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Abstract:  In this study, we report the unequivocal demonstration of mid-

infrared mode-locked pulses from quantum cascade lasers. The train of 

short pulses was generated by actively modulating the current and hence the 

gain of an edge-emitting quantum cascade laser (QCL). Pulses with duration 

of about 3 ps at full-width-at-half-maxima and energy of 0.5 pJ were 

characterized using a second-order interferometric autocorrelation technique 

based on a nonlinear quantum well infrared photodetector. The mode-

locking dynamics in the QCLs was modeled based on the Maxwell-Bloch 

equations in an open two-level system. Our model reproduces the overall 

shape of the measured autocorrelation traces and predicts that the short 

pulses are accompanied by substantial wings as a result of strong spatial 

hole burning. The range of parameters where short mode-locked pulses can 

be formed is found.  

2009 Optical Society of America  
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1. Introduction  

Stable trains of ultrashort light pulses with large instantaneous intensities from mode-locked 

lasers are key elements for many important applications such as nonlinear frequency 

conversion [1-3], time-resolved measurements [4, 5], coherent control [6, 7], and frequency 

combs [8]. To date, the most common approach to generate short pulses in the mid-infrared 

(3.5-20 µm) molecular “fingerprint” region relies on the down-conversion of short-

wavelength mode-locked lasers through nonlinear processes, such as optical parametric 
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generation [9-11] and four-wave mixing [12]. These systems are usually bulky, expensive and 

typically require a complicated optical arrangement.  

       Quantum cascade lasers (QCLs) [13], since their invention in 1994, have become the 

most prominent coherent light sources in the mid-infrared. One of the most striking 

differences between these unipolar devices and diode lasers is that their emission wavelength, 

gain spectrum [14], carrier transport characteristics, and optical dispersion can be engineered. 

This remarkable design freedom makes QCLs a unique candidate to serve as a semiconductor 

source of ultra-short pulses in the mid-infrared. 

    There is, however, an obstacle of fundamental origin that has so far prevented achieving 

ultrashort pulse generation in QCLs [15, 16]. In intersubband transitions, the carrier relaxation 

is extremely fast because of optical phonon scattering. As a result, the gain recovery time in 

QCLs, determined both by upper state lifetime and by the electron transport through the 

cascade heterostructure, is typically on the order of a few picoseconds [17] which is an order 

of magnitude smaller than the cavity roundtrip time of 40-60 ps for a typical 2-3mm-long 

laser cavity. 

       According to conventional mode-locking theory, this situation prevents the occurrence of 

stable passive mode-locking and impedes the formation of high-intensity pulses through 

active mode-locking [18]. This can be understood as follows: If the gain recovery time is 

longer than the cavity roundtrip time, then a single laser pulse oscillating in the cavity 

depletes the gain and prevents the formation of other pulses; if the gain recovery is much 

shorter than the cavity roundtrip time, multiple pulses can propagate in the laser cavity, 

separated, approximately, by the gain recovery time. Finally, if the gain recovery is very fast, 

faster than the pulse duration, the gain reacts nearly instantaneously on the intensity of the 

pulse. In this case, the peak of the pulse saturates the gain, and the wings of the pulse, which 

have too low intensity to saturate the gain, see more gain than the peak of the pulse. This 

process leads to lengthening of the pulse, i.e. the suppression of intensity fluctuation, which 

suppresses mode-locking and leads to continuous-wave (CW) lasing. The latter situation is the 

case in most QCLs.  

        In this work, we achieve mode-locking by designing a QCL structure with longer 

phonon-assisted intersubband relaxation time than conventional QCL designs and by actively 

modulating the pumping current of a short section at one end of the laser cavity to provide net 

gain to the pulse. Our QCL structure, shown in Figure 1, is based on a “diagonal transition” in 

real space [19], i.e. the laser transition takes place between levels confined in two adjacent 

wells separated by a thick barrier.  The reduced wavefunction overlap between the upper and 

lower laser states results in a phonon-limited upper state lifetime of approximately 50 ps 

below threshold.  

       In general, the gain recovery in QCL’s based on “diagonal transition” has a complex 

dynamics [20]. The gain recovery is defined by time-dependent transport through both active 

region and injector. The most important difference from the conventional lasers is that the 

gain recovery in QCLs has an important component, the transport delay between active 

regions in the cascade structure. The lasing transition (wave arrow in Fig.1) is between the 

upper state and the lower state in the active region, which is emptied via tunneling into the 

injector region. Well below threshold, the upper state lifetime is essentially the phonon-

assisted intersubband relaxation time. As the laser approaches and exceeds threshold, the gain 

recovery is determined almost entirely by lower state empting and superlattice transport 

components. So the gain recovery time above the threshold is reduced dramatically to few 

picoseconds [20].  This speed-up of the gain recovery time makes it hard to achieve mode-

locking and prevents stable pulse formation. 

       As we will see later, in this work we are able to identify a parameter range close to the 

laser threshold where we can form mode-locked pulses by modulating the gain in the short 

section of a device. High above threshold, pulses are broadened by the increased gain 
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saturation in the un-modulated long section, and finally become unstable due to the increased 

spatial hole-burning and reduced gain recovery time.  

 
Fig. 1.  Calculated conduction band structure of the QCL. The plot represents the potential 

profile along the growth direction, and the moduli squared of the wavefunctions. The states 

involved in the laser transition are shown as solid red curves. The barriers (conduction 

bandoffset = 0.52 eV) are made of Al0.48In0.52As and the quantum wells of Ga0.47In0.53 As 

(the barrier is indicated by vertical arrow). The layer thicknesses are (starting from the left, 

from the injection barrier, in nm): 3.8/4.7/3.1/3.5/2.3/2.6/2.2/2.0/2.0/2.0/2.5/1.8/2.7/1.9/3.8, 

where the barriers are indicated in boldface and the underlined layers are doped to n= 6x1017   

cm-3. 

 
    There were several reports of mode-locking in QCLs [21-23], whose evidence were based 

on broadband optical spectra with a large number of longitudinal modes and a narrow 

microwave beat note in the power spectrum at the laser roundtrip frequency, which indicated 

that the electric field waveform circulating in the laser cavity and thus the phase relationship 

between the longitudinal modes was stable over a large number of round-trips.  However, due 

to the lack of a suitable apparatus for second-order autocorrelation measurements, no direct 

evidence was given to demonstrate that the circulating waveform was indeed a periodic 

sequence of isolated pulses, which would result from all modes having equal and stable 

phases. Subsequent pulse characterization using autocorrelation techniques showed that under 

the previous conditions, the output of free running QCLs was not composed of one isolated 

pulse per roundtrip [15, 16]. The physics of multimode behaviour observed in those lasers is 

described by spatial hole-burning and the Risken-Nummedal-Graham-Haken (RNGH) 

instability [15, 16], rather than by mode locking.  

2. QCL device processing and characteristics 

2.1 Device processing and assembling 

Our devices were processed into ridge waveguides with multiple electrically independent 

sections; see Fig. 2 for the diagram of the QCL. The wafer was processed into 2.6 mm long, 
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8-20 µm wide ridge waveguides by reactive ion etching. A 5 µm-thick layer of Microchem 

SU-8 2005 photoresist was used as an insulation layer between the wafer and the top contact 

to reduce the parasitic capacitance.  The SU-8 2005 photoresist on top of the ridges was 

removed by standard photolithography and a metal layer (Ti/Au; 20 nm/300 nm) was then 

deposited to provide electrical contact. The top Ti/Au contact and the underlying heavily 

doped InP contact layers were etched out in specific areas along the ridges to create multiple 

electrically independent sections with minimal electrical crosstalk. A non-alloyed Ge/Au 

contact was deposited on the back. The samples were indium-soldered on copper holders and 

mounted in a liquid-nitrogen flow cryostat. The short 120 µm to 160 µm-long section was 

aluminum-wire-bonded to a gold microstrip connected to an end launch connector and SMA 

cables for radio frequency (RF) signal injection via a bias tee to modulate the pumping 

current, while the rest of the ridge was bonded to a regular gold bonding pad.  

 
 

Fig. 2.  Diagram of the multi-section QCL, showing the dry-etched laser ridges in white 

(with active region in red), the 5 µm-thick SU-8 insulating layer in grey, and the gold top 

contact in yellow. The top metal contact layer and the underlying heavily doped region 

grown above the top cladding layer are disconnected between the sections. The whole 2.6 

mm-long laser is biased under the same DC voltage, while a RF modulation is added to the 

short section (120-160µm) at the end of the ridge.  

2.2 QCL characteristics       

The current-voltage (I-V) and light-current (L-I) characteristics of a 16µm-wide ridge device 

when the whole ridge is pumped in continuous wave (CW) with no RF modulation at 77K are 

shown in Figure 3.  The CW threshold current is 310 mA, which gives a threshold current 

density of 0.745 kA/cm
2
. The maximum CW operating temperature of this structure is about 

200 K. The differential resistance of the RF section above threshold is R ≈ 30 Ω. Given the 

estimated capacitance across the insulation layer C ≈ 0.05 pF, the RC-limited frequency 

response extends to ~100 GHz, far above the roundtrip frequency of the laser cavity. The 

actual microwave power delivered to the device measured by a network analyzer was about 

30% of the input power, which indicates a significant impedance mismatch between the 

source and the device. The largest contribution to the impedance mismatch is the inductance 

caused by the bond wire, estimated to be about 1 nH (see Appendix). 
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Fig. 3. The current-voltage (I-V) and output power-current (L-I) characteristics of the 16 

µm wide QCL with no RF modulation. The laser threshold is at 310 mA. A, B, C denote 

the currents (I=340 mA, 450 mA & 500mA) at which currents the pulse characterization 

was performed. 

 

    Figure 4a shows the optical spectra of the device, measured with a Fourier transform 

infrared spectrometer (FTIR) equipped with a deuterated triglycine sulphate (DTGS) detector, 

as a function of the RF modulation frequency, for a DC pumping current of 340 mA which is 

about 1.1 times the laser threshold. The RF input power was kept constant at 35 dBm. The 

laser emission is single mode when no gain modulation is applied. At a gain modulation 

frequency corresponding to the laser roundtrip frequency of 17.86 GHz we observe significant 

spectral broadening. The spectrum exhibits many longitudinal modes with an approximately 

Gaussian envelope. With a slightly detuned RF frequency from resonance, the laser spectrum 

becomes narrower. When the RF frequency is tuned further away from resonance (<17.36 

GHz or >18.11 GHz), lasing stops. The RF power is able to suppress the lasing up to 355 mA 

of pumping current. As we shall see, isolated mode-locked pulses are formed for pumping 

close to threshold; gain can overcome loss only if the RF frequency is tuned to resonance, and 

the laser generates a train of isolated short pulses which reach the modulated section at each 

round-trip at its gain maximum. When the laser is pumped at higher DC current (1.45 times 

the laser threshold), the optical spectra show similar resonance behaviour, but the RF 

modulation is no longer sufficiently strong to suppress the lasing when the detuning between 

the RF modulation frequency and the cavity round-trip frequency is large (Fig. 4b).  
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Fig. 4. (a) Spectra of the QCL at 340 mA and (b) at 450 mA with 35 dBm of input RF 

modulation at various modulation frequencies. Note that the scales of the optical power of the 

spectra are different at 340 mA. All measurements were performed at a heat sink temperature 

of T=77K.  

3. Pulse characterization 

3.1 Second-order interferometric autocorrelation 

The laser emission is characterized using a second-order interferometric autocorrelation (IAC) 

technique [16, 24] using a two-photon quantum well infrared photodetector (QWIP) [25, 26]. 

The IAC measurement was based on a Michelson interferometer (Fig. 5). The laser beam first 

passed through a chopper, and was then sent to a Ge beam splitter with antireflection coating 

on one side. The transmitted and reflected beams were then sent into two broadband 

retroreflectors coated with gold, with one of the retroreflectors mounted on a stepping motor. 

Once recombined by the beam splitter, the two beams were sent collinearly to a two-photon 

QWIP with operating wavelength centred at 6.2 µm. The resulting photocurrent was then sent 

to a current pre-amplifier, followed by a lock-in amplifier whose reference frequency was 

determined by the chopper. The signal from the lock-in amplifier was recorded by a computer 

which controls the stepper motor simultaneously. For the case of isolated periodic pulses, the 

ratio between the interference maximum and the background should be 8 to 1 [16].  

 

Fig. 5. The experimental setup for the autocorrelation measurement using two-photon 

QWIP. Inset:  conduction band diagram of the two-photon QWIP showing three 

equidistant energy levels. 
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3.1.1 Varying DC pumping (fixed RF power)  
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Fig.  6. Interferometric autocorrelation traces (IACs) of the 16 µm-wide QCL output with 35 

dBm of applied modulation at (a) 340 mA (1.1 times the laser threshold), (b) 450 mA (1.45 

times the laser threshold) and (c) 500 mA (1.61 times the laser threshold), respectively. Inset 

(b): detail of the interference fringes from 0.1 ps to 0.5 ps. All measurements were performed 

at a heat sink temperature of T=77K and RF modulation frequency at 17.86 GHz. 

Figure 6a shows the IAC trace obtained when the 16 µm-wide QCL is DC-pumped at 340 mA 

and the RF modulation of 35 dBm is applied at the cavity resonance frequency of 17.86 GHz. 

The observed peak-to-background ratio is 8:1, indicating mode-locking and the circulation of 

an isolated pulse per roundtrip in the cavity. The full-width-at-half-maximum (FWHM) pulse 

duration, estimated from the width of the interference fringes, is ~3 ps.  The FWHM pulse 

duration is approximately a factor of two larger than the width of a Fourier-transform limited 

pulse duration calculated from the optical spectrum in Fig. 4a. The pulse has extended wings 

up to ~10 ps, indicating a complicated phase profile. The estimated energy per pulse is close 

to 0.5 pJ. The replication of the IAC trace over two roundtrips was verified.  

 

 

 

 

 

 

 

 
Fig.  7. Interferometric autocorrelation traces (IACs) of the 12 µm-wide QCL output with 35 

dBm of applied modulation at (a) 265  mA (1.08 times the laser threshold), (b) 323  mA (1.32  

times the laser threshold) and (c) 450 mA (1.84 times the laser threshold), respectively. All 

measurements were performed at a heat sink temperature of T=77K and RF modulation 

frequency at 17.415 GHz. 

 

      When the DC pumping is increased to 450 mA, the peak-to-background ratio of the IAC is 

no longer 8:1, but rather 8:2.5, as shown in Fig. 6b. This indicates that the laser output does no 

longer consist of isolated pulses separated by the roundtrip time, but rather of overlapping 

pulses with an incoherent background. Further increasing the laser pumping current to 500 

mA with fixed RF power decreases the peak-to-background ratio of the IAC even more to 8:4, 

see Fig. 6c.  
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      Similar trend is observed for the 12 µm-wide QCL (Fig. 7). The peak-to-background ratio 

of the IAC gradually decreases with higher DC pumping current. 

3.1.2 Varying RF power (fixed DC pumping) 
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Fig. 8.  Interferometric autocorrelation traces (IACs) of the 12 µm-wide QCL output at 265 mA 

(1.08 times the laser threshold) with (a) 35 dBm, (b) 28 dBm & (c) 12 dBm of RF input 

powers, respectively. All measurements were performed at a heat sink temperature of T=77 K 

and RF modulation frequency at 17.415 GHz. 

 

Figures 8a-c show the IAC for a 12 µm-wide laser with various RF power levels when the 

laser was pumped at 265 mA (about 1.08 times the laser threshold). The pulse quality 

degrades dramatically as the RF input power decreases from 35 dBm to 12 dBm. Thus, 

operating near threshold and applying sufficiently large RF modulation are two necessary 

conditions to achieve stable mode-locking in our devices. For fixed input RF power (35 dBm) 

the IAC shows a similar behavior to that of the 16 µm wide device as the DC pumping is 

increased.  

3.2 Microwave spectrum 

The microwave spectrum of the laser output was measured with a fast QWIP. The laser output 

was focused directly onto the fast QWIP, and the resulting photocurrent was displayed on a 

spectrum analyzer. The resolution bandwidth of the spectrum analyzer was 330 Hz for the 

measurement. 

      The microwave spectrum of the 16-µm-wide laser output at DC pumping of 340 mA with 

35 dBm of applied RF modulation is shown in Fig. 9. A narrow peak with a FWHM of ~3 

kHz was observed at the RF modulation frequency, which indicates phase coherence between 

the modes for more than 10
6
 roundtrips. This beat note is also at least an order of magnitude 

narrower than any previously observed beat note from multimode QCLs [23]. Increasing the 

DC pumping current does not result in any observable increase of the signal width, although 

IAC measurements show that single-pulse mode locking gets destroyed in this case. 

Therefore, the previously observed sharp beat note cannot by itself constitute the proof of a 

mode-locking.  
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Fig. 9.  Microwave spectrum of photocurrent generated by the 16 µm-wide 

laser pumped at 340 mA with 35 dBm of applied RF modulation. 

4. Modeling  

Modulating the injection current of the QCLs leads to modulation of the gain. In that case, the 

standard active mode-locking formalism of loss modulation which does not take the gain 

dynamics into account cannot be applied [18]. To understand the pulse regimes in our system, 

we use a simplified model based on one-dimensional Maxwell-Bloch equations in a Fabry-

Perot cavity, where the active medium is described by an open two-level system. This model 

has been shown to successfully describe the dynamics in our previous experiments using 

QCLs without active modulation [15, 16].  

4.1 Maxwell-Bloch equations 

The QCL gain structure is modelled as an open two-level system described by optical Bloch 

equations and the pulse propagation through the gain medium in the Fabry-Perot cavity is 

described by a one-dimensional wave equation.  In the slowly varying envelope 

approximation, the equations read [1]  

 

 

 

 

 

 

where cnk /ω≡ . The + and – subscripts label the two directions of propagation. ε and η are 

the slowly varying envelopes of the electric field and the polarization, respectively. The actual 

electric field and polarization are obtained by multiplying ε± and η± by )( zkti
e
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optical frequency) and taking the real part. The population inversion ∆ is decomposed into 
ikzikz

etzetztztz
2*

2

2

20 ),(),(),(),( −∆+∆+∆=∆ , where ∆0 is the average inversion and ∆2 

the strength of the inversion grating allowing spatial hole burning to be taken into account.  

       Both quantities are also assumed to vary slowly in time and space. D is the diffusion 
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is given as DkTTg

21

1

1 4+= −− , where k is the wavenumber at the centre wavelength of the 

QCL 1610013.1 −×= mk . N is the number of two-level systems per unit volume, d is the 

dipole matrix element of the laser transition, n is the refractive index, l represents the linear 

losses, λ is the pumping rate, and T1 and T2 are the longitudinal and transverse relaxation 

times, respectively.  We assume the parameters T1=50 ps, T2=50 fs (corresponding to a gain 

FWHM bandwidth of 27 meV), l =10 cm
-1

, and n=3.2. 

       The cavity is 2.6 mm long and has a short electrically isolated section at one end of the 

cavity. Physically the short section is 120-160 µm long, however, due to imperfect electrical 

isolation between the long and the short sections, the RF power spreads from the short into the 

long section. Taking the current spreading into account, effectively we are modulating an area 

almost twice as big as the actual short section (see Appendix). Thus in the modelling we use 

240 µm for the length of the short section. The short section and the rest of the waveguide are 

equally DC pumped at
thp λλ ×= , where 

thλ  denotes the pumping at threshold, and p the 

pumping ratio. At the short section, we assume an additional sinusoidal modulation to the 

pumping: )]2sin([ tfmp Rth πλλ +×= , where m is the modulation amplitude, and fR is the 

cavity roundtrip frequency. The modulation amplitude is estimated to be about 5 for 35 dBm 

RF power (see Appendix). 

4.2 Simulation results 
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Fig. 10. Simulated interferometric autocorrelation traces (IACs) at (a) p=1.1, (b) p=1.45, and 

(c) p=1.61, with fixed modulation amplitude m=5. Insets show the corresponding intensity 

profile of one round-trip.  

Figures 10a-c shows the simulated IACs for fixed modulation amplitude m=5 with different 

pumping ratios p corresponding to the experimental pumping ratios in Fig. 6, and Fig. 11a-c 

show the simulated IACs for fixed pumping ratio p=1.1 with different modulation amplitudes 

m corresponding to the estimated experimental modulation amplitudes in Fig. 8. For p=1.1 

and m=5, the peak-to-background ratio of the IAC is 8:1, and the ratio gradually decreases 

with higher DC pumping p and smaller modulation amplitude m, which follows the 

experimental trend. Note however that there remain quantitative discrepancies with 

experiments, which show a faster decrease of the IAC ratio with increasing p and decreasing 

m.  One reason for the discrepancy could be a faster gain recovery time than T1 = 50 ps 

assumed in the modelling. Gain recovery is expected to have not only a component 

determined by the phonon-assisted intersubband relaxation time, but also a component 

determined by electron transport between the injector and the active region, with a 

characteristic time scale of a few ps [20]. The simplified two-level model effectively neglects 
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the superlattice transport. Our modelling does show rapid deterioration of stable mode locking 

with decreasing T1. To predict the exact level of the IAC background, for a given  pumping 

and modulation conditions, a simple two-level mode used here is not sufficient and a more 

detailed description of the laser gain as a function of pumping conditions and laser operation 

is needed [20]. 
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Fig. 11. Simulated IACs with modulation amplitude (a) m=5, (b) m=3.5 and (c) m=0.5, 

respectively, with fixed DC pumping p=1.1. The insets show the corresponding intensity 

profile of one round-trip.  

      In both experiment and simulation, we observe side lobes in the IACs beside the main 

interference peak. The side lobes in the simulations come from the multiple spikes in the 

intensity profile, as seen in the insets of Fig. 10a-c and Fig. 11a-c. These spikes indicated that 

the phase of the pulse has complicated shape. The most likely cause for these spikes is spatial 

hole-burning (SHB) in the laser gain created by standing waves in the cavity. The gain grating 

introduced by SHB interferes with active mode locking as it couples the longitudinal modes 

and reduces the phase locking imposed by the gain modulator. As a result, the modes develop 

nonlinear phases that lead to a waveform with multiple spikes. Note that in the experimental 

IACs, the 12 µm-wide device (Fig. 7) has more pronounced lobes than the 16 µm-wide one 

(Fig. 6). This is consistent with our previous observation that SHB is less significant in wider 

devices because multiple transverse modes tend to wash out the gain grating formed by SHB 

[16].  

      In general, it was found in numerical simulations that strong SHB reduces the FWHM 

pulse duration in the expense of pulse stability. SHB is strong enough to enable multimode 

lasing in CW regime for relatively modest pumping ratio p>1.1. Strong SHB also results in 

incomplete mode locking for high pumping ratio even when the sufficiently large modulation 

is applied (Fig. 8. c).   

5. Conclusion 

We have demonstrated the first unequivocal mode-locking in QCLs via active gain 

modulation. As revealed by the IAC, isolated periodic pulses with FWHM as short as 3 ps can 

be generated in the vicinity of the laser threshold. The presence of non-negligible wings is 

evident in the measured IAC traces and is predicted by our model as a result of strong spatial 

hole burning. Experimental data and numerical simulations show that the parameter window 

for stable mode-locking is determined by both the DC pumping current and the RF 

modulation power. Numerical simulations predict that the peak-to-background ratio of the 

IAC gradually decreases with higher DC pumping p and smaller modulation amplitude m, 

which follows the experimental trend. Further pulse shortening can be achieved by 
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incorporating saturable absorber or increasing gain lifetime. We anticipate our results to be a 

significant step toward a compact, electrically-pumped source generating ultrashort light 

pulses in the mid-infrared and terahertz spectral ranges.  

6. Appendix 

6.1 Estimation of current spreading 

For active mode locking in QCLs, we send a RF signal into a short section (160µm long) at 

the end of the laser ridge (2.6mm long). The schematic is shown in Fig. 2.  

    Although the top metal contact and the underlying highly doped layer are etched between 

the sections, there is still electrical cross talk. To estimate how much current spreads from the 

short section into the long section, we measured the DC current-voltage (I-V) characteristics 

of the short section both when the long section is floating and biased at the laser threshold 

voltage of 8V, and compare them with the I-V curve of the whole laser with current scaled 

down by the ratio of the whole laser length to the short section length, i.e., 

2.6mm/160µm=16.25. The result from a 12µm-wide ridge laser is shown below: 

0.000 0.005 0.010 0.015 0.020 0.025 0.030

2

4

6

8

10

V
o
lt
a
g

e
 (

V
)

Current (A)

 small section IV, long section floating

 small section IV, long section @ 8V

 whole laser IV scaled down 1/16.25

 
Fig. 12.  DC I-V characteristics of the small section when the long section is float 

(black curve), biased at 8V (red curve), and the whole laser I-V scaled down 1/16.25.  

 

    If there is no current spreading between the short and long sections, since they are pumped 

in parallel, the short section I-V should overlap with the blue curve below threshold. At the 

threshold voltage 8V, the red and blue curves coincide. This agrees with what we would 

expect, since when both long and short sections are pumped at the same voltage, there is 

effectively no current spreading. However, at 8V the current value of the black curve is about 

twice the current value of the red and blue curves. This indicates that current spreads over an 

area about twice the short section area. So the RF signal is effectively modulating an area 

twice as big as the short section area, and the modulation amplitude is about half as big as if 

there is no current spreading.      

6.2 Simulation of RF current  

The equivalent circuit representing the major parasitic elements in the devices tested in this 

paper is shown in Fig. 13. The circuit diagram is similar to that used for other high-frequency 

devices, see, e.g., Refs. [28, 29]: 
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Fig. 13. Equivalent circuit of a packaged device. The QCL is mounted at 

the end of a 50-Ω transmission line. The QCL is modeled by a parallel 

resistance-capacitance equivalent circuit, and the parasitic inductance is 

caused by the short bonding wire connecting the line to the laser.        

 

    The inductance element in Fig. 13 is caused by the bonding wire and the capacitance 

element is caused by the capacitance between the top and bottom laser contacts.  The load 

impedance of this circuit can be calculated as 

CjR
LjZ L ω

ω
+

+=
/1

1 ,                                                (A.1)                

and the reflective amplitude is  

50

50

+

−
=Γ

L

L

Z

Z                                                              (A.2)                  

The capacitance is calculated from the geometry of the top and bottom contacts, and is 

estimated to be C≈0.05pF. The measured differential resistance of the small section above 

threshold is R=30Ω. The small signal amplitude reflectance Γ of the laser circuit at 18 GHz 

was measured with a network analyzer to be approximately equal to 0.8. The inductance 

caused by the bonding wire can then be deduced from Eqs. (A.1) and (A.2) using the values of 

R, C, and Γ . We obtain the inductance caused by the bonding wire to be approximately 1 

nH, which agrees with that estimated elsewhere for a similar device [1].  We note that the 

reflective amplitude in our devices is rather insensitive to the capacitance, and is mainly 

determined by the inductance.  

The current amplitude of the laser modulation is simulated numerically by the Runge-Kutta 

method using a short section I-V curve in Fig. 2 (black curve) and previously estimated C & L 

values. The simulated current amplitude vs. time across the laser is shown in Fig. 14 for 35 

dBm of RF modulation power. 
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Fig. 14. Simulated current amplitude vs. time across the resistor. 

 

    In the negative direction, the current is clearly clamped due to the large differential 

resistance near zero voltage. The current amplitude swing is about 300mA in the positive 

direction and 100mA in the negative direction, resulting on average the amplitude of 200mA  

    Since the length of the bonding wire varies from device to device, the inductance may be 

different for each device. To see how much this change would affect the current modulation 

amplitude, we also simulated the cases L=2 nH and 0.5 nH. For L=2 nH, the average current 

amplitude is 140 mA, and for L=0.5 nH, the average current amplitude becomes 250 mA. 

Note that a factor of two changes is an overestimation for the actual variation in L, thus the 

error in the estimated current amplitude across the laser should be no more than 25%. The 

capacitance, on the other hand, still has very little effect on the simulated current amplitude.  

    To convert the current modulation amplitude estimated above to the modulation amplitude 

m used in numerical simulations, we have to compare the amplitude of the current density 

modulation in a small section with the threshold current density of the device under DC 

pumping.  For the 16µm wide laser tested in the paper, the threshold current is 310mA. The 

modulation amplitude is then  

5
6.2

310

2160

200
≈

×
=

mm

mA

m

mA
m

µ
 

where 200 mA is the simulated current amplitude, 160 µm is the length of the short section, 

310 mA is the threshold current, and 2.6 mm is the length of the whole cavity. The factor of 

two in the first denominator comes from the current spreading factor estimated previously. 

Thus, assuming L=1nH, C=0.05 pF, we estimate the modulation amplitude about 5 with 

35dBm of applied RF power.  
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