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A percolation model of nuclear fragmentation is used to in-
terpret 10.2 GeV/c p+197Au multi-fragmentation data. Em-
phasis is put on finding signatures of a continuous nuclear
matter phase transition in finite nuclear systems. Based on
model calculations, corrections accounting for physical con-
straints of the fragment detection and sequential decay pro-
cesses are derived. Strong circumstantial evidence for a con-
tinuous phase transition is found and the values of two critical
exponents, σ = 0.5 ± 0.1 and τ = 2.35 ± 0.05, are extracted
from the data. A critical temperature of Tc = 8.3± 0.2 MeV
is found.
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Reactions in which excited nuclei break up into inter-
mediate size fragments, nuclear multi-fragmentation re-
actions, are believed to be associated with a liquid-gas
type phase transition in nuclear matter. However, so far
no unambiguous proof for this transition has been found
in experimental data. This is due to, primarily, the ex-
teme finite size effect involved in systems of only on the
order of 102 constituents, the impossibility to fix a sys-
tem at points in the phase diagram and study it there, as
well as the complication due to sequential decays of the
fragments produced in their excited state.
In this Letter we report results of an analysis of data on

proton-induced fragmentation reactions of a 197Au target
at incident energies of 10.2 GeV/c. These data were col-
lected by the ISiS collaboration [1] in experiments at the
Brookhaven National Laboratory AGS accelerator facil-
ity. A comparison with percolation-theory-based models
is conducted. This comparison enables us to pay par-
ticular attention to detector efficiency effects, finite size
effects, as well as to the role played by sequential decay

processes. With these corrections applied, an event-by-
event scaling analysis is performed in order to derive val-
ues for the critical exponents σ and τ and the critical
temperature Tc of the phase transition.
The ISiS collaboration has produced one of the most

complete experimental multifragmentation data sets with
very high statistics. These data have also been inter-
preted in the framework of other phase transition mod-
els, in particular the SMM, EES, and SIMON models [2],
usually associated with a liquid-gas type phase transition.
However, within the models the order of the phase tran-
sition depends on certain model parameters, as well as
on the size of the system, see for example [3]. The per-
colation approach provides an effective alternative way
for determining the order of the phase transition and the
influence of finite size effects.
The percolation model of nuclear multi-fragmentation

used in our analysis has been introduced originally by
Bauer et al. [4] and used by many groups [5]. It util-
itizes a representation of the target nucleus by sites of
a simple cubic lattice (Z3) in an approximately spheri-
cal shape, with nearest-neighbor bonds representing the
(short-ranged) strong force between the nucleons. These
bonds are broken statistically independently with a prob-
ability pb. Clusters of connected sites are counted and
interpreted as fragments.
Multi-fragmentation reactions, in particular proton-

induced multi-fragmentation reactions, can be thought of
as three-step processes. In the first step excitation energy
is deposited in the target nucleus and pre-equilibrium
particles are emitted. In the second step, the thermalized
source breaks up into intermediate mass fragments. In
the final step, the excited pre-fragments decay via stan-
dard sequential decay channels into the fragments that
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can be observed by the detector.
Step One: Energy deposition. The percolation model

needs a bond breaking probability pb as input. pb can be
determined from the energy deposited in the system via

pb(E
∗) = 1− 2√

π
Γ

(

3

2
, 0,

B

T (E∗)

)

(1)

where Γ(x, z0, z1) is the generalized incomplete Gamma
function, B is the binding energy per nucleon in the
source, T is the temperature of the source, and E∗ is
the excitation energy per nucleon of the source [6]. It
is assumed that the relation between the excitation en-
ergy E∗ of the fragmenting source and the temperature
is given by E∗ = aT 2 with a = A0/13 (corresponding
to the high temperature limit of a degenerate Fermi gas
model; A0 is the mass number of the residue nucleus,
compare also [7]). Here we utilitize the energy deposi-
tion and source size information as determined from the
experimental data [1]. It can be argued that a = A0/8
should be used for low excitation energies, where surface
effects are dominant. However, close to the critical point
surface effect disappear, and this motivates our choice of
a = A0/13. One should keep in mind, however, that this
choice will have some (minor) consequences for the exact
value of the critical value of the control parameter of the
percolation model.
Step Two: Percolation. For the size of the lattice,

we use the charge of the nucleus after emission of pre-
equilibrium particles. This information is also contained
in the ISiS data set, on an event-by-event basis. Alterna-
tively, one could also use the mass of the source. For the
theory, this provides no difficulties whatsoever. However,
in the experiment mostly the charges of the particles are
detected. Thus it is natural to use the charge as the rel-
evant quantity in our calculations. The assumption that
the source has an approximately spherical shape after the
emission of pre-equilibrium particles is supported by nu-
clear transport theory calculations in the BUU model [8].
After setting up the source on the lattice, the bonds are
broken with the probability pb and the cluster structure
is analyzed.
Step Three: Sequential Decay. For this, we use a com-

puter code we recently developed to investigate radioac-
tive isotope yields in RIB facilities [9]. Eight decay modes
were considered: proton, neutron, deuteron, dineutron,
diproton, t, 3He and α. The decay weights were chosen
according to Weisskopf arguments. For nuclei up to ni-
trogen experimentally measured values were used for the
excited states. Decays were calculated for all levels in
all nuclei. For the decay of each level, the decay rate
was calculated into every possible level energetically ac-
cessible through the decay modes listed previously. The
weight associated with the decaying nucleus was then
apportioned into all the states in proportion to the rates
for the decay into such states. The weights were also si-
multaneously added into the ground states of the nuclei

representing the decay modes. Thus, the decaying pro-
cess exactly preserved the initial N and Z of the original
source system.
While the ISiS data set contains essentially complete

events, it is still subject to the usual problems associated
with multi-particle detector systems of subatomic parti-
cles, such as energy cuts, gaps between the active areas of
the detector elements, loss of charge and mass-resolution
for heavier fragments, and fragments that escape detect-
ing by being stopped in the target or traveling down the
beam pipe. For the quantitative study we attempt here,
these effects can not be neglected. We have thus created
extensive filter software to simulate detector acceptance
effect.
Fig. 1 shows the comparison of our calculations with

the experimental data. The data points with the (very
small) error bars represent the results of the experimental
charge yields. The discontinuity at charge Z = 17 is due
to the fact that only charges up to that value could be
resolved elementally by the detector and the assumption
that all missing mass is contained in a single residue (cor-
rected for prompt particle emission during the fast cas-
cade stage of the reaction). The dotted histogram is the
result of our model calculations, as described in the pre-
vious section, without applying the filter. Filtering of our
model calculations through the detector acceptance filter
yields the thick histogram. It is in essentially perfect
agreement with the data. The discrepancy between the
two histograms thus gives us a good understanding of the
degree to which the raw experimental data are affected
by detector acceptance effects. One can also investigate
more exclusive observables, such as the vanishing of the
largest cluster as a function of the multiplicity, or the
second moment as a function of the multiplicity. For the
percolation model, these comparisons were published pre-
viously for other, but similar, data sets [10,11]. Here, we
obtain similar degree of agreement. These comparisons,
as well as a comparison of a charge of the largest cluster
for different multiplicity bins, have been performed [12]
and will be published in a forthcoming paper.
From analytical solutions and numerical results on very

large lattices, it can be inferred that in percolation the-
ory, for the control parameter p assuming values close to
the critical value pc, the cluster numbers scale as

ns(p) = s−τf [(p− pc)s
σ] (for p ≈ pc) (2)

where s is the size of a cluster. The scaling function f
has the property f(0) = 1 and accounts for the fact that
a power law dependence is only correct in the case of
p = pc.
Implicitly introduced by Eq. 2 are two critical expo-

nents of percolation theory: σ and τ . With the definition
sξ = (p− pc)

−1/σ, we can rewrite Eq. 2 as:

ns(p) = s−τf

[(

s

sξ

)σ]

(3)
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This leads to the interpretation of sξ as a crossover size
for the cluster sizes from power law abundance for s ≪ sξ
to exponentially rare clusters of size s ≫ sξ.
A special case of the general Eq. 2 is, for example, the

scaling implied by the Fisher droplet model [13],

〈nZ〉 =
〈

NZ

Z0

〉

= q0Z
−τ exp

[

Z∆µ

T
− c0ǫZ

σ

T

]

(4)

where Z is the size of a droplet and ǫ = (Tc−T )/T is the
scaled control parameter. From this equation we expect a
straight line when plotting 〈nZ〉/q0Z−τ in a semi-log plot
(compare Fig. 2) vs. ǫZσ in the vicinity of the critical
point, provided the scaling behavior holds. In addition,
the straight line should have the property of f(0) = 1.
(Here it is assumed that the bulk factor exp [Z∆µ/T ] is
close to unity, an assumption that is supported by earlier
findings of Elliott et al. [14].)
In the context of the percolation model, the same scal-

ing behavior can be expected if one substitutes the tem-
perature T by the bond breaking probablity pb. Again,
the cutoff function f in the scaling equation is then given
by the exponential factor in Eq. 4. Thus, one can find
numerical values for σ, τ and Tc, or pc, respectively, by
conducting a χ2 optimization procedure for the parame-
ter set for which the log of the scaled yield, 〈nZ〉/q0Z−τ ,
as a function of the scaled control parameter, ǫZσ, col-
lapses on a single straight line best fit.
The result of this optimization procedure for the un-

filtered model calculation is shown in Fig. 2. The values
of the critical parameters extracted are σ = 0.5 ± 0.1,
τ = 2.18 ± 0.01, in good agreement with the accepted
values of standard 3d percolation on infinite lattices,
τ = 2.18 and σ = 0.45. We also find pc = 0.65. This
shows that pc, unlike τ and σ, is strongly affected by finite
size scaling corrections, in accordance with the findings
of [4,15].
Having shown that the method yields reasonable re-

sults in a known case, we apply it to the determination
of the critical parameters of the ISiS data. In previous
analyses of this kind, no corrections for sequential de-
cays, feeding, population of particle unstable resonances,
and all other final state modifications of the charge yield
spectrum were considered (see [16]). In addition, all de-
tector acceptance corrections were neglected. We have
paid particular attention to these effects in the work pre-
sented here.
To estimate the corrections for sequential decays, we

start with our model calculations presented in the pre-
vious sections. These calculations can reproduce almost
all features of the data and in particular the charge yield
spectrum, after detector and final state interaction cor-
rections. Since we know the model yields before and after
the corrections, we can extract the charge resolved cor-
rection factors. These factors are then applied to the
experimental data. The result of the resulting χ2 op-
timization procedure is shown in the left hand side of

Figure 3. The values of the critical parameters obtained
are σ = 0.5 ± 0.1, τ = 2.35 ± 0.05, and Tc = 8.3 ± 0.2
MeV. The contours of the (σ, τ) − χ2 fit are shown in
Figure 4 for Tc = 8.3 MeV.
If one neglects the corrections for detector acceptance

and sequential decays, then there is no way that the
yields for different light IMFs can be collapsed onto a
single scaling graph. On the right hand side of Figure
3 we show the best fit result of the χ2 optimization for
that case. It is obvious that the collapse is not achieved.
This comparison can also be made for Z > 6. The ISiS
data set has elementally resolved yields for Z < 17. But
the effects of final state sequential decay corrections is
strongest for the lightest element, and we thus restrict
ourselves to show these here.
Summarizing, a three-step percolation model for nu-

clear multi-fragmentation reactions has been introduced.
In order to reduce unnecessary model dependences we
have chosen to utilitize the information on source size
and excitation energy deposition provided in the experi-
ment. For the fragmentation part of the model we use the
well-known percolation approach. Particular attention is
paid to the effects of detector acceptance and sequential
decays. We find that our calculations are in very good
agreement with the data. Since the infinite size limit
of the model contains a second order continuous phase
transition for a certain range of excitation energies that
is covered by a subset of the events in the present data
set, we interpret this agreement as strong circumstan-
tial evidence for a continuous phase transition in nuclear
matter. This interpretation is supported by a scaling
analysis. We find that the data show very strong scaling
behavior, as expected in the vicinity of the critical point.
The critical parameters extracted from a χ2 optimization
procedure have the values σ = 0.5± 0.1, τ = 2.35± 0.05,
and Tc = 8.3± 0.2 MeV.
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† Current address: Département de physique, génie

physique et optique, Unversité Laval, Ste-Foy (Québec),
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FIG. 1. Inclusive charge yield spectra for the reaction
p + Au at 10.2 GeV. The round plot symbols represent the
ISiS dat. The dotted histogram is the result of the corre-
sponding percolation model calculation. The thick histogram
represents the output of the calculation, filtered through the
detector acceptance corrections.
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FIG. 2. Scaled fragment yields as a function of the scaled
control parameter for the model calculations. The yields for
the Z = 3, 4, 5, 6, 7, 8 fragments are shown.
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FIG. 3. Scaled fragment yields as a function of the scaled
control parameter for Z = 3, 4, 5, 6. The left hand side
shows the results of the correct inclusion of secondary decay
corrections, and the right hand side shows the best fit possible
when omitting these corrections.
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FIG. 4. χ2 optimization contours for the corrected ISiS

data. A value of Tc = 8.3 MeV was used.
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