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Abstract

Although massless Dirac fermions in graphene constitute a centrosymmetric medium for in-

plane excitations, their second-order nonlinear optical response is nonzero if the effects of spatial

dispersion are taken into account. Here we present a rigorous quantum-mechanical theory of

the second-order nonlinear response of graphene beyond the electric dipole approximation, which

includes both intraband and interband transitions. The resulting nonlinear susceptibility tensor

satisfies all symmetry and permutation properties, and can be applied to all three-wave mixing

processes. We obtain useful analytic expressions in the limit of a degenerate electron distribution,

which reveal quite strong second-order nonlinearity at long wavelengths, Fermi-edge resonances,

and unusual polarization properties.
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I. INTRODUCTION

Nonlinear optical properties of graphene have attracted considerable interest in the com-

munity. The magnitude of the matrix element of the interaction Hamiltonian describing

coupling of massless Dirac electrons to light scales in proportion to vF/ω ∝ λ, i.e. it grows

more rapidly with wavelength λ than in conventional materials with parabolic energy disper-

sion, where it scales roughly as
√
λ. This promises a strong nonlinear response at long wave-

lengths. Unfortunately, graphene is also a centrosymmetric medium for low-energy in-plane

excitations, which suppresses second-order nonlinear response in the electric dipole approx-

imation. Therefore, most of the effort was concentrated on the third-order nonlinear pro-

cesses that are electric dipole-allowed. Recent theoretical proposals and some experiments

include third-harmonic generation [1, 2], four-wave mixing [3–5] and current-induced second-

harmonic generation [6–8]. In few-layer graphene, second-harmonic generation (SHG) aris-

ing from the interactions between layers, which breaks the inversion symmetry, has been

observed [9, 10].

The aim of this paper is to show that monolayer graphene does demonstrate quite sig-

nificant second-order nonlinearity at long wavelengths despite its inversion symmetry. Here

and throughout the paper, we will discuss only the 2D (surface) nonlinearity due to in-plane

motion of electrons. Like any surface, graphene exhibits anisotropy between in-plane and

out-of-plane electron motion. However, the corresponding second-order nonlinearity is very

small and we will not discuss it here.

We develop the full quantum-mechanical theory of the in-plane second-order nonlinear

response beyond the electric dipole approximation. In this case one has to consider oblique

or in-plane propagation of electromagnetic waves. A non-zero in-plane second-order sus-

ceptibility χ(2) of monolayer graphene appears when one includes the dependence of χ(2)

on the in-plane photon wave vectors, i.e. the spatial dispersion. Physically, this means

that the inversion symmetry of graphene is broken by the wave vector direction. The spa-

tial dispersion in momentum space is of course equivalent to the nonlocal response in real

space. Spatial dispersion effects turn out to be quite large because of a large magnitude

of the electron velocity vF . A non-zero value of the nonlocal χ(2) has been pointed out

before for second-harmonic generation [11–13] (which only included intraband transitions in

a free-carrier model), difference-frequency generation [14], and parametric frequency down-
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conversion [15]. The latter two papers developed a quantum theory including both intraband

and interband transitions and applied it to the nonlinear generation of surface plasmons.

In the recent experiment [16], evidence for the difference-frequency generation of surface

plasmons in graphene was reported. Here we provide a systematic derivation of the second-

order nonlinear conductivity tensor, valid for all second-order processes, all frequencies and

doping densities, as long as the massless Dirac fermion approximation for a single-particle

Hamiltonian is applicable. For graphene, this means the range of frequencies from zero

(more precisely, from inverse scattering time) to the near-infrared. Our approach can be

applied to any system of massless chiral Dirac fermions, for example surface states in topo-

logical insulators such as Bi2Se3. The resulting nonlinear susceptibility tensor satisfies all

symmetry and permutation properties, and predicts unusual polarization properties of the

nonlinear signal. We also summarize main properties of the linear current as a necessary

step in deriving the nonlinear response functions, and present a detailed discussion of its

gauge properties and regularization.

II. BASIC EQUATIONS

Consider a 2D quantum system which in the absence of external fields can be described

by the Dirac Hamiltonian

Ĥ0(p̂) = vF σ̂ · p̂, (1)

where p̂ = x0p̂x + y0p̂y, p̂x,y = −ih̄ ∂
∂x,∂y

, σ̂ = x0σ̂x + y0σ̂y, where σ̂x,y are Pauli matrices.

The spinor eigenfunctions Ψ =

Ψ1

Ψ2

 of the Hamiltonian (1) are

Ψk,s(r) ≡ 〈r|k, s〉 =
eik·r√

2A

 s

eiθ(k)

 , (2)

and the eigenenergies are E = sh̄vFk where s = ±1 for conduction and valence bands,

respectively; k = x0kx + y0ky, θ(k) is the angle between the electron momentum k and

x-axis, and A is the normalization area. This description is valid for carriers in monolayer

graphene up to the energies of order 1 eV. For higher energies, quadratic and trigonal warping

corrections become non-negligible.
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Consider the most general light-matter interaction Hamiltonian utilizing both vector and

scalar potentials: E = −∇ϕ − c−1Ȧ and B = ∇ × A. Following a standard procedure

[17, 18], we replace p̂ ⇒ p̂ + e
c
A in the unperturbed Hamiltonian Ĥ0(p̂) and add the

potential energy operator −eϕ assuming a particle with the charge −e. This gives

Ĥ = Ĥ0 + Ĥopt
int , Ĥopt

int =
evF
c
σ̂ ·A− eϕ · 1̂, (3)

where 1̂ is a unit 2×2 matrix. The Hamiltonian in Eq. (3) leads to the von Neumann

equation for the density matrix:

ih̄
∂

∂t
ρmn = (Em − En)ρmn +

∑
l

[(
Ĥopt
int

)
ml
ρln − ρml

(
Ĥopt
int

)
ln

]
, (4)

where |n〉 = |k, s〉.

We will consider a monochromatic electromagnetic field in plane of graphene,

E =
1

2
[x0Ex(ω) + y0Ey(ω)] e−iωt+iqx + C.C. (5)

or its bichromatic combinations. The field component z0Ez can be ignored because neither

this field component itself nor the magnetic field it generates can affect the 2D carrier motion.

Furthermore, the component of the vector potential z0Az which generates the z-component

of the electric field z0Ez does not enter the Hamiltonian (3) because σ̂ · z0 = 0. The field

described by Eq. (5) corresponds to the electromagnetic potentials

ϕ =
1

2
φ(ω)e−iωt+iqx + C.C.,

A =
1

2
[x0Ax(ω) + y0Ay(ω)] e−iωt+iqx + C.C.. (6)

Note that the P-polarized radiation can be defined through both the scalar potential,

ϕ =
1

2

iEx(ω)

q
e−iωt+iqx + C.C., (7)

and the vector potential:

AP =
1

2
x0
cEx(ω)

iω
e−iωt+iqx + C.C. (8)

At the same time, the S-polarized radiation, can be defined only through the vector potential:

AS =
1

2
y0
cEy(ω)

iω
e−iωt+iqx + C.C. (9)

4



It is convenient to represent the surface current density generated in response to a

harmonic field as a sum over spatial harmonics: j(r) = 2−1
∑

q j
(q)eiq·r + C.C., where

2−1j(q) = S−1
∫
S
j(r)e−iq·rd2r; the set of in-plane photon wave vectors q is specified by

appropriate conditions on the boundary of a large area S � A. It is also convenient to

choose the area S to be a multiple of the normalization area A, so that

(2A)−1/2

∫
A

Ψ ∗n(r)Ψm(r)d2r = (2S)−1/2

∫
S

Ψ ∗n(r)Ψm(r)d2r. (10)

After calculating the matrix elements j
(q)
nm of the current density operator and solving in-

dependently the master equations (4), one can calculate the average amplitude of a given

current density harmonic, which could be used as a source in Maxwell’s equations or to

determine the conductivity tensor:

j(q) =
∑
mn

j(q)
nmρmn. (11)

In order to evaluate j
(q)
nm we determine the velocity operator v̂ = ih̄−1

[
Ĥ, r̂

]
and define

the current density operator as ĵ = −ev̂:

ĵ = −evF σ̂. (12)

Next, we take into account a standard expression for the current density operator in a

second-quantized formalism [17]: ĵ(r) = Ψ̂ † · ĵ · Ψ̂ , where Ψ̂ =
∑

n ânΨn(r) and Ψ̂ † =∑
m â
†
mΨ

†
m(r) are second-quantized operators, and â†m and ân are fermion creation and an-

nihilation operators. Treating â†m and ân as Heisenberg operators and using j(r) = 〈ĵ(r)〉,

〈â†m(t)ân(t)〉 = ρmn(t), we arrive at 2−1j(q) =
∑

mn

(
e−iq·rĵ

)
nm
ρmn, which gives

2−1j(q)
nm = 〈n|e−iq·rĵ|m〉. (13)

To calculate the matrix elements j
(q)
mn and

(
Ĥopt
int

)
mn

we will need the following useful rela-

tionships:

(
eiqx
)
mn

=
1

2

(
smsn + ei(θn−θm)

)
δkm,kn+q, (14)(

σ̂eiqx
)
mn

=
1

2

[
(x0 − iy0)sme

iθn + (x0 + iy0)sne
−iθm

]
δkm,kn+q. (15)

The above general equations should allow one to calculate the conductivity in any order

with respect to the external optical field. There is however a complication related to the
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fact that the model described by the effective Hamiltonian Eq. (1) contains a ”bottomless”

valence band with electrons occupying all states to k →∞. Therefore, only the converging

integrals make sense: ∑
mn

j(q)
nmρmn ⇒ g

∑
ss′ ∞′

∫
d2k′

4π2
∞

∫
d2k

4π2
j

(q)
k′ks′sρkk′ss′ , (16)

where g is the degeneracy factor. Otherwise the optical response could be determined by the

electron dispersion far from the Dirac point where the effective Hamiltonian Eq. (1) is no

longer valid. It turns out that the convergence of the linear current depends on the choice of

the gauge, whereas for the second-order nonlinear current the integral in Eq. (16) converges

for any gauge. The divergence of the linear response can be regularized as discussed in

the next section. In addition, the gauge dependence of the linear response violates gauge

invariance, which is a consequence of the fact that the density matrix corresponding to the

bottomless Hamiltonian in Eq. (1) has an infinite trace. In the next section we discuss this

issue in more detail.

III. THE LINEAR RESPONSE OF MASSLESS DIRAC FERMIONS

The perturbation expansion of the nonlinear response functions implies that the second-

order nonlinear terms depend on the first-order linear response. Therefore, in this section

we outline the derivation of the linear current. The nontrivial aspect of this derivation is

an apparent violation of gauge invariance and divergence of the linear current. We address

these issues in this section and related Appendix sections.

The solution of the density matrix equation (4) in the linear approximation with respect

to the field is

ρ(1)
nm(ω)=

1

2

[
V̂ (ω)eiqx

]
nm

(nm − nn)

h̄ω − (En − Em)
, (17)

where we defined Ĥopt
int = 2−1

[
V̂ (ω)e−iωt+iqx + H.C.

]
.

Here V̂ (ω) = −eφ(ω)·1̂+ evF
c

[σ̂xAx(ω) + σ̂yAy(ω)] and ρ
(1)
nm(ω) is a complex-valued amplitude

of the linear perturbation ∝ e−iωt of the density matrix. For a monochromatic current

j = 2−1j(q)(ω)e−iωt+iqx + C.C. we have

j(q)(ω) =
∑
mn

j(q)
mnρ

(1)
nm(ω). (18)
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The expression (18) is evaluated in Appendix A. The most straightforward derivation is for

a P-polarized field defined through a scalar potential, Eq. (7), since in this case the integral

(16) converges. If we keep only the terms of the lowest order in q (i.e. the linear terms since

Ex = −iqφ), the resulting 2D (surface) conductivity tensor is independent of q. In the limit

of strong degeneracy or low temperatures, the relevant terms are

(i) intraband conductivity, which has a Drude-like form:

σ(intra)
xx (ω) =

ie2vFkF
πh̄(ω + iγ)

, (19)

(ii) and the interband term:

σ(inter)
xx (ω) =

ie2

4πh̄
ln

[
2vFkF − (ω + iγ)

2vFkF + (ω + iγ)

]
. (20)

Here k = kF is Fermi momentum, and we also added the relaxation terms by replacing

ω → ω + iγ in Eq. (17); in the limit γ → +0 one can obtain from Eq. (20) the well known

result for the interband conductivity [19]: Reσ
(inter)
xx = e2

4h̄
Θ(ω − 2vFkF ), where Θ(x) is the

Heaviside step function.

If we define the optical field with a vector potential, the same calculation will lead to

divergent integrals. In this case the finite, and at the same time gauge-invariant, expression

for the linear current at frequency ω can be obtained by subtracting the same current

evaluated at zero frequency [20]:

j(q)(ω) =
∑
mn

j(q)
mn

[
ρ1,A
nm(ω)− ρ1,A

nm(ω → 0)
]
. (21)

Here ρ1,A
nm(ω) is Eq. (17) with φ(ω) = 0 in the interaction Hamiltonian. This prescription

cancels the divergent term and leads to the Kubo formula for the linear response. In our case

Eq. (21) is equal to the sum of Eqs. (19) and (20) for the diagonal conductivities σyy = σxx,

and gives σxy = 0. The procedure in Eq. (21) can be justified by considering the graphene

Hamiltonian with a small quadratic term in the energy dispersion:

E = sh̄vFk + ε
h̄2k2

2
, (22)

where ε is a small parameter. Adding this term provides a bottom to the valence band. As

shown in Appendix B, the linear current for such a system approaches Eq. (21) when ε→ 0.

For a P-polarized field which can be represented through both scalar and vector potentials

the renormalization procedure in Eq. (21) is equivalent to the gauge transformation of the
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density matrix from the A-gauge (8) to the ϕ-gauge (7). Indeed, let the function ρ1,AP
nm (ω)

correspond to the solution of Eq. (17) for the field defined in the gauge given by Eq. (8),

whereas the function ρ1,ϕ
nm(ω) correspond to the gauge of Eq. (7). Since we just found that the

sum
∑

mn j
(q)
mnρ

(1,ϕ)
nm (ω) is finite, it makes sense to try the transformation ρ1,AP

nm ⇒ ρ1,ϕ
nm. The

gauge transformation from A and ϕ to Ã and ϕ̃ corresponds to the unitary transformation

of the density matrix (see Appendix C)

ρ̃nm =
∑
qp

(
e−

ief
h̄c

)
nq
ρqp

(
e+ ief

h̄c

)
pm
, (23)

where the scalar function f(t, r) determines the gauge transformation of the potentials

Ã = A+∇f(t, r), ϕ̃ = ϕ− 1

c

∂f(t, r)

∂t
. (24)

In particular, the transformation from the vector potential (8) to scalar potential (7) is

∇f = −AP . (25)

Within the linear approximation with respect to f we obtain from Eq. (23):

ρ1,AP
nm ⇒ ρ1,AP

nm − ie

h̄c
fnm(nm − nn). (26)

Next, we will use the general relationship (see e.g. [21])

fnm =
−ih̄

En − Em

(
∇f · v̂ + v̂ · ∇f

2

)
nm

, (27)

from which we obtain from v̂ = vF σ̂ that

fnm =
−ih̄vF (σ̂ · ∇f)nm

En − Em
. (28)

As a result, from Eqs. (26), (28) and (25) one gets

ρ1,AP
nm (ω)⇒ ρ1,AP

nm (ω) +
evF
c

[σ̂xAx(ω)]nm (nm − nn)

En − Em
. (29)

Taking into account Eq. (17), Eq. (29) can be represented as ρ1,AP
nm (ω) ⇒ ρ1,AP

nm (ω) −

ρ1,AP
nm (ω → 0), which is identical to Eq. (21).

The structure of transformation (23) makes it clear why the density matrix with an

infinite trace can give rise to the divergent current. Consider the density matrix in the

form ρnm = ρmmδnm + ξn6=m, where ξ is a small perturbation. The sum
∑

mn jmnξnm can
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converge in a certain gauge even if the trace
∑

m ρmm diverges. However, the transformation

(23) to a different gauge projects the diagonal of the matrix with an infinite trace onto

off-diagonal elements, which can lead to the divergence in Eq. (16). The inverse is also true:

the divergence can be eliminated by the transformation (23) as we have just shown above.

It is also clear that the separation of the response into intraband and interband com-

ponents depends generally on the choice of the gauge since the transformation (23) mixes

different contributions. At the same time, a correctly defined current has to be gauge-

invariant.

IV. SECOND-ORDER NONLINEAR RESPONSE

Now we consider the second-order nonlinear response to the bichromatic field which we

will represent through the vector potential in order to describe both P- and S-polarized fields

with the same formalism. We will write the in-plane field components at frequencies ω1,2

directed along unit vectors η1,2 as

A =
1

2
η1A(ω1)ei(q1·r‖−ω1t) +

1

2
η2A(ω2)ei(q2·r‖−ω2t) + c.c. (30)

We need to calculate the perturbation of the density matrix at the sum frequency ω1 + ω2.

The term quadratic with respect to the field can be written as

ρ(2)
mn(ω1 + ω2) =

( e
2c

) 1

h̄(ω1 + ω2)− (εm − εn)

×
∑
l 6=m,n

[(
(v̂ · η1)eiq1·r

)
ml
A(ω1)ρ

(1)
ln (ω2)− ρ(1)

ml(ω1)
(
(v̂ · η2)eiq2·r

)
ln
A(ω2)

]
+ {1↔ 2}

=
1

2

(e
c

)2 A(ω1)A(ω2)

h̄(ω1 + ω2)− (εm − εn)
×
∑
l 6=m,n

(
(v̂ · η1)eiq1·r

)
ml

(
(v̂ · η2)eiq2·r

)
ln

×
[

(ρnn − ρll)
h̄ω2 − (εl − εn)

− (ρll − ρmm)

h̄ω1 − (εm − εl)

]
+ {1↔ 2} . (31)

The trace of the corresponding Fourier harmonic of the induced current can be then

calculated as

j(q1+q2)(ω1 + ω2) = −e
∑
mn

(
v̂e−i(q1+q2)·r)

nm
ρ(2)
mn(ω1 + ω2). (32)
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The second-order response at the difference frequency, ρ
(2)
mn(ω1 − ω2) can be obtained by

replacing

ω2 ⇒ −ω2, q2 ⇒ −q2, A(ω2)⇒ A∗(ω2). (33)

Next, we transform from summation to integration over k-states, introduce the corre-

sponding occupation numbers f(s, k) of the momentum states in each band, apply the mo-

mentum conservation in a three-wave mixing process, and take into account spin and valley

degeneracy. Note that the integral over the electron momenta converges, as opposed to the

linear response calculations where one needs to regularize the integral by either subtracting

the contribution at zero frequency or adding a k2 term to the Hamiltonian, as discussed

above. The result is

J (2)(ω1 + ω2)

= − e3v3
F

16π2c2h̄2A(ω1)A(ω2)
∑

sm,sn,sl

∫
d2k

1

(ω1 + ω2)− vF (sm|k + q1| − sn|k − q2|)

×
[
f(sn, |k − q2|)− f(sl, |k|)
ω2 − vF (sl|k| − sn|k − q2|)

− f(sl, |k|)− f(sm, |k + q1|)
ω1 − vF (sm|k + q1| − sl|k|)

]
×
[
(η1x − iη1y)sme

iθ(k) + (η1x + iη1y)sle
−iθ(k+q1)

]
×
[
(η2x − iη2y)sle

iθ(k−q2) + (η2x + iη2y)sne
−iθ(k)

]
×
[
(x0 + iy0)sme

−iθ(k−q2) + (x0 − iy0)sne
iθ(k+q1)

]
+ {1↔ 2} . (34)

This equation can be integrated numerically for any given geometry of incident fields

and electron distribution. We consider the limit of the Fermi distribution with a strong

degeneracy, direct all in-plane photon wave vectors along x-axis, and expand the integrand

in Eq. (34) in powers of q1, q2. The integral over the term of zeroth-order in q vanishes,

as expected from symmetry. We will keep the terms linear in q. Also we have to evaluate

separately the intraband contribution sl = sm = sn and all types of mixed interband-

intraband contributions: sm = sn = −sl, sm = sl = −sn, and sn = sl = −sm. After

performing this procedure, we find the following nonzero components of the second-order

nonlinear conductivity tensor, while all other components are zero:

σ(2)
xxx(ω1 + ω2;ω1, ω2)

= −s(εF )
e3v2

F

2πh̄2

1

ω2
1ω

2
2(ω1 + ω2)

1

(ω2
1 − 4v2

Fk
2
F )(ω2

2 − 4v2
Fk

2
F )((ω1 + ω2)2 − 4v2

Fk
2
F )
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×
[
−4v4

Fk
4
F (q1ω

3
2(2ω1 + ω2) + q2ω

3
1(ω1 + 2ω2)) + 16v6

Fk
6
F (q1ω2(2ω1 + ω2) + q2ω1(ω1 + 2ω2))

]
,

(35)

σ(2)
xyy(ω1 + ω2;ω1, ω2)

= −s(εF )
e3v2

F

2πh̄2

1

ω2
1ω

2
2(ω1 + ω2)

1

(ω2
1 − 4v2

Fk
2
F )(ω2

2 − 4v2
Fk

2
F )((ω1 + ω2)2 − 4v2

Fk
2
F )

×
[
4(vFkF )2ω1ω2(ω1 + ω2)2(q1ω

2
2 + q2ω

2
1)

+ 4(vFkF )4(q1ω
4
2 − (6q1 + 4q2)ω1ω

3
2 − 8(q1 + q2)ω2

1ω
2
2 − (4q1 + 6q2)ω3

1ω2 + q2ω
4
1)

+ 16(vFkF )6(q1ω2(2ω1 − ω2) + q2ω1(2ω2 − ω1))
]
, (36)

σ(2)
yxy(ω1 + ω2;ω1, ω2)

= −s(εF )
e3v2

F

2πh̄2

1

ω2
1ω

2
2(ω1 + ω2)

1

(ω2
1 − 4v2

Fk
2
F )(ω2

2 − 4v2
Fk

2
F )((ω1 + ω2)2 − 4v2

Fk
2
F )

×
[
4(vFkF )2ω2

1ω2(ω1 + ω2)(q1ω
2
2 − q2ω1(ω1 + 2ω2))

+ 4(vFkF )4(q2ω1(ω1 + 2ω2)3 − q1ω2(4ω3
1 + 4ω2

1ω2 + 2ω1ω
2
2 + 3ω3

2))

+ 16(vFkF )6(q1ω2(2ω1 + 3ω2)− q2ω1(ω1 + 2ω2))
]
, (37)

σ(2)
yyx(ω1 + ω2;ω1, ω2)

= −s(εF )
e3v2

F

2πh̄2

1

ω2
1ω

2
2(ω1 + ω2)

1

(ω2
1 − 4v2

Fk
2
F )(ω2

2 − 4v2
Fk

2
F )((ω1 + ω2)2 − 4v2

Fk
2
F )

×
[
4(vFkF )2ω1ω

2
2(ω1 + ω2)(q2ω

2
1 − q1ω2(2ω1 + ω2))

+ 4(vFkF )4(q1ω2(2ω1 + ω2)3 − q2ω1(3ω3
1 + 2ω2

1ω2 + 4ω1ω
2
2 + 4ω3

2))

+ 16(vFkF )6(q2ω1(3ω1 + 2ω2)− q1ω2(2ω1 + ω2))
]
. (38)

Here s(εF ) = ±1 depending on whether the Fermi level is in the conduction or valence

band. A sketch of the second-order nonlinear process for an obliquely incident light of

mixed polarization is shown in Fig. 1. Note that when both pump fields have either S-

or P-polarization, the generated nonlinear current has only the x-component (along the

in-plane direction of propagation of the pumps). When the polarizations are mixed, the y-

component of the nonlinear current appears due to yxy and yyx components of the nonlinear

conductivity (they are different only by permutation of indices 1 and 2 referring to the two

pump fields).

Apparent “non-reciprocity” of the expressions for σ
(2)
yxx = 0 (P-in, S-out channel) and σ

(2)
xyy

(S-in, P-out channel) has a simple physical explanation: a P-polarized incident field cannot

create a current orthogonal to the electric field, whereas an incident S-polarized field creates
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E

B

E
B

x

y

z 𝐽𝑥
(2)

= 𝜎𝑥𝑥𝑥
(2)
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FIG. 1. A sketch of the second order nonlinear current generation in the graphene plane for

obliquely incident light.

such a current via the magnetic field component Bz normal to the layer.

The expressions for the nonlinear conductivity tensor that we obtained pass all symmetry

and gauge invariance tests. Indeed, one can verify that the value of σ
(2)
xxx agrees with the one

derived using scalar potential in the interaction Hamiltonian. Furthermore, after converting

the nonlinear conductivity to the nonlinear susceptibility according to

χ
(2)
ijk(ω1 + ω2;ω1, ω2) =

iσ
(2)
ijk(ω1 + ω2;ω1, ω2)

ω1 + ω2

,

one can verify that all components of the nonlinear susceptibility tensor satisfy proper per-

mutation relations; see e.g. Ch. 2.9 in [22]:

χ
(2)
ijk(ω3 = ω1 + ω2) = χ

(2)
jik(−ω1 = −ω3 + ω2) = χ

(2)
kji(−ω2 = −ω3 + ω1), (39)

where in-plane wave vectors have to be permuted together with frequencies.

The second-order response goes to zero when the Fermi energy εF goes to zero, and has

maxima at resonances when one of the three frequencies involved in three-wave mixing is

close to 2εF/h̄ = 2vFkF . Far from these resonances and for high frequencies or low doping,

2vFkF � ω1, ω2, ω1 + ω2, expressions for the nonlinear conductivity are greatly simplified

(we will give only the expressions for σ
(2)
xxx and σ

(2)
xyy for brevity):

σ(2)
xxx = s(εF )

2e3v2
F

πh̄2

v4
Fk

4
F [q1ω

3
2(2ω1 + ω2) + q2ω

3
1(2ω2 + ω1)]

ω4
1ω

4
2(ω1 + ω2)3

, (40)

12



σ(2)
xyy = −s(εF )

2e3v2
F

πh̄2

v2
Fk

2
F (q1ω

2
2 + q2ω

2
1)

ω3
1ω

3
2(ω1 + ω2)

. (41)

An interesting and surprising result contained in these expressions is that the nonlinear fre-

quency conversion of S-polarized radiation into P-polarized radiation is much more efficient

at high frequencies as compared to the P-in, P-out channel: σ
(2)
xyy/σ

(2)
xxx ∝ ω2

v2
F k

2
F
� 1. The

dominance of the S-in, P-out channel is due to the chiral nature of Dirac fermion states. In

particular, for the second-harmonic generation process ω1 = ω2 = ω and q1 = q2 = q, and

the dominant component of the nonlinear conductivity tensor is simply

σ(2)
xyy = −s 2e3

πh̄2

v4
Fk

2
F q

ω5
. (42)

In the opposite limit of low frequencies or high doping, 2vFkF � ω1, ω2, ω1 + ω2, we also

obtain simplified expressions:

σ(2)
xxx = s

e3v2
F

4πh̄2ω1ω2

(
q1 + q2

ω1 + ω2

+
q1

ω1

+
q2

ω2

)
, (43)

σ(2)
xyy = −s e3v2

F

4πh̄2ω1ω2

[
q1 + q2

ω1 + ω2

+
ω1 − ω2

ω1 + ω2

(
q1

ω1

+
q2

ω2

)]
. (44)

We verified that Eqs. (43) and (44) can be derived independently from the single-band kinetic

equation, i.e. in the quasiclassical approximation described in Appendix D. This provides

another test of our general expressions, since one should indeed expect that the single-band

physics emerges in the limit of a strong doping and low frequencies, when all interband

transitions become suppressed by Pauli blocking. Note that although Eqs. (43) and (44) do

not depend on kF , they are valid only in the high-kF limit and are completely inapplicable

for undoped graphene. In fact, exact expressions (35) and (36) give σ
(2)
xxx = 0 and σ

(2)
xyy = 0 for

kF = 0, since in this case the nonlinear currents due to interband and intraband transitions

cancel each other. This can be viewed as a manifestation of the electron-hole symmetry in

graphene.

The nonlinear conductivity components (35) and (36) diverge when one or more of the

three frequencies involved in three-wave mixing is close to 2εF/h̄ = 2vFkF . Close to res-

onance with 2εF/h̄ one has to include the imaginary part of the frequency which comes

from the omitted relaxation term −γρmn in the density-matrix equations. This amounts to

substituting ω1 → ω1 + iγ1, ω2 → ω2 + iγ2, ω1 +ω2 → ω1 +ω2 + iγ3. Note that if we flip the

sign of ω2 to describe the difference frequency generation process, the sign of +iγ2 remains

the same, i.e. ω2 → −ω2 + iγ2.

13



Even if dissipation is included, we can still use Eqs. (39) to derive the components of

the nonlinear susceptibility tensor from other components. In order to do that, one needs

to use Eqs. (39) in the absence of dissipation and then add imaginary parts of frequencies.

Of course the resulting expressions after adding dissipation won’t satisfy the permutation

relation Eqs. (39).
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FIG. 2. Nonzero components of the second order nonlinear conductivity tensor for the process of

SHG as a function of the fundamental frequency. The pump is incident at 45 degrees. The Fermi

energy is 200 meV and all resonances are broadened by the same factor γ equal to 5 meV.

Figures 2-4 illustrate the above properties of the nonlinear conductivity for the processes

of the second-harmonic generation (SHG), difference-frequency generation (DFG), and sum-

frequency generation (SFG). We used SI units in the figures for easier comparison of the

values with known materials. In Fig. 2, absolute values of nonzero components of the
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FIG. 3. Nonzero components of the second order nonlinear conductivity tensor for the process

of DFG as a function of one of the pump frequencies (ω2). Frequency ω1 is fixed at 400 meV.

Both pumps are incident in the (xz)-plane at 45 degrees. The Fermi energy is 200 meV and all

resonances are broadened by the same factor γ equal to 5 meV.

nonlinear conductivity tensor for the SHG process ω + ω ⇒ 2ω are plotted as a function of

the fundamental frequency ω, assuming that the Fermi energy is 200 meV and all resonances

are broadened by the same half-width factor γ equal to 5 meV in energy units. The plots

for σ
(2)
yxy and σ

(2)
yyx are identical as they should be. There are two prominent resonances at

h̄ω = 2εF = 400 meV and 2h̄ω = 2εF . At high frequencies, the xxx component falls off

much faster than the xyy component. At low frequencies, both components diverge as 1/ω2.

Our treatment, however, becomes invalid in the low-frequency limit ω ≤ γ when any of the

frequencies becomes lower than the scattering rate; that is why the plots are truncated at

ω = 20 meV. The quasi-classical method of the kinetic equation has the same applicability
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FIG. 4. Nonzero components of the second order nonlinear conductivity tensor for the process

of SFG as a function of one of the pump frequencies (ω2). Frequency ω1 is fixed at 200 meV.

Both pumps are incident in the (xz)-plane at 45 degrees. The Fermi energy is 200 meV and all

resonances are broadened by the same factor γ equal to 5 meV.

limit.

Figure 3 shows absolute values of the nonzero components of the nonlinear conductivity

tensor for the DFG process for the same values of εF and γ, as a function of ω2. The

second frequency h̄ω1 is fixed to be 400 meV. The same qualitative behavior is observed:

there is a double resonance when both ω1 and ω2 are equal to 2kFvF . Note that there is no

divergence at ω1−ω2 → 0 because the same factor ω1−ω2 appears in the numerator. There

is divergence when ω2 → 0 which should be truncated at ω2 ∼ γ.
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In Fig. 4, the nonzero components of the nonlinear conductivity tensor for the SFG

process are shown as a function of ω2. The second frequency h̄ω1 is fixed at 200 meV. As

expected, all components show strong resonances when one of the frequencies or their sum

is equal to 2εF = 400 meV.

The magnitude of the nonlinear response generally increases rapidly when one or more

of the frequencies is decreased, as is obvious also from analytic expressions. For the DFG

process, the magnitude of the nonlinear conductivity components is two orders of magnitude

higher as compared to SHG or SFG. As one of the frequencies goes to zero, the treatment

becomes invalid, but one could get an order of magnitude estimate of the maximum nonlinear

conductivity by putting this frequency equal to γ. Using the same value of γ = 5 meV, one

gets the nonlinear conductivity for DFG of the order of several m2/(Vs) in the THz range.

This is a 2D conductivity. Purely for the sake of comparison with known bulk nonlinear

materials, we can convert it to the bulk nonlinear susceptibility dividing by the frequency

and the monolayer thickness of 0.3 nm, to arrive at |χ(2)
3D| ∼ 10−3 m/V. This is a huge value

as compared to 1-100 pm/V values for most materials. Of course, only the 2D values of

the graphene conductivity or susceptibility enter all physical results such as the intensity

of the generated nonlinear signal [14, 15] or the parametric gain [15]. Still, combination of

intrinsically large nonlinear conductivity of graphene and a surface plasmon resonance for

the nonlinear signal may lead to quite significant efficiency of the nonlinear processes, as

emphasized in the theoretical proposals [14, 15].

In conclusion, we developed the full quantum-mechanical theory of the in-plane second-

order nonlinear response of graphene beyond the electric dipole approximation. We provided

a systematic derivation of the second-order nonlinear conductivity tensor, valid for all second-

order processes, all frequencies and doping densities, as long as the massless Dirac fermion

approximation for a single-particle Hamiltonian is applicable. Our approach can be applied

to any system of massless chiral Dirac fermions, for example surface states in topological

insulators such as Bi2Se3. We derived useful analytic expressions for the components of

the nonlinear conductivity tensor, which satisfy all symmetry and permutation properties,

and have a correct quasi-classical limit. We also summarized main features of the linear

response, with emphasis on its gauge properties and regularization.
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Appendix A: Evaluation of the linear current

To calculate the current in the linear approximation with respect to the electromagnetic

(EM) field, we will use Eqs. (13), (14), (15), (17), and (18). Assuming that the photon

wave vector is much smaller than typical wave vectors of electrons, q � k, we calculate the

following quantities in the zeroth and first order in q:

n(k+q)(s=+1) − nk(s=+1) ≈ q cos θ(k)
∂nk(+1)

∂k
, (A1)

E(k+q)(s=+1) − Ek(s=+1) ≈ h̄vF q cos θ(k), (A2)

1

2
j

(q)
k(k+q)(+1)(+1) ≈ −evF [x0 cos θ(k) + y0 sin θ(k)] , (A3)

1

2
j

(q)
k(k+q)(+1)(−1) ≈ −ievF [x0 sin θ(k)− y0 cos θ(k)] . (A4)

Consider first the EM field determined through a scalar potential. In this case we can replace

in Eq. (17) [
V̂ (ω)eiqx

]
(k+q)kss′

≈ −eφ(ω)

4

[
i
q

k
sin θ(k) + 1 + ss′

]
. (A5)

The summation in Eq. (18), can be replaced by integration using Eq. (16). Keeping the

terms of the first order in q in the conduction band, the integral can be transformed as∫∞
0

(∂nk(+1)/∂k)kdk = −
∫∞

0
nk(+1)dk = −kF . Introducing relaxation through the substitu-

tion ω → ω + iγ, we arrive at Eqs. (19) and (20).

Now we determine the EM field through the vector potential, in which case we should

substitute the following in Eq. (17):[
V̂ (ω)eiqx

]
(k+q)kss′

≈ evF
4c

[
Ax
(
seiθ(k) + s′e−iθ(k)

)
− iAy

(
seiθ(k) − s′e−iθ(k)

)]
. (A6)

After exactly the same steps as in the case of a scalar potential, we arrive at

j
(q)
(intra)(ω) = −gv

2
F e

2(x0Ax + y0Ay)

4π2h̄c

∫ 2π

0

q cos3 θdθ

ω − vF q cos θ

∫ kF

0

nk(+1)dk, (A7)
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j
(q)
(inter)(ω) =

gv2
F e

2(x0Ax + y0Ay)

4πh̄c

∫ ∞
0

(
1

ω + 2kvF
− 1

ω − 2kvF

)(
nk(−1) − nk(+1)

)
kdk.

(A8)

Note that j
(q)
(inter)(ω) → ∞ when

∫∞
0
nk(−1)kdk → ∞. Therefore the current needs to be

renormalized. Applying the renormalization Eq. (21), we obtain

j
(q)
(intra)(ω) = −gvF e

2ω(x0Ax + y0Ay)

4π2h̄c

∫ 2π

0

cos2 θdθ

ω − vF q cos θ

∫ kF

0

nk(+1)dk

≈ −gvF e
2(x0Ax + y0Ay)

4πh̄c

∫ kF

0

nk(+1)dk, (A9)

j
(q)
(inter)(ω) = −gvF e

2ω(x0Ax + y0Ay)

8πh̄c

∫ ∞
0

(
1

ω + 2kvF
− 1

ω − 2kvF

)(
nk(−1) − nk(+1)

)
dk,

(A10)

which again yields the expressions given in Sec. III.

If we choose the carrier distribution limited not only in the conduction band but also in

the valence band, i.e. nk(−1) = 0 for k > kmax;(−1), then for the P-polarized field that can be

defined through both scalar and vector potentials the sum j
(q)
(intra;+1) + j

(q)
(intra;(−1)) + j

(q)
(inter) is

invariant and finite without regularization with Eq. (21). This corroborates our conclusion

that for massless Dirac fermions the need in renormalization (21) is due to the bottomless

valence band filled with electrons to infinite energies and wave vectors, which is an artifact

of the model Hamiltonian (1).

Appendix B: How to correctly define current in a system with a massless Dirac

spectrum

The prescription Eq. (21) for renormalization of the diverging linear current in a system

of massless Dirac fermions can be justified if we consider a system with small deviation

from the massless conical spectrum, for which the current becomes finite, and then let the

deviation go to zero. Of course, the actual electron spectrum of graphene does deviate

from the massless conical spectrum at high electron energies. However, it is reasonable to

expect that at low enough energies any correction to the Hamiltonian (1) becomes small,

and all essential physics including the linear response is dominated by massless fermions.

Therefore, it is important, at least from the methodological perspective, to provide physical

justification of Eq. (21).
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Let’s modify the Hamiltonian (1) by adding a quadratic correction to the massless Dirac

spectrum E = sh̄vFk:

Ĥ0(p̂) = vF σ̂ · p̂+ ε
p̂2

2
· 1̂. (B1)

This Hamiltonian leads to the energy spectrum given by Eq. (22), whereas the eigenstates

Eq. (2) remain the same. We will also assume that the change in the energy spectrum in

the conduction band is insignificant, since

εh̄kF � vF . (B2)

At the same time, the spectrum of Eq. (B1) creates a “bottom” of the valence band at

k = K, where

εh̄K = vF . (B3)

Therefore, the integral over k-states in the valence band has now finite limits.

In the presence of an EM field given by the vector potential A, one needs to replace

p̂⇒ p̂+ e
c
A in the Hamiltonian:

Ĥ0(p̂) = vF σ̂ ·
(
p̂+

e

c
A
)

+ ε

(
p̂+ e

c
A
)2

2
· 1̂. (B4)

The resulting velocity operator,

v̂ =
i

h̄

[
Ĥ, r̂

]
= vF σ̂ + ε

(
p̂+

e

c
A
)
· 1̂, (B5)

and the current operator,

ĵ = −ev̂ = −e
[
vF σ̂ + ε

(
p̂+

e

c
A
)
· 1̂
]

(B6)

acquire a component which depends on the vector potential:

δĵ = −εe
2

c
A · 1̂. (B7)

Consider for definiteness an EM field given by the second of Eq. (6) with Ax = 0, and

also keep only the solution in zeroth order in q/k.

A new, A-dependent component of the current operator δĵ gives rise to an additional

component of the linear current (see, e.g., [21]):

δjy = −εe
2Aye

−iωt

2c

∑
k

nk(s=−1) + C.C., (B8)
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where ∑
k

nk(s=−1) =
g

4π2

∫ 2π

0

dθ

∫ K

0

nk(−1)kdk, (B9)

and the value of K is determined by Eq. (B3). In the limit of Eq. (B2) we can keep only

the contribution of the valence band to the current component δjy. This gives (in the limit

of strong degeneracy)

δjy = −Aye
−iωt

2c

gvF e
2

4πh̄

∫ K

0

nk(−1)dk + C.C. (B10)

Equation (B10) can be represented as a sum of two terms:

− gvF e
2

4πh̄

Aye
−iωt

2c

∫ K

0

nk(−1)dk

= −gv
2
F e

2

4πh̄

Aye
−iωt

2c

∫ K

0

(
1

2kvF
− 1

−2kvF

)
(nk(−1) − nk(+1))kdk

+
gv2

F e
2

4π2h̄

Aye
−iωt

2c

∫ 2π

0

q cos2 θ cos θdθ

−vF q cos θ

∫ kF

0

nk(+1)dk, (B11)

where for a degenerate electron gas nk(+1) = 0 for k > kF . Let us now compare this current

component with the expressions (A7) and (A8) for the linear current that we derived in

Appendix A for a massless Dirac current (ĵ = −evF σ̂), namely,

j(intra)
y = −gv

2
F e

2

4π2h̄

Aye
−iωt

2c

∫ 2π

0

q cos2 θ cos θdθ

ω − vF q cos θ

∫ kF

0

nk(+1)dk + C.C., (B12)

j(inter)
y =

gv2
F e

2

4πh̄

Aye
−iωt

2c

∫ K

0

(
1

ω + 2kvF
− 1

ω − 2kvF

)
(nk(−1) − nk(+1))kdk + C.C. (B13)

From comparing (B10) with (B12), (B13), it is obvious that −δjy = j
(intra)
y (ω → 0) +

j
(inter)
y (ω → 0), i.e., adding this current component to the total current as j

(intra)
y +j

(inter)
y +δjy

is completely equivalent to the renormalization given by Eq. (21) in the limit K →∞ which

corresponds to the limit ε → 0. Note also that the current component ĵ = −εep̂ which we

neglected in Eq. (B6) becomes negligible as compared to j
(intra)
y + j

(inter)
y in the same limit

ε → 0. Actually this term vanishes since the distributions nk(−1) and nk(+1) don’t depend

on the direction of k.

Appendix C: Gauge transformation properties for massless Dirac systems

We start from the Schrödinger equation

ih̄
∂Ψ

∂t
= Ĥ(A, ϕ)Ψ (C1)
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with the Hamiltonian of Eq. (3). Consider a gauge transformation of the field potentials

from (A, ϕ) to (Ã, ϕ̃). This transformation is determined by Eqs. (24) through a scalar

function f(r, t). Let Ψ̃ be the solution of Eq. (C1) for Ĥ(Ã, ϕ̃). One can see by direct

substitution that the spinor Ψ is transformed is the same way as a scalar state function:

Ψ̃ = e−i
e
h̄c
fΨ [17] (we consider a particle with negative charge −e). This transformation

conserves the quantum-mechanical average current j = −evF 〈Ψ |σ̂|Ψ〉 = −evF 〈Ψ̃ |σ̂|Ψ̃〉.

To obtain gauge transformation rules for the density matrix, it is convenient to use its

coordinate representation as ρ̂(r, r′) [21]. Following the standard procedure [17], we obtain

ρ̂(r, r′) =
∑
mn

ρmn [Ψm(r)Ψ ∗n(r′)] , (C2)

where the expression [Ψm(r)Ψ ∗n(r′)] is a matrix formed by the elements of spinors Ψm(r)

and Ψ ∗n(r′). Therefore, the operator ρ̂(r, r′) is a matrix with elements dependent on the

pair of arguments (r, r′):

ρ̂(r, r′) =

ρ11(r, r′) ρ12(r, r′)

ρ21(r, r′) ρ22(r, r′).

 (C3)

The equation of motion for the operator ρ̂(r, r′) has a standard form, which follows directly

from Eq. (C1):

ih̄
∂ρ̂(r, r′)

∂t
= Ĥρ̂(r, r′)− ρ̂(r, r′)

←−
Ĥ ′, (C4)

where the operator Ĥ acts only on the arguments r , whereas Ĥ ′ acts only on r′, and

the arrow above it means acting from right to left. The quantum-mechanical average of

any operator Θ̂ can be written in the matrix representation as Θ =
∑

mnΘnmρmn, and

in the coordinate representation as Θ =
∫
A
d2r

∫
A′ d

2r′
{
δ(r − r′)

[
Θ̂ρ̂(r, r′)

]}
, where it is

assumed that the operator Θ̂ acts only on r.

Let ˜̂ρ(r, r′) be the solution of Eq. (C4) for the Hamiltonian Ĥ(Ã, ϕ̃) given by Eq. (3).

Then, following Ref. [21], from Eq. (C4) one can obtain

˜̂ρ(t, r, r′) = ρ̂(t, r, r′)e−iu(t,r,r′), u(t, r, r′) =
e

h̄c
[f(t, r)− f(t, r′)] . (C5)

Taking into account ρmn = 〈Ψm(r)|ρ̂(r, r′)|Ψn(r′)〉 which follows from Eq. (C2), we arrive

at Eq. (23).

Note that gauge transformation of the density matrix equation includes an appropriate

transformation of the relaxation operator [21]. The simplest approach which allows one

22



to avoid complicated transformations is to neglect dissipation first, and then to replace

ω → ω + iγ in the resulting expression for the dissipationless current. Of course, this

approach works only for the simplest form of the relaxation operator in the relaxation time

approximation.

Appendix D: Quasiclassical approximation

Here we provide the derivation of the quasiclassical equations of motion which allow

one to derive Eqs. (43,44) of the previous section in the single-band approximation of low

frequencies and high Fermi energy, when the contribution of interband transitions can be

neglected.

In the absence of external fields (A = 0 ,ϕ = 0) the solution of the Schrödinger equation

with Hamiltonian (1) for a fixed energy of a quasiparticle can be written as

Ψ =

Ψ1

Ψ2

 = const× eik·r−i
E(k)
h̄

t

√
2

 s

eiθ(k)

 , (D1)

where s = ±1, E = sh̄vF |k|, θ(k) is an angle between the wave vector k and the x-axis. In

the presence of the field, consider the solution of the Schrödinger equation with Hamiltonian

(3) in the WKB approximation. Treating h̄ as a small parameter, we seek the solution in

the form close to (D1):

Ψ (A, ϕ) = e
i
h̄
S(t,r)


Ψ (0)

1 (t, r)

Ψ
(0)
2 (t, r)

+ h̄

Ψ (1)
1 (t, r)

Ψ
(1)
2 (t, r)

+ h̄2...

 . (D2)

First consider the terms of zeroth order with respect to h̄:

(−∂tS + eϕ)Ψ
(0)
1 + vF

[(
−∂xS − e

c
Ax
)

+ i
(
∂yS + e

c
Ay
)]
Ψ

(0)
2 = 0,

vF
[(
−∂xS − e

c
Ax
)
− i
(
∂yS + e

c
Ay
)]
Ψ

(0)
1 + (−∂tS + eϕ)Ψ

(0)
2 = 0.

(D3)

From (D3) we derive

(i) the eikonal equation:

(−∂tS + eϕ)2 = v2
F

(e
c
A+∇S

)2

, (D4)

(ii) the relationship between the spinor components:

Ψ
(0)
1

Ψ
(0)
2

= ±
[
cos θ

(e
c
A+∇S

)
− i sin θ

(e
c
A+∇S

)]
= ±e−iθ(

e
c
A+∇S), (D5)
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where θ
(
e
c
A+∇S

)
is the angle between vector e

c
A + ∇S and the x-axis. Equation (D5)

allows one to represent the WKB solution in the form

Ψ (A, ϕ) =
Φ(t, r)e

i
h̄
S(t,r)

√
2

 s

eiθ(
e
c
A+∇S).

 (D6)

The expression for the factor Φ can be obtained by requiring that there exist the nontrivial

solution to the next order term h̄

Ψ (1)
1 (t, r)

Ψ
(1)
2 (t, r)

; this approach is used for example, in order

to find the normal modes in anisotropic media [23]. However, it is much easier to use the

conservation of the probability flux, which in our case is given by

∂

∂t
(Ψ ∗Ψ ) = −vF∇ · [Ψ ∗σ̂Ψ ] . (D7)

From here,

∂|Φ|2

∂t
= −∇ ·

[
svF

(
e
c
A+∇S

)∣∣ e
c
A+∇S

∣∣ |Φ|2
]
. (D8)

Now consider the solution to the eikonal equation (D4), which we will interpret as a

Hamilton-Jacobi equation [24], corresponding to the Hamiltonian H(P , r, t):

∂tS +H(P , r, t) = 0, ∇S = P ,

H(P , r, t) = −eϕ(r, t) + svF

√(
Px +

e

c
Ax

)2

+
(
Py +

e

c
Ay

)2

. (D9)

The canonical equations of motion for this Hamiltonian are

ṙ =
∂H(P , r, t)

∂P
= svF

P + e
c
A∣∣P + e
c
A
∣∣ ,

Ṗ = −∂H(P , r, t)

∂r
= e∇ϕ− e

c
[ṙ × (∇×A) + (ṙ · ∇)A] .

(D10)

Introducing the kinematic momentum p = P + e
c
A, for which ṗ = Ṗ + e

c

[
∂A
∂t

+ (ṙ · ∇)A
]
,

we obtain from Eqs. (D10) the quasiclassical equations of motion:

ṙ = svF
p

|p|
, ṗ = −eE − e

c
(ṙ ×B) , (D11)

where E = −∇ϕ− 1
c
∂A
∂t

, B = ∇×A. Equations of motion (D11) correspond to the kinetic

equation for quasiparticles:

∂f(r,p, t)

∂t
+ svF

p

|p|
∂f(r,p, t)

∂r
− e

[
E +

svF
c

(
p

|p|
×B

)]
∂f(r,p, t)

∂p
= St[f(r,p, t)],

(D12)
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where St[f(r,p, t)] is the collision integral. Quasiclassical equations (D11) or (D12) were

the starting point for evaluation of both linear and nonlinear optical response in a number

of works; see, e.g. [11–13, 25, 26]. As we have already discussed in the previous section,

this approach can be justified only in the limit of low photon frequencies and large Fermi

energies, when the contribution of interband transitions can be neglected.
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