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Spin systems with frustration and disorder are notoriod#ficult to study both analytically and numerically.
While the simulation of ferromagnetic statistical mecleahimodels benefits greatly from cluster algorithms,
these accelerated dynamics methods remain elusive forigespn-glass-like systems. Here we present a
cluster algorithm for Ising spin glasses that works in angcgpdimension and speeds up thermalization by at
least one order of magnitude at temperatures where theatialh is typically difficult. Our isoenergetic cluster
moves are based on the Houdayer cluster algorithm for tweedsional spin glasses and lead to a speedup
over conventional state-of-the-art methods that incieasth the system size. We illustrate the benefits of the
isoenergetic cluster moves in two and three space dimensigrwell as the nonplanar chimera topology found
in the D-Wave Inc. quantum annealing machine.

PACS numbers: 75.50.Lk, 75.40.Mg, 05.50.+q, 64.60.-i

A plethora of problems across disciplines map onto spinspace dimension because the clusters reflect the spinaorrel
glass-like Hamiltonianﬂl]. Despite decades of intense an tionsin the system, this is not the case for algorithms thid b
lytical and numerical scrutiny, a deep understanding afehe clusters like the Houdayer cluster algorithm. In this céise,
paradigmatic models of disordered systems remains elusivelusters do not reflect overlap correlatioﬁbm& 9] and elust
Given the inherent difficulties of studying these Hamileoms  updates only have an accelerating effect on the dynamics if
analytically beyond mean-field theory as well as the continuthe clusters do not span the entire system or if the comprise
ous increase of computer power, progress in this field has begingle spins. This is the case either when temperatures are
efited noticeably from numerical studies. The developmentlose to zero (small clusters) or when the underlying geome-
of efficient Monte Carlo methods such as parallel temperindry of the problem has a percolation threshold below 50%—
[Iﬂ] and population annealinﬁl[S] has helped in understandinas is the case in three space dimensions. Updating such a
these systems at a much deeper level; however, most numesystem-spanning cluster amounts to swapping out both-repli
cal studies are still plagued by correctionsto finite-scading  cas, thereby not randomizing the configurations. This means
due to the small system sizes currently availadle [4]. that while the method works in principle, it does not really

In contrast, simulations of spin Hamiltonians without dis- Provide any simulational benefit. As such, Houdayer cluster
order and frustration are comparably simple: Ferromagneti™°Ves work, in principle, only for models where the percola-
systems have greatly benefited from the development of cludion threshold is above 50%, as is the case in two-dimenkiona
ter algorithms([5.16] that help in overcoming critical slogi ~ 'SIN9 Spin-glass Hamiltonians. One way to remedy this situa
down close to phase transitions. Therefore, the holy graifion is to increase the percolation threshold artificialy., by
of spin-glass simulations is to introduce acceleratedtefus diluting the lattice [10]. However, this is often not desia
dynamics that improve upon the benefits of efficient simula-2Nd is highly dependent on the problem to be studied.
tion methods such as population annealing or parallel tem- Here, we show that Houdayer-like cluster moves can be
pering Monte Carlo. In 2001 Houdayer introduced a semi-applied to spin systems on topologies where the percolation
nal rejection-free cluster algorithm tailored to work faro:  threshold is below 50%, provided that the interplay of tem-
dimensional Ising spin glassé} [7]. The method updatee largperature and frustration prevents clusters from spanifiag t
patches of spins at once, therefore effectively randormgitie  whole system. We therefore introdus®energetic cluster
configurations and efficiently overcoming large barrierhim  movesfor spin-glass-like Hamiltonians in any space dimen-
free-energy landscape. Furthermore, the energy of thersyst sion. These rejection-free cluster moves accelerate @ilerm
remains unchanged when performing a cluster move. Thigation by several orders of magnitude even for systems with
means that the numerical overhead is very small because tlspace dimensions larger than We show that the inherent
rejection rate is zero and there is no need to, for exampldrustration present in spin-glass Hamiltonians prevehis-c
compute any random numbers for a cluster update. The ugers from spanning the whole system for temperatures below
of these cluster moves made it possible to obtain a speeduhpe characteristic energy scale of the problem. As such; spi
of several orders of magnitude in two-dimensional systemsglass simulations can be sped up considerably in the hard-to
therefore allowing us to simulate considerably largerayst reach low-temperature regime of interest in many numerical
sizes. studies.

While cluster algorithms such as the Swendsen-Wang and The fact that the isoenergetic cluster moves are rejection
Wolff ones BDS] work well for ferromagnetic systems in any free and leave the energy of the system unchanged is also
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of great importance to any heuristic based on Monte Carlsites are flipped with probability, irrespective of their ori-
updates to compute ground-state configurations of spissgla entation. The method can be implemented in a very efficient
like Hamiltonians. For example, the convergence of sinealat way because sites are added to the cluster with probability
annealingl] can be considerably improved by adding isoenand the cluster updates are rejection free. To ensure ergod-
ergetic cluster moves at each temperature step. Because tiogty, the cluster move is combined with standard singliersp
moves change the spin configurations but leave the energy dfonte Carlo updates. Summarizing, one simulation step us-
the system intact, the approach has the potential to “ttinneling the HCA consists of the following steps:
through energy barriers, thus improving overall conveogen
We first introduce the benchmark model, followed by a 1. Perform one Monte Carlo sweep/ (Metropolis up-
short description of the Houdayer cluster algorithm and an ~ dates) in each replica.
outline of our isoenergetic cluster algorithm. Resultswo t
and three space dimensions, as well as on the nonplanar
chimera topologyl [12] are presented. o 3. Perform one parallel tempering update for a pair of
Benchma_rk mO(_jeI and qbser\_/ableg'.he Harjyﬂtonlan of neighboring temperatures.
a generic Ising spin glass is defined By = Z#j Jijsisj,

2. Perform one Houdayer cluster move.

wheres; € {£1} representlsing spins aidis the totalnum-  Note that the last step is not necessary; however, the combi-
ber of spins. In this study the interactiofs are selected from  nation of the HCA moves and parallel tempering (PT) updates
a Gaussian distribution with mean zero and variafite= 1. improves thermalization considerably and representstée s

Because we are only interested in highlighting the improvedjardmodus operandi

thermalization by adding isoenergetic cluster moves, wa-me | theory, the efficiency of the HCA depends strongly on the
sure the average energy per spin defined{#g]/IN, aswell  percolation threshold of the desired topology to be sinedlat

as the link overlag, = (1/Ny) 30 stVs\Vsi”s{?). Here,  Because spins are added to the cluster with probahijiif

(---) represents a Monte Carlo average, the superscripts refhe percolation threshold of the studied lattice is belo#50
resent two replicas of the systef; - | indicates an average then the cluster might span the entire system and an update
over the disorder, and/, is the number of bonds in the sys- will not yield a new configuration. This is the reason why
tem. Using Gaussian disorder, one can equate the interngle HCA is claimed to only work in two space dimensidnis [7]

energy per spin to the internal energy computed from the linkvhere the percolation threshold is above 50% (see als@JFig. 1

overlap [18],E(q/), i.e., top panel).
) Isoenergetic cluster algorithm.©ur proposed isoenergetic
E(q) = _J_&(l —q0). (1) cluster moves are closely related to the HCA. We begin by
T N simulating two replicas with the same disorder at multiple
To test that the system is thermalized, we thus study the tim¢@mperatures. The cluster moves alone are not ergodic, so,
dependent behavior of again, these must be combined with simple Monte Carlo up-
dates. One simulation step using isoenergetic cluster snove
A =[(E(q)) — (H/N)]. (2)  consists of the following steps:
WhenA — 0, the bulk of the disorder instances are thermal- 1. Perform one Monte Carlo sweepV (Metropolis up-
ized ]. Simulation parameters are listed in Tdble | dates) in each replica.
Reminder: Houdayer cluster algorithmTre Houdayer
cluster algorithm (HCA)[[[7] is an efficient algorithm to sgud ~~ 2a. If the number of cluster sites with = —1 is greater
two-dimensionalsing spin glasses at low temperatures where than N/2, then all the spins in one of the configura-
thermalization is slow. It is similar to replica Monte Carlo tions can be flipped (because of spin-reversal symme-
[15], but with the difference that both replicas are atshene try), thus reducing the cluster size while leaving the en-
temperature. By allowing large cluster rearrangementsiof ¢ ergy unchanged.

figurations, the HCA improves thermalization by efficiently
tunneling through configuration space.
The algorithm works as follows: In the HCA, two indepen-

dent spin configurations (replicas) are simulated at theesam 3 perform one parallel tempering update for a pair of

2b. Perform one Houdayer cluster move for all tempera-
turesT' < J.

temperature. The site overlap between replidgsand (2), neighboring temperatures.
¢ = sVs? s calculated. This creates two domainsin
space: sites witly; = 1 andq; = —1. Clusters are defined = The main difference thus lies in applying cluster moves to

as the connected parts of these domaings$pace. One then a carefully selected set of temperatures where the isoetierg
randomly chooses one site wigh = —1 and builds the clus- cluster moves (ICMs) are efficient (steps 2a and 2b) because
ter by adding all of the connected spins in the domain withclusters do not percolate, as well as reducing cluster sizes
probabilityl. When no more spins can be added to the clusteand thus the numerical overhead by exploiting spin-reversa
in ¢ space, the spins imothreplicas that correspond to cluster symmetry (step 2amE|17]. For example, in the case of the



chimera lattice the overhead of the ICM over PT is approxi- 08
mately 25% and is roughly independent of the system size for 07 2P
the studiedV. However, the overhead for the HCA over PT is 06 b

at least 50% and grows with increasing system size.

Figure[d shows the fraction of spins with negative overlap 05 ¢ IR, 1
(i.e., the fraction of potential cluster sites) as a functad & 04} o.’éﬁg!..." ]
temperaturd” for different system size® and on three differ- ) - Cd
enttopologies. The top panel of Fig. 1 shows data in two space 03 e ® N =125
dimensions where the percolation thresholgis~ 0.592 0.2 f : %f%&
[IE] (the solid horizontal line). As such, for all tempenasi 04 —
simulated, the fraction of cluster sites is below the pexreol
tion threshold and saturates at 50% Tor— oo. This means 0 e ) e ) . 5
that isoenergetic cluster updates are efficient for all nmap T
tures studied because the clusters never percolate. Maivel 0.5
one would expect that in higher space dimensions clusters Chimera Jee*?®
percolate for alll”s. This is, however, not the case due to 04 F RAAPPY L L
the frustration present in spin glasses, as can be seenefor th o st at 00®® o
chimera topology (the center panel of Hi§. 1) or in three spac 03k '-"i‘.o'° ]
dimensions (the bottom panel of Fig. 1). For increasing sys- ."ifo’.
tem size the fraction of cluster sites converges to a ligitin 0o b .-;ifO’ ]
curve that crosses the percolation threshold (the horgont ' "i!!.. - V=T
solid lines) at approximately’ ~ J = 1. This means that, ..i" m N =28
for all T > J, clusters percolate and the cluster updates are 01 e MR
just numerical overhead without any advantage to the simu-
lation. However, forl" < J the fraction of cluster sites lies 0 ‘

. . 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
below the percolation threshold. This means that perform- .
ing cluster moves in this temperature regime should improve 0.5 ;
thermalization. Note that it is a coincidental propertyt thoa 3D N 33 1
three-dimensional Ising spin glassés ~ ﬁé], i.e., that 04 F R IR ; M
cluster moves can be applied to dhy< 7. [20]. R 3: M " Lo !

When the interactiond;; are drawn from a Gaussian dis- 03 —.,.:_:p - o E
tribution, the ground state is unique. As can be seen iffFig. 1 N st ‘ﬁ' o®® °
the fractionp of spins potentially in a cluster also approaches 2 *‘g o’
zero forT” — 0; i.e., both replicas are in the ground state for 02 ¢ ot :' §e T E
low enoughl’. Therefore, the cluster is composed of no sites ﬂ‘; o® N =216
or the entire lattice. In the case of disorder distributitret 01 M R
yield a highly degenerate ground state, such as is the case fo A N=1728

bimodal disorder, it is possible to continue to have clusstr 0
zero temperature. It is thus possible to efficiently hop atbu
the ground-state manifold by applying cluster moves to low-

lying or even zero-temperature states, although this nmight £ 1. (color online). (Top panel) Fraction of spipsof potential
be ergodic. We do emphasize, however, that if clusters are togjyster sites as a function of temperatitéor different system sizes
small, then the isoenergetic cluster moves also become inefV in two space dimensions (2D). The horizontal line represtm
fective. Therefore, plotting as was done in Fi§] 1 is essential percolation threshold of a two-dimensional square latiiee, p. ~
in determining the efficiency and applicability of the medho  0-592 [1€]. Becausep — 0.5 for T — oo, for all T clusters do

: ; not percolate, which is why the HCA is efficient in two-dimamsl
Benchmarking results.Figure[2 showsa [Eq. @)] as a planar geometries. (Center panglas a function of temperatufg

functlobn of Monte Carlo tlme_ (measured in Iat.tlce SWeeps)fordifferent system sized on the chimera topology. The horizontal
t = 2°. The top panel of Fig.]2 shows data in two spacejie represents the percolation threshold of the nonplahanera
dimensions for simulations using isoenergetic cluster @8ov topology, namelyp. ~ 0.387 computed here using the approach
(PT+ICM) and vanilla PT Monte Carlo faN = 1024 spins  developed in Ref. 21 (see the Supplemental Material).IFgr .J =
atT = 0.212. OnceA ~ 0, we deem the system thermal- 1 clusters percolate and cluster updates provide no gaintta@o
ized. Clearly, the inclusion of cluster moves—as can also b@anel)p as a function of temperatufe for different system sizes/
expected from the results of Houdayer—show an improved]! frée space dimensions (3D). The horizontal line reprissthe

. ercolation threshold of the three-dimensional cubiddattp. ~
thermalization. The center panel of FAig. 2 shows data on thg311 22]). ForT > J — 1 clusters percolate. In all panels, error

chimera topolog)_/ withV' = 1152 spins andTl’ = 0.212,  pars are computed via a jackknife analysis over configuratand
where the HCA is not expected to show any improvementre smaller than the symbols.
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0.3 ; ;
095 | | TABLE I: Parameters of the simulation in two space dimension
' & PT +ICM (2D), three space dimensions (3D), and on the chimera (Gio)-to
0.2 | ° . ogy. For each topology simulated and system si¥esve compute
ots | | N.. disorder instances and measure o2eMonte Carlo sweeps
’ (and isoenergetic cluster moves) for each of2h&- replicas.Tmin
4 0.1 | ° . [Tmax] is the lowest [highest] temperature simulated, @id is the
r total number of temperatures used in the parallel tempeviogte
0.05 ¢ * Carlo method. Isoenergetic cluster moves only occur foldhest
o} = 5 = = = 5 =& ¢ N. temperatures simulated (determined from Eig. 1).
-0.05 + oD g N Nsa b Twin Tmax N1 N
2D 256, 576, 1024 10* 22 0.2120 1.6325 30 30
T T T e s . . w Ch 128,288, 512,800, 1152 10* 22 0.2120 1.6325 30 19
b 3D 64, 216, 512, 1000, 1728 1.510* 23 0.4200 1.8000 26 13
0.1 ; ;
o PT
s | ]
over PT due tp. < 0.5. As can be seen, our ICM clearly
0.06 ¢ 1 improve thermalization in comparison to PT by at least 2 or-
004 | il ders of magnitude, an amount that grows with increasing sys-
4 . tem size. Finally, the bottom panel of F[d. 2 shosas a
002 1 ¥ ¢ ] function of simulation time in three space dimensions with
0 A—Fﬁ—ﬁ—ﬁi" N = 1728 spins andl’ = 0.42 <« T,. Although not as im-
pressive as with the chimera topology, we see a speedup of
002t ' 1 approximately one order of magnitude—an amount that again
“0.04 | Chimera ] grows with increasing system size.
" I 3 " o o Finally, Fig.[3 shows the ratio of the thermalization time
b using PT and using PT+ICM for different topologies at the
0.1 ‘ ‘ lowest simulation temperature (see Table 1) as a function of
0.08 L ] the system sizéV. In all cases, the speedup increases with
increasing system size, therefore illustrating that thaitaoh
0.06 . I of isoenergetic cluster moves greatly improves thermadina
0.04 | & |
1000 ; ;
. . ® . , LeD
~0.02 | i = 100 E
3D 3
-0.04 | | | | 1 g R
16 18 20 22 24 = .
b = 10 } o
FIG. 2: (color online). (Top panel) [Eq. (2)] as a function of ‘
simulation timet = 2° measured in Monte Carlo sweeps in two ¢
space dimensions (2D) faN = 1024 and7T = 0.212. Simula- 1 ‘ : . ‘ . :
tions using vanilla PT thermalize at at le@st Monte Carlo sweeps, 4006008001000 12001400 1600 1800
whereas with the addition of ICMs thermalization is redutedp- N

proximately2'¢ Monte Carlo sweeps. This means approximately 2

orders of magnitude improvement. (Center panelps a function ~ FIG. 3: (color online). Ratio between tiagproximateaverage ther-

of simulation timet = 2° measured in Monte Carlo sweeps for an Malization time of PT and PT+ICM for different topologiestae

Ising spin glass on chimera witN = 1152 spins atl’ = 0.212. lowest simulation temperature (see Tdble 1) as a functiosyefem
Simulations using PT thermalize at approximat2¥ Monte Carlo size N. In all cases the speedup increases with increasing system
sweeps, whereas the addition of ICMs reduces thermaliz&dip'® size. Note that thermalization times have been determigezyé.

Monte Carlo sweeps. Again, approximately 2 orders of mageit

speedup. (Bottom panel) as a function of simulation time = 2” Summary.-We have presented a rejection-free cluster algo-
measured in Monte Carlo sweeps in three space dimensionsdBD rithm for spin glasses in any space dimension that greatly im

N = 1728 andT = 0.42 ~ 0.43T.. Using standard PT, the sys- L o
tem thermalizes approximately aftzt® Monte Carlo sweeps. This proves thermalization. By restricting Houdayer clustere

time is reduced te- 2%° Monte Carlo sweeps when ICMs are added. {0 temperatures where cluster percolation is hamperedeby th
In all panels, error bars are computed via a jackknife aimiyger  interplay of frustration and temperature, we are able to ex-
configurations. tend the Houdayer cluster algorithm for two-dimensionat sp



glasses to any topology or space dimension. Our standard im-
plementation of the cluster updates represents only a minor
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FIG. 4: (Color online) Finite-size scaling of the percabatprobabil-
ity Binder ratiog for different lattice sizesV on the chimera topol-
ogy. Best scaling is obtained fpr = 0.3866(3) andv = 1.39(1).



