostat 2: 57–80.

14. Molitor J, Parathomas M, Jerrett M, Richardson S (2010) Bayesian profile

regrression with an application to the national survey of children’s health.

Biostatistics 11: 484–498.

15. Landi MT, Chatterjee N, Yu K, Goldin LR, Goldstein AM, et al. (2009) A

genome-wide association study of lung cancer identifies a region of chromosome

5p15 associated with risk for adenocarcinoma. Am J Hum Genet 85: 679–691.

16. Amos CI, Wu X, Broderick P, Gorlov IP, Gu J, et al. (2008) Genome-wide

association scan of tag SNPs identifies a susceptibility locus for lung cancer at

15q25.1. Nat Genet 40: 616–622.

17. Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, et al. (2008) A variant

associated with nicotine dependence, lung cancer and peripheral arterial disease.

Nature 452: 638–642.

18. Thorgeirsson TE, Gudbjartsson DF, Surakka I, Vink JM, Amin N, et al. (2010)

Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking

behavior. Nat Genet 42: 448–453.

19. Saccone NL, Culverhouse RC, Schwantes-An TH, Cannon DS, Chen X, et al.

(2010) Multiple independent loci at chromosome 15q25.1 affect smoking

quantity: a meta-analysis and comparison with lung cancer and COPD. PLoS
Genet 6: e1001053. doi:10.1371/journal.pgen.1001053.

20. Liu JZ, Tozzi F, Waterworth DM, Pillai SG, Muglia P, et al. (2010) Meta-

analysis and imputation refines the association of 15q25 with smoking quantity.
Nat Genet 42: 436–440.

21. Consortium TaG (2010) Genome-wide meta-analyses identify multiple loci
associated with smoking behavior. Nat Genet 42: 441–447.

22. Caporaso N, Gu F, Chatterjee N, Sheng-Chih J, Yu K, et al. (2009) Genome-
wide and candidate gene association study of cigarette smoking behaviors. PLoS

ONE 4: e4653. doi:10.1371/journal.pone.0004653.
23. Staicu A (2010) On the equivalence of prospective and retrospective likelihood

methods in case-control studies. Biometrika 97: 990–996.

24. Seaman SR, Richardson S (2001) Bayesian analysis of case-control studies with
categorical covariates. Biometrika 88: 1073–1088.

25. Borgs C, Chayes JT, Frieze A, Kim JH, Tetali P, et al. Torpid mixing of some
Monte Carlo Markov chain algorithms in statistical physics; 1999; Washington,

DC.

26. Miller P (1993) Alternative to the Gibbs sampling scheme. Tech. Report,
Institute of Statistics and Decision Science.

27. Ogata Y, Tanemura M (1984) Likelihood analysis of spatial point patterns.
J Royal Stat Soc, Ser B 46: 496–518.

28. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian
measures of model complexity and fit (with discussion). J R Stat Soc Ser B 64:

583–639.

29. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and
Regression Trees. Monterey: Wadsworth and Brooks/Cole.

30. Kaufman L, Rousseeuw PJ (2005) Finding Groups in Data: An Introduction to
Cluster Analysis. Hoboken, NJ: Wiley-Interscience.

31. Efron B, Tibshirani RJ (1993) An Introduction to the Bootstrap. New York:

Chapman & Hall.
32. Yu K, Li Q, Bergen AW, Pfeiffer RM, Rosenberg PS, et al. (2009) Pathway

analysis by adaptive combination of P-values. Genet Epidemiol 33: 700–709.
33. Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple

sequences. Stat Sci 7: 457–511.
34. Plummer M, Best N, Cowles K, Vines K (2006) CODA: Convergence diagnosis

and output analysis for MCMC. R News 6: 7–11.

35. Fields Development Team (2006) Fields: Tools for Spatial Data. National Center
for Atmospheric Research. Boulder, CO.

36. Garcia-Closas M, Rothman N, Lubin J (1999) Misclassification in case-control
studies of gene–environment interactions: assessment of bias and sample size.

Cancer Epidemiol Biomarkers Prev 8: 1043–1050.

37. Hayes RB, Sigurdson A, Moore L, Peters U, Huang WY, et al. (2005) Methods
for etiologic and early marker investigations in the PLCO trial. Mutat Res 592:

147–154.
38. Green P (1995) Reversible jump Markov chain Monte Carlo computation and

Bayesian model determination. Biometrika 82: 711–732.
39. Seaman SR, Richardson S (2004) Equivalence of prospective and restrospective

models in the Bayesian analysis of case-control studies. Biometrika 91: 15–25.

40. Costain DA (2009) Bayesian partitioning for modeling and mapping spatial case-
control data. Biometrics 65: 1123–1132.

41. Raftery AE, Richardson S (1996) Model selection for generalized linear models
via GLIB, with application to epidemiology. In: Berry DA, Stangl DK, eds.

Bayesian Biostatistics. New York: Marcel Dekker. pp 321–354.

42. Tang W, Wu X, Jiang R, Li Y (2009) Epistatic module detection for case-control
studies: a Bayesian model with a Gibbs sampling strategy. PLoS Genet 5:

e1000464. doi:10.1371/journal.pgen.1000464.
43. Chatterjee N, Kalaylioglu Z, Moslehi R, Peters U, Wacholder S (2006) Powerful

multilocus tests of genetic association in the presence of gene-gene and gene–

environment interactions. Am J Hum Genet 79: 1002–1016.

A Model for Studying Gene–Environment Interaction

PLoS Genetics | www.plosgenetics.org 14 January 2012 | Volume 8 | Issue 1 | e1002482


