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Abstract. In the paper we consider the homogenization of nonlinear random parabolic op-
erators. Depending on the ratio between time and spatial scales different homogenization regimes
are studied and the homogenization procedure is carried out. The parameter dependent auxiliary
problem is investigated and used in the construction of the homogenized operator.

1. Introduction. Let Q0 ∈ Rn be a bounded open set with Lipshitz boundary
and Q = (0, T )×Q0. On Q we consider nonlinear evolution operators

Lεu = Dtu− div(a(
x

εβ
,
t

εα
, u,Dxu)) + a0(

x

εβ
,
t

εα
, u,Dxu).

It is assumed that the temporal and spatial heterogeneities have random homoge-
neous nature which will be described more precisely later. We are interested in the
asymptotic behavior of Lε as ε → 0. G-convergence theory for parabolic operators
guarantees that the limiting operator L∗ belongs to the same class of parabolic oper-
ators. G-convergence of nonlinear parabolic operators has been studied in [7, 9]. To
find the form of L∗ some assumptions on the nature of spatial and temporal hetero-
geneities of a and a0 need to be imposed. In the periodic setting the homogenization
of nonlinear parabolic equations is carried out in [7]. Using two-scale convergence the
homogenization of nonlinear parabolic equations for some values of α and β is inves-
tigated in [6]. In [1], time homogenization of random nonlinear abstract parabolic
equations has been studied. The homogenization of linear parabolic operators with
almost periodic and random coefficients has been studied in [11, 10].

In this paper we consider the homogenization of nonlinear parabolic equations
when the fluxes, a and a0 are random homogeneous fields with respect to temporal
and spatial variables. We show that the homogenized operator has the form

L∗u = Dtu− div(a∗(x, t, u,Dxu)) + a∗0(x, t, u,Dxu),

where the calculation of a∗ and a∗0 depends on the ratio between α and β. Our
homogenization results are of statistical nature, i.e., homogenization takes place for
almost all realizations. As in the case of linear operators depending on the ratio
between α and β different regimes are considered: self-similar case (α = 2β); non
self-similar case (α < 2β); non self-similar case (α > 2β); spatial case (α = 0);
temporal case (β = 0). These regimes yield different asymptotic behavior of Lε which
is determined by the solution of auxiliary problem. The auxiliary problem contains a
parameter, which is characterized by the ratio between α and β. Depending on the
ratio between α and β the solution of the auxiliary problem has different nature that
determines the homogenized operator. As in [10] the solution of the auxiliary problem
does not have independent meaning and we employ near solutions extensively.
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The main idea in carrying out the homogenization procedure is as follows. First
we construct a solution for the parabolic equation by rescaling the solution of cor-
responding auxiliary problem. In this way the parameter involved in the auxiliary
problem is set in terms of some power of ε. Next we study the convergence of the
solutions or near solutions of the auxiliary problem as ε → 0. Further the results on
the convergence of arbitrary solutions for G-converging sequence of operators allow us
to calculate the homogenized operator based on a particular solution. This technique
has been employed for periodic case in [7].

Since we consider random operators, our main result, Theorem 4.1 (below), is
of statistical nature. It says that homogenization takes place almost surely. As in
the case of nonlinear elliptic operators, one can deduce from this statistical result the
individual homogenization theorem for almost periodic nonlinear parabolic operators.
One needs only to consider almost periodic functions as realizations of appropriate
random fields (in this case Ω is the Bohr compactification of Rn+1) and follow the
proof of Theorem 3.3.1 [7]. We would like to mention that in the linear case there is
more general individual homogenization theorem [10] that holds when Ω is a compact
topological space and the dynamical system T is strictly ergodic. A nonlinear coun-
terpart of this result is still an open problem even in the case of monotone elliptic
operators.

Our motivation for considering homogenization of nonlinear parabolic equations
comes from the applications arisen in flow in porous media for both saturated and
unsaturated media, though one encounter nonlinear parabolic equations in many dif-
ferent applications. Due to uncertainties and general nature of the heterogeneities in
subsurface flows one no longer can assume periodicity. We employ the results of the
present work for the development and analysis of efficient numerical homogenization
schemes in our subsequent paper [3]. In the porous media applications one is often in-
terested in the gradients of the solutions. In [3] we construct numerical correctors for
the solution of nonlinear parabolic equations. The auxiliary problem proposed in this
work play a central role in the calculation of numerical correctors. These correctors
further allow us to obtain the convergence of our numerical schemes for the gradients
of the solutions. We would like to note that the homogenization results obtained in
this work are important in addressing the robustness of the numerical homogenization
schemes for more realistic porous media applications.

Finally we would like to note that the homogenization results and the analysis
presented in this paper avoids many details involved in [10] since we study neither
the individual homogenization nor the correctors. Moreover, the homogenization
procedure presented in the paper differs from the one in [10]. In our paper we carry
out the homogenization using the solution of an auxiliary problem and the theorem
on G-convergence of arbitrary solutions.

The paper is organized as follows. In the next section we present some basic facts
that are used later in the analysis. Section 3 is devoted to the auxiliary problem. In
the following section we present the homogenization results.

2. Preliminaries. Let (Ω,Σ, µ) be a probability space and let Lp(Ω) denote the
space of all p-integrable functions. Consider (n+ 1)-parametric dynamical system on
Ω, T (z) : Ω → Ω, z = (x, t) ∈ Rn+1 (t ∈ R, x ∈ Rn) that satisfies the following
conditions: 1) T (0) = I, and T (x + y) = T (x)T (y); 2) T (z) : Ω → Ω preserves the
measure µ on Ω; 3) For any measurable function f(ω) on Ω, the function f(T (z)ω)
defined on Rn+1 × Ω is also measurable.

U(z)f(ω) = f(T (z)ω) defines a (n+1)-parameter group of isometries in the space
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of Lp(Ω). U(z) is strongly continuous. Further we assume that the dynamical system
T is ergodic, i.e., any measurable T -invariant function on Ω is constant. Denote by
〈·〉 the mean value over Ω,

〈f〉 =
∫

Ω

f(ω)dµ(ω), 〈u, v〉 =
∫

(u, v)dµ(ω).

Throughout the paper C denotes a generic constant, ‖ · ‖p,Q denotes Lp(Q) as
well as Lp(Q)n norms and q is defined by 1/p+ 1/q = 1. The notation a.e. is often
omitted.

For further analysis we will need Birkoff Ergodic Theorem. Denote

M{f} = lim
s→∞

1
sn+1|K|

∫
Ks

f(z)dz,

whereK ⊂ Rn+1, |K| 6= 0, andKs = {z ∈ Rn+1 : s−1z ∈ K}. Let f(x
ε ) be bounded in

Lp
loc(R

n+1), 1 ≤ p <∞. Then f has mean value M{f} if and only if f(x/ε) →M{f}
weakly in Lp

loc(R
n+1) as ε→ 0 [4].

Theorem 2.1. (Birkhoff Ergodic Theorem)
Let f ∈ Lp(Ω), 1 ≤ p <∞. Then

〈f〉 = M{f(T (z)ω)} a.e. on Ω.

Consider the equation on Q = [0, T ]×Q0

Dtuε = div a(T (x/εβ, t/εα)ω, uε, Dxuε) − a0(T (x/εβ, t/εα)ω, uε, Dxuε) + f in Q0

uε = 0 on ∂Q0

uε(t = 0) = 0.
(2.1)

We assume that a(ω, η, ξ) and a0(ω, η, ξ), η ∈ R and ξ ∈ Rn are Caratheodory
functions satisfying the following inequalities

• for any (η, ξ)

|a(ω, η, ξ)|p′
+ |a0(ω, η, ξ)|p′ ≤ c0(|η|p + |ξ|p) + c(ω), a.e. on Ω, (2.2)

where p > 1, c0 > 0 and c(ω) belongs to L1(Ω).
• for any (η, ξ) and (η, ξ

′
)

(a(ω, η, ξ) − a(ω, η, ξ
′
), ξ − ξ

′
) ≥ C|ξ − ξ

′ |p, a.e. on Ω. (2.3)

• for any (η, ξ)

(a(ω, η, ξ), ξ) + a0(ω, η, ξ)η ≥ C|ξ|p − C1 a.e. on Ω. (2.4)

• for any χ = (η, ξ) and χ′ = (η
′
, ξ

′
)

|a(ω, η, ξ) − a(ω, η
′
, ξ

′
)|p′

+ |a0(ω, η, ξ) − a0(ω, η
′
, ξ

′
)|p′ ≤

k[(h(ω) + |χ|p + |χ′|p)ν(|ξ − ξ′|) + (h(ω) + |χ|p + |χ′|p)1−s/p|ξ − ξ′|s], a.e. on Ω,
(2.5)

where k > 0, 0 < s < min(p, p′), ν(r) is continuity modulus (i.e., a nonde-
creasing continuous function on [0,+∞) such that ν(0) = 0, ν(r) > 0 if r > 0,
and ν(r) = 1 if r > 1), and h ∈ L1(Ω).
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•

p >
2n
n+ 2

Next we briefly review G-convergence results for non-monotone operators [7] that
will be used in the analysis (G-convergence for monotone operators has been studied
in [2]). Consider Q = [0, T ]×Q0 and introduce

V0 = Lp(0, T,W 1,p
0 (Q0)), V = Lp(0, T,W 1,p(Q0)), W = {u ∈ Lp(0, T,W 1,p

0 (Q0)), Dtu ∈ Lq(0, T,W−1,q(Q0))},
W = {u ∈ V ,Dtu ∈ Lq(0, T,W−1,q(Q0))}, W0 = {u ∈W,u(0) = 0}.

(2.6)

Consider a sequence of general parabolic operatorsLk, Lku = Dtu−div(ak(x, t, u,Dxu))+
a0,k(x, t, u,Dxu) and Lu = Dtu − div(a(x, t, u,Dxu)) + a0(x, t, u,Dxu). We assume
that Lk and L satisfy (2.2)-(2.5). Next we briefly mention the definition for G-
convergence for sequence of operators Lk to L. For more details we refer to [7]. Based
on Lk and L we define the sequence of operators L1

k(u, v) = Dtu−div(ak(x, t, v,Dxu)),
L1(u, v) = Dtu− div(a(x, t, v,Dxu)) and the fluxes

Γk(u, v) = ak(t, x, v,Dxu), Γk
0(u, v) = a0,k(t, x, v,Dxu)

Γ(u, v) = a(t, x, v,Dxu), Γ0(u, v) = a0(t, x, v,Dxu).

Given v ∈ V0, L1
k(u, v) and L1(u, v) are strictly monotone parabolic operators. There-

fore, for any v ∈ V0 and f ∈ W
′
there exist unique solutions uk ∈ W0 and u ∈ W0 of

L1
k(uk, v) = f and L1(u, v) = f [8]. Without loss of generality we assume k → ∞.

Definition (G-convergence) A sequence Lk G-converges to L if for any v ∈ V0

and f ∈ Lq(0, T,W−1,q(Q0)) we have

uk → u

as k → ∞ weakly in W0, and

Γk(uk, v) → Γ(u, v)

Γk
0(uk, v) → Γ0(u, v)

as k → ∞ weakly in Lq(Q)n and Lq(Q) respectively.
Remark. We would like to note that in [7] (where to our best knowledge G-

convergence for this class of operators is first introduced) the author callsG-convergent
sequence defined as above “strongly G-convergent sequence”.

Next we mention the theorem on the convergence of arbitrary solutions for G-
convergent sequence of operators [7] that will be used in our analysis.

Theorem 2.2. Assume Lk G-converges to L, uk ∈ W , fk, f ∈ Lq(0, T,W−1,q(Q0)),
Lkuk = fk, uk → u weakly in W , and fk → f strongly in W

′
0. Then Lu = f , and

ak(x, t, uk, Dxuk) → a(x, t, u,Dxu),
a0,k(x, t, uk, Dxuk) → a0(x, t, u,Dxu)

as k → ∞ weakly in Lq(Q)n and Lq(Q) respectively.
Following to [10] we define spaces similar to Lp(W 1,p) on Ω in the following way.

Denote by ∂full = (∂1, · · · , ∂n+1) the collection of generators of the group U(z).
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There is a dense subspace S ⊂ Lp(Ω) that is contained in the domains of all operators
∂α

full = ∂α1
1 · · ·∂αn+1

n+1 , α ∈ Zn+1
+ . Next we introduce smoothing operators Jδ. Set

K(z) ∈ C∞
0 (Rn+1) be a non-negative even function such that∫

Rn+1
K(z)dz = 1,

and Kδ(z) = δ−(n+1)K(z/δ). Define the operator Jδ as follows

Jδf(ω) =
∫

Rn+1
Kδ(z)f(T (z)ω)dz.

Jδ is a bounded operator in the space of Lp(Ω) whose norm is not greater than 1. For
a generic realization of f we have

Jδf(T (z)ω) =
∫

Rn+1
Kδ(z − z1)f(T (z1)ω)dz1.

The latter shows that a generic realization of Jδf belongs to C∞(Rn+1). Thus,
for f ∈ Lp(Ω) the function Jδf belongs to the domain D(∂α, Lp(Ω)) for any ∂α =
∂α1
1 . . . ∂

αn+1
n+1 . More discussion of Jδ can be found in [7]. The following lemma is

important for the analysis (see [7], page 139).
Lemma 2.3. For any f ∈ Lp(Ω)

lim
δ→0

‖Jδf − f‖Lp(Ω) = 0.

Clearly, JδLp ⊂ S, δ > 0.
Further denote by V = Vp the completion of S with respect to the semi-norm

‖f‖V =

(
n∑

i=1

‖∂if‖p
Lp(Ω)

)1/p

.

Note that the completion with respect to a seminorm “cuts off” the kernel of the
semi-norm. The operator ∂ = (∂1, . . . , ∂n) : V → Lp(Ω)n is an isometric embedding.
Moreover, the space V is reflexive with dual denoted by V ′

. By duality we define the
operator div : Lq(Ω)n → V ′

, where

〈divu,w〉 = −〈u, ∂w〉, ∀u ∈ Lq(Ω)n, w ∈ Vq. (2.7)

We note that the elements of V in general do not have independent meaning and
contains fields that are not spatially homogeneous. Note that [10, 7] (page 138 in
[7]) the operators ∂i may be viewed as derivatives along trajectories of the dynamical
system T (z)

(∂if)(T (z)ω) =
∂

∂zi
f(T (z)ω) (2.8)

for a.e. ω ∈ Ω and f ∈ D(∂i, L
p(Ω)). For our further analysis we introduce

T1(t) = T (0, . . . , 0, t), T2(x) = T (x1, . . . , xn, 0). (2.9)

Denote by

Mt{f} = lim
T→∞

1
2T

∫ T

−T

f(T1(τ)ω)dτ, Mx{f} = lim
|K|→∞

1
|K|

∫
K

f(T2(y)ω)dy.
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Next we introduce the differentiation with respect to time ∂n+1. Define an un-
bounded operator σ from V into V ′ as follows. We say that v ∈ V belongs to D(σ) if
there exists f ∈ V ′ such that

〈v, ∂n+1φ〉 = −〈f, φ〉, ∀φ ∈ S

and set σv = f . It is easily seen that σφ = ∂n+1φ, φ ∈ S. Moreover, σ commutes
with operators Jδ. Therefore, σ is a closed linear operator from V to V ′. Let σ+ be
the adjoint operator (acting from V to V ′). Then

σ+ = −σ,
i.e., σ is a skew symmetric operator. For further analysis we denote W = D(σ).
Clearly, W = D(σ) is dense in V . Because 〈σu, u〉 ≥ 0, ∀u ∈ D(σ), and 〈σ+u, u〉 ≥ 0,
∀u ∈ D(σ+), σ : W → V ′

is a maximal monotone operator [5].

3. Auxiliary problem. In this section we will study an auxiliary problem and
near solutions for it. Consider the auxiliary problem

µσwµ − div a(ω, η, ξ + ∂wµ) = 0. (3.1)

Define the operator A from V to V ′
as

〈Au, v〉 = 〈a(ω, η, ξ + ∂u), ∂v〉. (3.2)

It can be easily verified that A is strongly monotone, i.e., 〈Au−Av, u−v〉 ≥ C‖u−v‖p
V ,

continuous, and coercive operator from V to V ′
. Since σ is maximal monotone whose

domain W is dense in V it follows from [5] that the solution of (3.1) in W exists.
Uniqueness follows from the fact that (σu, u) = 0 and A is strongly monotone. Thus
we have the following lemma.

Lemma 3.1. Equation (3.1) has a unique solution, wµ ∈ W, and

‖wµ‖W ≤ C. (3.3)

For the analysis we need to consider near solutions for which w (the solution of
(3.1)) is approximated with the functions that have smooth realizations.

For each element v ∈ W we define its near smooth element as follows. Since S
is dense in W we can approximate v ∈ W with the elements vk ∈ S, vk → v in W .
Consider

Jδvk =
∫

Rn+1
Kδ(z − z1)vk(T (z1)ω)dz1.

Clearly,

‖Jδvk‖V ≤ C‖vk‖V ,
where C is independent of k. Since σ commutes with Jδ we have

‖Jδσvk‖V′ ≤ C‖σvk‖V′ .

Consequently, ‖vδ
k‖W ≤ C‖vk‖W , where vδ

k = Jδvk. Hence, we can continue Jδ to W ,
and denote by vδ = Jδv. In order vδ to be a near solution of (3.3), one needs

‖w − vδ‖V → 0, ‖σvδ +Avδ‖V′ → 0
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as δ → 0. The first limit is true due to the approximation property. The second limit
is true due to the fact that Jδ commutes with σ, and A is continuous from V to V ′

.
Near solution for the auxiliary equation (3.1) has the form

µσwµ
δ +Awµ

δ = divρδ, (3.4)

where div is defined by (2.7) and

lim
δ→0

〈|ρδ|p〉 = 0. (3.5)

The right hand side of (3.4) can be written as divρδ because it is an element of V ′

(see [10]). The auxiliary equation on a typical realization has a form∫
Rn+1

(µDτw
µ
δ (T (z)ω)ψ(z)+(a(T (z)ω, η, ξ+Dyw

µ
δ ), Dyψ(z)))dz =

∫
Rn+1

(ρδ(T (z)ω), Dyψ(z))dz, ∀ψ ∈ C∞
0 (Rn+1),

(3.6)
where z = (y, τ) ∈ Rn+1 and ρδ → 0 in Lp(Ω) as δ → 0. By Ergodic Theorem∫

K

|ρδ(T (zε)ω)|pdz → |K|〈|ρδ(ω)|p〉 (3.7)

as ε → 0 for any δ > 0, where zε = (x/εα, t/εβ) ∈ Rn+1. Furthermore the right hand
side of (3.7) converges to zero as δ → 0 for each ε > 0.

The following lemma is needed for our analysis.
Lemma 3.2. Assume ρδ ∈ Lp(Ω) and 〈|ρ|p〉 < s(δ), where s(δ) → 0 as δ → 0.

Then for any sequence δ → 0 there exists a sequence ε0(δ), such that ε0(δ) → 0 as
δ → 0, and for any Q ⊂ Rn+1∫

Q

|ρδ(T (x/εβ, t/εα)ω)|pdxdt < s(δ), ∀ε < ε0(δ),

where s(δ) → 0 as δ → 0.
Proof.
Introduce Qε = {(x, t)|(εβx, εαt) ∈ Q}. Then∫

Q

|ρδ(T (x/εβ, t/εα)ω)|pdxdt = εnβ+α

∫
Qε

|ρδ(T (y, τ)ω)|pdydτ → meas(Q)〈|ρδ|p〉 < s(δ),

as ε → 0. Here we have used Birkhoff Ergodic Theorem. From here it follows that
there exists a sequence ε0(δ) such that for all ε < ε0(δ),

∫
Q
|ρδ(T (x/εβ, t/εα)ω)|pdxdt <

s(δ), where s(δ) → 0 as δ → 0.
Q.E.D.
Throughout the paper s(δ) denotes a generic sequence that converges to zero as

δ → 0.

4. Homogenization. The homogenization of parabolic equation depends on the
relation between time and spatial scales [10, 7]. In particular we consider

Lεu = Dtu− div(a(x/εβ, t/εα, ω, u,Dxu)) + a0(x/εβ , t/εα, ω, u,Dxu) (4.1)

where

a(y, τ, ω, η, ξ) = a(T (z)ω, η, ξ), a0(y, τ, ω, η, ξ) = a0(T (z)ω, η, ξ), z = (y, τ) ∈ Rn+1

Depending on α and β we distinguish the following cases:
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• Self-similar case (α = 2β)
• Non self-similar case (α < 2β)
• Non self-similar case (α > 2β)
• Spatial case (α = 0)
• Temporal case (β = 0)

The homogenization for each case is presented next. The main idea of this proce-
dure is as follows. First we construct a solution for the parabolic equation by rescaling
the solution of corresponding auxiliary problem (3.1). After the rescaling µ in (3.1)
may depend on ε. Further, we study the convergence of the solution of auxiliary prob-
lem as ε → 0. Then employing the results on the convergence of arbitrary solutions
for G-convergent sequence of operators we calculate the homogenized fluxes a∗ and
a∗0 using a constructed solution. This technique has been employed for periodic case
in [7].

Our main result is the following.
Theorem 4.1.
Lε G-converges to L∗, where L∗ is given by

L∗u = Dtu− div(a∗(ω, x, t, u,Dxu)) + a∗0(ω, x, t, u,Dxu). (4.2)

a∗ and a∗0 are defined as follows.
• For self-similar case (α = 2β),

a∗(η, ξ) = 〈a(ω, η, ξ + ∂wη,ξ)〉,
a0

∗(η, ξ) = 〈a0(ω, η, ξ + ∂wη,ξ)〉,
where wη,ξ = wµ=1 ∈ W is the unique solution of

σwµ=1 − div a(ω, η, ξ + ∂wµ=1) = 0. (4.3)

• For non self-similar case (α < 2β),

a∗(η, ξ) = 〈a(ω, η, ξ + ∂wη,ξ)〉,
a0

∗(η, ξ) = 〈a0(ω, η, ξ + ∂wη,ξ)〉,
where wη,ξ = w0 ∈ V is the unique solution of

−div a(ω, η, ξ + ∂w0) = 0. (4.4)

• For non self-similar case (α > 2β),

a∗(η, ξ) = 〈a(ω, η, ξ + ∂wη,ξ)〉,
a0

∗(η, ξ) = 〈a0(ω, η, ξ + ∂wη,ξ)〉,
where wη,ξ = w∞ ∈ Vs is the unique solution of

−div a(ω, η, ξ + ∂w∞) = 0. (4.5)

a and Vs is defined in section 4.2.2.
• For spatial case (α = 0),

a(ω, η, ξ) = Mx{a(T2(x)ω, η, ξ + ∂wη,ξ(T2(x)ω))},
a0(ω, η, ξ) = Mx{a0(T2(x)ω, η, ξ + ∂wη,ξ(T2(x)ω))},

where wη,ξ = wx ∈ V
−div a(ω, η, ξ + ∂wx) = 0. (4.6)
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• For temporal case (β = 0), the homogenized fluxes are defined by

a∗(ω, η, ξ) = P1a(ω, η, ξ),
a∗0(ω, η, ξ) = P1a0(ω, η, ξ),

(4.7)

where P1 is defined in (4.29).
The theorem on the convergence of arbitrary solutions (Theorem 2.2) for G-

convergent sequence of operators allows us not to restrict ourselves to a particular
boundary or initial conditions. In particular, from Theorem 2.2 and Theorem 4.1 we
have

Theorem 4.2. Let uε ∈ W be a solution of Lεuε = f , f ∈ Lq(0, T,W−1,q(Q0)),
such that ‖uε‖W is bounded. Then uε converges to u as ε → 0 weakly in W (up to a
subsequence) where u is a solution of L∗u = f , and L∗ is defined in (4.2).

Remark. We note that the ergodicity assumption is not essential for the proof of
the theorem. One can carry out the proof for non-ergodic case essentially in the same
manner as that for the ergodic case. The homogenized operators for non-ergodic case
will be invariant functions with respect to T (z).

Remark. Note that in the case of spatial and temporal homogenization the
homogenized operator depends on ω. If the operator is random in time variable one
can apply the results of [1]. However, the results of [1] do not imply convergence of
the fluxes.

Remark. Under additional regularity assumption on a and a0 with respect to the
time variable, G-convergence results follow from the G-convergence of elliptic parts
of parabolic operators. However, this additional assumption is too restrictive and not
well suited to the case of random operators.

Remark. In the analysis, for simplicity we assume (2.4), though the homoge-
nization results can be obtained under a weaker assumption,

(a(ω, η, ξ) − a(ω, η, ξ
′
), ξ − ξ

′
) ≥ C(1 + |ξ|p + |ξ′ |p)p−β |ξ − ξ′|β , a.e. on Ω.

4.1. Self-similar case (α = 2, β = 1). Take µ = 1 in (3.1), consider near
solutions wµ=1

δ , and set

wµ=1
ε,δ (x, t, ω) = εwµ=1

δ (T (x/ε, t/ε2)ω). (4.8)

wµ
ε,δ satisfies in Rn+1 for a.e. ω

Dtw
µ=1
ε,δ − div(a(T (x/ε, t/ε2)ω, η, ξ +Dxw

µ=1
ε,δ )) = divxρδ, (4.9)

where 〈|ρδ|p〉 → s(δ), where s(δ) → 0 as δ → 0.
Lemma 4.3. For every δ > 0 wµ=1

ε,δ → 0 weakly in W as ε→ 0.
Proof. Using the fact thatwµ=1

δ ∈ W and (4.8) we obtain that ‖wµ=1
ε,δ ‖Lp(0,T,W 1,p(Q0)) ≤

C and wµ=1
ε,δ → 0 in Lp(0, T, Lp(Q0)) as ε → 0 for every δ > 0 (cf.[10]). Next we will

show that

‖Dtw
µ=1
ε,δ ‖Lq(0,T,W−1,q(Q0)) ≤ C.

From equation (4.9) we obtain that

‖Dtw
µ=1
ε,δ ‖Lq(0,T,W−1,q(Q0)) ≤ C‖wµ=1

ε,δ ‖Lp(0,T,W 1,p(Q0)) + C‖ρδ‖p,Q ≤ C.
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Consequently, wµ=1
ε,δ is bounded in W . Since this family is weakly compact in W and

converges to zero in Lp(0, T, Lp(Q0)), it converges to zero weakly in W .
Q.E.D.
Define

L∗u = Dtu− div(a∗(u,Dxu)) + a∗0(u,Dxu), (4.10)

where

a∗(η, ξ) = 〈a(ω, η, ξ + ∂wµ=1)〉
a∗0(η, ξ) = 〈a0(ω, η, ξ + ∂wµ=1)〉.

Theorem 4.4. If α = 2β then Lε G-converges to L∗ defined by (4.10) for a.e.
ω ∈ Ω.

Proof.
The equation for wµ=1

ε,δ (4.9) can be written as

Dtw
µ=1
ε,δ −div(a(T (x/ε, t/ε2)ω, η, ξ+Dxw

µ=1
ε,δ )+a0(T (x/ε, t/ε2)ω, η, ξ+Dxw

µ=1
ε,δ ) = hε,δ+divxρδ,

where hε,δ = a0(T (x/ε, t/ε2)ω, η, ξ +Dxw
µ=1
ε,δ ).

Next we choose two sequences δ → 0 and ε(δ) → 0 such that wµ=1
ε(δ),δ → 0 weakly

in W , and ρδ → 0 in Lq(Q)n as k → ∞. This is possible for any sequence δ → 0
because of Lemma 4.3 and Lemma 3.2. Consider a generic sequence of δk → 0 as
k → ∞ and corresponding εk = ε(δk). Then wµ=1

k = wµ=1
εk,δk

→ 0 weakly in W , and
ρk = ρδk

→ 0 in Lq(Q)n as k → ∞. Consider for each ω ∈ Ω

Lku = Dtu− div(a(T (x/εk, t/ε2k)ω, η, ξ +Dxu) + a0(T (x/εk, t/ε2k)ω, η, ξ +Dxu).

It is known [7] that Lk G-converges to L̃ (up to a subsequence),

L̃u = Dtu− div(ã(ω, t, x, η, ξ +Dxu)) + ã0(ω, t, x, η, ξ +Dxu).

Moreover, for a.e. ω

a(T (x/εk, t/ε2k)ω, η, ξ +Dxw
µ=1
k ) → ã(ω, t, x, η, ξ)

a0(T (x/εk, t/ε2k)ω, η, ξ +Dxw
µ=1
k ) → ã0(ω, t, x, η, ξ),

(4.11)

as k → ∞ weakly in Lq(Q)n and Lq(Q). Our goal is to find the form of ã and ã0.
Note that hk = hεk,δk

is bounded in Lq(Q) and hk → h = ã0(ω, t, x, η, ξ) as k → ∞
weakly in Lq(Q). Thus from the convergence of arbitrary solutions for G-convergent
sequence of operators we also have u = 0 is a solution of L̃u = h. On the other hand
using Ergodic Theorem

a(T (x/εk, t/ε2k)ω, η, ξ +Dxw
µ=1
k ) → 〈a(ω, η, ξ + ∂wµ=1)〉

a0(T (x/εk, t/ε2k)ω, η, ξ +Dxw
µ=1
k ) → 〈a0(ω, η, ξ + ∂wµ=1)〉,

(4.12)

as k → ∞ weakly in Lq(Q)n and Lq(Q) because a(T (x/εk, t/ε2k)ω, η, ξ + Dxw
µ=1
εk,δk

)
and a0(T (x/εk, t/ε2k)ω, η, ξ+Dxw

µ=1
ε,δ ) are homogeneous fields. Comparing (4.11) and

(4.12) we obtain

ã(ω, t, x, η, ξ) = 〈a(ω, η, ξ + ∂wµ=1)〉
ã0(ω, t, x, η, ξ) = 〈a0(ω, η, ξ + ∂wµ=1)〉.

Finally it can be easily verified that u = 0 is the solution of L̃u = h.
Q.E.D.
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4.2. Non self-similar cases.

4.2.1. Case α < 2β, β = 1. To construct the homogenized operator for this
case we will set µ = ε2−α in (3.1) and need to study the limit of wµ as µ→ 0.

Lemma 4.5.
wµ → w0 as µ→ 0 in V, where w0 ∈ V is the unique solution of

−div a(ω, η, ξ + ∂w0) = 0. (4.13)

Proof.
The uniqueness of the solution of (4.13) can be shown in the same as that of (3.1)

using the fact that A (see (3.2)) is strongly monotone operator from V to V ′
.

To show the convergence we follow [7]. Define w0,k ∈ W such that w0,k → w0 in
V . Such sequence exists since W is dense in V . Then

‖wµ − w0,k‖p
V ≤ C〈Awµ −Aw0,k, wµ − w0,k〉 = C〈µσ(wµ − w0,k) +Awµ −Aw0,k, wµ − w0,k〉 ≤

C〈−µσw0,k −Aw0,k, wµ − w0,k〉 ≤ C(‖µσw0,k‖V′ + ‖Aw0,k‖V′ )‖wµ − w0,k‖V
Here we have used the fact that µσwµ −Awµ = 0. Next using the fact that Aw0 = 0
we have

‖wµ − w0,k‖V ≤ C(‖µσw0,k‖V′ + ‖Aw0 −Aw0,k‖V′ ).

Thus,

‖wµ−w0‖V ≤ ‖wµ−w0,k‖V+‖w0,k−w0‖V ≤ C(µ‖σw0,k‖V′+‖Aw0−Aw0,k‖V′ )+‖w0,k−w0‖V .
(4.14)

Next for any δ > 0 we can choose k sufficiently large such that ‖w0,k −w0‖V < δ and
‖Aw0−Aw0,k‖V′ < δ. The latter is possible since A is continuous from V to V ′

. Next
choosing µ sufficiently small we have µ‖σw0,k‖V′ < δ, and hence from (4.14)

‖wµ − w0‖V < Cδ.

Q.E.D.
Define

L∗u = Dtu− div(a∗(u,Dxu)) + a∗0(u,Dxu), (4.15)

where

a∗(η, ξ) = 〈a(ω, η, ξ + ∂w0)〉
a∗0(η, ξ) = 〈a0(ω, η, ξ + ∂w0)〉,

w0 is the solution of (4.13).
Theorem 4.6. If α < 2β, β = 1 then Lε G-converges to L∗ defined by (4.15).
Proof.
Set µ = ε2−α in (3.1), consider near solutions of (3.1), wµ

δ , and set

wε,δ = εwµ
δ (T (x/ε, t/εα)ω).

Furthermore, set

w0
ε,δ = εw0

δ(T (x/ε, t/εα)ω),
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where w0
ε,δ are near solutions of (4.13). Then wε,δ satisfies in Rn+1 for a.e. ω

Dtw
µ
ε,δ − div(a(T (x/ε, t/ε2)ω, η, ξ +Dxw

µ
ε,δ)) = divxρδ, (4.16)

where 〈|ρδ|p〉 < s(δ), where s(δ) → 0 as δ → 0. As in the proof of Theorem 4.4 we
choose two sequences δ → 0 and ε(δ) → 0 such that wε(δ),δ → 0 weakly in W , and
ρδ → 0 in Lq(Q)n as k → ∞. This is possible for any sequence δ → 0 because of
Lemma 4.3 and Lemma 3.2. Consider a generic sequence of δk → 0 as k → ∞ and
corresponding εk = ε(δk). Then wk = wεk,δk

→ 0 weakly in W , and ρk = ρδk
→ 0 in

Lq(Q) as k → ∞.
As in the proof of Theorem 4.4 using the convergence of arbitrary solutions for

G-convergent sequence of operators we have that for a.e. ω

a(T (x/εk, t/εαk )ω, η, ξ +Dxwk) → ã(ω, t, x, η, ξ)
a0(T (x/εk, t/εαk )ω, η, ξ +Dxwk) → ã0(ω, t, x, η, ξ)

(4.17)

weakly in Lq(Q)n and Lq(Q) as k → ∞. Set w0
k = w0

εk,δk
. Using Ergodic Theorem

we have

a(T (x/εk, t/εαk )ω, η, ξ +Dxw
0
k) → 〈a(ω, η, ξ + ∂w0)〉

a0(T (x/εk, t/εαk )ω, η, ξ +Dxw
0
k) → 〈a0(ω, η, ξ + ∂w0)〉 (4.18)

weakly in Lq(Q)n and Lq(Q) as k → ∞ because a(T (x/εk, t/εαk )ω, η, ξ +Dxw
0
k) and

a0(T (x/εk, t/εαk )ω, η, ξ +Dxw
0
k) are homogeneous fields.

Since ‖wµ − w0‖V → 0 as µ → 0 we can obtain ‖Dxwk − Dxw
0
k‖p,Q → 0 as

k → ∞. The latter can be shown using triangular inequality, ‖Dxwk −Dxw
0
k‖p,Q ≤

‖Dxwk−Dxw
µ‖p,Q+‖Dxw

µ−Dxw
0‖p,Q+‖Dxw

0−Dxw
0
k‖p,Q and Lemma 3.2. Indeed,

‖Dxwk −Dxw
µ‖p,Q and ‖Dxw

0 −Dxw
0
k‖p,Q can be estimated using Lemma 3.2 since

they represent the error associated with near solutions, and 〈|∂wµ
δ − ∂wµ|p〉 < s(δ),

and 〈|∂w0
δ −∂w0|p〉 < s(δ), where s(δ) → 0 as δ → 0. Thus there exists a subsequence

of δk → 0 (as k → ∞) such that ‖Dxwk −Dxw
µ‖p,Q and ‖Dxw

0−Dxw
0
k‖p,Q converge

to zero as k → ∞. The term ‖Dxw
µ −Dxw

0‖p,Q converges to zero as µ→ 0 or ε→ 0
because of Lemma 4.5. Thus,

a(T (x/εk, t/εαk )ω, η, ξ +Dxwk) − a(T (x/εk, t/εαk )ω, η, ξ +Dxw
0
k) → 0

a0(T (x/εk, t/εαk )ω, η, ξ +Dxwk) − a0(T (x/εk, t/εαk )ω, η, ξ +Dxw
0
k) → 0

(4.19)

in Lq(Q)n and Lq(Q) as k → ∞. Combining (4.17), (4.18) and (4.19) we see that L∗

defines the homogenized operator.
Q.E.D.

4.2.2. Case α > 2β, β = 1. For the analysis of this case we will need to consider
asymptotic behavior of wµ as µ → ∞. This requires the average of a(ω, η, ξ) over
the time variable which will be defined next. a(T (z)ω, η, ξ), z = (x, t) ∈ Rn+1 can
be considered as a continuous function from Lp

loc(R
n+1) to Lp(Ω) for each η ∈ R and

ξ ∈ Rn. Consider an average of a over t variable at fixed x = 0,

a(ω, η, ξ) = lim
T→∞

1
2T

∫ T

−T

a(T1(t)ω, η, ξ)dt = Mt{a(ω, η, ξ)}

The function a(ω, η, ξ) is defined on Lp(Ω) for each η ∈ R and ξ ∈ Rn.
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Next we introduce the space Vs. Consider the subset of S consisting of functions

f(ω) = Mt{f(T1(t)ω}.
Denote by Vs the completion of this set with respect to the norm

‖f‖ = (
n∑

i=1

‖∂if‖p
Lp(Ω))

1/p.

Define the operator (Au, v) = (a(ω, η, ξ + ∂u), ∂v). A : Vs → V ′
s is bounded,

continuous and strongly monotone. Indeed, for any u, v ∈ Vs

〈Au−Av, u− v〉 = 〈Au −Av, u− v〉 ≥ C〈|∂(u − v)|p〉.
This implies the existence and uniqueness of w∞ ∈ Vs which is the solution of

−div(a(ω, η, ξ + ∂w∞)) = 0. (4.20)

For further analysis we denote near solutions of (4.20) by w∞
δ . Then

Lemma 4.7. limµ→∞ ‖wµ − w∞‖V = 0
Proof.
Set

wµ
δ = w∞ +

1
µ
vδ,

where vδ will be defined later. Note that δ does not indicate near solutions here. We
will show that wµ

δ approximates wµ for large µ. We have

µσwµ
δ +Awµ

δ = σvδ + f1 + f2,δ,

where A is defined as previously by Au = div a(ω, η, ξ + ∂u) and

f1 = div a(ω, η, ξ + ∂w∞),

f δ
2 = div(a(ω, η, ξ + ∂wµ

δ ) − a(ω, η, ξ + ∂w∞)).

Note that for any φ ∈ Vs

(f1, φ) =
∫

Ω

a(ω, η, ξ + ∂w∞)∂fullφdµ(ω) =∫
Ω

a(ω, η, ξ + ∂w∞)∂φdµ(ω) = 0.

Consider σ as a closed operator from V to V ′
. The kernel of σ is Vs. Using the fact

that the range of σ is dense in the orthogonal complement of ker(σ+), and the fact
that σ+ = −σ (σ+ is the adjoint of σ) we have that there exist vδ ∈ W , gδ ∈ V ′

such
that

f1 = −σvδ + gδ

and ‖gδ‖V′ ≤ s(δ), where s(δ) → 0 as δ → 0. This is the way we define vδ. Then

C‖wµ
δ − wµ‖p

V ≤ (µσ(wµ
δ − wµ) +Awµ

δ −Awµ, wµ
δ − wµ) =

(µσwµ
δ +Awµ

δ , w
µ
δ − wµ) = (σvδ + f1 + f2,δ, w

µ
δ − wµ) =

(gδ + f2,δ, w
µ
δ − wµ) ≤ (‖gδ‖V′ + ‖f2,δ‖V′ )‖wµ

δ − wµ‖V .
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This implies

‖wµ
δ − wµ‖V ≤ C(‖gδ‖V′ + ‖f2,δ‖V′ )1/(p−1).

On the other hand using Holder continuity of a we have

‖f2,δ‖V′ ≤ C‖wµ
δ − w∞‖V = Cµ−1‖vδ‖V .

Consequently,

‖wµ
δ − wµ‖V ≤ C(s(δ) + µ−1‖vδ‖V)1/(p−1).

Furthermore,

‖wµ − w∞‖V ≤ ‖wµ
δ − w∞‖V + ‖wµ − wµ

δ ‖V ≤ µ−1‖vδ‖V + ‖wµ − wµ
δ ‖V .

Thus, for any ζ > 0 we can choose δ sufficiently small such that for all µ > µ0 we
have ‖wµ − w∞‖V < ζ.

Q.E.D.
Define

L∗u = Dtu− div(a∗(u,Dxu)) + a∗0(u,Dxu), (4.21)

where

a∗(η, ξ) = 〈a(ω, η, ξ + ∂w∞)〉,
a∗0(η, ξ) = 〈a0(ω, η, ξ + ∂w∞)〉, (4.22)

w∞ is the solution of (4.20).
Theorem 4.8. If α > 2β, β = 1 then Lε G-converges to L∗ defined by (4.21) for

a.e. ω ∈ Ω.
Proof.
Set µ = ε2−α → ∞ as ε→ 0 and

wε,δ = εwµ
δ (T (x/ε, t/εα)ω), w∞

ε,δ = εw∞
δ (T (x/ε, t/εα)ω),

where wµ
δ is near solutions of (3.1) and w∞

δ is near solutions of (4.20). Then wε,δ

satisfies in Rn+1 for a.e. ω

Dtwε,δ − div(a(T (x/ε, t/εα)ω, η, ξ +Dxwε,δ) = divxρδ,

where 〈|ρδ|p〉 → 0 as δ → 0. As in the proof of Theorem 4.4 we choose two sequences
δ → 0 and ε(δ) → 0 such that wε(δ),δ → 0 weakly in W , and ρδ → 0 in Lq(Q)n as
k → ∞. This is possible for any sequence δ → 0 because of Lemma 4.3 and Lemma
3.2. Consider a generic sequence of δk → 0 as k → ∞ and corresponding εk = ε(δk).
Then wk = wεk,δk

→ 0 weakly in W , and ρk = ρδk
→ 0 in Lq(Q)n as k → ∞. Using

the convergence of arbitrary solutions for G-convergent sequence of operators as in
the proof of Theorem (4.4) we obtain that for a.e. ω

a(T (x/εk, t/εα)ω, η, ξ +Dxwk) → ã(ω, t, x, η, ξ)
a0(T (x/εk, t/εα)ω, η, ξ +Dxwk) → ã0(ω, t, x, η, ξ)

(4.23)
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weakly in Lq(Q)n and Lq(Q) as k → ∞. On the other hand using Ergodic Theorem
we have

a(T (x/εk, t/εα)ω, η, ξ +Dxw
∞
k ) → 〈a(ω, η, ξ + ∂w∞)〉

a0(T (x/εk, t/εα)ω, η, ξ +Dxw
∞
k ) → 〈a0(ω, η, ξ + ∂w∞)〉 (4.24)

weakly in Lq(Q)n and Lq(Q) as k → ∞. Since limµ→∞ ‖wµ−w∞‖V = 0 as in the proof
of Theorem 4.6 we obtain that ‖Dxwk −Dxw

∞
k ‖p,Q → 0 as k → ∞. Consequently,

a(T (x/εk, t/εα)ω, η, ξ +Dxwk) − a(T (x/εk, t/εα)ω, η, ξ +Dxw
∞
k ) → 0

a0(T (x/εk, t/εα)ω, η, ξ +Dxwk) − a0(T (x/εk, t/εα)ω, η, ξ +Dxw
∞
k ) → 0

(4.25)

in Lq(Q)n and Lq(Q) as k → ∞. Combining (4.23), (4.24) and (4.25) we see that L∗

defines the homogenized operator.
Q.E.D.

4.3. Spatial homogenization (α = 0, β = 1). Consider

a(T1(t)ω, η, ξ) = Mx{a(T2(x)ω, η, ξ + ∂wx(T2(x)ω))}
a0(T1(t)ω, η, ξ) = Mx{a0(T2(x)ω, η, ξ + ∂wx(T2(x)ω))}

where T1 is defined in (2.9) and wx = w0 ∈ V (see (4.13)) satisfies

−div a(ω, η, ξ + ∂wx) = 0. (4.26)

The existence and uniqueness of this equation is discussed previously. Next we show
that the homogenized operator has the form

L∗(ω)u = Dtu− div(a(T1(t)ω, u,Dxu)) + a0(T1(t)ω, u,Dxu). (4.27)

Theorem 4.9. If α = 0, β = 1 then Lε G-converges to L∗ defined by (4.27) for
a.e. ω ∈ Ω.

Proof.
Set µ = ε2 and

wε,δ = εwµ
δ (T (x/ε, t)ω),

where wµ
δ is near solutions of (3.1). Then wε,δ satisfies in Rn+1 for a.e. ω

Dtwε,δ − div(a(T (x/ε, t)ω, η, ξ +Dxwε,δ) = divxρδ,

where 〈|ρδ|p〉 → 0 as δ → 0. As in the proof of Theorem 4.4 we choose two sequences
δ → 0 and ε(δ) → 0 such that wε(δ),δ → 0 weakly in W , and ρδ → 0 in Lq(Q)n as
k → ∞. This is possible for any sequence δ → 0 because of Lemma 4.3 and Lemma
3.2. Consider a generic sequence of δk → 0 as k → ∞ and corresponding εk = ε(δk).
Then wk = wεk,δk

→ 0 weakly in W , and ρk = ρδk
→ 0 in Lq(Q) as k → ∞. Using

the convergence of arbitrary solutions for G-convergent sequence of operators as in
the proof of Theorem 4.4 we obtain that for a.e. ω

a(T (x/εk, t)ω, η, ξ +Dxwk) → ã(ω, t, x, η, ξ),
a0(T (x/εk, t)ω, η, ξ +Dxwk) → ã0(ω, t, x, η, ξ)
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weakly in Lq(Q)n and Lq(Q) as k → ∞. Set wx,k = wx(T (t, x/εk)ω). Using Ergodic
Theorem and the argument as in [10] (page 228)

a(T (x/εk, t)ω, η, ξ +Dxwx,k) = a(T1(t)T2(x/εk)ω, η, ξ +Dxwx,k) → Mx{a(T1(t)T2(x)ω, η, ξ + ∂wx)〉}
a0(T (x/εk, t)ω, η, ξ +Dxwx,k) = a0(T1(t)T2(x/εk)ω, η, ξ +Dxwx,k) →Mx{a0(T1(t)T2(x)ω, η, ξ + ∂wx)〉}

weakly in Lq(Q)n and Lq(Q) as k → ∞ because a(T (x/εk, t)ω, η, ξ + Dxwx,k) and
a0(T (x/εk, t)ω, η, ξ +Dxwx,k) are homogeneous fields.

Since ‖wµ − wx‖V → 0 as µ → 0 as in the Theorem 4.6 we obtain ‖Dxwk −
Dxwx,k‖p,Q → 0 as k → ∞. Consequently,

a(T (x/εk, t)ω, η, ξ +Dxwk) − a(T (x/εk, t)ω, η, ξ +Dxwx,k) → 0
a0(T (x/εk, t)ω, η, ξ +Dxwk) − a0(T (x/εk, t)ω, η, ξ +Dxwx,k) → 0

(4.28)

in Lq(Q)n and Lq(Q) as k → ∞. Thus,

ã(x, t, η, ξ) = 〈a(ω, η, ξ + ∂wx)〉
ã0(x, t, η, ξ) = 〈a0(ω, η, ξ + ∂wx)〉.

Q.E.D.

4.4. Time homogenization (β = 0, α = 1). Following to [10] introduce the
orthogonal projection operator P1f

P1f = lim
T→∞

1
2T

∫ T

−T

f(T1(τ)ω)dτ. (4.29)

Consider

a∗(ω, η, ξ) = P1a(ω, η, ξ)
a∗0(ω, η, ξ) = P1a0(ω, η, ξ).

(4.30)

Next we will show that the homogenized operator is given by

L∗(ω)u = Dtu− a∗(ω, u,Du)− a∗0(ω, u,Du). (4.31)

Theorem 4.10. If α = 0, β = 1 then Lε G-converges to L∗ defined by (4.31).
Proof.
Consider

F = P1a(ω, η, ξ) − a(ω, η, ξ), f = divF,

where div is defined by (2.7). Since (f, φ) = 〈F, ∂φ〉 = 0 for any φ ∈ Vs we have as in
the proof of Lemma 4.7 that there exist wζ ∈ W , gζ ∈ V ′

such that

f = −σwζ + gζ ,

‖gζ‖V′ ≤ s(ζ), where s(ζ) → 0 as ζ → 0.
We will employ the theorem on the convergence of arbitrary solution for w. Since

w ∈ W we need near solutions. Set

wε,δ,ζ = εwδ,ζ(T (x, t/ε)ω),
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where wδ,ζ is an approximation of wζ that has smooth realizations, and ‖wδ,ζ−wζ‖V ≤
s(δ), s(δ) → 0 as δ → 0. It can be easily shown that wε,δ,ζ → 0 as ε → 0 weakly in
W and strongly in V for any δ > 0 and ζ > 0. This follows from the following,

‖wδ,ζ(T (x, t/ε)ω)‖p

V
=
∫ t

0

∫
Q0

|Dxwδ,ζ(T (x, τ/ε)ω)|pdxdτ = ε

∫ t/ε

0

∫
Q0

|Dxwδ,ζ(T (x, τ)ω)|pdxdτ → ‖wδ,ζ‖V ,

‖εDtwδ,ζ(T (x, t/ε)ω)‖q

V
′ =

∫ t

0

‖εDτwδ,ζ(T (x, τ/ε)ω)‖q
W−1,q(Q0)

dτ = ε

∫ t/ε

0

‖Dτwδ,ζ(T (x, τ)ω)‖q
W−1,q(Q0)dτ →

‖wδ,ζ‖V′ .

Thus that wε,δ,ζ is compact in W and converges to zero in V . Next we show that
for any sequence ζ → 0 and δ → 0 there exists a sequence ε = ε(δ, ζ) → such that

wε,δ,ζ → 0 weakly in W and strongly in V as well as gε,ζ = gζ(T (x, t/ε)ω) → 0 in V
′
.

Clearly this holds for wε,δ,ζ since it converges for any δ > 0 and ζ > 0. To show this
for gε,ζ we follow the Lemma 3.2.

‖gε,ζ‖V
′ =

∫ t

0

‖Dxgζ(T (x, τ/ε)ω)‖q
q,Q0

dτ = ε

∫ t/ε

0

‖Dxgζ(T (x, τ/ε)ω)‖q
q,Q0

dτ → ‖gζ‖V′ < s(ζ)

as ε → 0. Here s(ζ) → 0 as ζ → 0. Consequently, for a given sequence of ζ → 0

there exists a sequence ε(ζ) → 0 such that gε,ζ → 0 in V
′
. Next we choose a generic

sequence δk → 0, ζk → 0 and εk(δk, ζk) → 0 such that wε,δ,ζ → 0 weakly in W and

strongly in V as well as gε,ζ = gζ(T (x, t/ε)ω) → 0 in V
′
. Then wk satisfies in Rn+1

for a.e. ω ∈ Ω

Dtwk−div(a(T (x, t/εk)ω, η, ξ+Dxwk))+a0(T (x, t/εk)ω, η, ξ+Dxwk) = gk−div(a∗(T2(x)ω, η, ξ))+φk+ψk,

where

φk = −div(a(T (x, t/εk)ω, η, ξ+Dxwk)−a(T (x, t/εk)ω, η, ξ)), ψk = a0(T (x, t/εk)ω, η, ξ+Dxwk).

Because of Holder continuity of a, (2.5), we obtain that φk → 0 in V
′
. Similarly

ψk → ψ = a0(T2(x)ω, η, ξ) weakly in Lq(Q) for a.e. ω. Using the theorem on the
convergence of arbitrary solutions we have that for a.e. ω Lk G-converges to L̃,
L̃u = Dtu− div(ã(ω, x, t, η, ξ)) + ã0(ω, x, t, η, ξ). Here

a(T (x, t/εk)ω, η, ξ +Dxwk) → ã(ω, x, t, η, ξ)
a0(T (x, t/εk)ω, η, ξ +Dxwk) → ã0(ω, x, t, η, ξ)

weakly in Lq(Q)n and Lq(Q) as k → ∞ respectively, and u = 0 is a solution of
L̃u = −div(a∗(T2(x)ω, η, ξ)) + a0(T2(x)ω, η, ξ). On the other hand using Ergodic
Theorem and the argument as in [10] (page 228) we obtain

a(T (x, t/εk)ω, η, ξ) → a∗(T2(x)ω, η, ξ)
a0(T (x, t/εk)ω, η, ξ) → a∗0(T2(x)ω, η, ξ)

weakly in Lq(Q)n and Lq(Q) as k → ∞. Here a∗ and a∗0 are defined by (4.30).
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Because of wk → 0 strongly in V

a(T (x, t/εk)ω, η, ξ +Dxwk) − a(T (x, t/εk)ω, η, ξ) → 0
a0(T (x, t/εk)ω, η, ξ +Dxwk) − a0(T (x, t/εk)ω, η, ξ) → 0

strongly in Lq(Q)n and Lq(Q) as k → ∞. Thus, ã = a∗ and ã0 = a∗0.
Q.E.D.
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