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Abstract. In this paper we study the numerical homogenization of nonlinear random parabolic
equations. This procedure is developed within a finite element framework. A careful choice of
multiscale finite element bases and the global formulation of the problem on the coarse grid allow us
to prove the convergence of the numerical method to the homogenized solution of the equation. The
relation of the proposed numerical homogenization procedure to multiscale finite element methods is
discussed. Within our numerical procedure one is able to approximate the gradients of the solutions.
To show this feature of our method we develop numerical correctors that contain two scales, the
numerical and the physical. Finally, we would like to note that our numerical homogenization
procedure can be used for the general type of heterogeneities.
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1. Introduction. In this paper we consider numerical homogenization tech-
niques for nonlinear parabolic equations:

Dtuε − div(aε(x, t, uε, Dxuε)) + a0,ε(x, t, uε, Dxuε) = f,(1.1)

where ε is a small scale. Our motivation in considering (1.1) mostly stems from the
applications of flow in porous media (multiphase flow in saturated porous media,
flow in unsaturated porous media), though many applications of nonlinear parabolic
equations of these kinds occur in transport problems. Many problems in subsurface
modeling have a multiscale nature where the heterogeneities associated with the media
are no longer periodic. Furthermore, the level of detail and uncertainty incorporated
into geologic characterization of subsurfaces typically exceeds the capabilities of tra-
ditional flow simulators by a wide margin. For this reason, some type of upscaling,
or numerical homogenization, of the detailed geologic model must be performed be-
fore the model can be used for flow simulation. The numerical homogenization is, in
general, nontrivial because heterogeneities at all scales have a significant effect, and
these must be captured in the coarsened subsurface description.

Our main goal in the paper is to propose and analyze a numerical homogeniza-
tion procedure that is applicable to heterogeneities of general nature. The analysis
of the numerical method employs previous results on G-convergence [19] as well as
homogenization [7] of nonlinear parabolic equations. It was shown that a solution uε

converges to u (up to a subsequence) in an appropriate sense, where u is a solution of

Dtu− div(a∗(x, t, u,Dxu)) + a∗0(x, t, u,Dxu) = f.(1.2)
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In [7] the homogenized fluxes a∗ and a∗0 are computed under the assumption that
the heterogeneities are strictly stationary random fields with respect to both space
and time. The numerical homogenization procedure for (1.1) should account for the
functional dependence of the macroscopic quantities on the solution and its gradients.

The numerical homogenization procedure proposed in the paper uses general finite
element procedure and solves local problems that are further coupled in the global
formulation. The local problems are formulated in the domains (spatial and time)
with carefully selected boundary and initial conditions. The size of the local domains
is much larger than that of heterogeneities. Moreover, with a careful choice of lo-
cal problems we guarantee the uniqueness of the solutions of these local problems.
Because of a careful choice of local problems, as well as the formulation of the dis-
crete problem, we obtain the convergence of the solutions under some assumptions.
The formulation of the local problems can be simplified, depending on the relation
between temporal and spatial scales. This is discussed in the end of section 3. Our
numerical procedure, as we show in the paper, shares some common elements with
recently developed multiscale finite element methods [11], where the local information
is incorporated into base functions that are further coupled in the global formulation.

The numerical homogenization procedure yields a coarse scale solution that con-
verges to a solution of the homogenized equation (1.2). To capture the oscillations of
the solution the corrector results are needed. To our best knowledge the correctors
for nonlinear random parabolic equation are not known. In the second part of the
paper we construct the correctors which are used to show the convergence of gradi-
ents of the solutions for our numerical procedure. The constructed correctors use two
scales, the physical scale and the numerical scale, the latter being much larger than
the former. The convergence for the corrector is obtained. These results show us a
way to obtain numerically the fine scale features of the solution using the solutions of
the local problems computed previously. We would like to note that the computation
of the oscillation of solutions is important for the application to flow in porous media
and other transport problems.

In the paper we consider some numerical examples. One of the examples is related
to a heterogeneous convection diffusion equation. Assuming that velocity is a zero-
mean divergence-free field that has a homogeneous stream function we obtain the
homogenized equation that contains “extra diffusion” (known as enhanced diffusion).
The latter is due to the effects of the convection at smaller scales. We would like to
note that this problem for linear convection has been of great interest [10, 15]. The
application of the numerical homogenization procedure to Richards equation is also
considered.

The paper is organized as follows. In the next section we present some basic facts
that are used later in the analysis. Section 3 is devoted to the numerical homoge-
nization method and its analysis. In the following section the corrector results are
derived. Finally, in section 5 we present numerical results. Conclusions are drawn in
the last section.

2. Preliminaries. Let (Ω,Σ, µ) be a probability space and Lp(Ω) denote the
space of all p-integrable functions. Consider a (d + 1)-dimensional dynamical system
on Ω, T (z) : Ω → Ω, z = (x, t) ∈ Rd+1 (t ∈ R, x ∈ Rd), that satisfies the following
conditions: (1) T (0) = I, and T (x + y) = T (x)T (y); (2) T (z) : Ω → Ω preserve the
measure µ on Ω; (3) for any measurable function f(ω) on Ω, the function f(T (z)ω)
defined on Rd+1 × Ω is also measurable.

U(z)f(ω) = f(T (z)ω) defines a (d+1)-parameter group of isometries in the space
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of Lp(Ω). U(z) is strongly continuous. Further, we assume that the dynamical system
T is ergodic; i.e., any measurable T -invariant function on Ω is constant. Denote by
〈·〉 the mean value over Ω,

〈f〉 =

∫
Ω

f(ω)dµ(ω), 〈u, v〉 =

∫
(u, v)dµ(ω).

For further analysis we will need the Birkhoff ergodic theorem. Denote

M{f} = lim
s→∞

1

sd+1|K|

∫
Ks

f(z)dz,

where K ⊂ Rd+1, |K| �= 0, and Ks = {z ∈ Rd+1 : s−1z ∈ K}. Let f( zε ) be bounded in
Lp
loc(R

d+1), 1 ≤ p < ∞. Then f has mean value M{f} if and only if f(z/ε) → M{f}
weakly in Lp

loc(R
d+1) as ε → 0 [19, p. 134]. The Birkhoff ergodic theorem states that

if f ∈ Lp(Ω), 1 ≤ p < ∞, then

〈f〉 = M{f(T (z)ω)} a.e. on Ω.

Define Q = Q0 × [0, T ], where Q0 ⊂ Rd is a domain with Lipschitz boundaries,
and introduce

V0 = Lp(0, T,W 1,p
0 (Q0)), V = Lp(0, T,W 1,p(Q0)),

W = {u ∈ V0, Dtu ∈ Lq(0, T,W−1,q(Q0))},
W = {u ∈ V ,Dtu ∈ Lq(0, T,W−1,q(Q0))}, W0 = {u ∈ W,u(0) = 0}.

(2.1)

For further analysis X
′
will denote the dual of the space X. Let uε ∈ W0 be a solution

of

Dtuε = div a(T (x/εβ , t/εα)ω, uε, Dxuε) − a0(T (x/εβ , t/εα)ω, uε, Dxuε) + f in Q,

(2.2)

and denote Lεu = Dtu− div a(T (x/εβ , t/εα)ω, u,Dxu) + a0(T (x/εβ , t/εα)ω, u,Dxu).
We assume that a(ω, η, ξ) and a0(ω, η, ξ), η ∈ R, and ξ ∈ Rd are Caratheodory

functions satisfying the following inequalities:
• for any (η, ξ)

|a(ω, η, ξ)| + |a0(ω, η, ξ)| ≤ C(1 + |η|p−1 + |ξ|p−1) a.e. on Ω;(2.3)

• for any (η, ξ1) and (η, ξ2)

(a(ω, η, ξ1) − a(ω, η, ξ2), ξ1 − ξ2) ≥ C|ξ1 − ξ2|p a.e. on Ω;(2.4)

• for any (η, ξ)

(a(ω, η, ξ), ξ) + a0(ω, η, ξ)η ≥ C|ξ|p − C1 a.e. on Ω;(2.5)

• for any χ1 = (η1, ξ1) and χ2 = (η2, ξ2)

|a(ω, η1, ξ1) − a(ω, η2, ξ2)| + |a0(ω, η1, ξ1) − a0(ω, η2, ξ2)|
≤ C(1 + |χ1|p−1 + |χ2|p−1)ν(|ξ1 − ξ2|)

+ C(1 + |χ1|p−1−s + |χ2|p−1−s)|ξ1 − ξ2|s a.e. on Ω,

(2.6)

where 0 < s < min(p − 1, 1), and ν(r) is a continuity modulus (i.e., a non-
decreasing continuous function on [0,+∞) such that ν(0) = 0, ν(r) > 0 if
r > 0, and ν(r) = 1 if r > 1);



240 Y. EFENDIEV AND A. PANKOV

•

p ≥ 2.

For further analysis we define q by 1
p + 1

q = 1. Note that various other coercivity

conditions can be also imposed instead of (2.5).
Next, we briefly mention the definition for G-convergence for the sequence of

nonlinear parabolic operators following [19, p. 176]. Consider a sequence of gen-
eral parabolic operators Lε, Lεu = Dtu− div(aε(x, t, u,Dxu)) + a0,ε(x, t, u,Dxu) and
Lu = Dtu− div(a∗(x, t, u,Dxu)) + a∗0(x, t, u,Dxu). We assume that Lε and L satisfy
(2.3)–(2.6) with a(ω, η, ξ), a0(ω, η, ξ) replaced by aε(x, t, η, ξ), a0,ε(x, t, η, ξ) as well
as a∗(x, t, η, ξ), a∗0(x, t, η, ξ). Based on Lε and L we define the sequence of operators
L1
ε(u, v) = Dtu− div(aε(x, t, v,Dxu)), L1(u, v) = Dtu− div(a∗(x, t, v,Dxu)) and the

fluxes

Γε(u, v) = aε(x, t, v,Dxu), Γε
0(u, v) = a0,ε(t, x, v,Dxu),

Γ(u, v) = a∗(x, t, v,Dxu), Γ0(u, v) = a∗0(t, x, v,Dxu).

Given v ∈ V0, L1
ε(u, v) and L1(u, v) are strictly monotone parabolic operators [19,

p. 176]. Therefore, for any v ∈ V0 and f ∈ W
′

there exist unique solutions uε ∈ W0

and u ∈ W0 of L1
ε(uε, v) = f and L1(u, v) = f [20].

Definition (G-convergence). A sequence Lε G-converges to L if for any v ∈ V0

and f ∈ Lq(0, T,W−1,q(Q0)) we have

uε → u

weakly in W0 as ε → 0 and

Γε(uε, v) → Γ(u, v),

Γε
0(uε, v) → Γ0(u, v)

weakly in Lq(Q)d and Lq(Q), respectively, as ε → 0.
Remark 2.1. We would like to note that in [19] (where to our best knowl-

edge G-convergence for this class of operators is first introduced) the author calls the
G-convergent sequence defined as above the “strongly G-convergent sequence.” The
theorem on the convergence of arbitrary solutions for the G-convergent sequence of
operators [19] that will be used in our analysis follows.

Theorem 2.1. Assume Lε G-converges to L, uε ∈ W , fε, f ∈ Lq(0, T,W−1,q(Q0)),
Lεuε = fε, uε → u weakly in W , and fε → f strongly in W

′

0. Then Lu = f , and

aε(x, t, uε, Dxuε) → a∗(x, t, u,Dxu),

a0,ε(x, t, uε, Dxuε) → a∗0(x, t, u,Dxu)

weakly in Lq(Q)d and Lq(Q), respectively, as ε → 0.
To formulate the auxiliary problem for the homogenization we need the following

preliminaries. Following to [23] we define spaces similar to V on Ω in the following
way. Denote by ∂full = (∂1, . . . , ∂d+1) the collection of generators of the group U(z).
There is a dense subspace S ⊂ Lp(Ω) that contains in the domains of all operators
∂α
full = ∂α1

1 · · · ∂αd+1

d+1 , α ∈ Zd+1
+ .

Further, denote by V the completion of S with respect to the seminorm

‖f‖ =

(
d∑

i=1

‖∂if‖pLp(Ω)

)1/p

.
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The operator ∂ : V → Lp(Ω)n is an isometric embedding, ∂ = (∂1, . . . , ∂d). In
particular, the space V is reflexive with its dual denoted by V ′

. By duality the
operators div : Lq(Ω)n → V ′

, where 〈div u, v〉 = −〈u, ∂v〉. We note that V, in
general, contains fields that are not spatially homogeneous. Note that in [23, 19]
the operators ∂i may be viewed as derivatives along trajectories of the dynamical
system T (z):

(∂if)(T (z)ω) =
∂

∂zi
f(T (z)ω)(2.7)

for a.e. ω ∈ Ω and f ∈ D(∂i, L
p(Ω)). For further analysis we introduce

T1(t) = T (0, . . . , 0, t), T2(x) = T (x1, . . . , xd, 0).(2.8)

We denote

Mt{f} = lim
T→∞

1

2T

∫ T

−T

f(T (0, τ)ω)dτ, Mx{f} = lim
|K|→∞

1

|K|

∫
K

f(T (y, 0)ω)dy.

(2.9)

We note that the average of a,

a(ω, η, ξ) = Mt{a(ω, η, ξ)},(2.10)

is defined on Lp(Ω) for each η ∈ R and ξ ∈ Rd. Consider the subset of S consisting
of functions

f(ω) = Mt{f}.

Denote by Vs the completion of this set with respect to the norm

‖f‖ =

(
d∑

i=1

‖∂if‖pLp(Ω)

)1/p

.

To formulate an auxiliary problem we introduce the differentiation with respect
to time ∂d+1. Define an unbounded operator σ from V into V ′

as follows. We say
that v ∈ V belongs to D(σ) if there exists f ∈ V ′

such that

〈v, ∂d+1φ〉 = −〈f, φ〉 ∀φ ∈ S,(2.11)

and we set σv = f . It is easily seen that σφ = ∂d+1φ, φ ∈ S. Therefore, σ is a closed
linear operator from V to V ′

. Let σ+ be the adjoint operator (acting from V to V ′
).

Then

σ+ = −σ;

i.e., σ is a skew-symmetric operator. In analogy with (2.1) denote W = D(σ). Clearly,
W = D(σ) is dense in V, and σ is a maximal monotone operator [7].

Consider the auxiliary problem

µσNµ
η,ξ − div a(ω, η, ξ + ∂Nµ

η,ξ) = 0.(2.12)
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Define the operator A from V to V ′
as

〈Au, v〉 = 〈a(ω, η, ξ + ∂u), ∂v〉.

It can be easily verified that A is a strongly monotone, continuous, and coercive
operator from V to V ′

. Since σ is maximal monotone it follows from [14] that the
solution of (2.12) in W exists. Uniqueness follows from the fact that (σu, u) = 0 and
A is strongly monotone. Thus we have the following lemma [7].

Lemma 2.2. Equation (2.12) has a unique solution, Nµ
η,ξ ∈ W, and

‖Nµ
η,ξ‖V ≤ C.(2.13)

The homogenization of nonlinear parabolic equations depends on the ratio be-
tween α and β and is presented in [7]. The following cases are distinguished: (1) self-
similar case (α = 2β); (2) non–self-similar case (α < 2β); (3) non–self-similar case
(α > 2β); (4) spatial case (α = 0); (5) temporal case (β = 0).

Theorem 2.3. Lε G-converges to L∗, where L∗ is given by

L∗u = Dtu− div(a∗(ω, x, t, u,Dxu)) + a∗0(ω, x, t, u,Dxu).(2.14)

a∗ and a∗0 are defined as follows:
• For self-similar case (α = 2β),

a∗(η, ξ) = 〈a(ω, η, ξ + ∂Nη,ξ)〉,
a0

∗(η, ξ) = 〈a0(ω, η, ξ + ∂Nη,ξ)〉,

where Nη,ξ = Nµ=1 ∈ W is the unique solution of

σNµ=1 − div a(ω, η, ξ + ∂Nµ=1) = 0.(2.15)

• For non–self-similar case (α < 2β),

a∗(η, ξ) = 〈a(ω, η, ξ + ∂Nη,ξ)〉,
a0

∗(η, ξ) = 〈a0(ω, η, ξ + ∂Nη,ξ)〉,

where Nη,ξ = N0 ∈ V is the unique solution of

−div a(ω, η, ξ + ∂N0) = 0.(2.16)

• For non–self-similar case (α > 2β),

a∗(η, ξ) = 〈a(ω, η, ξ + ∂Nη,ξ)〉,
a0

∗(η, ξ) = 〈a0(ω, η, ξ + ∂Nη,ξ)〉,

where Nη,ξ = N∞ ∈ Vs is the unique solution of

−div a(ω, η, ξ + ∂N∞) = 0.(2.17)

a is defined in (2.10).
• For spatial case (α = 0),

a(T1(t)ω, η, ξ) = Mx{a(T2(x)ω, η, ξ + ∂Nη,ξ(T2(x)ω))},
a0(T1(t)ω, η, ξ) = Mx{a0(T2(x)ω, η, ξ + ∂Nη,ξ(T2(x)ω))},

where Nη,ξ = Nx ∈ V is the unique solution of

−div a(ω, η, ξ + ∂Nx) = 0.(2.18)
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• For temporal case (β = 0), the homogenized fluxes are defined by

a∗(ω, η, ξ) = Mt{a(ω, η, ξ)},
a∗0(ω, η, ξ) = Mt{a0(ω, η, ξ)},

(2.19)

where Mt is defined in (2.9).
For the temporal case one can also define Nη,ξ in the following way (see the proof

of Theorem 4.8 in [7]). Define F = a(ω, η, ξ) −Mta(ω, η, ξ), and f = div F . Then it
can be shown that there exists N such that

f = −σN + g,(2.20)

where ‖g‖V′ ≤ δ, for arbitrary small δ. The latter follows from the fact that the range
of σ is dense in the orthogonal complement of the kernel of σ, and f belongs to the
kernel of σ. The proof of this theorem extensively uses near solutions of (2.12) since
Nµ

η,ξ is no longer a homogeneous random field. Near solutions will be needed later on
in this paper, though we will not discuss them here.

The theorem on the convergence of arbitrary solutions (Theorem 2.1) for the G-
convergent sequence of operators allows us not to restrict ourselves to a particular
boundary or initial conditions. In particular, from Theorems 2.1 and 2.3 we have the
following.

Theorem 2.4. Let uε ∈ W be a solution of Lεuε = f , f ∈ Lq(0, T,W−1,q(Q0)),
such that ‖uε‖W is bounded. Then uε converges to u as ε → 0 weakly in W (up to a
subsequence), where u is a solution of L∗u = f , and L∗ is defined in (2.14).

Remark 2.2. We note that the ergodicity assumption is not essential for the
proof of the theorem. One can carry out the proof for the nonergodic case essentially
in the same manner as that for the ergodic case. The homogenized operators for the
nonergodic case will be invariant functions with respect to T (z).

For the sake of the simplicity of our further analysis we will assume that the
homogenized operator does not depend on x or t. This corresponds to self-similar and
non–self-similar cases. For the spatial homogenization case the homogenized operator
does not depend on x or t if the fluxes are independent of time. Similarly, for the
time homogenization case fluxes should be independent of space. The analysis of the
numerical homogenization procedure can be carried out for general heterogeneities
using the techniques of G-convergence theory.

3. Numerical computation of the homogenized solution.

3.1. Numerical homogenization method. Consider 0 = t0 < t1 < · · · <
tm−1 < tm = T and max(ti − ti−1) = ht. Denote Qx,t

i = [ti, ti+1] × Q0, Vi =
Lp(ti, ti+1,W

1,p(Q0)), and Wi = {u ∈ Vi, Dtu ∈ Lq(ti, ti+1,W
−1,q(Q0))}. Through-

out the paper ‖ · ‖p,Q denotes the Lp(Q)-norm.
The computation of the homogenized solution will be performed for a.e. ω. For

this reason we omit everywhere the notation “a.e. ω.” To solve the homogenized
equation, u ∈ W0,

Dtu− div(a∗(u,Dxu)) + a∗0(u,Dxu) = f(x),(3.1)

we employ the standard finite element method. Introduce a finite dimensional space
over the standard triangular or tetrahedral partitions K of Q0 =

⋃
K,

Sh = {vh ∈ C0(Q0) : the restriction vh is linear for each element K and vh = 0 on ∂Q0},
(3.2)
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diam(K) ≤ Chx. Consider uh(t) ∈ Sh such that∫
Q0

Dtuhvhdx + A∗(uh, vh) =

∫
Q0

fvhdx ∀v ∈ Sh,

where

A∗(u, v) =

∫
Q0

((a∗(u,Dxu), Dxv) + a∗0(u,Dxu)v)dx.

The main idea of the numerical homogenization technique is to approximate
A∗(uh, vh) using the solution of the local problems. Denote by φ0

i (x) a basis in
Sh consisting of piecewise linear functions such that φ0

i (xj) = δij (δij is the Kro-
necker symbol), and xj are the nodal points of the finite element partition. Consider

uh =
∑N

i=1 θi(t)φ
0
i (x), where θn+1

i = θi(t = tn+1) are defined by

∑
i

(θn+1
i − θni )

∫
Q0

φ0
i (x)φ0

j (x)dx +

∫ tn+1

tn

∫
Q0

((a(T (x/εβ , t/εα)ω, ηl
θ

, Dxvε), Dxφ
0
j )

+ a0(T (x/εβ , t/εα)ω, ηl
θ

, Dxvε)φ
0
j )dxdt =

∫ tn+1

tn

∫
Q0

fφ0
jdxdt.

(3.3)

Here lθ =
∑

i θ
n+1
i φ0

i (x) (see also the remark that follows), and vε is the solution of
the local problem and computed as

Dtvε = div a(T (x/εβ , t/εα)ω, ηl
θ

, Dxvε) in K × [tn, tn+1],(3.4)

where vε = lθ on ∂K, vε(x, t = tn) = lθ, and

ηl
θ

=
1

|K|

∫
K

lθdx.

For further analysis θ and ζ denote discrete vectors defined at the nodal points, and
lθ(x) ∈ Sh and lζ(x) ∈ Sh are the functions that linearly interpolate these vectors

into Q0, e.g., lθ =
∑N

i=1 θiφ
0
i (x).

Remark 3.1. Note that numerical homogenization procedure (3.3) can be per-
formed both in explicit and implicit manners. For the explicit implementation lθ =∑

θni φ
0
i (x) and for the implicit one lθ =

∑
θn+1
i φ0

i (x).
Equation (3.3) defines our numerical homogenization procedure. Note that this

method couples the local information that is obtained by solving (3.4) in the global
formulation of the problem via (3.3). The choice of the local problems, (3.4), as well as
the global formulation (3.3) are carefully selected for the robustness of the numerical
method.

Introduce the discrete operator Ah,ε as follows:

(Ah,εθ, ζ) =

∫ tn+1

tn

∫
Q0

((a(T (x/εβ , t/εα)ω, ηl
θ

, Dxvε), Dxl
ζ)

+ a0(T (x/εβ , t/εα)ω, ηl
θ

, Dxvε)l
ζ)dxdt,

(3.5)

where lζ =
∑

i ζiφ
0
i (x), and vε is the solution of the local problem (3.4). The numerical

homogenization procedure introduced above has the following discrete representation:

M(θn+1 − θn) + Ah,ε(θn+1) = b,(3.6)
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where Mij =
∫
Q0

φ0
i (x)φ0

j (x)dx is a mass matrix, Ah,ε is defined by (3.5), bi =∫ tn+1

tn

∫
Q0

fφ0
i dxdt. Equation (3.6) is solved using Newton’s method or its variations.

For the explicit formulation of the numerical homogenization procedure Ah,ε(θn+1) is
replaced by Ah,ε(θn) in (3.6).

Remark 3.2. Note that the solution of (3.4) exists, is unique, and guarantees
the operator Ah,ε is single valued.

Our goal is to show the following.
Theorem 3.1. uh =

∑
i θi(t)φ

0
i (x) converges to u, a solution of the homogenized

equation (3.1) in V0 = Lp(0, T,W 1,p
0 (Q0)) as limh→0 limε→0 under additional not

restrictive assumptions that will be discussed later.
Remark 3.3. The proof of the theorem uses the convergence of the solutions and

the fluxes, and, consequently, it is applicable for the case of general heterogeneities that
uses G-convergence theory. Since the G-convergence of the operators occurs up to a
subsequence the numerical solution converges to a solution of a homogenized equation
(up to a subsequence of ε).

Remark 3.4. Note that one can compute the effective fluxes a∗(x, t, η, ξ) and
a∗0(x, t, η, ξ) for each η and ξ and coarse block using the solutions of the local problems
similar to (3.4). This procedure may not be efficient because one does not always know
a priori the range of η and ξ. In this respect, the numerical homogenization procedure
solves the local problems selectively.

3.2. The numerical homogenization method and multiscale finite el-
ement methods. The numerical homogenization procedure presented in the pre-
vious section can be formulated within the framework of multiscale finite element
methods (MsFEM) [11]. To do this we will first formulate MsFEM in a slightly
different manner from that presented in [11] for the linear problem. Consider a stan-
dard finite dimensional Sh space over a coarse triangulation of Q0, (3.2), and define
EMsFEM : Sh → V h

ε in the following way. For each uh ∈ Sh there is a corresponding
element uh,ε in V h

ε that is defined by

Dtuh,ε − div(a(T (x/εβ , t/εα)ω)Dxuh,ε) = 0 in K × [tn, tn+1],(3.7)

with boundary condition uh,ε = uh on ∂K, and uh,ε(t = tn) = uh. For the linear
equations EMsFEM is a linear operator, and the obtained multiscale space, V h

ε , is a
linear space on Q0×[tn, tn+1]. Moreover, the basis in the space V h

ε can be obtained by
mapping the basis functions of Sh. For the nonlinear parabolic equations considered
in this paper the operator EMsFEM is constructed similar to (3.7) using the local
problems; i.e., for each uh ∈ Sh there is a corresponding element uh,ε in V h

ε that is
defined by

Dtuh,ε − div(a(T (x/εβ , t/εα)ω, η,Dxuh,ε)) = 0 in K × [tn, tn+1],(3.8)

with boundary condition uh,ε = uh on ∂K, and uh,ε(t = tn) = uh. Here η =
1

|K|
∫
K
uhdx. Note that EMsFEM is a nonlinear operator and V h

ε is no longer a

linear space.
The following method that can be derived from general multiscale finite element

framework is equivalent to our numerical homogenization procedure. Find uh(t) ∈ Sh

such that∫ tn+1

tn

∫
Q0

Dtuhvhdxdt + A(uh, vh) =

∫ tn+1

tn

∫
Q0

fvhdxdt ∀vh ∈ Sh,



246 Y. EFENDIEV AND A. PANKOV

where

A(uh, wh) =
∑
K

∫ tn+1

tn

∫
K

((a(T (x/εβ , t/εα)ω, ηuh , Dxuh,ε), Dxwh)

+ a0(T (x/εβ , t/εα)ω, ηuh , Dxuh,ε)wh)dxdt,

where uh,ε is the solution of the local problem (3.8), ηuh = 1
|K|

∫
K
uhdx, and uh is

known at t = tn.
We would like to note that the operator EMsFEM can be constructed using larger

domains, as it is done in MsFEM with oversampling [11]. This way one reduces
the effects of the boundary conditions and initial conditions. In particular, for the
temporal oversampling it is only sufficient to start the computations before tn and
end them at tn+1. Consequently, the oversampling domain for K × [tn, tn+1] consists
of [t̃n, tn+1] × S, where t̃n < tn and K ⊂ S. More precise formulation and detailed
numerical studies of the oversampling technique for nonlinear equations are currently
under investigation. Further, we would like to note that oscillatory initial conditions
can be imposed (without using oversampling techniques) based on the solution of the
elliptic part of the local problems (3.8). These initial conditions at t = tn are the
solutions of

−div(a(T (x/εβ , tn/ε
α)ω, η,Dxuh,ε)) = 0 in K,(3.9)

or

−div(a(T (x/εβ)ω, η,Dxuh,ε)) = 0 in K,(3.10)

where a(T (x/εβ)ω, η, ξ) = 1
tn+1−tn

∫ tn+1

tn
a(T (x/εβ , τ/εα)ω, η, ξ)dτ and uh,ε = uh on

∂K. The latter can become efficient, depending on the interplay between the temporal
and spatial scales. This issue is discussed below.

Note that in the case of periodic media the local problems can be solved in a
single period in order to construct A(uh, vh). This technique, which localizes the
computation, is similar to the recently proposed method [6]. In general, one can solve
the local problems in a domain different from K (an element) to calculate A(uh, vh),
and our analysis is applicable to these cases. Note that the numerical advantages of
our approach over the fine scale simulation is similar to that of MsFEM. In particular,
for each Newton’s iteration a linear system of equations on a coarse grid is solved.

3.2.1. Special cases. For some special cases the operator EMsFEM introduced
in the previous section can be simplified.

1. Linear separable case. Let uε ∈ W0 be a solution of

Dtuε = div(a(T (x/εβ , t/εα)ω, uε)Dxuε) + f in Q,

where a has the form a(T (x/εβ , t/εα)ω, η) = a(T (x/εβ , t/εα)ω)k(η). In this case V h
ε

is the same as that for the linear case.
2. Various time and spatial scale heterogeneities. Consider

Dtuε = div(a(T (x/εβ)ω, t, uε, Dxuε)) + f in Q,

and assume a to be sufficiently smooth with respect to t. In this case the homogenized
operator can be constructed using the parameter dependent elliptic equation

−div(a(T (x/εβ)ω, t, uε, Dxuε)) = f in Q0.
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The local problems for this case can be constructed by solving, instead of (3.4),

−div(a(T (x/εβ)ω, ηl
θ

, Dxvε)) = f , where

a(T (x/εβ)ω, η, ξ) =
1

tn+1 − tn

∫ tn+1

tn

a(T (x/εβ)ω, t, η, ξ)dt.

This way we can avoid solving local time-dependent problems.

In general, one can avoid solving the local parabolic problems if the ratio between
α and β is known and solve instead a simplified equation. For example, if α < 2β one

can solve instead of (3.4) the local problem −div(a(T (x/εβ , t/εα)ω), ηl
θ

, Dxvε)) = 0; if

α > 2β one can solve instead of (3.4) the local problem −div(a(T (x/εβ)ω), ηl
θ

, Dxvε))
= 0, where a is an average over time (see (2.10)), while if α = 2β we need to solve
the parabolic equation in K × [tn, tn+1], (3.4).

We would like to note that, in general, one can use (3.9) or (3.10) as oscillatory
initial conditions, and these initial conditions can be efficient for some cases. For
example, for α > 2β with initial conditions given by (3.10) the solutions of the local
problems (3.8) can be computed easily since they are approximated by (3.10). More-
over, one can expect better accuracy with (3.10) for the case α > 2β because this
initial condition is more compatible with the local heterogeneities compared to the
artificial linear initial conditions (cf. (3.8)). The comparison of various oscillatory ini-
tial conditions, including the ones obtained by the oversampling method, is a subject
of future studies.

3.3. Proof of Theorem 3.1. The proof of the theorem will be carried out in the
following manner. First, we will show the existence of the discrete solution. Second,
the convergence of the discrete solution to a solution of the homogenized equation
will be demonstrated. For our analysis we will use zero trace functions vbε = vε − lθ

(cf. (3.4)), which satisfies

Dtv
b
ε = div a(T (x/εβ , t/εα)ω, ηl

θ

, ξ + Dxv
b) in K,(3.11)

where ξ is constant

ξ = Dxl
θ,

vb = 0 on ∂K, and vb(x, t = tn) = 0. ξ will denote the gradient of lθ in further
analysis. Define the norm of ‖θ‖ (finite dimensional) by

‖θ‖ =

(∑
K

∫
K

(|lθ|p + |Dxl
θ|p)dx

)1/p

.

This norm is equivalent to (
∑

K

∫
K

(|ηlθ |p + |ξK |p)dx)1/p or any other norm in the

corresponding finite dimensional space. Moreover, because of ‖θ‖ = ‖lθ‖W 1,p(Q0) ≤
C‖Dxl

θ‖p,Q0 , ‖θ‖ is majorized by (
∑

K

∫
K
|ξK |pdx)1/p.

Lemma 3.2. Ah,ε is coercive for sufficiently small hx, i.e.,

(Ah,εθ, θ) ≥ C

∫ tn+1

tn

‖θ‖pdt− C0.(3.12)



248 Y. EFENDIEV AND A. PANKOV

Proof.

(Ah,εθ, θ) =
∑
K

∫ tn+1

tn

∫
K

((a(T (x/εβ , t/εα)ω, ηl
θ

, Dxvε), Dxl
θ)

+ a0(T (x/εβ , t/εα)ω, ηl
θ

, Dxvε)l
θ)dxdt

=
∑
K

∫ tn+1

tn

∫
K

((a(T (x/εβ , t/εα)ω, ηl
θ

, Dxvε), Dxl
θ)

+ a0(T (x/εβ , t/εα)ω, ηl
θ

, Dxvε)η
lθ )dxdt

+
∑
K

∫ tn+1

tn

∫
K

a0(T (x/εβ , t/εα)ω, ηl
θ

, Dxvε)(l
θ − ηl

θ

)dxdt =: I1 + I2,

(3.13)

where I1 and I2 denote the first and second term on the right-hand side that involve∑
K . For the first term we have

I1 =
∑
K

∫ tn+1

tn

∫
K

((a(T (x/εβ , t/εα)ω, ηl
θ

, Dxl
θ + Dxv

b
ε), Dxl

θ + Dxv
b
ε)

+ a0(T (x/εβ , t/εα)ω, ηl
θ

, Dxl
θ + Dxv

b
ε)η

lθ )dxdt

−
∑
K

∫ tn+1

tn

∫
K

(a(T (x/εβ , t/εα)ω, ηl
θ

, Dxη
lθ + Dxv

b
ε), Dxv

b
ε)dxdt

≥ C
∑
K

∫ tn+1

tn

∫
K

|Dxl
θ + Dxv

b
ε |pdxdt +

1

2

∑
K

∫
K

|Dxv
b
ε(t = tn+1)|2dx− C0

≥ C
∑
K

∫ tn+1

tn

∫
K

|Dxvε|pdxdt− C0,

(3.14)

where vbε is defined by (3.11).
Using the trace inequality (see, e.g., [13]) ‖u‖p,∂K ≤ C‖Dxu‖p,K we can obtain

the lower bound for (3.14). Denote K1 to be rescaled K such that diam(K1) = O(1),
y = x/hx, v1

ε = vε(yhx). Then

∫ tn+1

tn

∫
K

|Dxvε|pdxdt = C
hd
x

hp
x

∫ tn+1

tn

∫
K1

|Dyv
1
ε |pdydt ≥ C

hd
x

hp
x

∫ tn+1

tn

∫
∂K1

|v1
ε |pdSydt

= Chd
x

∫ tn+1

tn

∫
∂K1

|lθ|pdSydt.

(3.15)

lθ can be written as lθ = ξ · (x−x0)+ ηl
θ

, where ξ = Dxl
θ and x0 is chosen such that

1
|K|

∫
K
lθdx = ηl

θ

. Then we have

∑
K

∫ tn+1

tn

∫
K

|Dxvε|pdxdt ≥ C
∑
K

hd

∫ tn+1

tn

∫
∂K1

|ξ · (x− x0) + ηl
θ |pdldt

= C
∑
K

hd

∫ tn+1

tn

‖θ‖pdt = C

∫ tn+1

tn

‖θ‖pdt.
(3.16)
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The latter can be shown using the equivalence of the norm in finite dimensional space.

Indeed,
∫ tn+1

tn

∫
∂K1

|ξ · (x−x0)+ ηl
θ |pdl defines a norm in the finite dimensional space

of (ξ, η). Since all norms are equivalent in finite dimensional space we obtain (3.16).
For the second term, I2, on the right-hand side of (3.13) we have

|I2| ≤ Chx

∑
K

∫ tn+1

tn

∫
K

a0(T (x/εβ , t/εα)ω, ηl
θ

, Dxvε)|Dxl
θ|dxdt

≤ Chx

∑
K

∫ tn+1

tn

∫
K

(|ηlθ |p + |ξ|p)dxdt ≤ Chx

∫ tn+1

tn

‖θ‖pdt.
(3.17)

Combining (3.13), (3.14), and (3.17) we obtain

(Ah,εθ, θ) ≥ (C − C1hx)

∫ tn+1

tn

‖θ‖pdt− C0.

Lemma 3.3. Ah,ε is uniformly continuous in any compact set of θ’s. Moreover,
for any θ1 and θ2 in a compact set,

‖Ah,εθ1 −Ah,εθ2‖p ≤ C

(∑
K

∫ tn+1

tn

∫
K

(|Dxl
θ1 −Dxl

θ2 |p + ν(|ηlθ1 − ηl
θ2 |))dxdt

)1/p

.

Proof. Clearly,

‖Ah,εθ1 −Ah,εθ2‖

≤
∑
K

∣∣∣∣
∫ tn+1

tn

∫
K

(a(T (x/εβ , t/εα)ω, ηl
θ1
, Dxv1) − a(T (x/εβ , t/εα)ω, ηl

θ2
, Dxv2))dxdt

∣∣∣∣
+
∑
K

∣∣∣∣
∫ tn+1

tn

∫
K

(a0(T (x/εβ , t/εα)ω, ηl
θ1
, Dxv1) − a0(T (x/εβ , t/εα)ω, ηl

θ2
, Dxv2))dxdt

∣∣∣∣ ,

(3.18)

where Dtvi = div(a(T (x/εβ , t/εα)ω, ηl
θ
i , Dxvi)) in K × [tn, tn+1], vi = lθi on ∂K,

and vi(t = tn) = lθi (i = 1, 2). It can be easily shown that
∫ tn+1

tn

∫
K
|Dxvi|pdxdt ≤

C
∫ tn+1

tn

∫
K
|Dxl

θi |pdxdt. Thus,
∑

K

∫ tn+1

tn

∫
K
|Dxvi|pdxdt ≤ C.

For the first term on the right-hand side of (3.18) we have

∣∣∣∣∣
∑
K

∫ tn+1

tn

∫
K

(a(T (x/εβ , t/εα)ω, ηl
θ1

, Dxv1) − a(T (x/εβ , t/εα)ω, ηl
θ2

, Dxv2))dxdt

∣∣∣∣∣
≤ C

∑
K

∫ tn+1

tn

∫
K

(1 + |ηl
θ1 |p−1 + |ηl

θ2 |p−1|Dxv1|p−1 + |Dxv2|p−1)ν(|ηl
θ1 − ηl

θ2 |)dxdt

+ C
∑
K

∫ tn+1

tn

∫
K

(1 + |ηl
θ1 |p−1−s + |ηl

θ2 |p−1−s + |Dxv1|p−1−s + |Dxv2|p−1−s)|Dxv1 −Dxv2|sdxdt

≤ C

(∑
K

∫ tn+1

tn

∫
K

ν(|ηl
θ1 − ηl

θ2 |)pdxdt
)1/p

+ C

(∑
K

∫ tn+1

tn

∫
K

(1 + |ηl
θ1 |

p(p−1−s)
(p−s) + |ηl

θ2 |
p(p−1−s)

(p−s)

+ |Dxv1|
p(p−1−s)

(p−s) + |Dxv2|
p(p−1−s)

(p−s) )dxdt

) (p−s)
p

(∑
K

∫ tn+1

tn

∫
K

|Dxv1 −Dxv2|pdxdt
)1/p

≤ C

(∑
K

∫ tn+1

tn

∫
K

ν(|ηl
θ1 − ηl

θ2 |)dxdt
)1/p

+ C

(∑
K

∫ tn+1

tn

∫
K

|Dxv1 −Dxv2|pdxdt
)1/p

.

(3.19)
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Here we have used lθi = ηl
θi

+ ξi(x− x0) (i = 1, 2), Cauchy and Holder inequalities,
along with the facts that Dxv1 and Dxv2 are bounded in (Lp(tn, tn+1, Q0))

d and ν(r)p

is still a continuity modulus. The estimate for the second term on the right-hand side
of (3.19) can be derived as follows:

∑
K

∫ tn+1

tn

∫
K

|Dxv1 −Dxv2|pdxdt

≤ C
∑
K

∫ tn+1

tn

∫
K

(a(T (x/εβ , t/εα)ω, ηl
θ1

, Dxv1) − a(T (x/εβ , t/εα)ω, ηl
θ1

, Dxv2), Dxv1 −Dxv2)dxdt

≤ C
∑
K

∫ tn+1

tn

∫
K

(a(T (x/εβ , t/εα)ω, ηl
θ1

, Dxv1) − a(T (x/εβ , t/εα)ω, ηl
θ2

, Dxv2), Dxv1 −Dxv2)dxdt

+ C
∑
K

∫ tn+1

tn

∫
K

(a(T (x/εβ , t/εα)ω, ηl
θ2

, Dxv2) − a(T (x/εβ , t/εα)ω, ηl
θ1

, Dxv2), Dxv1 −Dxv2)dxdt

≤ C
∑
K

∫ tn+1

tn

∫
K

(a(T (x/εβ , t/εα)ω, ηl
θ1

, Dxv1) − a(T (x/εβ , t/εα)ω, ηl
θ2

, Dxv2),

Dxl
θ1 + Dxv

b
1 − (Dxl

θ2 + Dxv
b
2))dxdt

+
C

δ1

(∑
K

∫ tn+1

tn

∫
K

ν(|ηl
θ1 − ηl

θ2 |)pdxdt
)1/p

+ Cδ1
∑
K

∫ tn+1

tn

∫
K

|Dxv1 −Dxv2|pdxdt.

(3.20)

Here we have used Cauchy and Holder inequalities, along with the facts that Dxv1

and Dxv2 are bounded in (Lp(tn, tn+1, Q0))
d. With an appropriate choice of δ1 we

have

∑
K

∫ tn+1

tn

∫
K

|Dxv1 −Dxv2|pdxdt

≤ C
∑
K

∫ tn+1

tn

∫
K

(a(T (x/εβ , t/εα)ω, ηlθ1 , Dxv1) − a(T (x/εβ , t/εα)ω, ηlθ2 , Dxv2),

Dxl
θ1 −Dxl

θ2)dxdt

− 1

2
C
∑
K

∫ tn+1

tn

∫
K

Dt|vb1 − vb2|2dxdt + C

(∑
K

∫ tn+1

tn

∫
K

ν(|ηlθ1 − ηlθ2 |)dxdt
)1/p

≤ C

(∑
K

∫ tn+1

tn

∫
K

|Dxl
θ1 −Dxl

θ2 |pdxdt
)1/p

+ C

(∑
K

∫ tn+1

tn

∫
K

ν(|ηlθ1 − ηlθ2 |)dxdt
)1/p

.

(3.21)

Here we have used Cauchy and Holder inequalities, along with the facts that Dxv1

and Dxv2 are bounded in Lp(tn, tn+1, Q0), Dtvi = div(a(T (x/εβ , t/εα)ω, ηl
θi
, Dxvi))

(i = 1, 2). The second term on the right-hand side of (3.18) can be estimated in an
analogous manner.

From Lemmas 3.2 and 3.3 it follows that (3.3) has solutions which are uniformly
bounded with respect to ε for any h. Next, we take the limit as ε → 0 in (3.3) and
show the following lemma.

Lemma 3.4.

lim
ε→0

Ah,εζ = Ahζ,

for any vector ζ, where Ah is defined as

(Ahθ, ζ) =

∫ tn+1

tn

∫
Q0

((a∗(ηl
θ

, Dxl
θ), Dxl

ζ) + a∗0(η
lθ , Dxl

θ)lζ)dxdt.
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Proof. Using G-convergence results [19] for arbitrary solutions we have that vε
converges to v0 in Wn, where v0 is the solution of

Dtv0 = div a∗(ηl
θ

, Dxv0) in K × [tn, tn+1],

and v0 = lθ on ∂K, v0(x, t = tn) = lθ. The solution of this equation is v0 = lθ.
Consequently, using Theorem 2.1 on the convergence of arbitrary solutions for the
G-convergent sequence of operators we have

a(T (x/εβ , t/εα)ω, ηl
θ

, Dxvε) → a∗(ηl
θ

, Dxl
θ),

a0(T (x/εβ , t/εα)ω, ηl
θ

, Dxvε) → a∗0(η
lθ , Dxl

θ)

as ε → 0 weakly in (Lq(tn, tn+1, Q0))
d and Lq(tn, tn+1, Q0), respectively. Next, taking

into account (3.5), we get the desired result.
Note that since Ah,ε is uniformly continuous (see Lemma 3.3) the convergence

results of Lemma 3.4 hold uniformly in any compact set of ζ’s (finite dimensional).
Thus taking the limit as ε → 0 of (3.3) yields

∑
i

(θn+1
i − θni )

∫
Q0

φ0
i (x)φ0

j (x)dx

+

∫ tn+1

tn

∫
Q0

((a∗(ηl
θ

, Dxl
θ), Dxφ

0
j ) + a∗0(η

lθ , Dxl
θ)φ0

j )dxdt =

∫ tn+1

tn

∫
Q0

fφ0
jdxdt.

(3.22)

Next, we will show that the solution of (3.22) converges to the solution of the
homogenized equation. Note that (3.22) is not a standard discretization of the ho-
mogenized equation on Sh, where we have a∗(lθ, Dxl

θ) and a∗0(l
θ, Dxl

θ) instead of

a∗(ηl
θ

, Dxl
θ) and a∗0(η

lθ , Dxl
θ). Equation (3.22) is more tractable for computational

purposes because the quadrature step can be easily implemented. We rewrite (3.22)
as

∑
i

θn+1
i − θni

ht

∫
Q0

φ0
i (x)φ0

j (x)dx

+

∫
Q0

((a∗(ηl
θ

, Dxl
θ), Dxφ

0
j ) + a∗0(η

lθ , Dxl
θ)φ0

j )dx =

∫
Q0

fφ0
jdx.

(3.23)

For simplicity in (3.23) we have assumed that f = f(x).
For each uh(t), vh(t) ∈ Sh such that uh(t), vh(t) ∈ C(0, T, Sh), denote

(Ahuh, vh) =

∫ T

0

∫
Q0

((a∗(ηuh , Dxuh), Dxvh) + a∗0(η
uh , Dxuh)vh)dxdt.

For further analysis we will use uh instead of lθ to denote discrete solutions, uh ∈ Sh,
because we will be studying the continuum limit of the discrete quantities, i.e., the
limit as h → 0. Then (3.23) can be written as

1

ht
(uh(t) − uh(t− ht)) + Ahuh = fh,

where fh is the orthogonal projection of f onto Sh, i.e., fh ∈ Sh, such that (fh, vh) =
(f, vh).
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Lemma 3.5. Ah is coercive for sufficiently small hx, i.e.,

(Ahuh, uh) ≥ C‖uh‖V0
− C0.

Proof.

(Ahuh, uh) =
∑
K

∫ T

0

∫
K

(a∗(ηuh , Dxuh), Dxuh)dxdt +
∑
K

∫ T

0

∫
K

a∗0(η
uh , Dxuh)uhdxdt

=
∑
K

∫ T

0

∫
K

(a∗(ηuh , Dxuh), Dxuh)dxdt +
∑
K

∫ T

0

∫
K

a∗0(η
uh , Dxuh)ηuhdxdt

+
∑
K

∫ T

0

∫
K

a∗0(η
uh , Dxuh)(uh − ηuh)dxdt

≥ C
∑
K

∫ T

0

∫
K

|Dxuh|pdxdt− C0 −
∣∣∣∣∣
∑
K

∫ T

0

∫
K

a∗0(η
uh , Dxuh)(uh − ηuh)dx

∣∣∣∣∣
≥ C

∑
K

∫
K

|Dxuh|pdxdt− C0 − C2hx

∑
K

∫ T

0

∫
K

|Dxuh|pdxdt

= (C − C2hx)
∑
K

∫ T

0

∫
K

|Dxuh|pdxdt− C0.

Next, we show that Ah(θ) converges to A(θ) uniformly in V
′

0 for any uniformly

bounded set in V0, where A is defined by (A(uh), vh) =
∑

K

∫ T

0

∫
K

((a∗(uh, Dxuh), Dxvh)
+ a∗0(uh, Dxuh)vh)dxdt.

Lemma 3.6.

(Ah(uh) −A(uh), vh) → 0

for any uniformly bounded family of uh and compact family of vh in V0.
Proof. Consider

(Ah(uh) −A(uh), vh) =
∑
K

∫ T

0

∫
K

((a∗(ηuh , Dxuh) − a∗(uh, Dxuh), Dxvh)

+ (a∗0(η
uh , Dxuh) − a∗0(uh, Dxuh)vh))dxdt.

Using the estimates for a∗ we have

∣∣∣∣∣
∑
K

∫ T

0

∫
K

(a∗(ηuh , Dxuh) − a∗(uh, Dxuh), Dxvh)dxdt

∣∣∣∣∣
≤ C

∑
K

∫ T

0

∫
K

(1 + |ηuh |p−1 + |Dxuh|p−1 + |uh|p−1)ν(|ηuh − uh|)|Dxvh|dxdt

≤
(∑

K

∫ T

0

∫
K

(1 + |uh|p + |Dxuh|p)dxdt
)1/q (∫

K

|Dxvh|pν(|ηuh − uh|)pdxdt
)1/p

≤
(∫

Q

(1 + |uh|p + |Dxuh|p)dxdt
)1/q (∫

Q

|Dxvh|pν(|ηuh − uh|)pdxdt
)1/p

≤ (C + ‖uh‖pV0
)1/q

(∫
Q

|Dxvh|pν(h|Dxuh|)pdxdt
)1/p

.

(3.24)
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Here we have used
∫
K
|ηuh |pdx ≤

∫
K
|uh|pdx (by Jensen inequality) and |uh − ηuh | ≤

Ch|Dxuh|. Because of Lemma 4.3 we obtain that the right-hand side of (3.24) con-
verges to zero for any uniformly bounded family of uh ∈ V0 and compact family
vh ∈ V0 as h → 0. The estimate for a0 can be obtained in a similar way:∣∣∣∣∣

∑
K

∫ T

0

∫
K

(a∗0(η
uh , Dxuh) − a∗0(uh, Dxuh), Dxvh)dxdt

∣∣∣∣∣
≤ (C + ‖uh‖pV0

)1/q
(∫

Q

|vh|pν(h|Dxuh|)pdxdt
)1/p

.

(3.25)

Note that the right-hand side of (3.25) converges to zero for any uniformly bounded
family of uh ∈ V0 and vh ∈ V0.

Next, we will show that uh converges to the solution of the homogenized equation
weakly in V0. Our proof will follow the same lines as the Bardos–Brezis theorem
(see [20, p. 128]). The difference in our case is that we do not have the original
operator but have its uniform approximation. To simplify the presentation we denote

[u, v] =

∫ T

0

∫
Q0

uvdxdt.(3.26)

[Ahuh, vh] = (Ahuh, vh) is assumed. Consider

Jhuh + Ah(uh) = fh,(3.27)

where Jhuh = 1
ht

(uh(t)−uh(t−ht)). Denote the corresponding generator by J . Here

uh = uh(t) ∈ V0 is considered as a function with values in W 1,p
0 (Q0). It can be easily

shown that the solution of the discrete equation exists. Taking the value of (3.27) at
uh and noting [Jhuh, uh] ≥ 0 (see [20]) we obtain that

[Ah(uh), uh] ≤ [fh, uh].

Consequently, uh is bounded in V0; thus A(uh) is bounded in V
′

0 , from where it follows
that uh → u and Ahuh → g weakly in V0 and V

′

0 , respectively, as h → 0. Next, for
each v in D(J+), where J+ denotes the adjoint of L, we choose a sequence vh such
that vh → v in V0 and J+

h vh → J+v in V
′

0 . Consider (3.27) at vh,

[fh −Ah(uh), vh] = [Jhuh, vh],(3.28)

or

[fh −Ah(uh), vh] = [uh, J
+
h vh].

Taking the limit as h → 0 we obtain [f − g, v] = [u, J+v], for any v ∈ D(J+), where
[g, v] = limh→0[Ahuh, vh]. From here, making use of the resolvents of J (as it is done
in [20]) we have in V

′

0

Ju + g = f,

u ∈ D(J). It remains to show that g = A(u), where u is a weak limit of uh. Again
for any v choosing a sequence vh → v in V0 we have

[g, v] = lim
h→0

[Ah(uh), vh] = lim
h→0

[Ah(uh) −A(uh), vh] + lim
h→0

[A(uh), vh] = lim
h→0

[A(uh), vh].
(3.29)
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Thus A(uh) → g weakly in V
′

0 . To show g = A(u) it remains to show

lim
h→0

[A(uh) − g, uh] = 0.(3.30)

From here, using the fact that the operator A is type M [20], we will obtain A(u) = g;
thus u is a solution of the homogenized equation. Moreover, since our differential
operators are also type S+ (see [21]) we obtain that uh strongly converges to u, a
solution of the homogenized equation. This completes the proof of the fact that uh

converges strongly to u, a solution of the homogenized equation, in V0 as h → 0.
For (3.30) to hold, additional conditions are needed which will be discussed next.

These are the conditions required for Theorem 3.1 to hold. We will discuss various
conditions that can be used in different situations. Note that (3.30) can be written as

lim
h→0

[A(uh) −Ah(uh), uh] = 0.

The left-hand side can be written as

[A(uh) −Ah(uh), uh] =

∫ T

0

∫
Q0

(a∗(ηuh , Dxuh) − a∗(uh, Dxuh), Dxuh)dxdt

+

∫ T

0

∫
Q0

(a∗0(η
uh , Dxuh) − a∗0(uh, Dxuh))uhdxdt.

(3.31)

It can be easily shown that the second term converges to zero as h → 0. Indeed,
taking into account that uh is uniformly bounded in V0:∣∣∣∣∣

∫ T

0

∫
Q0

(a∗0(η
uh , Dxuh) − a∗0(uh, Dxuh))uhdxdt

∣∣∣∣∣
≤

∫ T

0

∫
Q0

(1 + |Dxuh|p−1 + |uh|p−1)ν(|ηuh − uh|)uhdxdt

≤ C

∫ T

0

∫
Q0

(1 + |Dxuh|p−α)ν(|ηuh − uh|)dxdt,

where α > 0. By Lemma 4.3 the right-hand side converges to zero since Dxuh

is bounded in (Lp(Q))d. The first term on the right-hand side of (3.31) does not
converge to zero in general. Indeed, for this term using (2.6) we have∣∣∣∣∣

∫ T

0

∫
Q0

(a∗(ηuh , Dxuh) − a∗(uh, Dxuh), Dxuh)dxdt

∣∣∣∣∣
≤ C

∫ T

0

∫
Q0

ν(|ηuh − uh|)(1 + |Dxuh|p)dxdt.
(3.32)

The right-hand side does not necessarily converge to zero unless Dxuh is uniformly
bounded in (Lp+α(Q))d or under assumptions different from (2.6). It is not difficult to
construct a function whose Lp-norm is of order one over a finite number of elements
K, and ν(|ηuh − uh|) is also of order one in these elements. Next, we will discuss
assumptions that allow us to state that (3.32) converges to zero, and, consequently,
(3.30) holds.

First, we note that if we use instead of (2.6)

|a(ω, η, ξ) − a(ω, η
′
, ξ)| ≤ C(1 + |η|p−1 + |η′ |p−1 + |ξ|p−1−r)|η − η

′ |r(3.33)
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(0 < r < 1) for a, then the right-hand side of (3.32) converges to zero. This condition
is used in the homogenization of parabolic operators in previous findings (see, e.g.,
[21, 17]). It can be easily checked that if we have (3.33) for higher order terms (i.e., a)
and (2.6) for lower order terms (i.e., a0), then all our previous calculations are valid;
moreover, (3.32) converges to zero, which implies that g = Au. Indeed, in this case∣∣∣∣∣

∫ T

0

∫
Q0

(a∗(ηuh , Dxuh) − a∗(uh, Dxuh), Dxuh)dxdt

∣∣∣∣∣
≤ C

∫ T

0

∫
Q0

|ηuh − uh|r(1 + |Dxuh|p−r)dxdt ≤ Chr
x

∫ T

0

∫
Q0

|Dxuh|pdxdt,
(3.34)

where in the last step we have used |ηuh − uh| ≤ Chx|Dxuh|. Clearly, the right-
hand side of (3.34) converges to zero for any uniformly bounded family of uh in V0.
Under the following condition,

∫
Q0

|a∗(η1(x), ξ(x))−a∗(η2(x), ξ(x))|qdx ≤ C
∫
Q0

‖η1−
η2‖p,Q0

· (1+ |ξ(x)|p)dx, which is more general (than (3.33)), one can also show (3.30)
(cf. (3.32)). Another case of (3.34) converging to zero is when the elliptic part of
our parabolic operator is strongly monotone. The analysis for the strongly monotone
parabolic operators is different from the one presented here (cf. [9]), and one can use
directly the monotonicity condition to show the convergence of the numerical solution.
Moreover, in the periodic case the explicit convergence rate in terms of ε and h can
be obtained. Note that for the strongly monotone random operators we actually do
not need to study the limit as h → 0 as we did in the above analysis because in the
limit ε → 0 standard finite element discretization of the homogenized equation will
be obtained.

Another condition under which (3.32) converges to zero is that Dxuh is uniformly
bounded in (Lp+α(Q))d for some α > 0. One can assume additional not restric-
tive regularity assumptions [16] for input data and obtain Meyers-type estimates,
‖Dxu‖p+α,Q ≤ C, for the homogenized solutions. In this case it is reasonable also to
assume that the discrete solutions are uniformly bounded in (Lp+α(Q))d. Meyers-type
estimates for approximate solutions of linear elliptic problems have been previously
obtained in [2]. We have obtained results on Meyers-type estimates for our approx-
imate solutions in the case p = 2 [8]. The results can be generalized to parabolic
equations. We are currently studying the generalizations of these results to arbitrary
p. One can formulate some other conditions which will allow us to show that (3.27)
converges to zero (for example, | ∂

∂ηa| ≤ C (see [18])), or another condition that can
be practical for computational purposes is that the homogenized solution is in Cα,
α > 0. The latter can also be obtained from the Sobolev imbedding theorem for
sufficiently large p.

Remark 3.5. We would like to note that the additional condition required for
Theorem 3.1 to hold is that the gradient of the numerical solution, Dxuh, is in
(Lp+α(Q))d for some α > 0. This condition can be replaced by other conditions
that were discussed above.

The above analysis can be carried out for general heterogeneities using G-conver-
gence theory. To show it we can use instead of (3.3)

∫
Q0

(uh(t) − uh(t− ht))whdx +

∫ t

t−ht

∫
Q0

((aε(x, t, η
uh , Dxvε), Dxwh)

+ a0,ε(x, t, η
uh , Dxvε)wh)dxdt =

∫ t

t−ht

∫
Q0

fwhdxdt,
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where wh is an arbitrary element of Sh, and vε is the solution of an appropriate local
problem. Further, taking a limit as ε → 0 in the same way as we did before one can
obtain an equation similar to (3.22),

∫
Q0

(uh(t) − uh(t− ht))whdx +

∫ t

t−ht

∫
Q0

((a∗(x, t, ηuh , Dxvε), Dxwh)

+ a∗0(x, t, η
uh , Dxvε)wh)dxdt =

∫ t

t−ht

∫
Q0

fwhdxdt.

The further analysis can be carried out along the same lines as we did above, assuming
additionally that a∗ and a∗0 are Holder continuous with respect to spatial and temporal
variables (cf. [9]). We would like to note that in the case of the general G-convergent
sequence of operators the convergence is up to a subsequence; i.e., the numerical
solution will converge to a solution of a homogenized equation (up to a subsequence
of ε) as it was formulated in Theorem 3.1.

Remark 3.6. To construct an approximation that strongly converges to an os-
cillatory solution in V0 norm given homogenized solution or its strong approximation
in V0 we need corrector results that will be described in section 4.

4. Numerical correctors and the approximations of the gradients. De-
fine Mh in the following way:

Mhφ(x, t) =
∑
i

1Qi

1

|Qi|

∫
Qi

φ(y, τ)dydτ,(4.1)

where
⋃
Qi

0 = Q0 and
⋃
T i = [0, T ], Qi = Qi

0 × T i, Qi
0 and T i have empty in-

tersections, respectively, and the maximum diameter of Qi
0 and T i are hx and ht,

respectively, and h = (hx, ht). Without loss of generality we assume Qi
0 are arbi-

trary domains with Lipschitz boundaries (in particular the triangular partition of Q0;
cf. (3.2)). Note that for any φ ∈ Lp(Q)

Mhφ → φ in Lp(Q) as h → 0.(4.2)

Further, denote

P (T (y, τ)ω, η, ξ) = ξ + wη,ξ(T (y, τ)ω),(4.3)

where wη,ξ = ∂N and N is the solution of (2.15), (2.16), (2.17), (2.18), or (2.20)
depending on the ratio between α and β. Note that the realizations of N can be
defined using near solutions (see [7] for details).

One of our main results is the following.
Theorem 4.1. Let uε and u be solutions of (2.2) and (3.1), respectively, and P

is defined by (4.3) in each Qi. Then

lim
h→0

lim
ε→0

∫
Q

|P (T (x/εβ , t/εα)ω,Mhu,MhDxu) −Dxuε|pdxdt → 0,

µ-a.e.
We will omit µ-a.e. notation in further analysis. To make the expressions in the

proof more concise we introduce the notation

Pε = P (T (x/εβ , t/εα)ω,Mhu,MhDxu).
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Theorem 4.1 indicates that the gradient of solutions can be approximated by
P (T (x/εβ , t/εα)ω,Mhu,MhDxu). This quantity can be computed based on MhDxu
and Mhu i.e., the gradient of the coarse solution in each coarse block as we will show
later. For the proof of Theorem 4.1 we need the following lemma.

Lemma 4.2. For every η ∈ R and ξ ∈ Rd

‖P (ω, η, ξ)‖pp,Ω ≤ C(1 + |η|p + |ξ|p).

Proof.

‖P‖pp,Ω ≤ C

∫
Ω

(a(ω, η, P ) − a(ω, η, 0), P )dµ(ω)

≤ C

∣∣∣∣
∫

Ω

(a(ω, η, P ), P )dµ(ω)

∣∣∣∣ +

∣∣∣∣
∫

Ω

(a(ω, η, 0), P )dµ(ω)

∣∣∣∣
≤

∣∣∣∣
∫

Ω

(a(ω, η, P ), ξ)dµ(ω)

∣∣∣∣ + (1 + |η|p−1)

∣∣∣∣
∫

Ω

Pdµ(ω)

∣∣∣∣
≤ Cδ1‖P‖pp,Ω + Cδ

−1/(p−1)
1 |η|p + C

∫
Ω

(1 + |η| + |P |)p−1|ξ|dµ(ω)

≤ Cδ2‖P‖pp,Ω + Cδ
−1/(p−1)
2 (1 + |ξ|p) + C + Cδ1(|η|p + ‖P‖pp,Ω) + Cδ

−1/(p−1)
1 |η|p.

With an appropriate choice of δ1 and δ2 we obtain the desired result.
From here it follows that P (T (y, τ)ω, η, ξ) ∈ Lp

loc(R
d) for a.e. ω and for each

η ∈ R, ξ ∈ Rd.
The next lemma will also be used in the proof.
Lemma 4.3. If uk → 0 in Lr(Q) ( 1 < r < ∞) as k → ∞, then∫

Q

ν(uk)|vk|pdxdt → 0, as k → ∞

for all vk either (1) compact in Lp(Q) or (2) bounded in Lp+α(Q), α > 0. Here ν(r)
is continuity modulus defined previously (see (2.6)), and 1 < p < ∞.

Proof. Since uk converges in Lr it converges in measure. Consequently, for any
δ > 0 there exists Qδ and k0 such that meas(Q \ Qδ) < δ and ν(uk) < δ in Qδ for
k > k0. Thus∫

Q

ν(uk)|vk|pdxdt =

∫
Qδ

ν(uk)|vk|pdxdt +

∫
Q\Qδ

ν(uk)|vk|pdxdt

≤ Cδ + C

∫
Q\Qδ

|vk|pdxdt.
(4.4)

Next, we use the fact that if (1) or (2) satisfies, then the set vk has equiabsolute
continuous norm [12] (i.e., for any ε > 0 there exists ζ > 0 such that meas(Qζ) < ζ
implies ‖PQζ

vk‖p < ε, where PDf = {f(x), if x ∈ D; 0 otherwise). Consequently, the
second term on the right-hand side of (4.4) converges to zero as δ → 0.

The proof of the theorem will be based on the following estimate:∫
Q

|Pε −Dxuε|pdxdt(4.5)

≤ C

∫
Q

(a(T (x/εβ , t/εα)ω, uε,Pε) − a(T (x/εβ , t/εα)ω, uε, Dxuε),Pε −Dxuε)dxdt
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≤ C

∣∣∣∣
∫
Q

(a(T (x/εβ , t/εα)ω,Mhu,Pε) − a(T (x/εβ , t/εα)ω, uε, Dxuε),Pε −Dxuε)dxdt

∣∣∣∣
+ C

∣∣∣∣
∫
Q

(a(T (x/εβ , t/εα)ω, uε,Pε) − a(T (x/εβ , t/εα)ω,Mhu,Pε),Pε −Dxuε)dxdt

∣∣∣∣
=: I1 + I2,

where I1 and I2 are the first and second terms that involve absolute value. We write
the first term on the right-hand side as follows:

I1 = C

∫
Q

(a(T (x/εβ , t/εα)ω,Mhu,Pε) − a(T (x/εβ , t/εα)ω, uε, Dxuε),Pε −Dxuε)dxdt

= C

∫
Q

(a(T (x/εβ , t/εα)ω,Mhu,Pε),Pε)dxdt

− C

∫
Q

(a(T (x/εβ , t/εα)ω,Mhu,Pε), Dxuε)dxdt

− C

∫
Q

(a(T (x/εβ , t/εα)ω, uε, Dxuε),Pε)dxdt

+ C

∫
Q

(a(T (x/εβ , t/εα)ω, uε, Dxuε), Dxuε)dxdt.

(4.6)

We will investigate the right-hand side of (4.6) in the limit as ε → 0. For the first
term of the right-hand side of (4.6) we have the following.

Lemma 4.4.∫
Q

(a(T (x/εβ , t/εα)ω,Mhu,Pε),Pε)dxdt →
∫
Q

(a∗(Mhu,MhDxu),MhDxu)dxdt

as ε → 0.
Proof.∫

Q

(a(T (x/εβ , t/εα)ω,Mhu,Pε),Pε)dxdt

=
∑
i

∫
Qi

(a(T (x/εβ , t/εα)ω, ηi, ξi + wηi,ξi(T (x/εβ , t/εα)ω)),

ξi + wηi,ξi(T (x/εβ , t/εα)ω))dxdt

→
∑
i

∫
Qi

1Qi
〈(a(ω, ηi, ξi + wηi,ξi), ξi + wηi,ξi)〉dxdt

=
∑
i

∫
Qi

1Qi(a
∗(ηi, ξi), ξi)dxdt +

∑
i

∫
Qi

1Qi〈(a(ω, ηi, ξi + wηi,ξi), wηi,ξi)〉dxdt

as ε → 0. Here we have used the Birkhoff ergodic theorem. The last term is zero
because

〈(a(ω, ηi, ξi + wηi,ξi), wηi,ξi)〉 = 〈(a(ω, ηi, ξi + wηi,ξi), ∂Nηi,ξi)〉 = −〈σNη,ξ, Nη,ξ〉 = 0,

where σ, the time derivative in abstract space, is defined in (2.11). The latter is
because σ is the skew-symmetric operator.
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Finally, we note that the limit can be written as

∑
i

∫
Qi

1Qi(a
∗(ηi, ξi), ξi)dxdt =

∫
Q

(a∗(Mhu,MhDxu),MhDxu)dxdt.

For the second term of the right-hand side of (4.6) we have the following.
Lemma 4.5.∫
Q

(a(T (x/εβ , t/εα)ω,Mhu,Pε), Dxuε)dxdt →
∫
Q

(a∗(Mhu,MhDxu), Dxu)dxdt

as ε → 0.
Proof.∫

Q

(a(T (x/εβ , t/εα)ω,Mhu,Pε), Dxuε)dxdt

=
∑
i

∫
Qi

(a(T (x/εβ , t/εα)ω, ηi, P (T (x/εβ , t/εα)ω, ηi, ξi)), Dxuε)dxdt.

Dxuε is bounded in (Lp(Q))d for a.e. ω. In order to show that a(T (x/εβ , t/εα)ω,
P (T (x/εβ , t/εα)ω, ηi, ξi)) is bounded in (Lr(Qi))

d, where r > q, we will use a Meyers-
type theorem [5, 1, 22]. Using the fact that P (T (x/εβ , t/εα)ω, ηi, ξi))) = ∂N , where
N satisfies either of (2.15), (2.16), (2.17), (2.18), one can use near solutions for N (as
we did in [7]) and obtain Meyers-type estimates following [22],

‖P (T (x/εβ , t/εα)ω, ηi, ξi)‖p+η,Q ≤ C,

where C is independent of ω and depends only on operator constants. From here using
bounds for a(Tyω, η, ξ) we obtain that a(T (x/εβ , t/εα)ω, ηi, P (T (x/εβ , t/εα)ω, ηi, ξi))
is bounded in (Lr(Q))d, where r > q for a.e. ω. Consequently, (a(T (x/εβ , t/εα)ω,
ηi, ξi + wηi,ξi(T (x/εβ , t/εα)ω)), Dxuε) is bounded in (Lσ(Qi))

d, σ > 1, for every ηi
and ξi. Thus it contains a subsequence that weakly converges to gi for any i and
a.e. ω. Using compensated compactness argument (see Theorem 2.1 of [22]) and near
solutions [7] we can obtain that as ε → 0 gi = (a∗(ηi, ξi), Dxu). The latter is be-
cause Dxuε weakly converges to Dxu in (Lp(Q))d for a.e. ω and a(T (x/εβ , t/εα)ω, ηi,
P (T (x/εβ , t/εα)ω, ηi, ξi)) weakly converges to a∗(ηi, ξi) in (Lr(Q))d. The fact that
Dxuε weakly converges to Dxu for a.e. ω follows from general G-convergence re-
sults [19], and the weak convergence of a(T (x/εβ , t/εα)ω, ηi, P (T (x/εβ , t/εα)ω, ηi, ξi))
is a consequence of the Birkhoff ergodic theorem. Consequently,

∑
i

∫
Qi

(a(T (x/εβ , t/εα)ω, ηi, P (T (x/εβ , t/εα)ω, ηi, ξi)), Dxuε)dxdt

→
∑
i

∫
Qi

(a∗(ηi, ξi), Dxu)dxdt =

∫
Q

(a∗(Mhu,MhDxu), Dxu)dxdt.

For the third term of the right-hand side of (4.6) we have the following.
Lemma 4.6.∫

Q

(a(T (x/εβ , t/εα)ω, uε, Dxuε),Pε)dxdt →
∫
Q

(a∗(u,Dxu),MhDxu)dxdt

as ε → 0.
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Proof.∫
Q

(a(T (x/εβ , t/εα)ω, uε, Dxuε),Pε)dxdt

=
∑
i

∫
Qi

(a(T (x/εβ , t/εα)ω, uε, Dxuε), P (T (x/εβ , t/εα)ω, ηi, ξi))dxdt.

Since |a(ω, η, ξ)| ≤ C(1+|η|p−1+|ξ|p−1) in Lq(Q) for a.e. ω, P (T (x/εβ , t/εα)ω, ηi, ξi)
converges to ξi in (Lp(Q))d and bounded in (Lp+η(Q))d (η > 0), a(T (x/εβ , t/εα)ω,
uε, Dxuε) weakly converges to a∗(u,Du) in (Lq(Q))d (using the theorem on the con-
vergence of arbitrary solutions for G-convergent sequence of operators), similar to the
analysis of the second term we obtain that∑

i

∫
Qi

(a(T (x/εβ , t/εα)ω, uε, Dxuε), P (T (x/εβ , t/εα)ω, ηi, ξi))dxdt

→
∑
i

∫
Qi

(a∗(u,Dxu), ξi)dxdt =

∫
Q

(a∗(u,Dxu),MhDxu)dxdt.

For the fourth term of the right-hand side of (4.6) we have the following.
Lemma 4.7.∫

Q

(a(T (x/εβ , t/εα)ω, uε, Dxuε), Dxuε)dxdt →
∫
Q

(a∗(u,Dxu), Dxu)dxdt

as ε → 0.
Proof.∫

Q

(a(T (x/εβ , t/εα)ω, uε, Dxuε), Dxuε)dxdt

= −
∫
Q

(div(a(T (x/εβ , t/εα)ω, uε, Dxuε)), uε)dxdt

= −
∫
Q

(Dtuε + a0(T (x/εβ , t/εα)ω, uε, Dxuε) − f)uεdxdt

→ −
∫
Q

(Dtu + a∗0(u,Dxu) − f)udxdt =

∫
Q

(a∗(u,Dxu), Dxu)dxdt.

Here we have used the fact that a0(T (x/εβ , t/εα)ω, uε, Dxuε) → a∗0(t, ω, u,Dxu) weakly
in Lq(Q) for a.e. ω. The latter follows from the convergence of arbitrary solutions of
the G-convergent sequence of operators, Theorem 2.1.

For the second term, I2, on the right-hand side of (4.5) we have

|I2| ≤ C

∣∣∣∣
∫
Q

(a(T (x/εβ , t/εα)ω, uε,Pε) − a(T (x/εβ , t/εα)ω,Mhu,Pε),Pε −Dxuε)dxdt

∣∣∣∣
≤ C

δ1

∣∣∣∣
∫
Q

|a(T (x/εβ , t/εα)ω, uε,Pε) − a(T (x/εβ , t/εα)ω,Mhu,Pε)|qdxdt
∣∣∣∣

+ Cδ1

∫
Q

|Pε −Dxuε|pdxdt

≤ C

δ1

∑
i

∫
Qi

ν(|uε − ηi|)q(1 + |ξi|p)dxdt +
C

δ1

∑
i

∫
Qi

ν(|uε − ηi|)q(1 + |wηi,ξi |p)dxdt

+ Cδ1

∫
Q

|Pε −Dxuε|pdxdt,

(4.7)
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where ν(r) is a continuity modulus defined earlier (see (2.6)). The first term on the
right-hand side converges to

∫
Q
ν(|u − Mhu|)q(1 + |MhDxu|p)dxdt by Lemma 4.3.

For the second term using Meyers-type estimates (cf. Lemma 4.5) we obtain that
wηi,ξi is bounded in (Lp+α(Q))d, α > 0. Thus using Lemma 4.3 we have that the
second term for each i converges to

∫
Qi

ν(|u− ηi|)q(1 + 〈|wηi,ξi |p〉)dxdt, which is not

greater than
∫
Qi

ν(|u − ηi|)q(1 + |ηi|p + |ξi|p)dxdt. Summing this over all i we get∫
Q
ν(|u−Mhu|)q(1 + |Mhu|p + |MhDu|p)dxdt. Thus (4.7) is not greater than∫

Q

ν(|u−Mhu|)q(1 + |Mhu|p + |MhDu|p)dxdt + Cδ1

∫
Q

|Pε −Dxuε|pdxdt.

Combining all the estimates for I1 and I2 (with an appropriate δ1 in (4.7)) we
have

lim
ε→0

∫
Q

|Pε −Dxuε|pdxdt

≤ C

(∫
Q

(a∗(Mhu,MhDxu),MhDxu)dxdt−
∫
Q

(a∗(Mhu,MhDxu), Dxu)dxdt

−
∫
Q

(a∗(u,Dxu),MhDxu)dxdt +

∫
Q

(a∗(u,Dxu), Dxu)dxdt

+ C

∫
Q

ν(|u−Mhu|)q(1 + |Mhu|p + |MhDxu|p)dxdt
)
.

(4.8)

Next, it is not difficult to show that the right-hand side of (4.8) approaches to
zero as h → 0. For this reason we use∫

Q

(a∗(Mhu,MhDxu),MhDxu)dxdt−
∫
Q

(a∗(Mhu,MhDxu), Dxu)dxdt

−
∫
Q

(a∗(u,Dxu),MhDxu)dxdt +

∫
Q

(a∗(u,Dxu), Dxu)dxdt

=

∫
Q

(a∗(u,Dxu) − a∗(Mhu,MhDxu), Dxu−MhDxu)dxdt

and write the right-hand side of (4.8) as∫
Q

(a∗(u,Dxu) − a∗(Mhu,MhDxu), Dxu−MhDxu)dxdt

+

∫
Q

ν(|u−Mhu|)q(1 + |Mhu|p + |MhDxu|p)dxdt.
(4.9)

Next, using the estimate |a∗(η1, ξ1)− a∗(η2, ξ2)| ≤ C(1 + |η1|p−1 + |η2|p−1 + |ξ1|p−1 +
|ξ2|p−1)ν(|η1 − η2|) + C(1 + |η1|p−1−s̃ + |η2|p−1−s̃ + |ξ1|p−1−s̃ + |ξ2|p−1−s̃)|ξ1 − ξ2|s̃
(see [19]) we obtain that the right-hand side of (4.9) converges to zero as h → 0.
Indeed, for the first term we have∫

Q

(a∗(u,Dxu) − a∗(Mhu,MhDxu), Dxu−MhDxu)dxdt

≤ C

∫
Q

(1 + |u|p−1 + |Dxu|p−1 + |Mhu|p−1 + |MhDxu|p−1)ν(|u−Mhu|)|Dxu−MhDxu|dxdt

+ C

∫
Q

(1 + |u|p−1−s̃ + |Dxu|p−1−s̃ + |Mhu|p−1−s̃ + |MhDxu|p−1−s̃)|Dxu−MhDxu|s̃dxdt.
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Using the Holder inequality it can be easily shown that the second term converges to
zero as h → 0. Using Lemma 4.3 we easily obtain that the first term also converges to
zero since MhDxu is compact in (Lp(Q))d. Similarly, using Lemma 4.3 and the fact
that MhDxu is compact in (Lp(Q))d we obtain that the second term on the right-hand
side of (4.9) converges to zero.

Next, we use the corrector results and show that our numerical homogenization
solution approximates Dxuε in the Lp-norm.

Theorem 4.8.

lim
h→0

lim
ε→0

‖Dx(uε,h − uε)‖p,Q = 0,

where uε is a solution of (2.2) and uε,h = EMsFEMuh is defined by (3.8) (or (3.4)
in each K).

Proof. Because of Theorem 4.1 we need to show only that

lim
h→0

lim
ε→0

‖Dxuε,h − P (T (x/εβ , t/εα)ω,Mhu,MhDxu)‖p,Q = 0.

Note that

lim
ε→0

‖Dxuε,h − P (T (x/εβ , t/εα)ω,Mhuh,MhDxuh)‖p,K×[tn,tn+1] = 0.(4.10)

Equation (4.10) is due to the fact that Dtuh−div(a∗(ηuh , Dxuh)) = 0 in K×[tn, tn+1];
i.e., the homogenized solution for uε,h is uh. Consequently,

lim
ε→0

‖Dxuε,h − P (T (x/εβ , t/εα)ω,Mhuh,MhDxuh)‖p,Q = 0.

It remains to show that

lim
h→0

lim
ε→0

‖P (T (x/εβ , t/εα)ω,Mhuh,MhDxuh) − P (T (x/εβ , t/εα)ω,Mhu,MhDxu)‖p,Q = 0.

To show the latter we need an estimate for
∫
Ω
|P (ω, η1, ξ1) − P (ω, η2, ξ2)|pdµ(ω).

Denote P1 = P (ω, η1, ξ1) and P2 = P (ω, η2, ξ2). Then

C

∫
Ω

|P1 − P2|pdµ(ω) ≤
∫

Ω

(a(ω, η1, P1) − a(ω, η1, P2), P1 − P2)dµ(ω)

=

∫
Ω

(a(ω, η1, P1) − a(ω, η2, P2), P1 − P2)dµ(ω)

+

∫
Ω

(a(ω, η2, P2) − a(ω, η1, P2), P1 − P2))dµ(ω)

≤
∫

Ω

(a(ω, η1, P1) − a(ω, η2, P2), ξ1 − ξ2)dµ(ω)

+

∫
Ω

(a(ω, η2, P2) − a(ω, η1, P2), P1 − P2))dµ(ω).

From here we can easily obtain∫
Ω

|P1 − P2|pdµ(ω) ≤ C(a∗(η1, ξ1) − a∗(η2, ξ2), ξ1 − ξ2)

+ C

∫
Ω

(1 + |η1|p + |η2|p + |P2|p)ν(|η1 − η2)dµ(ω).

(4.11)
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Thus

lim
h→0

lim
ε→0

‖P (T (x/εβ , t/εα)ω,Mhuh,MhDxuh) − P (T (x/εβ , t/εα)ω,Mhu,MhDxu)‖p,Q

≤ lim
h→0

∫
Q

(a∗(Mhuh,MhDxuh) − a∗(Mhu,MhDxu),MhDxuh −MhDxu)dxdt

+ C lim
h→0

∫
Q

(1 + |Mhuh| + |Mhu| + |MhDxu|)pν(|Mhuh −Mhu|)dxdt.

(4.12)

Similar to the analysis of the right-hand side of (4.8) it can be easily verified that the
right-hand side of (4.12) converges to zero.

5. Numerical examples. Consider the following convection-diffusion equation
in two dimensions:

Dtuε −
1

ε
v(T (x/εβ , t/εα)ω) ·DxF (uε) − d∆xxuε = f,(5.1)

where divx v = 0. Assuming that homogeneous stream function H(T (x/εβ , t/εα)ω)

H =

(
0 H(T (x/εβ , t/εα)ω)
−H((x/εβ , t/εα)ω) 0

)

exists such that divx H = v we obtain

Dtuε + divx(−dδijDxuε + H(T (x/εβ , t/εα)ω)DxF (uε)) = f.

The latter is equivalent to

Dtuε − divx(a((x/εβ , t/εα)ω, uε)Dxuε) = f,

where

a =

(
−d H((x/εβ , t/εα)ω)F ′(u)
−H((x/εβ , t/εα)ω)F ′(u) −d

)
.

We assume that a satisfies the assumptions imposed in previous sections.
Next, we apply the homogenization theorem presented earlier to this example and

consider the case α > 0, β > 0. From homogenization theory [7] it follows that uε

converges to u, which satisfies

Dtu = divx(a∗(u)Dxu),

where a∗ij(η) = 〈a(ω, η)(ξ + ∂wη)〉 and wη = ∂Nη. Here Nη is the solution of an
auxiliary problem whose formulation depends on the ratio between α and β. In all
the cases, wη is a linear function with respect to ξ; thus it can be represented as
wi

η = W ij
η ξi. Substituting this expression for wη in the homogenized formula we have

a∗ij(η) = −dδij + 〈HikF
′(η)W kj

η 〉.

The second term on the right-hand side, acij = 〈HikF
′(η)W kj

η 〉, represents enhanced
diffusion due to nonlinear heterogeneous convection.

We consider a simple application of our approach in the following way. At each
time step the average of uε,

1
Q0

∫
Q0

uεdx, is computed. Based on this average we solve
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Fig. 5.1. Enhanced diffusion for horizontal and vertical directions, H = 0.5(sin(t/ε) +
sin(t

√
(2)/ε))(sin(2πy/ε) + sin(2

√
(2)πy/ε)).

the local problem (3.4) and compute the enhanced diffusion which is further used to
solve the global problem. Further, we will compare our results with the average of
the fine scale results. The results where the enhanced diffusion is neglected will also
be presented. These tests will demonstrate the importance of the enhanced diffusion.
In all the examples below x = (x1, x2), and we denote x = x1 and y = x2. All the
computations are performed using the standard finite element method on triangular
meshes.

First, we present the total diffusivity as a function of η (i.e., average of the
solution) for various heterogeneous velocity fields given by the stream functions H =
0.5(sin(t/εα) + sin(t

√
(2)/εα))(sin(2πy/ε) + sin(2

√
(2)πy/ε)). We take ε = 0.1 and

d = 0.1 (molecular diffusion) and vary α, α = 1, 2. The flux function is chosen to be
the Buckley–Leverett function F (u) = u2/(u2 + 0.2(1 − u)2)) motivated by porous
media flows. The approximation of the enhanced diffusion is computed by solving
(5.1) in a unit square.

Next, a set of numerical examples are designed to compare the solutions of the
original (fine scale equation) with the solutions of the equations obtained using nu-
merical homogenization with and without enhanced diffusion. We consider (5.1) in a
unit square domain with the boundary and initial conditions as follows. uε = 1 at the
inlet (x1 = 0), uε = 0 at the outlet (x1 = 1), there are no flow boundary conditions
on the lateral sides x2 = 0 and x2 = 1, and, initially, uε = 0; thus flow from left to
right will occur.

Our first set of numerical tests use layered flow H = 0.5(sin(t/ε)+sin(t
√

(2)/ε))×
(sin(2πy/ε)+sin(2

√
(2)πy/ε)), where ε = 0.1. In Figure 5.1 we plot the total diffusion.

Note “the molecular diffusion” is d = 0.1. The left plot of this figure represents
the total diffusivity in the horizontal direction (along the layers), and the right plot
represents the total diffusivity in the vertical direction. Clearly, the diffusion enhances
somewhat dramatically in the horizontal direction, that is, along the convection. As
we see for η ≈ 0.4 there is an 8 fold increase in the diffusion. Moreover, since F ′(0) =
F ′(1) = 0 there is no enhancement if η = 0 or η = 1 (this corresponds to pure phases).
In Figure 5.2 we compare the averaged solution of the original equation with the one
computed using our approach. The averages are taken differently on the left and the
right figures. On the left figure of Figure 5.2 we have plotted the average solution as
a function of time, i.e., 1

Q0

∫
Q0

u(x, t)dx. Here and below the solid line designates the
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Fig. 5.2. Left figure: The solutions are averaged over the whole spatial domain. Right figure:
The solutions are averaged in the vertical direction (across heterogeneities). H = 0.5(sin(t/ε) +
sin(t

√
(2)/ε))(sin(2πy/ε) + sin(2

√
(2)πy/ε)).

0 0.2 0.4 0.6 0.8 1
0.1

0.3

0.5

0.7

η

a x 
* 

0 0.2 0.4 0.6 0.8 1
0.1

0.12

0.14

0.16

η

a y 
* 

Fig. 5.3. Enhanced diffusion for horizontal and vertical directions, H = 0.5(sin(t/ε2) +
sin(t

√
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√
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fine scale model corresponding to the original equation, and the dotted line designates
the solution obtained using our numerical homogenization technique. To illustrate the
importance of the enhanced diffusion we also include the solution where the enhanced
diffusion is neglected (i.e., the solution of ut = d∆u). This solution is designated
with the dashed line. On the right figure of Figure 5.2 we have plotted the solution
averaged across the heterogeneities (vertical direction) at the time instant t = 0.5.
Both figures clearly demonstrate the importance of the enhanced diffusion and the
robustness of our approach.

For the next set of numerical tests we change only the time scale by assuming
α = 2. Thus, H = 0.5(sin(t/εα) + sin(t

√
(2)/εα))(sin(2πy/ε) + sin(2

√
(2)πy/ε)),

where ε = 0.1. In Figure 5.3 we plot the enhanced diffusion. As in the previous
case we observe somewhat large enhancement in the horizontal direction. In Fig-
ure 5.4 we compare the averaged solutions as we did for the previous example. The
results indicate the importance of enhanced diffusion as well as the robustness of our
approach.

Next, we present an example where the stream function is a realization of the
random field with Gaussian distribution with respect to the spatial variables, H =
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Fig. 5.4. Left figure: The solutions are averaged over the whole spatial domain. Right figure:
The solutions are averaged in the vertical direction (across heterogeneities). H = 0.5(sin(t/ε2) +
sin(t
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Fig. 5.5. Enhanced diffusion for horizontal and vertical directions, H = 0.5((sin(t/ε2) +
sin(t

√
(2)/ε2))k(x, y), where k is a realization of the random Gaussian field that has correlation

length lx = ly = 0.1, mean zero, and variance 0.5.

0.5((sin(t/ε2)+sin(t
√

(2)/ε2))k(x, y), where k is a realization of the random Gaussian
field that has correlation length lx = ly = 0.1, mean zero, and variance 0.5. To
generate a realization of the random field with prescribed correlation lengths we use
GSLIB [4]. d = 0.1 and F (u) = u2/(u2 +0.2(1−u)2)) are used in (5.1). In Figure 5.5
we plot the total diffusivity. As we can see, the enhancement of the diffusion can
be up to 2.3 times. Since the stream field is isotropic the total diffusivity in the
vertical direction is the same. In Figure 5.6 we compare the averaged solution of
the original equation with the one computed using our approach. The averages are
taken differently on the left and the right figures as it is done previously. We have
observed similar accuracy for other realizations of this random field. These results
again demonstrate the importance of enhanced diffusion and the robustness of our
approach.

Finally, we consider an application of the numerical homogenization procedure to
Richards equation, Dtuε = div(aε(x, uε)Dxuε), where aε(x, η) = kε(x)/(1 + η)αε(x).
kε(x) = exp(βε(x)) is chosen such that βε(x) is a realization of a random field with the
exponential variogram [4], the correlation lengths lx = 0.3, ly = 0.02, and the variance
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Fig. 5.6. Left figure: The solutions are averaged over the whole spatial domain. Right figure:
The solutions are averaged in the vertical direction. H = 0.5(sin(t/ε2)+sin(t

√
(2)/ε2))k(x, y), where

k is a realization of the random Gaussian field that has correlation length lx = ly = 0.1, mean zero,
and variance 0.5.
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Fig. 5.7. Left figure: The solutions are averaged in the vertical direction. Right figure: The
fluxes are averaged in the vertical direction.

σ = 1. αε(x) is chosen such that αε(x) = kε(x) + const with the spatial average of 2.
In Figure 5.7 we compare the solutions (uε) and the fluxes (−aε(x, uε)Dxuε) corre-
sponding to this equation with boundary and initial conditions given as previously at
the time t = 2. The solid line designates the fine scale model results computed on
the 120 × 120 grid, and the dotted line designates the coarse scale results computed
using the numerical homogenization procedure on the 12 × 12 coarse grid. Since aε
is independent of t the local problems are chosen to be elliptic, as we discussed be-
fore. These results demonstrate the robustness of our approach for anistropic fields
where h and ε are nearly the same. Currently, we are studying the applications of the
oversampling technique to the numerical homogenization procedure.

6. Concluding remarks. In the paper we proposed and studied the conver-
gence of the numerical homogenization scheme for nonlinear parabolic equations. The
convergence of the scheme is obtained in the limit limh→0 limε→0 (see Theorem 3.1).
The proof of Theorem 3.1 can be extended to the case of general heterogeneities that
uses G-convergence theory. In fact the proof holds when a∗ and a∗0 do not depend on
spatial and temporal variables. In the periodic case the convergence of the numerical
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homogenization method can be shown in the limit ε/h → 0 (and ε → 0 if an exact pe-
riod is used for the local problem). The case of general heterogeneities may involve all
possible scales α(ε) such that α(ε) → 0 as ε → 0, and, consequently, our convergence
result in Theorem 3.1 cannot be improved. We believe for the homogeneous random
case that one can show the convergence of the numerical homogenization procedure
in the limit ε/h → 0, and this is currently under investigation.
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