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Abstract

Chemical and structural diversity present in hexagonal boron nitride ((h-BN) and graphene

hybrid nanostructures provide new avenues for tuning various properties for their technological

applications. In this paper we investigate the variation of thermal conductivity (κ) of hybrid

graphene/h-BN nanostructures: stripe superlattices and BN (graphene) dots embedded in graphene

(BN) are investigated using equilibrium molecular dynamics. To simulate these systems, we have

parameterized a Tersoff type interaction potential to reproduce the ab initio energetics of the B-C

and N-C bonds for studying the various interfaces that emerge in these hybrid nanostructures. We

demonstrate that both the details of the interface, including energetic stability and shape, as well

as the spacing of the interfaces in the material exert strong control on the thermal conductivity of

these systems. For stripe superlattices, we find that zigzag configured interfaces produce a higher

κ in the direction parallel to the interface than the armchair configuration, while the perpendicular

conductivity is less prone to the details of the interface and is limited by the κ of h-BN. Additionally,

the embedded dot structures, having mixed zigzag and armchair interfaces, affects the thermal

transport properties more strongly than superlattices. Though dot radius appears to have little

effect on the magnitude of reduction, we find that dot concentration (50% yielding the greatest

reduction) and composition (embedded graphene dots showing larger reduction that h-BN dot)

have a significant effect.

PACS numbers: 61.46.w, 65.80.g, 68.65.k, 66.70.f
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I. INTRODUCTION

Following the isolation of single layer graphene,1 studies on the electrical,2–6 optical,7,8

thermal,9–14 and mechanical15,16 properties of this low-dimensional material have revealed

their potential for many technological applications.17–20 This in turn has triggered interest in

isomorphs of graphene, namely h-BN21–28 and hybrid h-BN/graphene structures. Recently,

fabrication of both random immersions of h-BN in graphene29,30 and well-defined clusters

of h-BN in graphene with possible kinetically controllable domain sizes31 has intensified

this interest. In particular, such hybrid systems have a considerable compositional and

structural diversity that translates into greater freedom for tuning the physical properties.

Both experimental and density functional theory (DFT) studies have shown that the physical

properties of these materials can be significantly modified by simply varying the relative

amount of h-BN to graphene.32–34 For instance, Ci et al.31 have experimentally shown that

decreasing the relative amount of h-BN to graphene increases the electrical conductivity,

which has been supported by DFT studies where increasing BN concentration and cluster

size results in band gap opening.35,36 It is recently shown that the details of the bonding

at the h-BN/graphene interface can change the type of intrinsic doping of the system.37

Just to name a few other examples of how this chemical and structural diversity in this low

dimensional hybrid system enable control over magnetic properties; zigzag-edges in ribbons

have been suggested to lead to ferromagnetic behavior38 while more complex interfaces, like

those present in h-BN clusters embedded in graphene, can be antiferromagnetic 39 may also

be mentioned.

Thermal transport in graphene with embedded h-BN quantum dots has been studied

recently using real-space Kubo approach.40 This study has shown that the decreasing dot

size decreases the phonon mean free path (MFP) of both in-plane and out-of-plane modes

considerably. However, limited variation in MFP has been observed by changing the dot

concentration at the smallest dot sizes. In another study, the effect of BN nanodots on

the heat current in graphene nanoribbons has been investigated by using non-equilibrium

Green’s functions and nonequilibrium (direct method) molecular dynamics.41 The authors

claimed that there is a linear inverse relationship between the number of atoms at the inter-

face and the heat current. Although these studies provide valuable insight about the thermal

transport, the thermal conductivity of graphene/h-BN nanostructured systems has not been
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investigated systematically by considering superlattices with different nano-morphologies.

The objective of this study is to investigate the influence of the chemical and structural di-

versity present in hexagonal boron nitride ((h-BN) and graphene hybrid nanostructures on

thermal transport and test possible pathways for tuning the thermal conductivity of these

low dimensional hybrid structures. In this paper, we investigate the variation of thermal

conductivity of hybrid graphene/h-BN nanostructures in particular: 1) stripe superlattice

geometries while varying geometric parameters and composition and 2) BN (graphene) dots

embedded in graphene (BN) as a function of dot-diameter and composition. The theo-

retical findings aim at providing basis for potential thermal management applications in

miniaturized devices.

We have previously calculated the lattice thermal conductivities of nanotubes, graphene

and h-BN based nanostructures42–46 with considerable accuracy and compared the results

with available experimental data.14 In this study, we implement an accurate model for C-

B and C-N interactions by employing DFT calculations in addition to our previous h-BN

potential. Using these Tersoff interatomic potentials, we calculated the lattice thermal

conductivity of several possible graphene/h-BN hybrid structures. The rest of the report is

organized as follows: First, the model utilized to develop the potential and the calculation

methods for thermal conductivity are described. Then, the validity of our potentials for

studying hybrid nanostructures is demonstrated. This is followed by a detailed description

of the considered hybrid nanostructures and a discussion of the effect of structure and

composition on lattice thermal transport properties.

II. METHOD

Equilibrium molecular dynamics simulations can be utilized to obtain instantaneous heat

current (J) or energy moment (R) as a function of time. Subsequently, thermal conductivity,

κ can be evaluated by using either the heat current autocorrelation function (Green-Kubo

method)47–49 or mean square displacement of the energy moment (Einstein relation)49 as

discussed in detail in our earlier studies.43–45,50,51 Here, the thermal conductivity is evaluated

from the Einstein relation (the mean square displacement of energy moment, named hMSD)

as given by52

4



〈

[Rµ(t)− Rµ(0)]
2
〉

2V kBT 2
= κµµ[t + τ(e−t/τ − 1)]. (1)

Here, V is the volume, T is the temperature and kB is the Boltzmann constant. The

energy moment through direction µ is defined by Rµ. The right hand side of Eq. 1 represents

a linear change in Einstein relation for the time (t) much larger than the decay time (τ).

The long-time behavior corresponds to diffusive regime in transport of heat. For short-times,

on the other hand, the average energy propagation is ballistic and results in a non-linear

relation between κ and hMSD. Given the time, a bulk system assumes a diffusive behavior at

elevated temperatures and thus we are more interested in this regime. Computationally, we

eliminate the non-linear portion of the relationship by discarding the first 100 ps of hMSD

then fit the rest to a linear function, i.e., hMSD = 2V kBT
2κµµt, in order to obtain thermal

conductivity.

In this study, we investigate the thermal conductivity of graphene/h-BN superlattices in

the form of stripes and dots/“anti”dots, see Fig. 1. The stripe superlattices are discussed in

two general categories. In the first case, equal periods (lG = lBN), and in the second unequal

periods (lG 6= lBN) of graphene and h-BN stripes are simulated. The stripes of graphene

and h-BN sublattices are connected via two different orientations namely, resulting in a

zigzag or an armchair interface. For all structures, approximately 60×60 nm2 periodic

domains are considered. Previously, we showed that such large systems are required for

the proper convergence of thermal conductivity in equilibrium MD calculations of ribbon

like systems.43 For the equal period simulations, in each orientation, five different period

thicknesses ranging from ∼1.25 to ∼30 nm are constructed. The atomistic details of these

systems are given in Table I in the Appendix. For the unequal period simulations, again

five different configurations are created for the armchair and zigzag interface systems where

the thicknesses of BN sublattices change from ∼3 to ∼57 nm and the sum of lBN and lG is

set to ∼60 nm, see Table II in the Appendix for details.

As a second type of nanostructure, dots of h-BN are embedded in graphene with a close-

packed arrangement as shown in Fig.1. We select three different radii (4.95 Å, 12.38 Å, and

24.76 Å) for these ordered dots. Ordered graphene dots in h-BN, so called anti-dots, are

created with radius of 12.38 Å. Random configuration of antidots are also considered with

radii of 6.19 and 12.38 Å. The details of these structures are provided in Table III in the
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Appendix.

FIG. 1: (Color online) The hybrid structures structures considered in this work viz.: stripe super-

lattices and dots embedded in sheet matrix.

Molecular dynamics simulations are performed in the microcanonical (NVE) ensemble

with a time step of 1.0 fs to conserve energy and a simulation length of 5 ns to obtain

an acceptable ensemble average of hMSD. Each data point for κ is therefore obtained by

averaging the results of a minimum of five distinct simulations with different initial velocity

distributions. The error in κ value is calculated from the standard deviation of these inde-

pendent calculations. The volumes of the two-dimensional structures are defined as lw∆,

where w and l are the width and the length of simulated structures, and ∆ (0.335 nm) is

the mean Van der Waals thickness for h-BN and graphene. Finally, we did not consider

isotopic disorder explicitly in thermal conductivity calculations. Instead, a single mass of

natural abundance is used for all elements.

We have previously developed a Tersoff-type potential for h-BN systems.44 Also, a Ter-

soff parametrization for graphene is given by Lindsay and Broido.53 Both potentials have

been optimized to reproduce the DFT phonon dispersions for their respective material,

necessary for ensuring accurate lattice thermal conductivities. In order to simulate the in-

terfaces, one needs to further develop interaction potentials for all possible element pairs

coupling at the interface. We have used DFT calculations to generate the data needed for

the interfaces. These calculations have been performed with Vienna ab initio simulation

package (VASP)54,55 which is based on density functional theory. Projector augmented wave

(PAW)56,57 pseudo potential formalism was imposed with Perdew-Burke-Ernzerhof (PBE)58
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form of generalized gradient approximations (GGA). Using DFT energetics to condition

empirical potentials has been previously motivated for both pure graphene and h-BN. The

PAW-PBE formalism, in particular, produces accurate structures for our systems of inter-

est, with the calculated lattice parameters for graphene and h-BN being 2.45Å and 2.51Å,

respectively. Long horizontal strips of the structures in Fig. 2 are used in periodic-boundary

conditions in order to avoid spurious interface-interface interactions. Depending on the basic

repeating unit of the given structures, in-plane dimensions of 29.95 Å ×2.47 Å (structures

2 and 3), 30.22 Å ×2.49 Å (structures 1 and 4), or 24.8 Å ×4.30 Å (structure 5) were used

with 2×16×1, 2×16×1, and 2×10×1 Monkhorst-Pack k point grids, respectively. 400 eV is

selected for the plane wave energy cut-off to achieve the energy convergence.

III. RESULTS AND DISCUSSIONS

A. Optimization of C-BN Parameters

As pointed put in the previous section, reliable potentials for C-C and B-N interactions

have appeared in the literature. To simulate the hybrid structures of interest, we must

then only define the interactions between B-C and N-C. Since the structure and vibrational

spectrum of h-BN and graphene are similar, we opt to employ the mixing rules and fitting

procedure put forth by Tersoff for Si-Ge and Si-C,59 which approximates the parameters as

a mixture of the existing BN and C parameters modified by two arbitrary values, χB−C and

χN−C. These parameters adjust the contribution from the attractive term to the potential.

We have obtained χB−C and χN−C by imposing the requirement on the potential to reproduce

DFT energetics of all probable h-BN/graphene interfaces shown in Fig. 2. In these graphs,

∆γ is the change in total energy per interface area (width × Van der Waals thickness) as the

interface separation, d, changes from the equilibrium value, d0, under the condition that the

bond lengths in the graphene and h-BN regions are held fixed. The corresponding interfaces

are also shown in Fig. 2. Note that the interface separation parameter, d, accounts for

both bond length and angle variations. Parameter fitting is accomplished by minimizing the

differences between the DFT and the force field derived ∆γ values for each displacement

for each structure simultaneously by updating the force field parameters using a genetic

algorithm. The fitted parameters for χB−C and χN−C (0.886777 and 1.013636 respectively)
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FIG. 2: (Color online) The change in the total energy, as given by both the Tersoff potential and

DFT, per interface area as a function of interface separation, d. The corresponding structures for

the interfaces are given with ball-and-stick representations (C = yellow, N = small blue, B = big

red atom).
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along with the parameters obtained from the mixing rule have produced MD energies in

good agreement with DFT results. Moreover, the error in the calculated equilibrium B-C

and N-C bond lengths of all structures is no larger than 1.5%. A full list of parameters

along with the description of interaction potential function and the mixing rules are given

in Table IV of the Appendix.

B. Stripe Superlattices with Equal Periods

In all striped superlattice structures, we calculated the lattice thermal conductivities

parallel, κq, and perpendicular, κ⊥, to the superlattice orientation. The chosen interfaces

are shown in Fig. 3 and 4 with the associated thermal conductivity values. The ball-and-

stick structure in Fig. 3a and in Fig. 4a is the same interface given in Fig. 2 as structure 5,

essentially one armchair ribbon connected to the other two in a symmetrical fashion though

forming B-C and N-C bonds. Whereas the structure represented as Fig. 3b and Fig. 4b can

be thought of as one zigzag ribbon connected to two others on one side by B-C bonds and

on the other by N-C bonds. These interfaces correspond to structures 2 and 3 in Fig. 2.

The effective stiffness at the interface, obtained by fitting the ∆γ to a quadratic function,

shows that the C-N bond is stronger than C-B bond. This is expected considering that

both interactions are mainly covalent and as more electrons are involved in the bonding, the

strength of the bond increases.

Fig. 3 shows how the thermal conductivity of the aforementioned superlattice interfaces

behave when the periods, constrained by lG = lBN, are varied. The transport coefficients in

the parallel direction, however, behave differently, depending on the type of interface. The

superlattice with armchair interface has smaller thermal conductivity compared to the one

with zigzag interface in the studied period range. As the period thickness increases, the stripe

structures appear to become less sensitive to interface effects on parallel thermal conductivity

for both interfaces approaching 1050-1200 W/mK. This is close to the midpoint of the

thermal conductivity values of pristine h-BN, 450W/mK, and graphene, 2300W/mK. This

behavior agrees quantitatively with what is expected from treating the striped structure as

the combination of two independent nanoribbons. Previously, it was shown that zigzag

ribbons have better thermal transport properties than armchair ribbons at small widths

because of the latter having higher atomic line density on the edge.43,44 Thicker ribbons
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have more transport channels and difference in scattering behavior at the edges become less

significant. Thus, it is sensible for striped structures combined through zigzag interfaces to

have larger transport coefficients in smaller periods. Another apparent observation is that

the thermal transport coefficients perpendicular to the different interfaces behave similarly,

gradually increasing from 200-250 W/mK at l = 1.5 nm to 350-400 W/mK at l = 30 nm.

The perpendicular thermal transport is strongly controlled by the lower thermal conductivity

component (h-BN) and the interface phonon scattering even at a 30 nm thickness. If one

assumes that the periods of the stripes are longer than the phonon mean free path and the

boundary resistance is negligible, then κ⊥ of the stripe system of equal periods is bounded

by 2(κgraphene × κh−BN)/(κgraphene + κh−BN). For the calculated superlattices this equation

give 752.7 W/mK. The actual physics of the simulated systems, on the other hand, will not

resemble to the idealized picture. First, the system has a finite thermal boundary resistance

that depends on the acoustic mismatch of the stripes and the intrinsic properties of the

boundary. The effect of boundary structure on κ⊥ is less pronounced when the results from

Fig. 3 a) and b) compared, and it is almost independent for zigzag and armchair interfaces.

Second, some of the systems have period lengths of only few nanometers which is very short

compared to the MFP of the relevant phonons. Thermal conductivity perpendicular to

the interface increases slowly as the period size grows; however, the ideal value will not be

reached because of the limiting effect of thermal boundary resistance, which will be present

even in systems with period sizes longer than the characteristic MFP.

C. Stripe Superlattices with Unequal Periods

Using the same interfaces, we remove the constraint of equal size periods and only require

the sum of lBN and lG to be 60 nm. We note here that the variation of the period lengths also

enables us to see the influence of concentration. When h-BN has a small concentration (or

a small period), the parallel component of thermal transport increases toward the limiting

value of graphene as seen in Fig. 4. On the other hand, the perpendicular component

does not exceed 700 W/mK. Again, the zigzag interfaces have higher parallel thermal

transport coefficients (35% larger) than the armchair interfaces in almost all configurations.

When the period of BN is small, the reduction in κ⊥ from the pristine graphene value is

mainly due to interfacial phonon scattering; systems with larger lBN drive κ⊥ toward the
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FIG. 3: (Color online) The thermal transport coefficients parallel and perpendicular to the two

different graphene/h-BN interfaces are shown in (a) and (b). The period lengths of both graphene

and h-BN are constrained to be equal. The atomistic details for the calculated structures are given

in Table I in Appendix.

pure BN values but are still limited by the influence of interfacial scattering. The effect of

atomic bonding at the interface on conduction is most clearly seen when lBN/lTotal=0.05.

Conductivity perpendicular to the boundary in armchair interfaced sample is noticeably

higher than zigzag sample. This is most probably caused by enhanced scattering from

alternating types of interface bonding in zigzag boundaries.

D. Dot and Anti-dot Superlattices

We now turn to the investigation of the thermal conductivity of ordered and random

distributions of h-BN dots embedded in graphene. Fig. 5 shows the influence of dot size

and concentration on the κ. From Fig. 5 we see that larger dot sizes lead to higher thermal

transport coefficients. At the lowest BN concentration (2%) the system with the largest dot

has a 20% larger transport coefficient than the other sizes. This could be understood by the

fact that larger dots have a smaller boundary to bulk ratio at the same concentration. As

more dots are introduced, this interface effect is suppressed and the κ of all systems converge
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FIG. 4: (Color online) The thermal transport coefficients parallel and perpendicular to the two

different graphene/h-BN interfaces are shown in (a) and (b). The sum of period lengths of graphene

and h-BN are constrained to be 60 nm. The atomistic details for the calculated structures are given

in Table II in Appendix.

to 250 W/mK at 40% h-BN. Interestingly, this large concentration limit is similar to the

perpendicular conductivity of stripe superlattices with periods similar to the diameter of the

dots, see Fig. 3. It is likely that at large concentrations the h-BN dots can isotropically limit

the thermal transport in the same manner that the stripes limit the transport perpendicular

to the boundary.

In addition to ordered BN dots, we have modeled ordered and random distributions of

graphene dots in h-BN. The thermal conductivity values of these systems are also presented

in Fig. 5. A decreasing behavior in thermal conductivity is also observed in these systems

as the number of graphene dots increases. It is surprising to see graphene, as the higher κ

component, does not enhance the thermal conductivity of h-BN. This can be attributed

to the relatively small size of the dots and the large h-BN/graphene interface to area ratio,

leading to interfacial phonon scattering events dominating κ. At the lowest C concentration,

the ordered dot system has higher thermal conductivity than the bulk value of h-BN. It

is not clear whether this is an actual physical phenomena or an averaging problem since
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the error bars are large enough to include the bulk value. In creating the random dot

configurations, we maintain the mean dot separation similar to the one in the ordered

configurations with same concentration. For each concentration, the initial conditions of

the simulations are not only varied by atom velocities but the also the distribution of the

dots. The thermal conductivities of the structures, having ordered and random dots, are

not significantly different for the same dot sizes and concentrations (see the inset of Fig. 5).

Again, the smaller dots lead to lower κ when the concentration of C is kept constant.

IV. SUMMARY AND CONCLUDING REMARKS

We have characterized the lattice thermal transport properties of hybrid graphene and

h-BN structures: graphene-white graphene stripes and dot/antidot superlattices. The κ⊥

of striped nanostructures with large periods is limited by the less conductive component,

h-BN. The parallel transport, on the other hand, attains a value close to the average of

the two components. As the periods of the stripes are reduced, interface scattering effects

become more prevalent with zigzag interfaces resulting in higher κ than the armchair inter-

faces. The thermal conductivity of the dot systems can be tailored by both dot diameter

and concentration. Small dot concentration and large dot diameter leading to larger con-

ductivities. Moreover, the transport properties of nanosystems with high dot concentrations

are independent of size, approaching the κ⊥ of the small period striped superlattices.
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FIG. 5: (Color online) The thermal transport properties of graphene with embedded h-BN dots

and h-BN with embedded graphene. Three different radii, 4.95 Å, 12.38 Å, and 24.76 Å are used

for h-BN dots. The number of dots in the systems are varied such that the BN concentration

ranges from 2-98%. Two different radii, 6.19 Å, 12.38 Å are employed for graphene dots. The

superscript “d” indicates the disordered dot arrangement. BN concentration on the horizontal axis

is calculated as the percent ratio of the total number of boron and nitrogen atoms to the total

number of atoms. The inset graph has the same axis units as the outer graph. The atomistic

details for these systems are given in Table III in Appendix.
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VI. APPENDIX

Structural details of stripe and dot superlattices are given in Table I, Table II and Ta-

ble III.

TABLE I: Simulation details for the stripe superlattices where graphene and h-BN have equal

period thicknesses. Thermal conductivities of these structures are given in Fig. 3. The total size of

the systems are given by Lengtharm and Lengthzig where the subscripts define whether the length

is measured along the armchair or the zigzag configuration.

Boundary \ Period (nm) # of B # of N # of C Lengtharm (nm) Lengthzig (nm)

Armchair \ l = 1.246854 33600 33600 67200 60.46925 59.84897

Armchair \ l = 7.481121 33600 33600 67200 60.46925 59.84897

Armchair \ l = 9.974828 33600 33600 67200 60.46925 59.84897

Armchair \ l = 14.9622 33600 33600 67200 60.46925 59.84897

Armchair \ l = 29.92449 33600 33600 67200 60.46925 59.84897

Zigzag \ l = 1.2957698 32982 32982 65964 59.60541 59.59960

Zigzag \ l = 5.1830792 34560 34560 69120 62.19695 59.84897

Zigzag \ l = 9.934235 32982 32982 65964 59.60541 59.59960

Zigzag \ l = 15.1173 33600 33600 67200 60.46925 59.84897

Zigzag \ l = 30.234625 33600 33600 67200 60.46925 59.84897
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TABLE II: Simulation details for the stripe superlattices where graphene and h-BN have different

period thicknesses. Thermal conductivities of these structures are given in Fig. 4. The total size of

the systems are given by Lengtharm and Lengthzig where the subscripts define whether the length

is measured along the armchair or the zigzag configuration.

Boundary \ lBN/ltotal # of B # of N # of C Lengtharm (nm) Lengthzig (nm)

Armchair \ 0.05 3360 3360 127680 60.46925 59.84897

Armchair \ 0.25 16800 16801 100800 60.46925 59.84897

Armchair \ 0.50 33600 33600 67200 60.46925 59.84897

Armchair \ 0.75 50400 50400 33600 60.46925 59.84897

Armchair \ 0.95 63840 63840 6720 60.46925 59.84897

Zigzag \ 0.05 3360 3360 127680 60.46925 59.84897

Zigzag \ 0.25 16800 16800 100800 60.46925 59.84897

Zigzag \ 0.50 33600 33600 67200 60.46925 59.84897

Zigzag \ 0.75 50400 50400 33600 60.46925 59.84897

Zigzag \ 0.95 63840 63840 6720 60.46925 59.84897
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TABLE III: Simulation details for graphene with embedded h-BN dots and h-BN with embedded

graphene anti-dots. Thermal conductivities of these structures are given in Fig. 5.

Radius (nm) # of B # of N # of C LengthX (nm) LengthY (nm)

6000 4800 18000 29.71200 25.73130

3840 3072 25856 31.69280 27.44680

rBN = 0.495 2016 1728 31104 32.68320 28.30446

960 768 31040 31.69280 27.44676

540 432 44028 37.14000 32.16417

12384 12960 39456 44.56800 38.59704

5504 5760 45184 41.59680 36.02388

rBN = 1.238 3096 3240 58464 44.56800 38.59701

1376 1440 53632 41.59680 36.02388

348 360 34140 32.68320 28.30448

13032 12744 39024 44.56800 38.59701

5792 5664 44992 41.59680 36.02388

rBN = 2.476 1448 1416 25936 29.71200 25.73135

1448 1416 53584 41.59680 36.02389

1448 1416 136528 65.36640 56.60896

14000 13500 17500 37.14000 32.16420

22784 22464 11200 41.59680 36.02388

rC = 1.238 29340 29160 6300 44.56800 38.59701

26864 26784 2800 41.59680 36.02388

68320 68256 2816 65.36640 56.60896

rdC = 1.238 26750 26820 5950 39.88552 40.15493

29150 29145 1225 39.87575 40.14509

rdC = 0.619 26795 26765 5960 39.89808 40.16757

29160 29160 1200 39.88407 40.15347
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The potential used in this study is developed by Tersoff.59

Vij = fC(rij) [fR(rij) + bijfA(rij)]

fC(rij) =



















1 : rij < Rij

1
2
+ 1

2
cos

(

π
rij−Rij

Sij−Rij

)

: Rij < rij < Sij

0 : rij > Sij

fR(rij) = Aij exp
(

−λI
ijrij

)

fA(rij) = −B
′

ij exp
(

−λII
ij rij

)

, B
′

ij = Bijχij

bij =
(

1 + βni

i ζni

ij

)− 1

2ni

ζij =
∑

k 6=i,j

fC(rik)g(θijk)

g(θijk) =

(

1 +
c2i
d2i

−
c2i

[d2i + (cos θijk − hi)2]

)

In this description the lower indices i, j and k mark the atoms where i-j bond is modified

by a third atom k. The potential parameters and their corresponding values are given in

Table IV. The parameter χij was used as a fitting parameter in our study. For the mixing of

parameters, the geometric mean is calculated for the multiplier parameters and arithmetic

mean is calculated for the exponential parameters. These rules are given below.

λI
ij =

(

λI
i + λI

j

)

/2, λII
ij =

(

λII
i + λII

j

)

/2, Aij = (AiAj)
(1/2)

Bij = (BiBj)
(1/2) , Rij = (RiRj)

(1/2) , Sij = (SiSj)
(1/2)

It should be mentioned that χij modifies Bij which is obtained as a result of the mixing

procedure. Here, we also note that the developed potential is not parameterized to represent

N-N or B-B interactions as can be seen from Table IV.
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TABLE IV: The parameters of Tersoff potential optimized for C-BN interactions. The atom X

represent the bond modifying element where all parameters are exactly the same whether it is C,

B or N.

Parameters C B X C C X C N X B C X B N X N B X N C X

A (eV) 1386.78 1393.6 1386.78 1386.78 1380.0 1380.0 1386.78

B
′

(eV) 339.06891 430.0 387.575152 339.068910 340.0 340.0 387.575152

λI (Å−1) 3.5279 3.4879 3.5279 3.5279 3.568 3.568 3.5279

λII (Å−1) 2.2054 2.2119 2.2054 2.2054 2.199 2.199 2.2054

n 0.72751 0.72751 0.72751 0.72751 0.72751 0.72751 0.72751

β (10−7) 1.5724 1.5724 1.5724 1.25724 1.25724 1.25724 1.25724

c 38049 38049 38049 25000 25000 25000 25000

d 4.3484 4.3484 4.3484 4.3484 4.3484 4.3484 4.3484

h -0.93 -0.93 -0.93 -0.89 -0.89 -0.89 -0.89

R (Å) 1.85 1.80 1.85 1.85 1.90 1.90 1.85

S (Å) 2.05 2.10 2.05 2.05 2.00 2.00 2.05
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